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Abstract There is a growing recognition within the visual analytics
community that interaction and inquiry are inextricable. It is through the
interactive manipulation of a visual interface – the analytic discourse – that
knowledge is constructed, tested, refined and shared. This article reflects on
the interaction challenges raised in the visual analytics research and devel-
opment agenda and further explores the relationship between interaction
and cognition. It identifies recent exemplars of visual analytics research that
have made substantive progress toward the goals of a true science of inter-
action, which must include theories and testable premises about the most
appropriate mechanisms for human–information interaction. Seven areas for
further work are highlighted as those among the highest priorities for the
next 5 years of visual analytics research: ubiquitous, embodied interaction;
capturing user intentionality; knowledge-based interfaces; collaboration; prin-
ciples of design and perception; interoperability; and interaction evaluation.
Ultimately, the goal of a science of interaction is to support the visual analytics
and human–computer interaction communities through the recognition and
implementation of best practices in the representation and manipulation of
visual displays.
Information Visualization (2009) 8, 263--274. doi:10.1057/ivs.2009.22
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Introduction

A central precept of visual analytics is that the development of human
insight is aided by interaction with a visual interface. As visual analytics
is concerned with the relationship between visual displays and human
cognition, merely developing novel visual metaphors is rarely sufficient to
trigger this insight (where insight may be a new discovery or confirmation
or negation of a prior belief). These visual displays must be embedded in an
interactive framework that scaffolds the human knowledge construction
process with the right tools and methods to support the accumulation of
evidence and observations into theories and beliefs.

The ‘science of interaction’ is concerned with the study of methods by
which humans create knowledge through the manipulation of an interface.
As a science, it involves the development and testing of theories about the
most effective means to support inquiry. Interaction, however, is an over-
loaded term. At one level, interaction typically refers to the set of controls
provided to the user to manipulate an interface and the relationship
between the user and that interface. At a more abstract level, there is the
interaction between the user and the problem space. This higher-level inter-
action is a cognitive act that is enabled by computational tools, but it does
not take place exclusively within them (nor, for that matter, through the use
of any single tool). The science of interaction, therefore, is a much broader
concept than just the principles for creating interface widgets. Some of
one’s interaction with an information space might take place within the
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context of a software tool, but much of it occurs internally
in one’s mind; traces of the process of inquiry will be found
throughout all of the tools at one’s disposal.

To change fundamentally the nature of human inter-
action with information such that discovery is both
natural and supported seamlessly by computational aids,
new interaction research is needed. Users need to be
connected to their data (or to analytic operations that
provide insight into that data), not tethered to a device.
To support ubiquitous analysis, where insights can be
generated and tested wherever the mind is – not wherever
the data and the tool happen to be – interaction with
information spaces needs to be made available across
devices, platforms, locations, use context and collabora-
tive settings. But rather than focus on point solutions
for information analysis tools on individual platforms,
effort must be devoted to understanding the relation-
ship between interaction and inquiry such that coherent,
consistent analysis capabilities are at the user’s disposal
wherever and whenever he or she is thinking about a
problem space. As interaction research matures, transi-
tions between tools should become more transparent, so
we might not even be aware that we have moved from
one system to another. Following from the mantra that
good design just works, good interactive tools should
not draw attention to the novelty of their operation.
Instead, they should just seem natural and obvious,
bolstering and never confounding human cognitive
capacity. Emerging best practices need to be embodied in
the tools the community develops so users begin to see
familiar interaction models in the new tools they learn.
Integrated systems that encapsulate suites of capabili-
ties need to be developed in such a way that a consis-
tent user experience is provided throughout the inquiry
process.

As a checkpoint toward the development of this science
of interaction, this article identifies progress in interaction
research since the publishing of Illuminating the Path: The
Research and Development Agenda for Visual Analytics1 and
articulates a series of research challenges for the future,
centered around the problem of changing the dominant
interaction paradigms to ones that support human knowl-
edge construction as effectively as possible.

Interaction as a Reasoning Aid

The interactive manipulation of computational resources
is part of the reasoning process. Thus, interaction is always
situated in the context of some problem or goal-directed
activity. Acknowledging these situations – or better yet,
incorporating direct support for them – can improve the
ability of interactive interfaces to help humans reason.
Interaction should not be an afterthought – a set of
controls bolted on to a clever visual display to allow the
user to modify it – but the first thing that is considered in
the development of an analysis system. The interaction
is the inquiry.

In the process of inquiry, users’ contexts help them
identify relevant concepts and link them into appropriate
structures. The inquiry that users of visual analytics
systems engage in is often pragmatic, in that useful
insight only emerges out of the experience of manipu-
lating information.2 This manipulative aspect of inquiry
is crucial; the more ways a user can ‘hold’ their data (by
changing their form or exploring them from different
angles and via different transformations), the more
insight will accumulate. These acts of conceptual manip-
ulation have been described as situation,3 the bringing
together of background contexts and current observa-
tions and analyses toward some goal. Situated cognition
has been shown to be important to both formal and
informal discovery, (for example, Clancey4 and Lave and
Wenger5), and software interfaces can enable the enact-
ment that is part of situation in that they help users select
and reason with a set of concepts and contexts.

Lemke6 calls situation an ‘ecology’, evoking the
dynamic interaction between concepts and thinkers in
the process of knowledge construction. This dynamism
is also a central premise of the theory of distributed
cognition,7,8 which posits that cognition is an emergent
property of interactions between people and their envi-
ronment through perception and action. Rather than
viewing cognition as the mental processes occurring
only within individual minds, distributed cognition
recognizes the vital importance of people’s interactions
with artifacts. In human–computer interaction research,
distributed cognition has been used to describe the process
by which people transform and propagate representa-
tions of information, thus facilitating analysis, learning
and knowledge.9

Given the close coupling between interaction and
cognition, the science of interaction must empirically
validate theories about cognitive processes on its way
toward producing knowledge-construction interfaces.
For instance, there is a centuries-long thread of research
into the interplay between interacting with information
and human judgment. Kant, for example, introduced the
notion of purposiveness in reasoning that encompasses
action directed toward some end; this goal-directedness
or intentionality accounted for the reasoner’s context
and prior knowledge and was the mechanism by which
order was brought to observations.10 The judgment, or
perspective, of the individual inquirer is central to the
inquiry. For visual analytics environments, this means
that embodying the role, task and worldview of the user
in the analytic environment is the only way for user and
environment to become collaborators in the discovery
process.

Dialogical inquiry, or the interplay between human
and tool (where each poses both questions and answers),
is also vital to the future of interaction science. A user
might approach a tool with a question in mind, or
the tool might show patterns or features that prompt
the user to form new questions rather than arrive at
immediate answers. In dialogical inquiry, the role of the
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human-computer interface is to support the questioning
process. The dialog can be between people in the case of a
collaborative system, or between human and computer,
or within an individual user and their ‘future self’ – the
one who is starting to understand the information space.
Except in the case of some collaborative systems, this
dialog is rarely made explicit, but it is always there. This
dialog should also be playful, in that it is manifest as a free-
flowing stream of ideas that are compared, evaluated and
tested using a variety of tools. Rather than a ‘game-based’
interface that implies perhaps too strict a sense of goal-
direction, the interface might be more like a ‘toy’ – some-
thing that encourages open exploration without imposing
the game-maker’s rules on the exploratory process.

A common motif in recent information visualization
and interaction literature is that the inability of a user
to fluidly manipulate an interface in furtherance of their
goals is always a condition to be avoided. However, in
many analysis tasks, goals are unstable, and a straight-
forward progression down a path of discovery is impos-
sible. A breakdown in analytic discourse is not neces-
sarily bad; in fact, it is often under conditions of break-
down that new discoveries are made. As a hermeneutic
concept,11 breakdown occurs when expectations or prior
mental models fail to adequately explain observations,
often forcing the user to fundamentally reconsider their
information space or their tools. Breakdowns might occur
when users see something in a display that causes them
to revise their goals or refine previously held assumptions
about the information space. The fact that an interaction
with a tool does not have the anticipated result may not
always be indicative of a problem with the tool’s design; it
may be indicative of a situation that will lead to an emer-
gent insight on that part of the user by challenging prior
assumptions.

The elements of interaction

The information visualization community has begun to
distinguish between low-level interactions (those between
the user and the software interface) and high-level interac-
tions (those between the user and the information space).
Given the intentionality, or goal-directedness, implicit in
both of these levels, it is useful to enumerate the various
aims that a user might have in manipulating an interface.

In lower-level interaction, the user’s goal is often to
change the representation to uncover patterns, relation-
ships, trends or other features. In an attempt to define
the building blocks of a science of interaction, Amar
et al.12 define a set of low-level analysis tasks that are
typically performed with visualizations. These primitive
tasks – retrieve value, filter, compute derived value, find
extremum, sort, determine range, characterize distribu-
tion, find anomalies, cluster and correlate – accommodate
specific questions that might be asked of a visualization
and can be composed into aggregate functions for more
complex questions. The P-Set model13 offers an approach

for capturing a user’s sequence of low-level interactive
steps in an application-agnostic fashion. Tracking the
investigation process allows the user to see their current
state in the context of prior exploration and can poten-
tially inform future action. Tools such as Palantir (http://
www.palantirtech.com) are now implementing history
mechanisms that expose the sequence of interactive steps
as a sensemaking aid, and Aruvi14 integrates history
tracking with diagrammatic knowledge capture.

In higher-level interaction, the user’s goal is to generate
understanding. Here, understanding the intent of the
interaction becomes critical. Yi et al.15 define a taxonomy
of interaction intents – select, explore, reconfigure,
encode, abstract/elaborate, filter and connect – that could
constitute the components of a knowledge discovery
or confirmation process. Just as lower-level interaction
capabilities can be used to assess completeness of an
interface (does it allow users to efficiently and effectively
perform each low-level operation?), these higher-level
categories can be used to assess the kinds of goals to
which an interface could be applied. Although no single
visual analytics application might exhaustively support
all possible user goals, collections of tools could be assem-
bled that together meet the goals of a particular user task.
To accomplish this feat, however, individual tools need
to not only be mapped to the intents they afford, but
interoperability challenges must be addressed to allow
the seamless transfer of user data and findings across the
multiple third-party components assembled in support
of a task.

Figure 1 summarizes the relationship between high- and
low-level interaction. The interactive controls provided
by the individual display device provide access to a set
of low-level representation and interaction techniques
that support higher-level intents. Analytic discourse
is the relationship between these techniques and the
user’s goals and tasks, which involve low-level choices
about manipulating interactive controls and higher level
goals surrounding the problem being investigated. The
discourse is formed around the feedback between user
goals and the result of analyzing a particular representa-
tion or changing it through interaction. Representation
techniques – the development of which is typically the
province of information visualization – are low-level arti-
facts that support a user’s intent to represent information
in such a way as to make a particular determination.
Acknowledging the distinction between techniques and
intents is critical to the development of analysis support
tools; the technique should never be considered an end
in itself, but a means to support the user’s information
understanding.

Despite the development of initial taxonomies of inter-
action and representation components, an outstanding
research challenge remains properly understanding the
relationship between these components and the modes
of inquiry – abduction, deduction and induction. In this
order, these three modes of inquiry form a process flow
for the construction of knowledge.16
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User goals and tasks Interactive visualization

High-level

Low-level

Explore, Analyze, Browse,
Assimilate, Triage, Assess,
Understand, Compare

High-level

Low-level

Mutual feedback

Retrieve value, Filter, Sort,
Compute derived value, 
Find extremum, Correlate,
Determine range, Cluster,
Characterize distribution,
Find anomalies

Representation 
Intents:
Depict, Differentiate, 
Identify, Show outliers, 
Compare

Interaction 
Intents:
Select, Explore,
Reconfigure, Encode,
Abstract/Elaborate, 
Filter, Connect

Representation 
Techniques:
Charts, Graphs,
Networks, Treemaps,
Parallel Coordinates, ...

Interaction 
Techniques:
Selection, Brushing,
Dynamic query,
Pan/Zoom, ...

Figure 1: Analytic discourse involves the mutual feedback between user goals and tasks and the affordances of interactive
visualization.

In abduction, observations derived from exploratory
analysis stimulate possible hypotheses through an ‘appeal
to instinct’. (What seems to make sense to the user?)
The process of becoming familiar with a new data space
can be thought of as an abductive process: the user is
beginning to understand the problem and form goals as
well as identify sources of data if they are not already
given. The familiarization process involves reviewing the
data, identifying gaps in it, determining what tools and
methods can apply to it, transforming data into formats
usable by those methods, identifying changes in the
data if it has been examined previously, understanding
what the customer needs (that is, in what context
the analyst’s answers will be used), and articulating
existing assumptions. In constructing hypotheses or
‘abductions’, the analyst is engaged in exploration of the
data space and the formation of mental models to explain
observations.

Deduction follows, in which the consequences of
those hypotheses are examined. (If the emergent hypoth-
esis is true, can the question to which it is an answer
be reframed to assess the validity of the claims which
the hypothesis would imply?) Deduction may result in
refuting a previously formed hypothesis, as unlike abduc-
tion it is necessarily truth-preserving. In a confirmatory
analysis, the user might skip the abductive step (instead
starting with a set of alternative hypotheses as given)
and engage in a ‘top-down’ deductive assessment. Here,
the ability for the user to very quickly structure his or
her information space to identify confirmatory features
is crucial, in contrast to the exploratory need to reflect
on multiple complementary displays while seeking out
structure.

Lastly, inductive hypothesis testing selects the most
likely explanation by looking for additional indicators
and ranking alternative explanations. The verification
phase of an analysis is typically inductive, where contra-
indicators that might refute a hypothesis are sought,

alternative explanations are considered and biases are
assessed, challenged and resolved. Induction is not truth-
preserving, as future observations may alter or contradict
a hypothesis, but in interaction design, this is an advan-
tage. The user’s goals are similarly mutable, and frequently
the intent of a visual analysis task is to identify the best
explanation for an observation, acknowledging that there
are potentially multiple explanations and that no analysis
tool is likely to provide access to all possible data as well
as all possible ways of exploring that data. Visual analysis
tools simply give users the means to ask questions and
must support the evolution of those questions and their
answers over time.

Although the philosophy of science provides conve-
nient models for understanding the process of inquiry,
there are practical costs to implementing such models in
interactive analysis tools. In assessing common interac-
tion costs, Lam17 describes a ‘gulf of goal formation’ to
account for the user’s cost of deciding on an intent. This
intent is translated into execution steps (for which goals are
mapped to the tools and operations offered by a system
and to the physical movements required to perform
them) and evaluation steps (which involve perception,
interpretation and further manipulation of the resulting
displays). Principles arising from this work – including
the needs to reduce interface complexity, increase the
predictability of interaction events and identify long
sequences of repetitive actions that could be replaced
with ‘shortcuts’ – suggest that community standards are
needed. A closer coupling between understanding the
reasoning process inherent in the user’s manipulation of
the interface and the design of that interface can lead to
visual analysis systems that better align with their user’s
goals. A downside of this approach is that it can lead
to a profusion of problem-specific interfaces customized
for the reasoning processes characteristic of a particular
domain and no general principles that can apply across
domains.
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Interaction Challenges for the Next 5 Years

In light of the studies that have been accomplished
since the publication of the visual analytics R&D agenda,
this section attempts to clarify some specific research
needs and enumerate the components of interaction that
need attention from the research community for a true
‘science of interaction’ to emerge. These categories of
work – ubiquitous, embodied interaction; capturing user
intentionality; knowledge-based interfaces; collaboration;
principles of design and perception; interoperability; and
interaction evaluation – are essential if visual analytics is
to move from a mode of producing single-purpose proofs
of concept to universally impactful systems that encom-
pass the best solutions from across the research and
development community.

Ubiquitous, embodied interaction

It is important that the research community’s focus on
better understanding the relationship between inquiry
and interaction not lose sight of the fact that analytic
interaction is embedded in a user’s experience in the
world. While software developers might focus on tools,
users focus on problems. These problems live in users’
minds and follow them from tool to tool, from place to
place and from one day to the next. Rarely is a user’s
problem solved in the confines of a single software envi-
ronment and during just the period of time in which
that user is directly interacting with the environment.
Since an information worker’s life is generally composed
not of singular analysis tasks but of continuous engage-
ment with information, which is constantly arriving,
interweaving with what is already known, and departing
once outdated, how can we provide these users with
coherent interaction experiences across the range of
interfaces they might use in the course of their work life?
Since the manipulation of ideas that leads to insight may
occur anywhere – and even subconsciously – how can we
provide access to all relevant information whenever and
wherever a user is engaged with a problem?

Ubiquitous computing offers the potential to make
data and computational resources accessible anytime and
anywhere, but research into ubiquitous interaction is
needed to make sure that these resources are provided
in a useful, usable state. Crucially, interaction research
needs to ensure that transaction costs for performing
analytic operations are minimized at every step, while
not forcing users into fixed processes that fail to allow
for breakdown conditions. For instance, in confirmatory
assessments, the user might simply want the answer to a
question: ‘What’s the cheapest price to fly from New York
to Los Angeles next month?’ Although we can provide all
the data to perform this assessment visually, in certain
user contexts a question answering system, rather than
an exploratory interface, may be more appropriate. If
the price is below a certain threshold, or the user lacks

confidence in the answer provided, then an exploratory
visual interface might be offered to enable further inves-
tigation. If an analyst has a spark of insight during his or
her morning commute, what interface can be provided
to best afford assessment of that insight with whatever
computational resources (such as a mobile device) are
accessible at that place and time?

Ubiquitous interaction means that rather than build
point solutions, which work for one of each possible
user context (the field, office, collaborative environment
and so on), we need to be concerned with creating core
analytic capabilities that can be transformed for each of
these contexts but that remain consistent across them.

Recent research into the extremes of interaction
context – the use of very small and very large displays –
suggests that there may be some interaction princi-
ples that can remain common across displays, while
in other cases, automated transformations may need
to occur depending on the use context. For instance,
studies of mobile device interfaces have determined
that fisheye techniques can be more successful than
zoomable interfaces because they better preserve a user’s
orientation in an information space.18 Examples of
applications customized for small devices (such as for
emergency responders in Figure 219) help elucidate design
techniques, both for data management and interface
construction, that accommodate the affordances of the
platform. In Figure 2, techniques such as making user
interface components transparent to avoid occluding
other features and menus that can be moved or hidden
help make information analysis on small screens possible.

At the other end of the spectrum, large high-resolution
displays allow focus and context to be managed in funda-
mentally new ways. In an empirical study of accuracy
and performance times for tasks such as finding attribute
values or trends on large displays, Yost and North20

found that through both physical navigation and human
perceptual abilities, users were able to perform some tasks
more quickly as interface size grew. In large displays, users
preferred embedded visualizations presented in context
rather than small multiples. Given the same task but
the reality of having to perform it in different contexts,
lessons learned about the effectiveness of interfaces at
these extremes can be translated into principles for auto-
mated presentation.

There has also been research into interface metaphors
that remain consistent across platforms. FacetMap,21

for instance, is a faceted browsing technique that can
provide different levels of aggregation on differently sized
displays. FacetMap visualizations use an identical inter-
face across platforms, although the level of detail that can
be rendered in a single view changes. Increased research
emphasis needs to be placed on metaphors that provide
consistency for users, as the training effect means that
new tools, which use familiar metaphors, can be more
easily adopted.

For visual analytics to be truly transformative, it is also
vital that non-traditional interfaces be developed, not
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Figure 2: Mobile interface for building evacuation modeling uses techniques such as transparent overlays (left) to preserve
context on small screens.19

just in the common ‘off the desktop’ realms of mobile
and large displays, but also in the realm of mixed reality
and context-aware computing. The notion of embodied
interaction22 suggests that information artifacts, such
as components of a visual display, take on meaning
through their use. This use is nearly always embedded
in a physical, social and cultural context that should
not be ignored; cognition involves the interplay among
a range of distributed artifacts that may be physical,
mental or digital.9 A law enforcement officer using a
visual tool on a mobile device during a field interview
is not interacting with a piece of software; he or she is
interacting with an incident or a suspect, and the soft-
ware tool is supporting that interaction. Research into
interfaces for augmented reality, taking into account all
of the physical and task-related context that surrounds
an interaction, can lead to new principles for transparent
design whereby information systems automatically recog-
nize context and support their users’ information work
with just the right set of tools for the task at hand.
New ways of combining physical and virtual informa-
tion as well as real-time and historical data are needed.
The SiteLens system, for instance, provides a proto-
type for overlaying visual depictions of historical sensor
data atop live camera images on a handheld device,
supporting geo-contextual exploration of relevant data.23

In mobile environments, can information delivery be
tailored not just to location, but to the task at hand?
In collaborative environments, can the relationships
between participants, their actions and discussions, be
seamlessly integrated with the information displays they
are using?

Capturing user intentionality

Necessary to the tailoring of information displays to
users in support of embodied interaction is the need to
recognize what the user is trying to achieve through the
interaction. Some visual analytics systems have added
annotation capabilities that allow users to manually
record their thought processes as they work. These anno-
tations serve as a textual representation of goals and
strategies that are useful for reconstructing the steps one
took to reach a finding or, when shared with others, can
allow them to better evaluate the finding, but they are
not usable by the software tools themselves. While tech-
niques like P-Set can be used to represent the ‘how’ of
an analysis process, typically lost is the ‘why’. Knowing
why a user is pursuing a particular path is crucial to a
visual analytics tool’s ability to modify its presentation,
suggest alternatives or identify additional information for
the user.

Representing analytic provenance means we do not
just capture the source of data and the transformations
that were applied to it, nor only the sequence of inter-
action steps that occurred, but we develop mappings
between application events and cognitive events. Can
the temporal relationships between application events
(such as what events tend to occur in proximity to each
other and whether they occur in rapid succession or in
drawn out periods of reflection) be used as indicators
of insight?

Recently, increased attention has been devoted to the
problem of capturing higher-level thought processes
in situ. The HARVEST system uses a hierarchical model of
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Figure 3: Action trails in HARVEST allow users to preserve their inquiry paths.24

events, actions, subtasks and tasks to categorize a user’s
activity.24 In HARVEST, a visualization state can be saved
together with the ‘action trail’ (Figure 3) that constitutes
its provenance. These actions are composed of exploration
actions (those involved in accessing and exploring data),
insight actions (those involved in marking visual objects
or taking notes) and meta actions (those that operate
over the action trail itself, such as undo and redo). The
authors of HARVEST discuss examples of third-party visu-
alization tools being mapped to this provenance schema,
suggesting that it may be possible to distill interaction
with any visualization into a set of user-activity building
blocks.

Dou et al.25 take an alternative approach, using human
coders to explore the logs created during other users’
interactions with a financial analysis tool. The results of
this coding were compared to ‘ground truth’ collected
by think-aloud narration from the original analysts. The
more successful of the techniques employed by these
human coders in recognizing insight could be used as
models for automatically identifying the findings and
methods of visual analytics tool users.

Meta visualization tools, such as those used in
Shrinivasan and van Wijk14, Dou et al.25 and Heer et al.26

are useful as history-preserving tools in support of an
individual user’s exploration, but additional work is
needed to extend visual analytics systems to be able to
represent exactly what the insight is and why it is impor-
tant. The actual insight is generally expressed either as a
textual narration or a bookmark to a view. If, as we discuss
in more detail in the next section on knowledge-based
interfaces, the insight can be represented in a form that
is useful both to the human and the software system, it
may be possible to automate knowledge collection during

the interaction process and customize the interface to
align with a user’s particular strategy (for instance, by
recognizing interaction strategies that are typically more
successful in leading to insight and suggesting interaction
paths that follow them).

Additionally, these initial studies in capturing analytic
provenance are necessarily developed as proofs of concept
within a single visual analysis application. However, as
analysts rarely complete all of their work within the
confines of a single tool, it will become necessary to
abstract these taxonomies into community standards
to which developers will map the particular opera-
tions supported by their applications. (An example of
infrastructure to support provenance capture in visu-
alization is VisTrails, which uses a workflow model
to capture, share and reuse exploratory visualization
processes.27 Without such standards, analysts typically
resort to capturing their thinking and evidence manu-
ally because there is no other way to collect it seam-
lessly across tools. With a common provenance schema
and a growing body of tools that support that schema,
the analyst’s toolbox will come to contain applica-
tions that can use each other’s results; findings from
one tool will be passed to another, built upon and
passed on, preserving audit trails throughout the entire
analysis process. Analytic provenance also needs to be
captured over longer time periods than just a single
analysis session; it ought to be possible to capture,
and allow users to reflect upon, the long-term learning
that occurs as a user grows familiar with an informa-
tion space. Recognizing these longer-term knowledge
construction processes can prompt a system to help
the user re-evaluate older findings in light of new
knowledge.

© 2009 Palgrave Macmillan 1473-8716 Information Visualization Vol. 8, 4, 263–274 269
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Knowledge-based interfaces

Despite the widely acknowledged intersection between
interaction and knowledge construction, the ability
of visual analysis tools to represent and reason with
human knowledge is underdeveloped. One strategy
for representing analytic insight as more than a view
or an annotation is to begin incorporating computa-
tional representations of human knowledge into visual
systems. Frequently, knowledge representation formats
like description logics or ontologies are used for infor-
mation schema mapping or entity-relation search appli-
cations, in which formal semantics are necessary for
machine reasoning. Knowledge representations can also
be used to mark up human expressions of insight in
machine-readable formats and in a more consistent
fashion than narrative text annotations allow.

When human perceptual abilities and machine
reasoning combine, new mixed-initiative interfaces
become possible. For instance, Xiao et al.28 introduces
a technique for turning the features and patterns that
a user identifies visually into rules that can be used to
automatically recognize additional cases of those features
in large data sets. Approaches such as this are not only
useful for offloading the burden of search to an auto-
mated tool once exemplars have been identified, but can
be also used as formal records of the structure in data that
constituted the discovery. Without this formal markup,
consumers of an analysis product may have difficulty in
understanding exactly what it was in a particular view
that caught the analyst’s attention.

Techniques that examine the format and structure of
the data the user is analyzing, such as the ‘Show Me’
feature in Tableau,29 make use of another form of knowl-
edge representation. These techniques rely on formal
models of the relationship between data types and visual-
ization affordances to recommend displays that are likely
to result in useful insight.

One component of future knowledge-based inter-
faces should be user models that account for the role,
context, prior knowledge and aims of the individual or
group using a visual analytics tool. These models should
also address work styles, user preferences and mental
models of their tasks, workplace constraints, and even
personality styles in collaborative settings. Even users
with similar backgrounds solving similar tasks will use
idiosyncratic reasoning strategies and therefore require
tools that accommodate these strategies. In a study of
analysts performing a typical exploration and hypothesis
construction task, Robinson30 found that users’ informa-
tion organization strategies ranged from concept maps to
timelines to piles. These organizational models reflected
users’ internal cognitive representation of the problem,
and the design of future analysis environments should
allow users to choose the interface model that best aligns
with their perspective.

User models should also extend to formal descrip-
tions of the concepts and relationships the user cares

about most. These descriptions can be used to emphasize
those concepts in an interactive display, reducing the
amount of effort needed to find the items of greatest
interest in a complex information space. The insight-
detection techniques described earlier are one mech-
anism for inductively generating these models; visual
tools can bootstrap representations of a user’s interests
and characteristic strategies over time. Such user models
can address the need for ‘steerability’ in mixed-initiative
interfaces identified by Lam.17 While automated search
and discovery systems will be vital for helping users deal
with ever-growing information spaces, only if these inter-
faces accommodate users’ viewpoints will they be widely
adopted.

Collaboration

Collaboration is characteristic of nearly all visual analytics
work. Rarely does a single individual undertake the
entire analysis process, from data acquisition through
to reporting and decision making. Infrastructure for
collaboration – emerging technologies for shared inter-
active displays – is a healthy research theme outside of
visual analytics. However, greater research effort must be
applied to developing collaborative systems that help map
between user models and across synchronous and asyn-
chronous collaboration modes. Cooperative knowledge
construction and communication requires this mapping
to facilitate efficient and appropriate re-use of knowledge
resources as well as sound decision making by consumers
of another’s analysis.

In proposing a framework for multi-analyst work,
Brennan et al.31 uses the notion of ‘private perspectives’
to describe the user models we discuss above. Within
each perspective, facts and confidence can be formally
represented as logical rules, allowing private perspectives
to be fused into a shared view. However, the technique
assumes that analysts will use shared voice channels to
communicate their reasoning behind the perspective,
suggesting that the technique is most appropriate for
synchronous collaboration within small groups. Support
for this sort of explicit collaboration must be matched by
systems for implicit collaboration, where a sufficiently
robust representation of a user’s reasoning is preserved
for later consideration by others.

Heer and Agrawala32 enumerate many of the require-
ments that must be managed in designing collaborative
visual analysis systems. Extant systems address many
of these challenges – such as indicating reference (to
what is one user attempting to draw others’ attention)
and managing sideband discussions for clarification
and decision making (for example, Tomaszewski and
MacEachren33). However, preserving sufficiently rich
descriptions of an analyst’s activities in asynchronous
group work such that others can effectively ask questions
of that analyst in the absence of their physical or virtual
presence is important.
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Furthermore, when designing collaborative visual
analytics systems, interaction techniques developed for
single-user systems do not always have the same effects in
a collaborative system. For example, Isenberg and Fisher
present a collaborative system that enables multiple
users to perform co-located document analysis tasks34

using the brushing and linking interaction technique.
This technique has been used extensively in single-user
visualizations, especially in systems that utilize multiple
coordinated views.15 However, brushing and linking
presents new benefits as well as challenges when applied
to a collaborative environment. For example, while the
technique allows users to maintain common ground and
awareness, it can also blur the boundary between indi-
vidual and group work. This example suggests that reex-
amining existing interaction techniques and developing
new ones specifically for collaborative visual analytics
systems will be important in advancing collaborative
interaction as a science.

Principles of design and perception

Despite the growth of the visual analytics community and
the development of successful technologies in the past
5 years, the community has not seen interdisciplinary
participation to the extent necessary to make more signif-
icant progress on the challenges of analytic interaction.
The design, cognitive science and usability engineering
communities, in particular, need to be more deeply
engaged in visual analytics research. It is the responsi-
bility of the visual analytics enterprise to form substantive
collaboration with these communities, bringing experts
from those fields into our research teams. Recent efforts
in the Visual Analytics Science and Technology (VAST)
Symposium Challenge are beginning to use metrics-based
evaluation to assess whether and to what degree visual
analytics tools will empower users to be efficient, effective
and satisfied.

An important step in involving the design community
in visual analytics occurred during the kickoff meeting
for the Canadian Network of Visual Analytics Centres,
at which design panels critiqued existing analysis tools
from a user-centered perspective. The culture of substan-
tive design critique is not yet part of the visual analytics
enterprise, yet such critiques are vital if research-grade
systems (which most of the products of the visual analytics
community in the past 5 years represent) are to be tran-
sitioned into operational use. In many evaluation studies
of analytic interfaces, the design of the interface is often
being evaluated more than the underlying analytic algo-
rithm, even if the intent of the study is otherwise. Recent
research in identifying appropriate visual metaphors for
particular cognitive tasks (for example, Ziemkiewicz and
Kosara35) is a step in the right direction.

When design practitioners and usability engineers
are involved in visual analytics tool development and
evaluation from the start, good design practices and

aesthetics in visualization design will begin to permeate
the community. Just as joint research funding programs
are beginning to support better cooperation between visu-
alization and data sciences research communities, joint
programs that involve design activities (often funded
and performed under humanities programs) must be
started. Design and evaluation roles must be kept sepa-
rate, however, allowing user-centered evaluation to be
run by independent usability engineers who are specifi-
cally trained in metrics-based evaluations, human factors
and psychology.

Likewise, although cognitive science has long been
identified as a pillar of visual analytics, there has to date
been relatively modest involvement of the cognition
and perception communities in visual analytics research
programs. During analysis, information is constantly
represented in new ways: information elements gain
and lose prominence; give birth to new information;
or disprove and thereby eliminate other information
elements. Understanding the intersection of cognition
and the dynamic nature of information is integral to
understanding interaction. However, the limits of human
cognitive abilities have largely gone unexplored. There
is evidence of biological changes to brains because of
interaction with technology, but brains are not evolving
as fast as information is increasing. While preventing
cognitive overload is frequently raised as an aim of visual
analytics tools, the conditions that constitute overload in
exploratory tasks are not well understood.

There is also a physiological dimension to cognition
and perception. The science of interaction requires under-
standing the constraints imposed by the biology of the
human eye, and information must be presented in a way
that accommodates physical limitations. Users may even
end up with eye fatigue or strain because the presentation
has pulled their eyes constantly to the periphery of the
display when they are trying to work with data points in
the middle. However, the lack of substantial involvement
by the cognitive and perceptual science communities in
visual analytics has hindered the development of princi-
ples for sound interfaces not just for visualization, but for
analysis. Addressing this lack of research integration will
be a primary challenge for the visual analytics community
over the next 5 years. Funding programs that expressly
support joint research are one way to achieve this, as are
efforts by visual analytics researchers to include psychol-
ogists on their research teams.

Interoperability for integrated interaction

The advances that the visual analytics research commu-
nity has made in the past 5 years have largely been
embodied in point solutions – individual tools or
methods that demonstrate a new algorithm, a novel
visual metaphor or a new set of design principles. What
the community must work toward in the next 5 years
are mechanisms to turn these singular advances into
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components of integrated suites that support the end-
to-end process of analysis. New platforms upon which
individual solutions will reside are needed. In many
user communities, deploying new tools is difficult polit-
ically, technically and culturally. These problems can be
mitigated in part by a recognition that new methods
must often fit within existing workflows; demonstrating
how a tool or technique integrates with the intended
user’s existing activities and goals as well as with the
information systems he or she already uses is crucial for
adoption.

Interoperability is vital to the science of interaction
because analysis occurs in a workflow. Each component
in that workflow will be a party in the analytic discourse,
so each must acknowledge and respond to the contribu-
tions of other components. How can information best be
passed among tools, and how can each tool build upon
the discoveries made in others? It will not be a wise use
of effort for research teams to implement analysis pack-
ages that, simply for the sake of completeness, replicate
functionality available elsewhere. Instead, focus should be
placed on creating the analytic substrate to which new
capabilities will connect. This way, ‘gold standard’ imple-
mentations can be made accessible to all members of the
community, and valuable research funding can be devoted
to novel development rather than redundant implemen-
tations. While intellectual property issues can complicate
sharing analytic methods widely, funding agencies may
wish to sponsor workshops that attempt to define interop-
erability specifications across the visual analytics research
community. Such specifications will help ensure that anal-
ysis components adopted by those agencies will integrate
well with existing platforms, and creating analysis compo-
nents compatible with a community-wide substrate need
not require the sharing of intellectual property.

Conceiving of visual analytics techniques as compo-
nents in a larger, interoperable ecosystem can also lead
to new kinds of composable interfaces that make analytic
discourse more flexible than it can possibly be within the
bounds of a single tool. Systems that can be re-wired by
the analyst to meet changing goals – or ideally, that re-
wire themselves – allow the diversity of an analyst’s work
to take place within an integrated environment. These
composable interfaces can be informed by the dataflow
programming model, where operations in one analytic
process trigger downstream changes in others. While
visual programming languages and composable coordi-
nated visualization environments are common in the
research community, they are often most useful for devel-
opers or very skilled users, rather than for typical end
users. Composable interfaces that can take multiple forms
to reflect users’ mental models of their tasks may meet
with more success. If they capture the community’s best
practices and allow new advances to be rapidly plugged
in, such environments have the potential to change the
nature of information work.

Early examples of such environments (for example, Pike
et al.36) have explored the development of service-based

analytic systems, where atomic components for data
preparation, transformation and display can be linked
into mashups. Service-based analysis allows interfaces
for interactive discourse to be constructed in a platform-
and place-agnostic fashion. However, community stan-
dards for how to move meaning, not just data, between
components are needed. Such standards will allow each
component in a workflow to describe the knowledge
structures that emerge from it.

Evaluating the costs and benefits of interaction

Evaluation of visual analytics systems has been an active
and important component of advancing the science of
visual analytics. The paper on ‘Visual Analytics Tech-
nology Transfer Progress’37 in this special issue highlights
the strides that have been made – and challenges that
remain – in quantitatively and qualitatively measuring
the benefits of visual analytics. There remains a partic-
ularly acute need to develop techniques for measuring
the costs and benefits of interaction during the knowl-
edge construction process. With few exceptions (for
example, Lam17), interaction has not been isolated
as an experimental variable. Usability studies that use
the same visualization but vary the interaction tech-
niques and methods can illuminate the specific benefits
and costs of those interactions. Such studies can help
create a science of interaction by contributing to agreed-
upon methods and falsifiable hypotheses, making the
role of interaction better defined and its effects more
predictable.

As the goal of interaction is to build knowledge,
generate insight and perform analysis, the effects of inter-
action should be measured according to their support
for these goals.38–40 Although the evaluation methods
proposed so far in the visual analytics community have
focused on assessing the benefits of visual analytics as
a whole, the key role played by interaction needs to be
studied independently. While it is clear that visual repre-
sentations can be informative without interactions (for
example, in the form of static information graphics), and
interaction cannot function alone without visual repre-
sentations, exactly what kind and degree of benefit is
realized by allowing a user to interact with visual represen-
tations is still undetermined. For example, Green et al.40

proposed a model for visual analytics based on human
cognition and considered interaction to be responsible
for engaging the user and keeping the user in a contin-
uous, uninterrupted ‘cognitive flow’. What quantitative
measures can be developed to assess the degree to which
interaction enables the state of flow?

Assessing the usability of interactive visual interfaces
means not just measuring user preference, but under-
standing what users need to do their jobs effectively. The
International Standards Organization defines usability
as having three parts – efficiency, effectiveness and
satisfaction.41 Although measures for efficiency and
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satisfaction are straightforward, effectiveness is complex.
How did the interface enable the user to perform his or
her job better? What interaction techniques improved
the soundness of the resulting analysis? Quantifications
of insight, knowledge and cognitive flow are candi-
date measures, but they are also difficult to assess.42

To enable better comparison between studies, standard-
ized metrics for effectiveness are needed. And with new
metrics, new evaluation paradigms might be necessary.
New approaches have been proposed to overcome the
challenges of performing formal evaluations in real-
world settings (for example, Plaisant43, Isenberg et al.44);
enhancing these approaches with methods for testing
interaction independently from visual representation is
crucial to verifying and validating interaction techniques
in visual analytic systems.

Conclusion

Since its inception, the field of visual analytics has
emphasized the centrality of interaction with visual envi-
ronments to the knowledge construction process. Indeed,
it is now widely recognized that the interaction is the
inquiry. Interaction is not just the manipulation of inter-
face controls in a software environment but the discourse
the user has with his or her information, prior knowledge,
colleagues and environment.

Through work in seven key research areas – ubiqui-
tous, embodied interaction; capturing user intention-
ality; knowledge-based interfaces; principles of design
and perception; collaboration; interoperability; and inter-
action evaluation – the science of interaction can be
advanced into a body of theory and practice that guides
how humans will engage with information spaces in the
future. This body of work will inform the design of inter-
active, visually rich environments such that system devel-
opers can be more confident that their design choices
will work, and users will find an interaction experience
that is both consistent and supportive of sound anal-
ysis processes. Understanding the relationship between
actions performed during use of an analysis tool and
modes of inquiry can lead to systems that are able to
recognize, reflect and support the generation of insight
by their users.

This work has been supported by the National Visual-
ization and Analytics Center (NVAC) located at the Pacific
Northwest National Laboratory in Richland, WA. NVAC is
sponsored by the US Department of Homeland Security
Science and Technology Division. The Pacific Northwest
National Laboratory is managed for the US Department of
Energy by Battelle Memorial Institute under Contract DE-
AC05-76RL01830. Certain commercial equipment, instru-
ments, materials, services or companies are identified in
this article. This in no way implies endorsement or recom-
mendation by the National Institute of Standards and
Technology.
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