
Libra: An Interaction Model for Data Visualization 
Yue Zhao 

Shandong University 
Qingdao, China 

jack.zhao9802@gmail.com 

Yunhai Wang∗ 
Renmin University of China 

Beijing, China 
wang.yh@ruc.edu.cn 

Xu Luo 
Renmin University of China 

Beijing, China 
luoxu9days@gmail.com 

Yanyan Wang 
Ant Group 

Hangzhou, China 
shiwu.wyy@antgroup.com 

Jean-Daniel Fekete 
Inria & Université Paris-Saclay 

Orsay, France 
jean-daniel.fekete@inria.fr 

Figure 1: Libra facilitates efficient interaction modeling by enabling the reuse, extension, and combination of built-in interactions. 
Its prototype, Libra.js, supports seamless exploration of the t-SNE projection of the MNIST dataset with various interactions: 
(a) hovering a point to show the corresponding image, (b) clicking a data point to highlight the whole class, and (c) dragging 
cluster centroids to interactively refine k-means clustering while seamlessly integrating with point hovering from (a). (d,e,f) 
The corresponding Libra.js code snippets for the interactions in (a,b,c), respectively. 

corresponding author 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for components of this work owned by others than the 
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific permission 
and/or a fee. Request permissions from permissions@acm.org. 
CHI ’25, Yokohama, Japan 
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM. 
ACM ISBN 979-8-4007-1394-1/25/04 
https://doi.org/10.1145/3706598.3713769 

Abstract 
While existing visualization libraries enable the reuse, extension, 
and combination of static visualizations, achieving the same for 
interactions remains nearly impossible. Therefore, we contribute an 
interaction model and its implementation to achieve this goal. Our 
model enables the creation of interactions that support direct ma-
nipulation, enforce software modularity by clearly separating visu-
alizations from interactions, and ensure compatibility with existing 

∗

visualization systems. Interaction management is achieved through 
an instrument that receives events from the view, dispatches these 
events to graphical layers containing objects, and then triggers 
actions. We present a JavaScript prototype implementation of our 
model called Libra.js, enabling the specification of interactions 
for visualizations created by different libraries. We demonstrate the 
effectiveness of Libra by describing and generating a wide range 
of existing interaction techniques. We evaluate Libra.js through 
diverse examples, a metric-based notation comparison, and a per-
formance benchmark analysis. 

CCS Concepts 
• Human-centered computing → Visualization toolkits; • Soft-
ware and its engineering → Software architectures. 

Keywords 
Information visualization, interaction, software modularity, direct 
manipulation, undo/redo 

https://orcid.org/0000-0003-0365-5291
https://orcid.org/0000-0003-0059-6580
https://orcid.org/0000-0003-1501-7385
https://orcid.org/0009-0006-5221-0984
https://orcid.org/0000-0003-3770-8726
https://doi.org/10.1145/3706598.3713769
https://Libra.js
https://Libra.js
mailto:permissions@acm.org
https://Libra.js
https://Libra.js
https://jean-daniel.fekete@inria.fr
mailto:shiwu.wyy@antgroup.com
mailto:luoxu9days@gmail.com
mailto:jack.zhao9802@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3706598.3713769&domain=pdf&date_stamp=2025-04-25


CHI ’25, April 26–May 01, 2025, Yokohama, Japan Yue et al. 

ACM Reference Format: 
Yue Zhao, Yunhai Wang, Xu Luo, Yanyan Wang, and Jean-Daniel Fekete. 
2025. Libra: An Interaction Model for Data Visualization. In CHI Conference 
on Human Factors in Computing Systems (CHI ’25), April 26–May 01, 2025, 
Yokohama, Japan. ACM, New York, NY, USA, 17 pages. https://doi.org/10. 
1145/3706598.3713769 

1 Introduction 
Interaction is a fundamental aspect of visualization. Well-designed 
interactions empower users to explore visualized data effectively 
while providing an engaging experience [14, 56]. As a motivating 
example, Figure 1 illustrates the interactions with a scatterplot 
visualizing the t-SNE projection [58] of the MNIST dataset [70] con-
taining images of handwritten digits, each digit being labeled with 
its class, i.e., the digit it represents, from 0–9. Assume the analyst 
asks an application developer to provide custom interactions to 
evaluate the projection and clustering quality. Our goal is to reuse, 
extend, and combine existing interactions to create specialized ones 
tailored to specific visualizations. For this example, an application 
programmer will reuse existing interactions (hover, click), extend 
them, and combine a “drag” interaction on top. Hovering over a data 
point displays its corresponding image (Figure 1a), and clicking 
highlights all points of the same class (Figure 1b). Overlaying the 
projection visualization, the cluster centroids are visualized as large 
rounded square points providing an interaction combined with data 
point hovering interaction in Figure 1a. Dragging a cluster centroid 
moves it to escape a possibly non-optimal position and triggers the 
recomputation of the k-means clustering, updating the visualiza-
tion (Figure 1c). These interactions can be structured by reusing, 
extending, and combining basic interactions such as hover, click, 
and drag. Hovering and clicking reuse basic interactions while ex-
tending them with customizations, such as tooltip adjustments or 
specialized selection actions. The k-means example further com-
bines dragging cluster centroids with hovering over projection 
points, enabling different behaviors based on point semantics. Addi-
tionally, interactions designed for specific visualizations, like t-SNE 
projections, can be easily adapted to other contexts, such as node-
link diagrams. 

Although existing libraries follow the same visualization ref-
erence model for the rendering pipeline [11], their interaction 
techniques vary widely, with no clear consensus on the under-
lying concepts, mechanisms, or their interplay. The widely-used 
D3 library [9] offers only three predefined reusable interaction 
techniques: brush, drag, and zoom. While D3 allows for imple-
menting custom interactions through event-handling callbacks, it 
requires application programmers to manually manage interaction 
states [16]. Returning to our example, developers have to manu-
ally handle the states of the tooltip in Figure 1a, and disambiguate 
the click event between a projected point and a class centroid in 
Figure 1b. In Figure 1c, even with the predefined D3 “drag” mecha-
nism, developers still need to combine point-clicking and dragging 
interactions to implement the interactive k-means clustering. Fur-
thermore, D3 provides no guidance or support on how to reuse or 
extend user-improved interactions. 

Vega [51, 52] (and Vega-Lite [50] which relies on Vega) mod-
els input events as streaming data and relies on functional reactive 

programming (FRP [62]) to apply various data transformation opera-
tors and visual encoding primitives to these streams. This approach 
supports event stream creation and composition but tightly cou-
ples visual feedback with visual representation during interactions. 
Therefore, it is difficult to reuse and adapt Vega’s interaction specifi-
cation to other visualizations. In addition, it lacks built-in undo/redo 
support, which complicates the implementation of interactions like 
interactive k-means clustering shown in Figure 1c. While new visual 
representations are quickly incorporated into visualization libraries, 
new interactions often remain confined to research papers and pro-
totypes, rarely influencing the broader visualization landscape. We 
speculate that this is due to the lack of well-defined software models 
for interaction design compared to rendering. 

We introduce an interaction model that aims to meet three types 
of requirements: direct manipulation [53], software modularity, and 
compatibility with existing implementations of libraries. Direct ma-
nipulation interfaces require a set of properties (e.g., physical ac-
tions, rapid, reversible operations, and layered or spiral approach 
to learning) that are considered essential in HCI. However, these 
properties are rarely fully supported in existing visualization li-
braries, likely due to the complexity and cost of implementation 
without proper software support. Software modularity refers to the 
logical partitioning of library design that allows complex software 
to be manageable for the purpose of implementation, extension, 
and maintenance. Interactions are currently not manageable in a 
modular way, taxing their development. Compatibility implies that 
our model requires relatively small changes to existing libraries to 
be retrofitted. Our model and sample implementations are designed 
to help increase the quality of interactions supported by visual-
ization libraries with limited added complexity. We advocate for a 
model, not one implementation, because we want to help improve 
existing implementations. We also want to clarify how interaction 
works in visualization at a conceptual level. 

One of our goals is that interactions become first-class citizens [1, 
p. 102] in visualization libraries, i.e., that they may be named by 
variables, passed as arguments to procedures, returned as results 
of procedures, and be included in data structures. Furthermore, 
we introduce a complete, modular, component-based model for 
interaction design in visualization that developers can follow in 
their implementations. By translating the concept of interaction into 
a comprehensive model, we elevate interactions to a higher level 
of abstraction. Our approach enables interactions to be descriptive, 
evaluative, and generative [4]. 

We present implementations of our model through a JavaScript-
based working prototype called Libra.js 1; it enables the declara-
tive specification of interaction techniques for static visualizations 
created by three libraries: D3, Vega, and Observable Plot [46] (Plot 
in the remaining). We show that a diverse range of interaction 
techniques can be seamlessly integrated within and across visual 
designs and input modalities. As illustrated in Figure 1(d-f), our 
model allows developers to add non-trivial interactions to a new 
visualization application with just a few lines of code. Interactions 
can be referred to by name and added to visualizations, with default 
parametrization and the flexibility to customize them to fit the spe-
cific application without requiring a complete re-implementation. 

1https://libra-js.github.io/ 

https://doi.org/10.1145/3706598.3713769
https://doi.org/10.1145/3706598.3713769
https://libra-js.github.io/


Libra: An Interaction Model for Data Visualization CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

Relying on our model, the interaction defined in Figure 1(d-f), can 
be implemented by reusing, extending, and combining existing 
interactions, ensuring consistent interaction specifications across 
visualizations (see interaction with scatterplot matrices and node-
link diagrams in supplemental material). In Figure 1f, the built-in 
history management mechanism allows developers to effortlessly 
implement undo/redo operations for interactive k-means cluster-
ing, and provide it for future reuse. Moreover, as more interactions 
become available in our prototype Libra.js, either through library 
updates or third-party contributions, they can be integrated into 
existing applications with minimal effort. 

We perform a two-fold evaluation. First, we demonstrate the 
effectiveness of Libra by describing and generating many existing 
interaction techniques with it. After reviewing the papers introduc-
ing novel interaction techniques in the VisPubData collection [34], 
we map their interactions to Libra’s components and, for several of 
them, articulate the technical scope of their contribution. Second, 
we evaluate Libra.js both qualitatively and quantitatively across 
three aspects. (1) we construct a diverse set of interaction tech-
niques that integrate seamlessly within and across visual designs 
and input modalities. (2) we employ a metrics-based approach [39] 
to compare the usability of notations for interaction specifications 
between Libra.js and existing libraries. (3) we conduct bench-
mark evaluations of interactive visualization libraries, showing that 
Libra.js matches Vega’s performance and outperforms D3. The re-
sults demonstrate that our model promotes interactions as reusable 
components in visualization systems without any performance 
penalty. 

In summary, our contributions are: 
(1) the description of our model of interaction that integrates 

and organizes multiple components from the literature to 
support the creation, reusability, extensibility, and compos-
ability of interactions; 

(2) a prototype implementation in JavaScript: Libra.js, intro-
ducing declarative APIs to create/reuse/extend/combine inter-
actions for visualizations built with different visualization 
libraries; and 

(3) a two-fold evaluation: (1) assessing Libra by demonstrating 
its ability to describe and generate a wide range of existing 
interaction techniques for visualization, and (2) evaluating 
Libra.js qualitatively and quantitatively through diverse 
examples, a metric-based notation comparison [39], and a 
performance benchmark analysis. 

2 Background 
Before describing previous work, we introduce four types of inter-
action stakeholders who will benefit from our interaction model: 

EU the visualization end user (the analyst), who will have richer 
interaction techniques available; 

AD the visualization application developer, who will have a larger 
library of interaction techniques that can be easily reused 
and combined in a way similar to developers reusing existing 
visualization techniques; 

ID the visualization interaction technique developer, who will be 
able to design a large set of components for interaction tech-
niques, extensible and combinable, in a way similar to visualiza-
tion developers who can design new visualization techniques 
from scratch and share them (ID can sometimes also be AD); 

LD In addition, we also refer to the interaction library developer, 
who will implement our interaction model in a new or existing 
visualization library. 

Libra draws on previous work in HCI, interactive visualization 
toolkits, and interaction software models. 

2.1 Direct Manipulation in VIS 
Shneiderman introduced in 1983 the “direct manipulation” princi-
ples [53]: (1) Continuous representation of the object of interest; 
(2) Physical actions or labeled button presses instead of complex 
syntax; (3) Rapid, incremental, reversible operations; (4) Layered 
or spiral approach to learning. These principles remain the golden 
standard of HCI, but visualization systems only meet principle (1), 
whereas 2–4 are rarely met. 
Interaction Specification. For principle (2), an input visualization 
can be interacted with by clicking on a graphical item to select it, 
dragging an item to move it, or adjusting a slider to filter items. How-
ever, the visualization pipeline [11] does not explain how graphical 
marks, axes, and coordinate systems interact with these actions. 
For example, parallel coordinate plots often allow dragging a range 
selection on a data axis. A few scatterplot visualizations also allow 
that type of range selection by dragging on the axes. Yet, this kind 
of interaction performed on the axis is not standard and not men-
tioned by the visualization pipeline or the Grammar of Graphics 
(GoG). As a result, the support for interactions (where and how) 
varies significantly across libraries, potentially confusing users. 

Interactions were initially implemented using event-based pro-
gramming with callback functions, leading to a “spaghetti of call-
backs” [43]. Despite this, several visualization toolkits like Proto-
vis [8] and D3 [9], still rely on event-handling callbacks for custom 
behaviors. These often require ID to maintain a state machine and 
coordinate interleaved calls, making it difficult to reuse, extend, 
and combine. To manage the complexity, the simplest approach is 
to encapsulate it within a black-box object, allowing AD to utilize 
it without exposing its intricacies. Toolkits like Prefuse [31], Im-
provise [64], VisDock [15], and DIVI [54] provide such predefined 
interaction techniques, such as selection, navigation, and annota-
tion, for developers to integrate into their applications. While this 
approach simplifies and streamlines reuse for AD, it is rigid and 
monolithic from the perspective of ID. 

Alternatively, Vega [51, 52] offers higher-level mechanisms for 
specifying interactions. It uses FRP [62] to provide composable 
interaction primitives and implicitly manage state machines. By 
abstracting input events as data streams, Vega allows events to be 
treated as explicit inputs to visualization specifications, enabling 
rich interactions for EU. Vega-Lite [50] builds on this by intro-
ducing a high-level grammar for interaction specifications, using 
selections as primitives, and simplifying interaction creation for 
AD. However, FRP does not explicitly describe the feedback during 
interactions, relying instead on internal, non-exposed mechanisms. 
While extensions such as signal recording [32] are possible, it is 

https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js


CHI ’25, April 26–May 01, 2025, Yokohama, Japan Yue et al. 

difficult for ID to create, reuse, extend, and combine expressive 
interactions. In contrast, Libra provides a complete and transparent 
framework for describing and implementing all stages of interac-
tions in visualizations. 
Undo/Redo. According to principle (3), supporting Undo/Redo is 
standard in most professional user interface toolkits, relying on 
the Command design pattern described in [61]. Instead of directly 
performing the actions in the user interface code, a Command object 
is created, which supports the methods “execute” and “undo”. A 
history manager is given this command object; it first executes it 
and stores it in a list so the user can undo it later. 

In visualization, a few libraries implement the Command de-
sign pattern and an interactive history manager. VisTrails [10] 
supports it for provenance management, and Trrack [18] supports 
history management in JavaScript visualization systems. However, 
undo/redo is not supported by the visualization libraries directly 
(more on section 5). 
Affordances, Feedback, and Feedforward. Most popular visu-
alization libraries follow the GoG. Yet, interactive visualizations 
need to manage graphical objects that are not part of the GoG to 
implement principle (4): affordances to help users understand where 
interactions can be performed, feedback to show how objects are 
changed during the interactions, and feedforward to show what 
would happen at the end of an interaction early on. 

Besides the graphical items in the input visualization, interac-
tions often generate additional graphical items (e.g.,, the image 
shown by hovering in Figure 1a), which can create potential inter-
ference in understanding their role. According to Don Norman [45], 
the best way to avoid these interferences is to separate the marks 
into different affordances, overlaid in layers, synchronized to share 
the same view and coordinate systems but disjoint. In doing so, 
the selection can then be updated without changing the graphical 
structure managed by the visualization, and the visualization is not 
affected by the interactive selection changes. 

This separation of concern is important for modularity, not only 
for the selection but also for other transient objects used in inter-
actions [22, 23]. For example, an interaction implementing lasso 
selection by dragging the pointer requires drawing the selection 
lasso. This object is a feedback of the ongoing interaction; it does 
not belong to the visualization or the selection layer. For the sake of 
modularity, graphical objects with specific semantics should then 
be drawn in their layer to avoid interference and resolve ambiguity 
during picking [23]. Improvise [64] also uses layers to separate the 
visualization from the graphical objects used for the interactions. 
Visualization systems such as ggplot2 and Vega support layering 
for visualization purposes only, e.g.,, adding a regression curve on 
top of a scatterplot. Our model also relies on layering to achieve 
modularity, extensibility, and composition. 

Many standard interactive tools provide feedforward, but very 
few visualization systems provide it. Implementing feedforward 
is difficult without library support because it requires changing 
the graphical appearance of the visualization without changing it 
for real. Although the HCI and visualization literature praise the 
benefits of feedforward, no library provides specific support for 
it. With Libra, we describe possible mechanisms to support it in 
generic ways by relying on undo/redo to show the result early and 

undo it if not validated. Layers can also show the animation of 
actions, such as layout changes, without performing them on the 
main visualization. 

2.2 Interaction Models 
Interaction models were a popular topic in HCI research to provide 
abstractions, mechanisms, and guidance for the implementation 
of graphical user interfaces (GUIs). There has been a long history 
starting with Smalltalk’s MVC model [49] that separates software 
components into three parts: the Model, View, and Controller. After 
evolving through many steps [29], a few MVC variants like the 
Model-View-Presenter model [48] have been adopted by the indus-
try. Based on these models, component-based architectures [41] 
that promote the separation of concerns between components and 
reusability have become popular for building user interface com-
ponents. For example, React [27] provides a set of components 
that can be composed to build complex user interfaces, allowing 
customization of most aspects of each component. Unfortunately, 
existing components are tied to their specialized interactions and 
vice versa, and, to our knowledge, none of the existing component 
architecture aims at separating them. 

The visualization reference model is a high-level architecture 
model [11] that has been adopted and improved by the visualization 
community [30, 37]. It describes well the rendering pipeline used 
in information visualization, from data to view, but it is less precise 
in explaining the interaction part, not mentioning any particular 
component dedicated to event handling. Heer and Agrawala [30] 
have listed several design patterns used in the Prefuse system [31]. 
However, their patterns address only a few aspects of interaction. 
Most importantly, a set of patterns only provides partial solutions 
to a system’s architecture. Yi et al. provide a taxonomy of inter-
action techniques [71] including seven categories (select, explore, 
reconfigure, encode, abstract/elaborate, filter, and connect), which 
is abstract. 

The instrumental interaction model [3] is a general model aimed 
at describing the whole interaction. It is inspired by how humans 
use instruments to manipulate objects of interest in the physical 
world: an instrument is a mediator between users and objects of 
interest. Recently, Jansen and Dragicevic [37] adapted this model 
to visualization settings by unifying it with the visualization refer-
ence model [11] for describing, comparing, and criticizing beyond-
desktop visualization systems. However, it is still a conceptual 
model. It does not identify the essential components for the im-
plementation of interaction techniques and thus cannot be used 
for generating new interactions. In contrast, our model describes 
interactions concretely. 

3 Libra Interaction Model 
In this section, we first present the design goals for our interaction 
model, then describe the essential components for characterizing 
interactive visualizations, and finally highlight the differences be-
tween our model and the ones supported by existing libraries. 

3.1 Design Goals 
To fully support the design, reuse, extension, and combination of 
visualization interactions, we established the following three design 
goals: 



Libra: An Interaction Model for Data Visualization CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

DG1: Complete and transparent model to fully implement 
direct manipulation. The model should allow complying 
with Shneiderman’s principles of direct manipulation [53] as 
explained in section 2.1. To apply to any data visualization, 
it should cover all aspects of interaction management for 2D 
interfaces. To facilitate extensibility, our model exposes all 
its mechanisms transparently. In terms of expressive power, 
it should allow for building interaction-rich visualizations 
beyond stereotypes, including all the exemplar interaction 
techniques such as Excentric Labels [6, 25], Dust & Mag-
nets [72], and DimpVis [38]. 

DG2: Software modularity to maximize reuse, extension, 
and combination of interactions. Our model provides 
the ability to create completely new interactions and reuse, 
extend, and combine existing ones, allowing AD to create 
interaction-rich applications and ID to enrich the interac-
tions available to AD and eventually to EU. 

DG3: Compatibility with the existing libraries while separat-
ing interaction from the visual representations. Several 
existing visualization systems can create rich but static vi-
sual representations (e.g., by implementing the GoG [67]). 
Our model allows LD to reuse existing systems with sim-
ple adaptations, mainly by separating the background and 
foreground with layers. In doing so, our model can maintain 
high compatibility with existing visualization systems by 
“wrapping” interactions around them. 

Here, “reusing” refers to the ability to directly utilize already de-
signed interactions in a visualization. “Extending” implies that some 
components of an interaction can be added or removed. “Com-
bining” means either composing multiple interaction techniques 
sequentially or running them in parallel, e.g., a hover interaction 
can be combined with a drag interaction as shown in the example 
of Figure 8. 

3.2 Our Model 
Figure 2a illustrates the architecture of our model, where interaction 
instruments manage interactions originating from the visualization 
views. Each instrument, associated with a view and its layers, acts 
as a mediator between the user and the visual presentation of the 
data. It transforms user input into parameter changes across the 
data transformation, visual mapping, or view rendering stages of 
each layer. These changes produce interaction effects, which might 
involve visualized data items and provide corresponding feedback 
in the relevant layers. 

Building on this architecture, interactions with a visualization 
view can be formally defined as: 

Interaction:= (name, layers, instruments, effects), 
where name uniquely identifies the interaction, and layers, instru-
ments, and effects represent the target, means, and results of the 
interaction, respectively. This structured model allows most AD to 
combine instruments and, when necessary, tailor them to specific 
needs by leveraging the defined components. 

3.3 Layers 
Layers are components providing methods for drawing visual el-
ements, picking them, and cloning them to another layer. They 

are essential for separating the interaction management, involving 
transient objects, from the main visualization, satisfying DG3. Each 
layer can manage a data model that creates and updates the layer’s 
visual elements using a graphical transformer. Libra relies on the 
following four standard layers for visualization applications: 

• Background layer: under the main layer, displays the visual 
elements (e.g., axes and tick lines). By default, it does not 
react to picking. Its data model is composed of the visual-
ization axes, rendered in the background with tick lines and 
labels. 

• Main layer: shows the main visual representation and al-
lows picking visualized data items. Its data model is the 
static visualization data model rendered as the visual items 
associated with the visualized data items. 

• Selection layer: stacked on top of the main layer, visualizes 
the selected data items without any awareness from the main 
layer’s visualization and allows picking them. Its data model 
is a set of items from the main layer’s data model that are 
selected, and rendered using the same geometry as the item 
in the main layer using specific visual channels to highlight 
them. 

• Transient layer: on top of the selection layer, shows and 
dynamically updates transient interaction objects, such as 
a selection rectangle used to select the visualized items in-
teractively. By default, it does not react to picking. Its data 
model is simply a list of visual objects to render directly. 

Layers are stacked and displayed in the order described above, 
although an instrument can change it if needed. For more complex 
interactions, an instrument can create a new layer; see the label 
layer and histogram layer used by the Excentric Labeling instrument 
in Figure 3c. 

3.4 Instruments 
As shown in Figure 2b, instruments translate the received low-
level events into higher-level actions through interactors that are 
executed by services. In this way, each instrument with a unique 
name can be specified as follows: 

Instrument:= (name, interactors, services). 
Since one instrument manages multiple layers, it can evaluate any 
of them to determine how to interpret an event. For example, when 
the selection instrument receives a mousedown event, it first checks 
the selection layer. If the selection layer is empty and the main layer 
contains an item under the mouse, the item is selected and passed 
to the selection service (see below) to update the data model and 
selection layer. If no item is found under the mouse, the instrument 
can create a rectangle in the transient layer and initiate a rectangle 
selection (brushing) by starting an interactor (see below). 

Based on a set of existing instruments, AD can extend them by 
replacing or inserting new interactors and services. Figure 2b shows 
how different components communicate within an instrument. Af-
ter receiving an input event, the instrument decides how to handle 
it according to the event position, the contents of the layers, and 
if an interactor has already been created to handle further events. 
The instrument can start an interactor to map low-level events to 
high-level actions. Next, the interactor’s actions are interpreted by 
e.g., invoking the selection service to select visual items of interest 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Yue et al. 

Figure 2: Our interaction model (a) and the communication between components within an instrument (b). (a) The top row 
represents the visualization reference model, where our model wraps the visual mapping and view rendering into a graphical 
transformer. The bottom row corresponds to the instrument for manipulating the three stages. The objects resulting from 
the interactions, transient or persistent, are shown on the new layers, their associated visual effects updating the view. (b) 
For the input events, the instrument first interprets them in the context of the layers and uses an interactor to translate 
them into high-level actions. These actions subsequently use the selection service or other services, and produce interaction 
effects—feedforward and feedback—that are shown in their corresponding layers, and commands that enable undo/redo. 

for further manipulation, potentially using other services. Finally, 
the instrument generates interaction effects, including feedforward 
(optionally) and feedback on the layers—such as moving a cluster 
centroid in Figure 1c—and, in the end, produces a command object 
that records the involved services and the changed data items– 
such as the changed centroid position. In doing so, the instrument 
separates the event-driven part done by the interactor from the 
interpretation of the sequence done by the service. We now describe 
the interactors, services, and effects in detail. 

Interactors. In Libra, we call interactor any kind of state machine 
that transforms the sequence of events received by the instrument 
into higher-level actions. When an instrument uses an interactor, it 
binds its actions to instrument-specific actions. For example, when 
the drag instrument receives a mousedown event with an item under 
the mouse position, it creates a trace interaction. The start action 
saves the current selection. The running action moves the item 
along the mouse trace. The stop action, triggered by the mouseup 
event, creates a selection command with the collected selection and 
restores the saved state. The command returned to the instrument 
is eventually added to the history manager, a global component 
responsible for managing commands, and then executed. 

New interactors can emulate the default one, e.g., for handling a 
tablet instead of the mouse, providing actions are compatible with 
the default interactor, hence with all the instruments relying on it. 
If incompatible, it can provide a different set of actions, requiring 
the extension of instruments by AD or ID, or the creation of a new 
instrument by ID. 

Services. During interactions, fundamental operations (e.g., selec-
tion) or common computations (e.g., analysis or layout) are often 
used across multiple instruments. To enhance modularity and con-
sistently support undo/redo, these are encapsulated as services, 
which manage interaction-related functionality, undo/redo, and 
states rather than serving as mere function calls or data storage. 
In addition to the default ones, services can be flexibly extended 
based on interaction needs, such as an analysis service for tasks 
like interactive k-means clustering. 

Each service provides core functionalities, including state man-
agement through shared variables, computational operations, and 
inter-component communication. Services are often linked to graph-
ical transformers to display the data items they manage (e.g., the 
selection service in Figure 3c) and can share processed items with 
other services for further manipulation. Services also coordinate 
with other components, notifying graphical transformers (if present) 
to update their layers upon completing their tasks. In the following, 
we describe the selection, layout, and analysis services. 

Selection Service. For automatically managing the selection over 
visual and data spaces, each instrument in Libra uses a default se-
lection service, which maintains a list of items that are selected 
by the user. Assuming each item has an identifier, it associates a 
Boolean value to each item identifier. Due to the separation of in-
teraction and visualization, the selection service provides a method 
to perform queries and update the selection when performing com-
posite dynamic queries. In our model, selection can be performed 
in data space (similar to the SQL WHERE clause) or visual space (by 
picking), according to the instrument’s semantics. The graphical 
transformer associated with the selection service iterates over all 
the selected items, accesses the related graphical elements from the 
main layer, and either copies them on the selection layer or creates 
proxies, changing some of their visual appearance (e.g., color) to 
look highlighted. 

Once the target objects are selected, other services can use the 
selection to manipulate them or to introduce new related elements 
(e.g., annotations). The cascade of creations can update the transient 
layer, selection layer, or others. In other words, our model supports 
a cascade of models to handle sequences of interactive data analysis 
tasks. 

For a given target object, additional visual elements around (and 
on a layer above) the selected object can be created and processed 
(see Figure 8). If the target object of the interaction is one or multiple 
items (e.g., hovering), a visual proxy of these items is usually added 
to the selection or transient layer to appear highlighted in the 
same view. Moreover, some interactions (e.g., a rectangular brush) 
require identifying the value range that encloses the selected items 



Libra: An Interaction Model for Data Visualization CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

for highlighting the ones inside, translating queries from visual to 
data space. 
Layout Service. Most visualization toolkits provide a few layout 
algorithms allowing for direct manipulation, such as force-directed 
graph layouts. Layout services decouple the implementation of the 
actual layout from the direct manipulation to control it. A layout 
service computes a new layout with the interaction parameters, 
such as the new position of a set of items. Once a new layout is 
obtained, the service shares the obtained positions of all items 
with the corresponding graphical transformer for updating visual 
encoding. 
Analysis Service. Visual analytics applications often employ data 
analysis algorithms including clustering, regression, and classifica-
tion. Our model supports an analysis service to run statistical or 
machine learning algorithms on the data of interest and manage 
the results as a dedicated service. The data model managed by these 
services can be visualized in a specific layer. For example, the clus-
tering service in Figure 1 shows the centroids of clusters computed 
on multidimensional items, and the histogram service in Figure 3 
shows the distribution of a quantitative attribute for the selected 
items, overlaid on the main layer. 
Interaction Effects. Interaction effects consist of feedforward 
and command with their feedback. During and after performing 
an action, feedforward and feedback need to be shown similarly 
to the user. Yet, the feedforward is usually shown in a transient 
layer, while the feedback can be shown in the main or another 
persistent layer. If any data item or visual element in the main layer 
is changed, the main layer will be refreshed; if there is a selection 
layer, the changed selected elements are then updated. 

When an action is performed by an instrument (e.g.,, selecting 
items), all the services invoked along with the data they modify 
are recorded in a Command object. This object is managed by 
a history manager, a global component that manages operations 
independently of any specific service for undo/redo. This design 
ensures consistent tracking of interactions and allows for undo 
when needed. In Figure 1a, the Command updates the selected 
status of data items, and the visual feedback highlights the selected 
items in blue. The Command is first executed and then stored in 
the history manager. For continuous commands like dragging a 
selection rectangle, each new command replaces the latest in the 
history manager. 
Communication between Components. Our model requires 
coordinating the communication between multiple components. 
For example, an instrument can call a service API, and the service 
can forward the changes to other services or update a layer through 
a graphical transformer. The instruments associated with the layers 
among different views also need to communicate. Libraries use 
various mechanisms for coordination, such as shared variables in 
ggplot2 or live properties in Improvise. Our model does not pre-
scribe a particular mechanism but requires one for communication 
and coordination. In doing so, a dataflow graph among components 
is constructed. As a user provides input events to one view, an 
update propagates through the dataflow graph and triggers updates 
to the related layers. 

Since an instrument is composed of well-specified components, 
ID can compose new instruments by assembling these components, 

and AD can reuse these instruments to provide rich interactions to 
EU. Each instrument can be adapted across input modalities (e.g., 
mouse and touch) by re-binding different input events into the in-
teraction; it can also be extended by involving different interaction 
services. In doing so, both DG1 and DG2 are satisfied. 

3.5 Comparing Libra to Existing Models 
Table 1 shows the differences between our model and the support 
of popular visualization libraries along five aspects related to inter-
action management. 
Layer. While layers have been used by ggplot2 [65] and Vega/Vega-
Lite to superimpose multiple semantically related representations 
in a view, they are not used to specify interaction. So far, only 
Improvise and IVTK match our model’s use of layers to manage 
both visualization and interaction. 
Interactor. Instead of implementing an interactor as a state ma-
chine, Improvise, IVTK, Prefuse, and D3 use the callback model 
that requires users to manually maintain all states, except D3 pro-
viding a few generic interactions, such as pan and zoom, that can 
trigger user-defined actions. Using FRP streams and signals, Vega 
and Vega-Lite provide the mechanism to support a state machine. 
All the implementations bind the state machine to actions, leading 
to a strong coupling between visual representation and interaction 
feedback. In contrast, our model introduces two stages in the man-
agement of events: interactor to transform low-level events into 
high-level actions and binding of high-level actions to commands. 
The first stage allows reusing interactors for different interactions 
similar at the state-machine level [42] and the second is the basis 
for reversible actions [53] (undo/redo). 
Selection as Service. Since D3 does not use layers, it only supports 
the selection of the nodes in a document object model (DOM) tree, 
that usually contains all the visual marks. For visual marks in one 
specific layer, Improvise, IVTK, and Prefuse match our model which 
supports selecting them in both data and visual space. In contrast, 
the selection model provided by Vega/Vega-Lite is done exclusively 
in data space and is difficult to adapt to work in the visual space, 
e.g., for selecting a complex shape (as in Figure 8). 
Command. None of the libraries provide them with persistent data 
changes. While Improvise maintains a history of specific high-level 
(variable change, query, render) and low-level (keyboard, mouse, 
painting) interaction events in a running visualization, it does not 
implement undoing these actions or any others. IVTK and Prefuse 
have command-like objects but do not support undo/redo. To main-
tain the separation between interactors and data services, our model 

Table 1: How existing systems’ interaction models match our 
model, regarding five components: interactor, layer, selection, 
command, and feedforward; * means partial support, “Vis” 
and “Int” indicate support for visualization and interaction, 
respectively. 

Improvise IVTK Prefuse D3 Vega/Vega-Lite 

Interactor × × × × ✓ 
Layer Vis+Int Vis+Int × × Vis 

Selection as Service ✓ ✓ ✓ × ✓ ∗ 

Command ✓ ✓ ✓ × × 
Feedforward × × × × × 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Yue et al. 

Figure 3: Illustrating the design of a new instrument with Libra.js. (a) The specifications for creating an excentric labeling 
instrument [6, 25]; (b) the specifications for creating a new layout service and the corresponding transformer; (c) (top left) The 
components used for composing an excentric labeling instrument to support this interaction for scatterplots; (bottom left) the 
main layer and the other three layers generated by interactions; and (right) the final result. 

prescribes the use of commands supporting undo/redo, only record-
ing high-level actions performed on the data services. 
Feedforward. As far as we know, none of the existing libraries 
provide support for feedforward. Our model prescribes feedforward 
when possible, which is often made simpler to implement using the 
history management mechanism. 

In summary, none of the libraries support undo/redo and feed-
forward, two essential mechanisms for direct manipulation char-
acterized by our model. Improvise and IVTK show the lowest dis-
crepancy to our model, but they do not provide a state machine, 
making it hard for ID to extend and combine interactions. All the 
systems except Vega/Vega-Lite provide a transparent model for 
interaction management. Although Vega/Vega-Lite provide a state 
machine, they do not allow for communicating the extracted signals 
with external components, and their execution model is hidden in 
a dataflow graph, making it harder for ID to reuse, extend, and 
combine interaction primitives. 

4 Implementation of Our Model 
There are many ways to implement our model, regardless of the 
library used. As a proof of concept, we implemented a prototype in 
JavaScript called Libra.js and show that it can specify interaction 
techniques to static SVG visualizations created by any JavaScript 
libraries. It only requires ID to implement the few methods of our 
Layer API. 

Furthermore, we have added a declarative mechanism in our 
model that shows how interactions can be reused, extended, and 
combined with a simple syntax. Interactions can be designed in 
four ways: creating instruments, reusing instruments, reusing and 
extending/specializing instruments, and combining instruments. 
Although it can take specific ID skills to create a new instrument 
(understanding the full interaction model), AD skills are usually 
sufficient to reuse, extend, and specialize instruments. We present 
the interaction API designed to provide a concise and structured 
specification of interaction instruments. This type of specification 
consists of several properties such as inherit, layers, insert, override, 
and remove (see Figure 3a and Figure 4a). With the interaction API, 
AD and ID can easily specify interactions. 

Figure 3 shows the specification for composing and extending 
the built-in hover instrument to explore a scatterplot. The built-in 
histogram service and the corresponding transformers are com-
posed to show the statistics for the selected points, while a newly 
created labeling layout service and the corresponding transformer 
are used to display the labels. In the following, we mainly describe 
how we implement the three major components. 

4.1 Layers 
By default, all visual elements are rendered as SVG elements, and 
we extend the picking methods provided by the web browser to 
support the query of arbitrary graphical shapes. We implement the 
background, main, selection, and transient layers with SVG groups. 

For creating the visual elements used during interactions, Libra.js 
provides built-in graphical transformers with redraw functions, 
which can be overridden. For the selection layer, a service can 
“clone” marks from the main layer to show them in the selection 
layer with a highlighted appearance; this mechanism is meant to 
avoid interfering with the main layer’s visual representation. The 
transient layer can create graphical objects, such as a brushing 
rectangle or a lasso, typically as a visual representation for the se-
lection instrument. Hence, users can create their objects in existing 
layers or create specific ones. Figure 3b shows the specification of 
creating a transformer to display all labels. 

4.2 Interactors 
A state machine can be implemented in many ways and our default 
interactor is based on a Garnet-like [42] state machine with three 
states: “Start”, “Running”, and “Outside.” State transitions are trig-
gered by low-level events, defined as 

Interactor:= (name, state, transitions), 
where the transitions determine how the interactor responds to 
different input events and changes states accordingly. The outside 
state refers to the input device going out of the active region. For 
each low-level input event, the interactor extracts event informa-
tion (e.g., a mouse position) and uses this information to trigger a 
higher-level action (see Figure 4b). When an instrument uses an 
interactor, it binds its generic actions to instrument-specific actions. 

https://Libra.js
https://Libra.js
https://Libra.js


Libra: An Interaction Model for Data Visualization CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

Figure 4: Extending the trace interactor used by the drag 
instrument in Figure 1c to support touch operations. (a) The 
Libra.js specification that adds the touch operations to the 
interactor; (b) a state machine with the transition between 
states triggered by different low-level events. 

For example, when the drag instrument receives a mousedown event 
with an item under the mouse position, it creates a trace interaction. 
Its start action will find and save the current selection. Its running 
action will move the item following the mouse trace. Its stop action 
triggered by the mouseup event will create a selection command 
with the collected selection and revert the selection to the saved 
state. The command returned to the instrument is eventually added 
to the history manager and executed. The Libra.js specification in 
Figure 4a illustrates the extension of the trace interactor to support 
touch operations. Other interactors can be created by ID if needed, 
e.g., for speech-based or multimodal interaction; see the examples 
in the supplemental material. 

New interactors can emulate the default one, e.g., for handling 
a tablet instead of the mouse, providing actions compatible with 
the default interactor hence with all the instruments relying on it, 
or incompatible, providing a different set of actions, requiring the 
extension of instruments by AD or ID, or the creation of a new 
instrument by ID. 

4.3 Data Services 
In Libra.js, services can communicate with other services and 
graphic transformers through shared variables. They notify the 
graphical transformers (if there are any) to update their layers 
when their work is completed. A service with a unique identifier is 
defined by: 

Service:= (name, type, params, operationOrComputation). 
where the type categorizes the service (e.g.,, selection, layout, anal-
ysis), params are configuration parameters for customizing the 
service’s behavior, and operationOrComputation specifies the data 
processing or manipulation performed by the service. 

Libra.js provides several built-in services for AD to reuse and 
extend, which can be divided into two classes: generic and specific. 
The generic ones are compatible with a large number of visualiza-
tions and instruments, like the selection service, and the specific 
services are visualization or interaction-specific, e.g., layout ser-
vices for arranging visual elements generated by interaction or 
e.g., histogram services triggered by interaction for inspecting the 
distribution of the data items, see examples in Figure 3. 
Selection Service. In Libra.js, the graphical transformer associ-
ated with the selection service iterates over all the selected items, 
accesses the related graphical elements from the main layer, and 

copies them on the selection layer after changing some of their 
visual appearance (usually their color) to look highlighted. Layout 
Service. Libra.js provides the two standard data services: selec-
tion and layout. For our implementation of excentric labeling, as 
shown in Figure 3b, a label layout service is created and inserted 
in the interaction composition for manipulating the items selected, 
passed by the selection service. Here, Libra.js does not use a se-
lection layer but a new label layer for showing the arranged labels 
because this layer has a different interaction semantics than the 
selection. 

More advanced examples of the selection service and more ser-
vices like analysis service are discussed in Section 2–4 of the sup-
plemental material. 

4.4 Commands, Feedback and Feedforward 
To manage commands and enable undo/redo functionality, Libra.js 
leverages the Trrack history manager [18] and adheres to the Com-
mand design pattern. Commands are implemented as classes with 
three essential methods: 

• execute(): executes the action and stores the current state of 
affected data models; 

• undo(): reverts the action using the previously stored state; 
and 

• redo(): re-applies the action 
To support continuous interactions, ID can use a boolean flag to 
determine whether the command is continuous [36]. Once a com-
mand is executed, affected services will notify their corresponding 
transformers to update their respective layers. These transformers 
utilize the latest state of data models as the data source to provide 
visual feedback. 
Feedforward. In Libra.js, feedforward is implemented by using 
a graphical transformer to render a set of transient objects on the 
transient layer, orchestrated by an instrument; it is invisible to 
the underlying data models. It indicates the running status of the 
actions to the user when the interaction starts. Once the interaction 
is finished, all feedforward objects are removed. See the example of 
the selection rectangle used for brushing in Figure 1a. 

When feedforward is expensive, the response time and user 
experience can be affected by the computational cost of e.g., an 
ML algorithm or the number of elements involved. We suggest 
employing approximate or progressive methods [24] to achieve real-
time feedforward. For example, this can be done by using a small 
number of iterations in ML or using a set of judiciously chosen data 
samples. There are several efficient approximate methods for query 
processing [12] and clustering [2]. It is crucial for ID to thoughtfully 
consider the intrinsic data characteristics, the algorithm involved, 
and the visualization to ensure that feedforward does not become 
detrimental to interaction. 

4.5 Reuse, Extend and Combine of Instruments 
To treat interactions as first-class citizens, Libra.js introduces 
high-level mechanisms to facilitate reuse, extension, and combina-
tion of interactions. AD can specify an interaction by customizing 
multiple aspects of an existing instrument using four operators: 
insert, flow, override, and remove (see Figure 3 and Figure 4). 

https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js


CHI ’25, April 26–May 01, 2025, Yokohama, Japan Yue et al. 

Insert/Flow: Building on an inherited instrument, the insert opera-
tor first locates an existing service and then uses the flow operator 
to chain all the newly added services with a transformer. A newly 
added service receives the output of an existing service as its input 
and either passes its result to a service or, for the final stage, to a 
transformer. To facilitate the analysis of data items from multiple 
perspectives, users can define multiple flows with the results of 
these flows presented in distinct layers. A more formal definition 
of this operator is 

insert(parentComponent, [flow1, flow2, ...]), where 
flow := [newComponent1, newComponent2, ...]. 

The insert operator accepts a parentComponent and an array of 
flows as arguments. Each flow is an array of new components (e.g.,, 
services or transformers) that are sequentially chained together. 
For example, the specification “insert:[{find:’CircleSelectionService’, 
flow:. . . }, . . . ]” in Figure 3 adds the layout and histogram services as 
two separate flows. 
Override: The override operator allows replacing an existing com-
ponent with a new one with the syntax “override(existingComponent, 
newComponent),” while maintaining all connections in the in-
teraction chain. As shown in Figure 4, the specification “over-
ride:[{find:. . . , transitions:. . . }]” shows that low-level input events 
can be reconfigured to support additional input modalities. Like-
wise, the selection service in Figure 3 is replaced by a circle selection 
service. 
Remove: The remove operator deletes a specified component and, 
optionally, all its dependent components, maintaining the validity 
of the interaction chain. This behavior is controlled through the 
syntax “remove:[find:. . . , cascade:true/false].” 

By chaining all components including interactors, selection ser-
vice, other services, and graphical transformers through shared 
variables [60], Libra.js constructs a dataflow graph that manages 
the communication between the components. If Libra.js does 
not provide some desired services like the label layout service in 
Figure 3, ID can define them as new data services for AD to use 
them in existing interaction components. 

4.6 Adapting to Different Libraries 
Libra.js is designed to augment rather than replace existing visu-
alization libraries by managing the interaction components of the 
visualizations created by the original library. 

To specify interaction for SVG visualizations created by different 
libraries, LD is only required to provide an abstract base class 
of layers, inheriting and overriding the methods for managing 
and querying the visual marks specified by the original library. 
Specifically, they need to re-implement the initialization method 
for creating and managing the collection of visual marks. As for 
Vega and Plot, she only needs to specify the name of visual marks 
that belong to the same layer, while an additional “g” element is 
required in D3 to manage all related visual elements. 

Since the visual queries can be performed in either data or visual 
space, she needs to re-implement the corresponding API. She is 
required to reimplement data-query methods since data is stored 
in different SVG DOM attributes in different libraries, while we 
provide a generic method for querying SVG visual elements. We 

refer to the D3 and Vega bindings as Libra.js-D3 and Libra.js-
Vega, respectively. With the abstraction of our model, Libra.js 
shares the same interaction semantics for different libraries while 
providing a consistent interaction model. Specifically, the inter-
action specifications of Libra.js-D3 and Libra.js-Vega define 
different layers to be rendered by distinct engines. The original 
libraries render static visual elements, while those created during 
interactions are rendered by Libra.js-D3 or Libra.js-Vega. To 
ensure visual consistency, different layers share global information 
(e.g., scale, color mapping, etc.). 

5 Evaluation of Libra 
As an interaction model [3], Libra should have descriptive, gen-
erative, and evaluative powers. The former two powers allow it 
to capture a wide range of existing interactions for visualizations 
and assist designers in creating new ones, while the evaluative 
power provides metrics for comparing alternative interactions [3]. 
Interaction for visualization is defined as “the interplay between a 
person and a data interface involving a data-related intent, at least 
one action from the person, and an interface reaction perceived 
as such” [21]. This definition can be seamlessly mapped to Libra’s 
components, such as layers, instruments (interactor and services), 
and interaction effects (feedforward, feedback, and commands). 
Specifically, action and data-related intent align with the interac-
tor and service within the instrument, while reaction corresponds 
to interaction effects, with feedforward and feedback potentially 
revealed in certain layers. Given the broad design space of our 
model, suitable metrics for evaluating interaction techniques in 
visualization remain an open question. In the following, we only 
demonstrate the descriptive and generative powers of Libra by us-
ing it to analyze existing interaction techniques and don’t discuss 
its evaluative power. 
Descriptive power. To demonstrate the descriptive power of our 
model, we conducted a comprehensive analysis of 3753 papers col-
lected in VisPubData [34]. We initially shortlisted 99 papers based 
on their contributions to interaction techniques. To identify rel-
evant papers, we searched for terms related to interaction in the 
abstracts, such as “interact” and “interactive,” and extended this 
list of terms to include additional terms like “interface,” “insight,” 
and “analyze." We then labeled these papers based on four key cri-
teria: additional layers in interaction creation, extending generic 
interactors for low-level event handling, undo/redo commands, and 
services beyond selection for data transformation. Due to space con-
straints, we present a mapping table (Table 2) that illustrates only 
three interaction techniques as examples. A detailed version of the 
reference table and the labeled papers is available in the supplemen-
tary materials. The result shows that 94/99 surveyed papers require 
services for data transformation, highlighting the crucial role this 
component plays in interaction techniques. Additionally, 24 papers 
incorporate custom-made undo/redo commands, 18 necessitate ex-
tensions to generic interactors for low-level event handling, and 66 
require additional layers for interaction creation. These numbers 
indicate the significance of layers and services in interaction tech-
niques while also suggesting that generic interactors are adequate 
for most interactive visualizations. Notably, the relatively low usage 
of undo/redo commands in existing systems indicates that most 

https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js


Libra: An Interaction Model for Data Visualization CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

Table 2: Mapping Interaction Techniques to Libra Components 

Component Filtering and Dynamic 
Queries 

Interactive Lenses Dust & Magnet 

Layers Query interface as individual 
layer 

Additional layer for lens effect Magnet layer, dust layer, back-
ground layer 

Interactor Mouse trace interactor Mouse position interactor Mouse trace interactor for 
magnets, mouse position in-
teractor for dust 

Se
rv
ic
e Selection 

Serv. 
Selects data subset Selects pixels or data subset Selects data item 

Dedicated 
Serv. 

N/A Lens layout service Magnet position service, dust 
layout service 

Feedback Reflected on main layer Overlay of lens effect on base 
visualization 

Updates on respective layers 

systems suffer from the lack of a history management mechanism. 
To provide a clear understanding of the descriptive and generative 
power, we take three interaction techniques as examples. 

Filtering and Dynamic Queries allow the display of interesting data 
subsets through a query interface (e.g., linked views or widgets). 
In Libra, the query interface is treated as an individual layer. An 
interactor translates low-level events into high-level actions, which 
then invoke the selection service to update the main layer. Instead 
of classifying this interaction at the data level [69] or view level [13], 
Libra seamlessly integrates it into the visualization pipeline, where 
the intent of data selection is managed by the service, and the 
reaction is reflected through feedback on the main layer. 

Interactive Lenses create localized and temporary changes within 
a visualization, adjusting the visual representation in selected ar-
eas [57]. Once the lens is removed, the visualization returns to its 
original state. Aligning with the conceptual model of interactive 
lens [57], Libra defines this interaction with two services: a selec-
tion service to select pixels or data subset and a dedicated service 
for adjusting the visualization underneath the lens. By showing the 
lens effect on an additional layer, the final visualization is updated 
by overlaying it with the base visualization. By using specific layout 
services, the fisheye lens [63] and edge lens [68] for the node-link 
diagram can be described by Libra. 

Dust & Magnet [72] is a multivariate data exploration technique 
composed of a magnet layer showing the attributes as colored rect-
angles that can be dragged, and a dust layer showing all data items 
as points that can be hovered. Clicking a pixel on the background 
layer creates a new magnet and recomputes the layout of all points 
that are updated on the dust layer; dragging a magnet also triggers 
a recomputation of the point positions; and hovering a point in the 
main layer highlights it in a different color. 

After associating the magnet layer with the drag instrument, 
Libra defines two services: the magnet position service and the dust 
layout service. The magnet position service computes the positions 
of the magnets based on the user’s drag actions, while the dust 
layout service calculates the new positions of the data points based 
on their attraction to the magnets. These new positions are shared 
with the respective layers’ graphical transformers to update the 

visualization. Similarly, Libra associates a hover instrument to the 
dust layer to highlight its points of interest. In doing so, the drag 
action triggers the magnet position service and the dust layout 
service to compute the new positions, while the hover action does 
not conflict with the dragging. 

By describing these systems in terms of our model’s components, 
we demonstrate how existing interactive visualization systems can 
be analyzed and understood within this framework, highlighting 
its descriptive power and flexibility across a range of visualization 
tools and interaction paradigms. 
Generative power. As for its generative power, since all the inter-
active visualizations can be decomposed into our components, we 
can reuse, combine, and extend existing and new techniques easily 
and then refine each component independently; this ability gives a 
generative power to Libra, in contrast with traditional monolithic 
approaches. Hence, an interactive visualization can be improved 
by adding more existing interaction techniques as well as refin-
ing existing ones, with little or no change from the visualization 
side. For example, interactive lenses can be easily combined with 
Dust&Magnet to explore the data items in the dust layer. In doing 
so, experimenting with novel interaction techniques becomes eas-
ier and can be done starting with existing components, initially 
without changing them and later by refining them if necessary. It 
provides a constructive path to newer interactions, minimizing the 
effort to implement them and fostering experimentation. 

6 Evaluation of Libra.js 
To demonstrate the effectiveness of Libra.js, we first show how 
it facilitates the implementation of interactions with use cases, 
and then quantitatively compare Libra.js-D3 and Libra.js-Vega 
with D3 and Vega in two aspects: i) the usability analysis of vi-
sualization notations with three metrics [39] and ii) the runtime 
performance. 

6.1 Expressiveness 
As described in section 4.6, Libra.js can be adapted to different 
visualization libraries; we implemented Libra.js-D3, Libra.js-
Vega, and an experimental binding for Plot. In this section, we 
demonstrate the expressiveness of our prototype Libra.js by using 

https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js


CHI ’25, April 26–May 01, 2025, Yokohama, Japan Yue et al. 

Figure 5: Examples of reusing built-in instruments: (a) hov-
ering, (b) multiple clicking, and (c) brushing; and (d) a code 
snippet for gluing existing visualizations with Libra.js’s in-
strument. 

Figure 6: Comparing the implementations of Libra.js, D3 
and Vega-Lite for the panning & zooming. (a) The snapshots 
for zooming a scatterplot. (b) The Libra.js specification con-
sists of the separated pan and zoom instruments, and (c,d) 
the D3 implementation and Vega-Lite specifications coupling 
pan and zoom operations. 

Libra.js-D3 to create a variety of interactions for visualizations 
from the simplest to the most complex through reusing, combin-
ing, and extending a set of built-in instruments. All the examples, 
including visualizations created by Vega and Plot, are available on 
the accompanying website libra-js.github.io, and the correspon-
dence between the examples and Yi et al’s taxonomy of interaction 
techniques [71] is shown in the supplemental material. 
Reusing Instruments. We provide six built-in instruments: hover, 
click, brush, drag, pan, geometric zoom and semantic zoom instru-
ments; each of them has the corresponding interactor and selection 
service. Figure 5(a-c) shows three examples that can be created by 
reusing these instruments. To reuse these instruments, AD first 
wraps the existing visual specification code into the main layer, 
which only requires 5 lines of code (see lines 2-6 in Figure 5d). Tak-
ing the hover instrument as an example, AD attaches the built-in 
hover instrument to the main layer and sets the value of a specific 

Figure 7: Example of composing instruments for implement-
ing (a) the index chart and (b) corresponding code snippets 
for composing these new instruments with Libra.js. 

shared variable to change the appearance of the selected items (e.g., 
“fill: red”). Note that the built-in transformer reads the datum from 
the selected element and displays the data information around the 
selected mark. Similarly, AD can specify the pan & zoom interac-
tions [5] for a scatterplot in Figure 6a by binding the corresponding 
instruments to the main layer and setting the shared translation and 
scale variables, see Libra.js specification in Figure 6b. The D3 and 
Vega-Lite specifications shown in Figure 6c and 6d rely on the D3-
zoom library [20] and the interval selection, which both encapsulate 
the pan and zoom operations together. Compared to Libra.js, they 
are limited in extensibility. For example, automatically enabling 
panning when the size of a canvas exceeds the viewport size, as in 
Kyrix [55], is not straightforward in D3. Achieving this functional-
ity requires conditionally enabling event listeners and managing 
state coordination, which can be both complex and error-prone. 

Likewise, Figure 1d shows a straightforward reuse of built-in in-
struments to implement a hover interaction that displays each data 
item’s image. In contrast, using D3 or Vega requires AD to manually 
handle event callbacks (e.g., mouseover and mouseout) or define 
signals, resulting in more lines of code for a similar functionality. 
Extending Instruments. AD can extend new instruments by 
reusing various built-in interactors and services. Figure 7 shows 
the index chart created in this way. Figure 7b illustrates how AD 
implements an Index Chart [52] shown in Figure 7a for comparing 
multiple series in a line chart with Libra.js. When the cursor 
hovers over the line chart, a vertical line appears, indicating the 
data value at that point on the x-axis, and all the rest of the data 
points are normalized by rescaling with the current value (see Fig-
ure 7a). This interaction can be achieved by inheriting the built-in 
hover instrument, as shown in line 2 of Figure 7b. To normalize the 
whole data with the selected data value, AD inserts a normaliza-
tion service to chain with the selection service (lines 6-12). Rather 
than highlighting selected data elements, AD overrides the default 
selection transformer with a line transformer to indicate the cursor 
position with a line (lines 14-17). Similarly, AD extends the click 
instrument in Figure 1e with a filter service to highlight all the 
points of the same class. 
Combining Instruments. ID can create new instruments by com-
bining the built-in instruments with new interactors and services. 
Figure 1f shows an example that combines a drag instrument with 
a point hover instrument to enable interactive k-means clustering 

https://libra-js.github.io/
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js


Libra: An Interaction Model for Data Visualization CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

on the MNIST dataset. Here, we further demonstrate the comnation 
of interactions with DimpVis. 

DimpVis [38] is a direct manipulation technique for exploring 
time-series data shown in a scatterplot at one time-point. Hover-
ing or touching any data points in the scatterplot reveals a time 
trajectory showing the evolution of the selected item through time. 
Dragging the selected item over the trajectory enables temporal nav-
igation, where the scatterplot is updated to the data at the currently 
selected extent. The dragged position is snapped to the nearest po-
sition in the trajectory, requiring geometric computations in visual 
space. Figure 8a shows two snapshots of the scatterplot for interac-
tive exploration of the Gapminder data [26], with each tuple consist-
ing of five properties: fertility, life expectancy, country, region, and 
year in multiples of 5. Figure 8b shows the core Libra.js specifica-
tion, and Figure 8c presents the corresponding architecture diagram, 
clarifying the input/output relationships among components and 
explaining how the behavior propagates from one component to 
another. ID puts all the data points of the scatterplot into the main 
layer and then uses the interaction API to create interactions. She 
first associates the built-in hover instrument (line 2) and the drag 
instrument (line 11) with the main layer (lines 3 and 12). To display 
the time trajectory when hovering or dragging a point, she first 
takes the scale information of the scatterplot as the global shared 
variables (line 4) for the selection service to find the selected data 
item. Then, she inserts a new flow consisting of a filter service and 
a trace transformer (lines 5-9), which are responsible for filtering 
the data in terms of the country property (lines 7-8), connecting 
the points of two properties (fertility and life expectancy) of one 
selected country with a line in temporal sequence (line 9) shown on 
the automatically generated trace layer rendered by Libra.js. For 
the drag instrument, she inserts an additional flow that connects 
the selection service to the nearest point service (lines 17-20) for 
finding the year nearest to the drag point in the trajectory. Here, 
the trace layer containing the time trajectory is referenced in a 
variable shared with the nearest point service. Then, she shares 
the nearest point with the interpolation service (lines 21-22) for 
calculating new interpolated quantitative properties (fertility, life 
expectancy, and year) of all data points. These interpolated proper-
ties are passed to the main transformer through the shared variables 
(line 23) to create smooth transitions between years. Note that the 
interpolated year is rounded to a multiple of 5. Figure 8c visualizes 
the relationship among these components, where the command of 
the interpolation service helps maintain the interaction history. To 
persist the interpolation result, the command is executed to update 
the interpolated data while re-drawing the layer consisting of all 
points after the interpolation is computed. 

We further compare the implementations of Libra.js with D3 
and Vega, with the major pieces of code provided by the DimpVis 
authors [19] and the Vega authors [59] shown in Figure 8d and Fig-
ure 8e. Since the Vega-Lite implementation does not fully support 
all required interactions, such as dragging a point through time, we 
do not consider it here. However, it is worth noting that Libra.js 
can enhance the Vega-Lite implementation to enable the full range 
of interactive functionality. Although the D3 implementation nicely 
structures the involved functions, it still requires ID to manually 
maintain the communication between different functions and the 

state of transient objects (e.g.,, time trajectory). Vega eases the im-
plementation of callback functions but manages all selections in 
data space, whereas searching the nearest point in the time trajec-
tory is natural in the visual space. Hence, its specification takes an 
approximate method based on the previous and next time points; 
they might yield incorrect nearest points in some cases. 

The Libra.js-D3 and Libra.js-Vega specifications both fol-
low our interaction model Libra; however, they are not directly 
reusable across languages for two key reasons. First, the libraries 
use different data structures for mapping data to visual elements. 
For instance, in D3, data is stored in the “data” field, while in Vega, 
it is stored in the “data.datum” field. As a result, users must ac-
count for these differences when managing data mappings in the 
interaction-related layers. Second, if interactions involve changes 
to the visual elements in the main layer, the associated rendering 
procedures must be wrapped by Libra.js’s graphical transformers, 
which require certain code to be specified by the original libraries. 
In a similar fashion regarding the visualization techniques, Observ-
able Plot and Vega rely on the GoG but are also incompatible with 
each other. 

6.2 Metrics-Based Analysis 
Rather than conducting a heuristic evaluation with the Cognitive 
Dimensions of Notations framework [7], as done in several other 
technical articles such as [51], we quantitatively assess three aspects 
of notation in a library: viscosity [28] (the difficulty of changing 
specifications), economy [35] (the number of elements and rules a 
user must remember when using the notation), and terseness [28] 
(the ability to express a lot in a small space). We employ three 
metrics proposed by Kruchten et al. [39], including sprawl (the 
median distance between all pairs of specifications), vocabulary 
size, and specification length. 

To do so, we first choose the Wikipedia clickstream dataset [66] 
with good coverage of variable types to create a variety of static vi-
sualizations (e.g., bar charts, scatter plots, line charts, treemaps, and 
maps). Then, we follow the interaction taxonomy [71] to specify a 
few interaction techniques, including hovering, brushing, panning, 
and geometric zooming for all charts, semantic zooming and ex-
centric labeling for scatter plots and treemaps, and some advanced 
ones such as index chart and Dimpvis. After implementing these ex-
amples with D3, Libra.js-D3, Vega, and Libra.js-Vega, we form 
26 examples of interactive visualizations and then run the metric 
evaluation with the web-based tool NotaScope [39]. To alleviate 
the bias of the coding style, we run bootstrapping experiments for 
each metric and use Kernel Density Estimation (KDE) to draw the 
distribution. We did not consider Vega-Lite since it cannot specify 
interactions like excentric labeling and Dimpvis. 

Figure 9a-c shows the results with three scatterplots of pair-
wise metrics computed from the specifications. We can see that 
Libra.js-D3 and Libra.js-Vega have lower sprawl than the origi-
nal D3 and Vega, respectively, indicating that our interaction model 
largely reduces the cost of changing an interactive visualization to 
another one. Yet, Libra.js-D3 exhibits the longest specification 
length and the largest vocabulary size. We speculate that it is be-
cause Libra.js is not designed to be consistent with D3. Unlike 

https://github.com/notascope/notascope
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js


CHI ’25, April 26–May 01, 2025, Yokohama, Japan Yue et al. 

Figure 8: Implementing the DimpVis interaction technique. (a) Two snapshots of this interaction; (b) Libra specification (custom 
components in orange); and (c) communication between all components, where the orange ones are defined by ID. (d) D3 code 
requiring ID to provide callback functions for all three events. (e) Vega specification for finding the point nearest to the point 
dragged on the time trajectory. 

D3, Vega decouples low-level event processing from visual repre-
sentation, and hence Libra.js-Vega replaces the signals and event 
streams used by Vega to specify interactions and reuse similar lines 
of gluing code as the one of the original Vega. However, Vega has 
large variations in specification length and vocabulary size. After 
checking the specification of each example, we found that Vega uses 
fewer lines of code for specifying simple interactions but requires 
long codes for complex interactions. 

In contrast, Libra.js-Vega uses a consistent number of lines of 
code for the different interactions. Thus, it forms a compact distri-
bution in three scatterplots with the smallest sprawl and reasonably 
small specification length and vocabulary size. We conclude that 
Libra.js enables easy changes to specifications, while Libra.js-
Vega provides concise and learnable specifications for interaction. 

To further learn the differences in the interaction specifications 
of Libra.js-D3 and Libra.js-Vega, we manually extracted the in-
teraction components from the full specifications of each interactive 
visualization and then evaluated them using the NotaScope metrics. 
Here, we present only the scatterplots for the metrics sprawl and 
specification length, with additional metrics provided in the supple-
mental material. As shown in Figure 9d, Libra.js-D3 exhibits sim-
ilar specification lengths to Libra.js-Vega but has slightly greater 
sprawl. Upon reviewing the specifications, we identified that the 

main difference arises from the sections involving the original li-
brary specifications (e.g.,, modifying the main layer). Specifically, 
Libra.js-D3 shows greater variation in defining both simple and 
complex static visualizations, while Libra.js-Vega demonstrates 
less variation due to its declarative abstraction. 

6.3 Comparative Performance Benchmarks 
We perform the benchmark study comparing the Libra.js version 
of D3 and Vega with the original D3 and Vega measured in terms of 
interactive frame rate. Following the configuration for evaluating 
Vega [51], we utilized the same three examples: brushing & linking 
a scatterplot matrix, a time-series overview+detail visualization, 
and panning & zooming a scatterplot, where both D3 and Vega 
implementations are available. For each example, we use the Cy-
press tool [73] to perform automated testing with datasets ranging 
from 100 to 100,000 tuples, conducting 50 trials per size. To mitigate 
the influence of browser-based just-in-time (JIT) optimizations, we 
launch a fresh Chrome browser instance for each test. All tests were 
performed on a system equipped with an Intel i3 8400, NVIDIA 
GeForce GTX 1080 Ti, 32GB RAM, and Windows 11, using Chrome 
122.0.6261.69. The versions of D3 and Vega are 7.8.5 and 5.27.0, 
respectively. 

https://Libra.js
https://Libra.js
https://Libra.js


Libra: An Interaction Model for Data Visualization CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

Figure 9: We run 1k bootstrapped variations for each met-
ric based on our gallery, with (a-c) and without the static 
visualization code (d), and show the results via a scatter plot 
with a Kernel Density Estimation (KDE) of each pair of met-
rics: specification length, vocabulary size, and sprawl. Each 
scatter represents the median value of one variation, while 
the shaded regions represent the areas containing 75% of the 
probability mass of each library’s KDE distribution. 

Figure 10 presents the average frame rates for three interactive 
visualizations, where Libra.js-D3, Libra.js-Vega, and Vega con-
sistently outperform D3. This aligns with the findings reported by 
Satyanarayan et al. [51]. In the examples of brushing & linking a 
scatterplot matrix and the time-series overview+detail visualization 
shown in Figure 10a and Figure 10b, Libra.js-D3 and Libra.js-
Vega demonstrate superior interactive performance compared to 
D3 and Vega. As the number of data items increases, Libra.js-
D3 and Libra.js-Vega are significantly faster than D3 and Vega. 
We speculate that this advantage might be caused by different 
redrawing strategies, where Libra.js only draws the selected el-
ements on the selection layer. D3 requires redrawing the entire 
visualization, resulting in the worst performance, while Vega also 
redraws the subset of all data tuples affected by interactions. In 
Figure 10c, Libra.js-D3 and Libra.js-Vega perform similarly to 
D3 but slightly worse than Vega. We speculate that this difference 
is their direct access to view transforms, and we will profile them to 
understand why. Overall, Libra.js’s performances without deeper 
optimizations are competitive with the other libraries. In the fu-
ture, we aim to explore these optimizations and integrate them into 
Libra.js. 

7 Conclusion, Limitations & Future Work 
We introduce an interaction model that supports the creation, reuse, 
extension, and combination of rich interaction techniques for data 
visualization. Building on and extending previous work in HCI and 
visualization, our model, Libra, incorporates key concepts such 
as layers, instruments, feedback, and feedforward. By managing 
interactions independently of visual representations, Libra provides 

a comprehensive abstract framework. This separation of concerns 
overcomes a key limitation in existing systems, where interactions 
are often tightly coupled with visualization rendering, limiting their 
adaptability and reuse. 

To demonstrate the expressiveness and flexibility of our model, 
we present Libra.js, a prototype that supports various interac-
tions for visualizations through a declarative syntax. Libra.js 
allows concise association of a diverse set of instruments with 
visual elements for simple interactions while remaining expres-
sive enough to describe most advanced interactions found in the 
literature. 

7.1 Limitations 
Libra is designed for 2D visualizations and does not take into 
account 3D, VR, or AR, where the layering concept might be insuf-
ficient to clearly separate data representation from interaction ele-
ments. While we have primarily focused on pointer- and keyboard-
based interactions, we have also experimented with Libra using 
more advanced non-standard and virtual input devices (e.g.,, voice-
based interactions). Libra can be extended to support them through 
appropriate interactors, though some devices might require deeper 
modifications, particularly for handling multimodal interactions 
such as “put that there”-style commands [17]. 

Yet, our article review (section 5) shows that most research fo-
cus on 2D visualizations. We are confident that a large portion of 
the advanced interactive 2D visualizations from the review could 
be reimplemented using Libra, often in a more compact form, as 
demonstrated in the metric-based evaluation of Libra.js (sec-
tion 6.2). 
Learning cost of Libra.js. While our metric-based evaluation fo-
cuses on specification length, vocabulary size, and sprawl, we recog-
nize the importance of other critical factors, particularly learnability. 
Similar to learning D3—with its power and associated complexity— 
there is also a learning curve for developers to fully grasp our model 
and Libra.js. Rather than developing additional metrics to jus-
tify this, we prioritize creating more examples—both to explore 
advanced visualization interactions and to help users better under-
stand our model. While this may add some complexity, it ultimately 
enhances the landscape of visualization interactions, reinforcing 
the core advantage of our model: treating interactions as first-class 
citizens in visualization systems. 
Implementation of Interactors. Our model does not specify how 
interactors should be implemented or specified. Many formalisms 
exist in the HCI community [44] with no clear consensus on which 
one is best; we believe that many of them can be used to implement 
interactors in Libra and that library designers should choose the 
one they consider the most suited. 
Use of Layers for Selection. At a more concrete level, our model 
assumes that interaction effects occur on the transient layer or 
selection layer, which might not be true in some cases. For example, 
brushing scatterplots often de-emphasize the unselected points 
by using dimmed colors while keeping the color of the selected 
points. In our model, layers would be a natural mechanism to stack 
a visualization with the unfiltered visual elements under a filtered 
colored version, and the instrument could be either a brush-able 

https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js


CHI ’25, April 26–May 01, 2025, Yokohama, Japan Yue et al. 

Figure 10: Average frame rates for three interactive visualizations (higher means faster): where (a) brushing and linking on a 
scatterplot matrix; (b) brushing and linking on an overview+detail visualization; and (c) panning and zooming on a scatterplot. 

scatterplot or a range slider [40]. It would require an alternative 
interaction policy within Libra. 

In the future, we plan to experiment with this filtering style that 
needs to dynamically adjust the drawing order of layers. 

7.2 Future Work 
Libra.js is designed to be highly extensible, allowing it to manage 
interactions across a wide range of devices. By handling new event 
types at the interactor level, Libra.js can accommodate emerging 
interaction modalities, such as speech, gaze, or gesture inputs from 
mobile, wearable, or immersive devices. This adaptability ensures 
that Libra.js evolves with changing user interaction paradigms. 

In addition, Libra.js can be extended to support synchronous 
collaboration by incorporating features like real-time feedback on 
users’ cursors and viewports. This functionality can be implemented 
in an extra layer, similar to the approach used in CocoNutTrix [33], 
enabling users to collaborate and interact seamlessly within the 
same environment. 

Building on the k-means service we described, we aim to develop 
additional machine learning-driven services to enhance the expres-
siveness of our instruments, leveraging the scikit-learn toolkit [47]. 

Acknowledgments 
This work is supported by the grants of the National Key R&D Pro-
gram of China under Grant 2022ZD0160805, NSFC (No.62132017 
and No.U2436209), the Shandong Provincial Natural Science Foun-
dation (No.ZQ2022JQ32), the Beijing Natural Science Foundation 
(L247027), the Fundamental Research Funds for the Central Uni-
versities, and the Research Funds of Renmin University of China. 
The authors thank Andrew M. McNutt and Oliver Deussen for their 
valuable suggestions. 

References 
[1] Harold Abelson and Gerald J. Sussman. 1996. Structure and Interpretation of 

Computer Programs (2nd ed.). MIT Press, Cambridge, MA, USA. 
[2] Maria-Florina Balcan, Avrim Blum, and Anupam Gupta. 2009. Approximate 

clustering without the approximation. In Proceedings of the twentieth annual 
ACM-SIAM symposium on Discrete algorithms. SIAM, 1068–1077. 

[3] Michel Beaudouin-Lafon. 2000. Instrumental interaction: an interaction model 
for designing post-WIMP user interfaces. In Proc. SIGCHI Conf. Human Factors 
Comp. Sys. 446–453. doi:10.1145/332040.332473 

[4] Michel Beaudouin-Lafon. 2004. Designing interaction, not interfaces. In Proceed-
ings of the working conference on Advanced visual interfaces. ACM, Gallipoli Italy, 
15–22. doi:10.1145/989863.989865 

[5] Benjamin B Bederson. 2001. PhotoMesa: a zoomable image browser using quan-
tum treemaps and bubblemaps. In Proceedings of the 14th annual ACM symposium 
on User interface software and technology. 71–80. 

[6] Enrico Bertini, Maurizio Rigamonti, and Denis Lalanne. 2009. Extended Excentric 
Labeling. Computer Graphics Forum 28, 3 (2009), 927–934. doi:10.1111/j.1467-
8659.2009.01456.x arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-
8659.2009.01456.x 

[7] Alan F Blackwell, Carol Britton, Anna Cox, Thomas RG Green, Corin Gurr, 
Gada Kadoda, Maria S Kutar, Martin Loomes, Chrystopher L Nehaniv, Marian 
Petre, et al. 2001. Cognitive dimensions of notations: Design tools for cognitive 
technology. In International conference on cognitive technology. Springer, 325–341. 

[8] Michael Bostock and Jeffrey Heer. 2009. Protovis: A graphical toolkit for 
visualization. IEEE Trans. Vis. Comput. Graphics 15, 6 (2009), 1121–1128. 
doi:10.1109/tvcg.2009.174 

[9] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D3 Data-Driven 
Documents. IEEE Trans. Vis. Comput. Graphics 17, 12 (Dec. 2011), 2301–2309. 
doi:10.1109/TVCG.2011.185 

[10] Steven P. Callahan, Juliana Freire, Emanuele Santos, Carlos Eduardo Scheideg-
ger, Cláudio T. Silva, and Huy T. Vo. 2006. VisTrails: visualization meets data 
management. In ACM SIGMOD Conference. 745–747. 

[11] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman. 1999. Readings in 
Information Visualization: Using Vision to Think. Morgan Kaufmann. 

[12] Surajit Chaudhuri, Bolin Ding, and Srikanth Kandula. 2017. Approximate query 
processing: No silver bullet. In Proceedings of the 2017 ACM International Confer-
ence on Management of Data. 511–519. 

[13] Ed Huai-hsin Chi and John T. Riedl. 1998. An operator interaction framework for 
visualization systems. In IEEE Symposium on Information Visualization. 63–70. 

[14] Hank Childs, Berk Geveci, Will Schroeder, Jeremy Meredith, Kenneth Moreland, 
Christopher Sewell, Torsten Kuhlen, and E. Wes Bethel. 2013. Research challenges 
for visualization software. Computer 46, 5 (2013), 34–42. doi:10.1109/mc.2013.179 

[15] Jungu Choi, Deok Gun Park, Yuet Ling Wong, Eli Fisher, and Niklas Elmqvist. 
2015. Visdock: A toolkit for cross-cutting interactions in visualization. IEEE Trans. 
Vis. Comput. Graphics 21, 9 (2015), 1087–1100. doi:10.1109/tvcg.2015.2414454 

[16] Gregory H. Cooper and Shriram Krishnamurthi. 2006. Embedding dynamic 
dataflow in a call-by-value language. In European symposium on programming. 
Springer, 294–308. doi:10.1007/11693024_20 

[17] James L. Crowley. 2018. Put That There: 20 Years of Research on Multimodal 
Interaction. In Proceedings of the 2018 on International Conference on Multimodal 
Interaction, ICMI 2018, Boulder, CO, USA, October 16-20, 2018, Sidney K. D’Mello, 
Panayiotis G. Georgiou, Stefan Scherer, Emily Mower Provost, Mohammad So-
leymani, and Marcelo Worsley (Eds.). ACM, 4. doi:10.1145/3242969.3276309 

[18] Zach Cutler, Kiran Gadhave, and Alexander Lex. 2020. Trrack: A Library for 
Provenance-Tracking in Web-Based Visualizations. In 31st IEEE Visualization 
Conference, IEEE VIS 2020 - Short Papers, Virtual Event, USA, October 25-30, 2020. 
IEEE, 116–120. doi:10.1109/VIS47514.2020.00030 

[19] d3dimpvis 2013. DimpVis: Prototyping for direct interaction techniques with 
information visualizations. https://github.com/vialab/dimpVis. Accessed: 2023-
03-14. 

[20] d3zoom 2016. D3-zoom. https://github.com/d3/d3-zoom. Accessed: 2023-03-14. 
[21] Evanthia Dimara and Charles Perin. 2019. What is interaction for data visualiza-

tion? IEEE Trans. Vis. Comput. Graphics 26, 1 (2019), 119–129. doi:10.1109/tvcg. 
2019.2934283 

[22] J.-D. Fekete. 2004. The InfoVis toolkit. In IEEE Symposium on Information Visual-
ization. 167–174. doi:10.1109/INFVIS.2004.64 

[23] Jean-Daniel Fekete and Michel Beaudouin-Lafon. 1996. Using the Multi-Layer 
Model for Building Interactive Graphical Applications. In Proceedings of the 
9th Annual ACM Symposium on User Interface Software and Technology. ACM, 
109–118. doi:10.1145/237091.237108 

[24] Jean-Daniel Fekete, Danyel Fisher, and Michael Sedlmair. 2024. Progressive Data 
Analysis: Roadmap and Research Agenda. Eurographics. 231 pages. doi:10.2312/ 
pda.20242707 

[25] Jean-Daniel Fekete and Catherine Plaisant. 1999. Excentric Labeling: Dynamic 
Neighborhood Labeling for Data Visualization. In Proc. SIGCHI Conf. Human 
Factors Comp. Sys. 512–519. doi:10.1145/302979.303148 

https://doi.org/10.1145/332040.332473
https://doi.org/10.1145/989863.989865
https://doi.org/10.1111/j.1467-8659.2009.01456.x
https://doi.org/10.1111/j.1467-8659.2009.01456.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2009.01456.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2009.01456.x
https://doi.org/10.1109/tvcg.2009.174
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/mc.2013.179
https://doi.org/10.1109/tvcg.2015.2414454
https://doi.org/10.1007/11693024_20
https://doi.org/10.1145/3242969.3276309
https://doi.org/10.1109/VIS47514.2020.00030
https://github.com/vialab/dimpVis
https://github.com/d3/d3-zoom
https://doi.org/10.1109/tvcg.2019.2934283
https://doi.org/10.1109/tvcg.2019.2934283
https://doi.org/10.1109/INFVIS.2004.64
https://doi.org/10.1145/237091.237108
https://doi.org/10.2312/pda.20242707
https://doi.org/10.2312/pda.20242707
https://doi.org/10.1145/302979.303148
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js


Libra: An Interaction Model for Data Visualization CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

[26] Gapminder Foundation. [n. d.]. Gapminder trendalyzer. http://www.gapminder. 
org. http://www.gapminder.org 

[27] Cory Gackenheimer. 2015. Introduction to React. Apress. 
[28] Thomas RG Green. 1989. Cognitive dimensions of notations. People and computers 

V (1989), 443–460. 
[29] Derek Greer. [n. d.]. Interactive Application Architecture Patterns. http: 

//aspiringcraftsman.com/2007/08/25/interactive-application-architecture/. Ac-
cessed: 2023-02-23. 

[30] Jeffrey Heer and Maneesh Agrawala. 2006. Software Design Patterns for Infor-
mation Visualization. IEEE Trans. Vis. Comput. Graphics 12, 5 (2006), 853–860. 
doi:10.1109/tvcg.2006.178 

[31] Jeffrey Heer, Stuart K. Card, and James A. Landay. 2005. Prefuse: a toolkit for 
interactive information visualization. In Proc. SIGCHI Conf. Human Factors Comp. 
Sys. 421–430. doi:10.1145/1054972.1055031 

[32] Jane Hoffswell, Arvind Satyanarayan, and Jeffrey Heer. 2016. Visual debugging 
techniques for reactive data visualization. Computer Graphics Forum 35, 3 (2016), 
271–280. 

[33] Petra Isenberg, Anastasia Bezerianos, Nathalie Henry, Sheelagh Carpendale, 
and Jean-Daniel Fekete. 2009. CoCoNutTrix: Collaborative Retrofitting for In-
formation Visualization. IEEE Comput. Graph. Appl. Mag 29, 5 (2009), 44–57. 
doi:10.1109/MCG.2009.78 

[34] Petra Isenberg, Florian Heimerl, Steffen Koch, Tobias Isenberg, Panpan Xu, Chad 
Stolper, Michael Sedlmair, Jian Chen, Torsten Möller, and John Stasko. 2017. vis-
pubdata.org: A Metadata Collection about IEEE Visualization (VIS) Publications. 
IEEE Transactions on Visualization and Computer Graphics 23, 9 (Sept. 2017), 
2199–2206. doi:10.1109/TVCG.2016.2615308 

[35] Kenneth E Iverson. 1980. Notation as a tool of thought. Commun. ACM 23, 8 
(1980), 444–465. 

[36] T.j. Jankun-Kelly, Kwan-liu Ma, and Michael Gertz. 2007. A Model and Framework 
for Visualization Exploration. IEEE Trans. Vis. Comput. Graphics 13, 2 (2007), 
357–369. doi:10.1109/TVCG.2007.28 

[37] Yvonne Jansen and Pierre Dragicevic. 2013. An interaction model for visual-
izations beyond the desktop. IEEE Trans. Vis. Comput. Graphics 19, 12 (2013), 
2396–2405. doi:10.1109/tvcg.2013.134 

[38] Brittany Kondo and Christopher Collins. 2014. Dimpvis: Exploring time-varying 
information visualizations by direct manipulation. IEEE Trans. Vis. Comput. 
Graphics 20, 12 (2014), 2003–2012. doi:10.1109/TVCG.2014.2346250 

[39] Nicolas Kruchten, Andrew M McNutt, and Michael J McGuffin. 2023. Metrics-
Based Evaluation and Comparison of Visualization Notations. IEEE Transactions 
on Visualization and Computer Graphics (2023). 

[40] Qing Li, Xiaofeng Bao, Chen Song, Jinfei Zhang, and Chris North. 2003. Dynamic 
query sliders vs. brushing histograms. In Extended abstracts of the 2003 Conference 
on Human Factors in Computing Systems, CHI 2003, Ft. Lauderdale, Florida, USA, 
April 5-10, 2003, Gilbert Cockton and Panu Korhonen (Eds.). ACM, 834–835. 
doi:10.1145/765891.766020 

[41] M Douglas McIlroy, J Buxton, Peter Naur, and Brian Randell. 1968. Mass-produced 
software components. In Proceedings of the 1st international conference on software 
engineering, Garmisch Pattenkirchen, Germany. 88–98. 

[42] Brad A. Myers. 1990. A new model for handling input. ACM Trans. Inf. Syst. 8, 3 
(1990), 289–320. doi:10.1145/98188.98204 

[43] Brad A. Myers. 1991. Separating application code from toolkits: eliminating the 
spaghetti of call-backs. In Proceedings of the 4th Annual ACM Symposium on User 
Interface Software and Technology, James R. Rhyne (Ed.). 211–220. doi:10.1145/ 
120782.120805 

[44] Brad A. Myers. 2024. Pick, Click, Flick!: The Story of Interaction Techniques. ACM 
Books, Vol. 57. ACM. doi:10.1145/3617448 

[45] Donald A Norman. 1999. Affordance, conventions, and design. interactions 6, 3 
(1999), 38–43. 

[46] observable-plot [n. d.]. Observable Plot | The JavaScript library for exploratory 
data visualization. https://observablehq.com/plot/. Accessed: 2024-02-23. 

[47] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. 
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine 
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830. 
doi:10.5555/1953048.2078195 

[48] Mike Potel. 1996. MVP: Model-View-Presenter – The Taligent Programming 
Model for C++ and Java. http://www.wildcrest.com/Potel/Portfolio/mvp.pdf. 
Access: 2023-02-23. 

[49] Trygve Mikjel H. Reenskaug. 1979. The original MVC reports. 
[50] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer. 

2017. Vega-lite: A grammar of interactive graphics. IEEE Trans. Vis. Comput. 
Graphics 23, 1 (2017), 341–350. doi:10.1109/tvcg.2016.2599030 

[51] Arvind Satyanarayan, Ryan Russell, Jane Hoffswell, and Jeffrey Heer. 2016. Re-
active Vega: A Streaming Dataflow Architecture for Declarative Interactive 
Visualization. IEEE Trans. Vis. Comput. Graphics 22, 1 (Jan. 2016), 659–668. 
doi:10.1109/TVCG.2015.2467091 

[52] Arvind Satyanarayan, Kanit Wongsuphasawat, and Jeffrey Heer. 2014. Declarative 
interaction design for data visualization. In Proceedings of the 27th Annual ACM 

Symposium on User Interface Software and Technology. 669–678. doi:10.1145/ 
2642918.2647360 

[53] Shneiderman. 1983. Direct Manipulation: A Step Beyond Programming Lan-
guages. Computer 16, 8 (1983), 57–69. doi:10.1109/MC.1983.1654471 

[54] Luke S. Snyder and Jeffrey Heer. 2024. DIVI: Dynamically Interactive Visualiza-
tion. IEEE Trans. Vis. Comput. Graph. 30, 1 (2024), 403–413. doi:10.1109/TVCG. 
2023.3327172 

[55] Wenbo Tao, Xiaoyu Liu, Yedi Wang, Leilani Battle, Çağatay Demiralp, Remco 
Chang, and Michael Stonebraker. 2019. Kyrix: Interactive pan/zoom visualizations 
at scale. Computer Graphics Forum 38, 3 (2019), 529–540. 

[56] Jim Thomas and Joe Kielman. 2009. Challenges for visual analytics. Information 
Visualization 8, 4 (2009), 309–314. doi:10.1057/ivs.2009.26 

[57] Christian Tominski, Stefan Gladisch, Ulrike Kister, Raimund Dachselt, and Hei-
drun Schumann. 2017. Interactive lenses for visualization: An extended survey. 
Computer Graphics Forum 36, 6 (2017), 173–200. doi:10.1111/cgf.12871 

[58] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using 
t-SNE. Journal of Machine Learning Research 9, 86 (2008), 2579–2605. http: 
//jmlr.org/papers/v9/vandermaaten08a.html 

[59] vegadimpvis 2018. Global Development Example. https://vega.github.io/vega/ 
examples/global-development/. Accessed: 2023-03-14. 

[60] Allan Vermeulen, Gabe Beged-Dov, and Patrick Thompson. 1995. The pipeline 
design pattern. In Proceedings of OOPSLA’95 Workshop on Design Patterns for 
Concurrent, Parallel, and Distributed Object-Oriented Systems. Citeseer. 

[61] John M. Vlissides and Mark A. Linton. 1990. Unidraw: A Framework for Building 
Domain-Specific Graphical Editors. ACM Trans. Inf. Syst. 8, 3 (July 1990), 237–268. 
doi:10.1145/98188.98197 

[62] Zhanyong Wan, Walid Taha, and Paul Hudak. 2002. Event-driven FRP. In In-
ternational Symposium on Practical Aspects of Declarative Languages. Springer, 
155–172. 

[63] Yunhai Wang, Yanyan Wang, Haifeng Zhang, Yinqi Sun, Chi-Wing Fu, Michael 
Sedlmair, Baoquan Chen, and Oliver Deussen. 2018. Structure-aware fisheye 
views for efficient large graph exploration. IEEE transactions on visualization and 
computer graphics 25, 1 (2018), 566–575. 

[64] Chris Weaver. 2004. Building Highly-Coordinated Visualizations in Improvise. In 
IEEE Symposium on Information Visualization. IEEE, 159–166. doi:10.1109/INFVIS. 
2004.12 

[65] Hadley Wickham. 2016. ggplot2: Elegant Graphics for Data Analysis (2nd ed.). 
Springer Publishing Company, Incorporated. 

[66] Wikimedia Foundation. 2017. Wikipedia Clickstream. https://meta.wikimedia. 
org/wiki/Research:Wikipedia_clickstream. Accessed: 2024-03-15. 

[67] Leland Wilkinson. 2012. The grammar of graphics. In Handbook of computational 
statistics. Springer, 375–414. 

[68] Nelson Wong, Sheelagh Carpendale, and Saul Greenberg. 2003. EdgeLens: An 
Interactive Method for Managing Edge Congestion in Graphs. In IEEE Symposium 
on Information Visualization. 51–58. doi:10.1109/INFVIS.2003.1249008 

[69] Michael Wybrow, Niklas Elmqvist, Jean-Daniel Fekete, Tatiana Von Landesberger, 
Jarke J van Wijk, and Björn Zimmer. 2014. Interaction in the visualization of 
multivariate networks. In Multivariate Network Visualization: Dagstuhl Seminar# 
13201, Dagstuhl Castle, Germany, May 12-17, 2013, Revised Discussions. Springer, 
97–125. 

[70] Chhavi Yadav and Léon Bottou. 2019. Cold Case: The Lost MNIST Digits. CoRR 
abs/1905.10498 (May 2019). arXiv:1905.10498 https://arxiv.org/abs/1905.10498 

[71] Ji Soo Yi, Youn ah Kang, John Stasko, and Julie A. Jacko. 2007. Toward a deeper 
understanding of the role of interaction in information visualization. IEEE Trans. 
Vis. Comput. Graphics 13, 6 (2007), 1224–1231. doi:10.1109/tvcg.2007.70515 

[72] Ji Soo Yi, Rachel Melton, John T. Stasko, and Julie A. Jacko. 2005. Dust & Magnet: 
multivariate information visualization using a magnet metaphor. Information 
Visualization 4, 3 (2005), 239–256. doi:10.1057/palgrave.ivs.9500099 

[73] Jidong Zhai, Jianfei Hu, Xiongchao Tang, Xiaosong Ma, and Wenguang Chen. 
2014. CYPRESS: Combining Static and Dynamic Analysis for Top-Down Com-
munication Trace Compression. In International Conference for High Performance 
Computing, Networking, Storage and Analysis, SC 2014, New Orleans, LA, USA, No-
vember 16-21, 2014, Trish Damkroger and Jack J. Dongarra (Eds.). IEEE Computer 
Society, 143–153. doi:10.1109/SC.2014.17 

http://www.gapminder.org
http://www.gapminder.org
http://www.gapminder.org
http://aspiringcraftsman.com/2007/08/25/interactive-application-architecture/
http://aspiringcraftsman.com/2007/08/25/interactive-application-architecture/
https://doi.org/10.1109/tvcg.2006.178
https://doi.org/10.1145/1054972.1055031
https://doi.org/10.1109/MCG.2009.78
https://doi.org/10.1109/TVCG.2016.2615308
https://doi.org/10.1109/TVCG.2007.28
https://doi.org/10.1109/tvcg.2013.134
https://doi.org/10.1109/TVCG.2014.2346250
https://doi.org/10.1145/765891.766020
https://doi.org/10.1145/98188.98204
https://doi.org/10.1145/120782.120805
https://doi.org/10.1145/120782.120805
https://doi.org/10.1145/3617448
https://observablehq.com/plot/
https://doi.org/10.5555/1953048.2078195
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf
https://doi.org/10.1109/tvcg.2016.2599030
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1145/2642918.2647360
https://doi.org/10.1145/2642918.2647360
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1109/TVCG.2023.3327172
https://doi.org/10.1109/TVCG.2023.3327172
https://doi.org/10.1057/ivs.2009.26
https://doi.org/10.1111/cgf.12871
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://vega.github.io/vega/examples/global-development/
https://vega.github.io/vega/examples/global-development/
https://doi.org/10.1145/98188.98197
https://doi.org/10.1109/INFVIS.2004.12
https://doi.org/10.1109/INFVIS.2004.12
https://meta.wikimedia.org/wiki/Research:Wikipedia_clickstream
https://meta.wikimedia.org/wiki/Research:Wikipedia_clickstream
https://doi.org/10.1109/INFVIS.2003.1249008
https://arxiv.org/abs/1905.10498
https://arxiv.org/abs/1905.10498
https://doi.org/10.1109/tvcg.2007.70515
https://doi.org/10.1057/palgrave.ivs.9500099
https://doi.org/10.1109/SC.2014.17
https://pubdata.org

	Abstract
	1 Introduction
	2 Background
	2.1 Direct Manipulation in VIS
	2.2 Interaction Models

	3 Libra Interaction Model
	3.1 Design Goals
	3.2 Our Model
	3.3 Layers
	3.4 Instruments
	3.5 Comparing Libra to Existing Models

	4 Implementation of Our Model
	4.1 Layers
	4.2 Interactors
	4.3 Data Services
	4.4 Commands, Feedback and Feedforward
	4.5 Reuse, Extend and Combine of Instruments
	4.6 Adapting to Different Libraries

	5 Evaluation of Libra
	6 Evaluation of Libra.js
	6.1 Expressiveness
	6.2 Metrics-Based Analysis
	6.3 Comparative Performance Benchmarks

	7 Conclusion, Limitations & Future Work
	7.1 Limitations
	7.2 Future Work

	Acknowledgments
	References



