l.)

Check for
Updates

Libra: An Interaction Model for Data Visualization

Yue Zhao
Shandong University
Qingdao, China
jack.zha09802@gmail.com

Yanyan Wang
Ant Group
Hangzhou, China
shiwu.wyy@antgroup.com

Yunhai Wang’
Renmin University of China
Beijing, China
wang.yh@ruc.edu.cn

Xu Luo
Renmin University of China
Beijing, China
luoxu9days@gmail.com

Jean-Daniel Fekete
Inria & Université Paris-Saclay
Orsay, France
jean-daniel fekete@inria.fr

Digit o g0 i
®0 o2

1
®2 ot
®3 20
®4

5
ot g
o3 X

9 =7

g 3
(b)

1 Libra.Interaction.build({ 1Libra.Interaction.build({ 1lLibra.Interaction.build({ - o
2| inherit: 'HoverInstrument', 2| inherit: 'ClickInstrument', g inherit: ‘'DragInstrument', layers: [centroidlayerl,
3 layers: [mainLayer], 3 insert:[{ 4 ce',
4 sharedVar: { 4 find: 'SelectionService’, 5 flow: [{comp: 'DataloinService'},{comp: 'CentroidTransformer'}]
5 toolti 5 flow: [{comp: 'FilterService', g }'.ﬁ,”'d: Datai0nens oy g — erTransformer
6 {image: d => d.image} 6 coub, eenll, eil, ens g} flow: [{comp: 'KMeansService'},{comp: 'ClusterTransformer'}]
7. 1hH 71) 9 L{hra.lnteractlan.bui'ld({,n erit: 'HoverInstrument',...})

(d) (e)

Figure 1: Libra facilitates efficient interaction modeling by enabling the reuse, extension, and combination of built-in interactions.
Its prototype, Libra. js, supports seamless exploration of the t-SNE projection of the MNIST dataset with various interactions:
(a) hovering a point to show the corresponding image, (b) clicking a data point to highlight the whole class, and (c) dragging
cluster centroids to interactively refine k-means clustering while seamlessly integrating with point hovering from (a). (d,e,f)
The corresponding Libra. js code snippets for the interactions in (a,b,c), respectively.

Abstract

While existing visualization libraries enable the reuse, extension,
and combination of static visualizations, achieving the same for
interactions remains nearly impossible. Therefore, we contribute an
interaction model and its implementation to achieve this goal. Our
model enables the creation of interactions that support direct ma-
nipulation, enforce software modularity by clearly separating visu-
alizations from interactions, and ensure compatibility with existing

“corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI ’25, Yokohama, Japan

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1394-1/25/04

https://doi.org/10.1145/3706598.3713769

visualization systems. Interaction management is achieved through
an instrument that receives events from the view, dispatches these
events to graphical layers containing objects, and then triggers
actions. We present a JavaScript prototype implementation of our
model called Libra. js, enabling the specification of interactions
for visualizations created by different libraries. We demonstrate the
effectiveness of Libra by describing and generating a wide range
of existing interaction techniques. We evaluate Libra. js through
diverse examples, a metric-based notation comparison, and a per-
formance benchmark analysis.

CCS Concepts

« Human-centered computing — Visualization toolkits; « Soft-
ware and its engineering — Software architectures.

Keywords

Information visualization, interaction, software modularity, direct
manipulation, undo/redo

https://orcid.org/0000-0003-0365-5291
https://orcid.org/0000-0003-0059-6580
https://orcid.org/0000-0003-1501-7385
https://orcid.org/0009-0006-5221-0984
https://orcid.org/0000-0003-3770-8726
https://doi.org/10.1145/3706598.3713769
https://Libra.js
https://Libra.js
mailto:permissions@acm.org
https://Libra.js
https://Libra.js
https://jean-daniel.fekete@inria.fr
mailto:shiwu.wyy@antgroup.com
mailto:luoxu9days@gmail.com
mailto:jack.zhao9802@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3706598.3713769&domain=pdf&date_stamp=2025-04-25

CHI ’25, April 26-May 01, 2025, Yokohama, Japan

ACM Reference Format:

Yue Zhao, Yunhai Wang, Xu Luo, Yanyan Wang, and Jean-Daniel Fekete.
2025. Libra: An Interaction Model for Data Visualization. In CHI Conference
on Human Factors in Computing Systems (CHI °25), April 26—May 01, 2025,
Yokohama, Japan. ACM, New York, NY, USA, 17 pages. https://doi.org/10.
1145/3706598.3713769

1 Introduction

Interaction is a fundamental aspect of visualization. Well-designed
interactions empower users to explore visualized data effectively
while providing an engaging experience [14, 56]. As a motivating
example, Figure 1 illustrates the interactions with a scatterplot
visualizing the t-SNE projection [58] of the MNIST dataset [70] con-
taining images of handwritten digits, each digit being labeled with
its class, i.e., the digit it represents, from 0-9. Assume the analyst
asks an application developer to provide custom interactions to
evaluate the projection and clustering quality. Our goal is to reuse,
extend, and combine existing interactions to create specialized ones
tailored to specific visualizations. For this example, an application
programmer will reuse existing interactions (hover, click), extend
them, and combine a “drag” interaction on top. Hovering over a data
point displays its corresponding image (Figure 1a), and clicking
highlights all points of the same class (Figure 1b). Overlaying the
projection visualization, the cluster centroids are visualized as large
rounded square points providing an interaction combined with data
point hovering interaction in Figure 1a. Dragging a cluster centroid
moves it to escape a possibly non-optimal position and triggers the
recomputation of the k-means clustering, updating the visualiza-
tion (Figure 1c). These interactions can be structured by reusing,
extending, and combining basic interactions such as hover, click,
and drag. Hovering and clicking reuse basic interactions while ex-
tending them with customizations, such as tooltip adjustments or
specialized selection actions. The k-means example further com-
bines dragging cluster centroids with hovering over projection
points, enabling different behaviors based on point semantics. Addi-
tionally, interactions designed for specific visualizations, like t-SNE
projections, can be easily adapted to other contexts, such as node-
link diagrams.

Although existing libraries follow the same visualization ref-
erence model for the rendering pipeline [11], their interaction
techniques vary widely, with no clear consensus on the under-
lying concepts, mechanisms, or their interplay. The widely-used
D3 library [9] offers only three predefined reusable interaction
techniques: brush, drag, and zoom. While D3 allows for imple-
menting custom interactions through event-handling callbacks, it
requires application programmers to manually manage interaction
states [16]. Returning to our example, developers have to manu-
ally handle the states of the tooltip in Figure 1a, and disambiguate
the click event between a projected point and a class centroid in
Figure 1b. In Figure 1c, even with the predefined D3 “drag” mecha-
nism, developers still need to combine point-clicking and dragging
interactions to implement the interactive k-means clustering. Fur-
thermore, D3 provides no guidance or support on how to reuse or
extend user-improved interactions.

Vega [51, 52] (and Vega-Lite [50] which relies on Vega) mod-
els input events as streaming data and relies on functional reactive

Yue et al.

programming (FRP [62]) to apply various data transformation opera-
tors and visual encoding primitives to these streams. This approach
supports event stream creation and composition but tightly cou-
ples visual feedback with visual representation during interactions.
Therefore, it is difficult to reuse and adapt Vega’s interaction specifi-
cation to other visualizations. In addition, it lacks built-in undo/redo
support, which complicates the implementation of interactions like
interactive k-means clustering shown in Figure 1c. While new visual
representations are quickly incorporated into visualization libraries,
new interactions often remain confined to research papers and pro-
totypes, rarely influencing the broader visualization landscape. We
speculate that this is due to the lack of well-defined software models
for interaction design compared to rendering.

We introduce an interaction model that aims to meet three types
of requirements: direct manipulation [53], software modularity, and
compatibility with existing implementations of libraries. Direct ma-
nipulation interfaces require a set of properties (e.g., physical ac-
tions, rapid, reversible operations, and layered or spiral approach
to learning) that are considered essential in HCI. However, these
properties are rarely fully supported in existing visualization li-
braries, likely due to the complexity and cost of implementation
without proper software support. Software modularity refers to the
logical partitioning of library design that allows complex software
to be manageable for the purpose of implementation, extension,
and maintenance. Interactions are currently not manageable in a
modular way, taxing their development. Compatibility implies that
our model requires relatively small changes to existing libraries to
be retrofitted. Our model and sample implementations are designed
to help increase the quality of interactions supported by visual-
ization libraries with limited added complexity. We advocate for a
model, not one implementation, because we want to help improve
existing implementations. We also want to clarify how interaction
works in visualization at a conceptual level.

One of our goals is that interactions become first-class citizens [1,
p. 102] in visualization libraries, i.e., that they may be named by
variables, passed as arguments to procedures, returned as results
of procedures, and be included in data structures. Furthermore,
we introduce a complete, modular, component-based model for
interaction design in visualization that developers can follow in
their implementations. By translating the concept of interaction into
a comprehensive model, we elevate interactions to a higher level
of abstraction. Our approach enables interactions to be descriptive,
evaluative, and generative [4].

We present implementations of our model through a JavaScript-
based working prototype called Libra. js!; it enables the declara-
tive specification of interaction techniques for static visualizations
created by three libraries: D3, Vega, and Observable Plot [46] (Plot
in the remaining). We show that a diverse range of interaction
techniques can be seamlessly integrated within and across visual
designs and input modalities. As illustrated in Figure 1(d-f), our
model allows developers to add non-trivial interactions to a new
visualization application with just a few lines of code. Interactions
can be referred to by name and added to visualizations, with default
parametrization and the flexibility to customize them to fit the spe-
cific application without requiring a complete re-implementation.

!https://libra-js.github.io/

https://doi.org/10.1145/3706598.3713769
https://doi.org/10.1145/3706598.3713769
https://libra-js.github.io/

Libra: An Interaction Model for Data Visualization

Relying on our model, the interaction defined in Figure 1(d-f), can
be implemented by reusing, extending, and combining existing
interactions, ensuring consistent interaction specifications across
visualizations (see interaction with scatterplot matrices and node-
link diagrams in supplemental material). In Figure 1f, the built-in
history management mechanism allows developers to effortlessly
implement undo/redo operations for interactive k-means cluster-
ing, and provide it for future reuse. Moreover, as more interactions
become available in our prototype Libra. js, either through library
updates or third-party contributions, they can be integrated into
existing applications with minimal effort.

We perform a two-fold evaluation. First, we demonstrate the
effectiveness of Libra by describing and generating many existing
interaction techniques with it. After reviewing the papers introduc-
ing novel interaction techniques in the VisPubData collection [34],
we map their interactions to Libra’s components and, for several of
them, articulate the technical scope of their contribution. Second,
we evaluate Libra. js both qualitatively and quantitatively across
three aspects. (1) we construct a diverse set of interaction tech-
niques that integrate seamlessly within and across visual designs
and input modalities. (2) we employ a metrics-based approach [39]
to compare the usability of notations for interaction specifications
between Libra.js and existing libraries. (3) we conduct bench-
mark evaluations of interactive visualization libraries, showing that
Libra. js matches Vega’s performance and outperforms D3. The re-
sults demonstrate that our model promotes interactions as reusable
components in visualization systems without any performance
penalty.

In summary, our contributions are:

(1) the description of our model of interaction that integrates
and organizes multiple components from the literature to
support the creation, reusability, extensibility, and compos-
ability of interactions;

a prototype implementation in JavaScript: Libra. js, intro-

ducing declarative APIs to create/reuse/extend/combine inter-

actions for visualizations built with different visualization

libraries; and

(3) atwo-fold evaluation: (1) assessing Libra by demonstrating
its ability to describe and generate a wide range of existing
interaction techniques for visualization, and (2) evaluating

Libra. js qualitatively and quantitatively through diverse

examples, a metric-based notation comparison [39], and a

performance benchmark analysis.

(2

~

2 Background

Before describing previous work, we introduce four types of inter-
action stakeholders who will benefit from our interaction model:

EU the visualization end user (the analyst), who will have richer
interaction techniques available;

AD the visualization application developer, who will have a larger
library of interaction techniques that can be easily reused
and combined in a way similar to developers reusing existing
visualization techniques;

CHI ’25, April 26-May 01, 2025, Yokohama, Japan

ID the visualization interaction technique developer, who will be
able to design a large set of components for interaction tech-
niques, extensible and combinable, in a way similar to visualiza-
tion developers who can design new visualization techniques
from scratch and share them (ID can sometimes also be AD);
In addition, we also refer to the interaction library developer,
who will implement our interaction model in a new or existing
visualization library.

Libra draws on previous work in HCI, interactive visualization
toolkits, and interaction software models.

2.1 Direct Manipulation in VIS

Shneiderman introduced in 1983 the “direct manipulation” princi-
ples [53]: (1) Continuous representation of the object of interest;
(2) Physical actions or labeled button presses instead of complex
syntax; (3) Rapid, incremental, reversible operations; (4) Layered
or spiral approach to learning. These principles remain the golden
standard of HCI, but visualization systems only meet principle (1),
whereas 2-4 are rarely met.

Interaction Specification. For principle (2), an input visualization
can be interacted with by clicking on a graphical item to select it,
dragging an item to move it, or adjusting a slider to filter items. How-
ever, the visualization pipeline [11] does not explain how graphical
marks, axes, and coordinate systems interact with these actions.
For example, parallel coordinate plots often allow dragging a range
selection on a data axis. A few scatterplot visualizations also allow
that type of range selection by dragging on the axes. Yet, this kind
of interaction performed on the axis is not standard and not men-
tioned by the visualization pipeline or the Grammar of Graphics
(GoG). As a result, the support for interactions (where and how)
varies significantly across libraries, potentially confusing users.

Interactions were initially implemented using event-based pro-
gramming with callback functions, leading to a “spaghetti of call-
backs” [43]. Despite this, several visualization toolkits like Proto-
vis [8] and D3 [9], still rely on event-handling callbacks for custom
behaviors. These often require ID to maintain a state machine and
coordinate interleaved calls, making it difficult to reuse, extend,
and combine. To manage the complexity, the simplest approach is
to encapsulate it within a black-box object, allowing AD to utilize
it without exposing its intricacies. Toolkits like Prefuse [31], Im-
provise [64], VisDock [15], and DIVI [54] provide such predefined
interaction techniques, such as selection, navigation, and annota-
tion, for developers to integrate into their applications. While this
approach simplifies and streamlines reuse for AD, it is rigid and
monolithic from the perspective of ID.

Alternatively, Vega [51, 52] offers higher-level mechanisms for
specifying interactions. It uses FRP [62] to provide composable
interaction primitives and implicitly manage state machines. By
abstracting input events as data streams, Vega allows events to be
treated as explicit inputs to visualization specifications, enabling
rich interactions for EU. Vega-Lite [50] builds on this by intro-
ducing a high-level grammar for interaction specifications, using
selections as primitives, and simplifying interaction creation for
AD. However, FRP does not explicitly describe the feedback during
interactions, relying instead on internal, non-exposed mechanisms.
While extensions such as signal recording [32] are possible, it is

https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js

CHI ’25, April 26-May 01, 2025, Yokohama, Japan

difficult for ID to create, reuse, extend, and combine expressive
interactions. In contrast, Libra provides a complete and transparent
framework for describing and implementing all stages of interac-
tions in visualizations.

Undo/Redo. According to principle (3), supporting Undo/Redo is
standard in most professional user interface toolkits, relying on
the Command design pattern described in [61]. Instead of directly
performing the actions in the user interface code, a Command object
is created, which supports the methods “execute” and “undo”. A
history manager is given this command object; it first executes it
and stores it in a list so the user can undo it later.

In visualization, a few libraries implement the Command de-

sign pattern and an interactive history manager. VisTrails [10]
supports it for provenance management, and Trrack [18] supports
history management in JavaScript visualization systems. However,
undo/redo is not supported by the visualization libraries directly
(more on section 5).
Affordances, Feedback, and Feedforward. Most popular visu-
alization libraries follow the GoG. Yet, interactive visualizations
need to manage graphical objects that are not part of the GoG to
implement principle (4): affordances to help users understand where
interactions can be performed, feedback to show how objects are
changed during the interactions, and feedforward to show what
would happen at the end of an interaction early on.

Besides the graphical items in the input visualization, interac-
tions often generate additional graphical items (e.g.,, the image
shown by hovering in Figure 1a), which can create potential inter-
ference in understanding their role. According to Don Norman [45],
the best way to avoid these interferences is to separate the marks
into different affordances, overlaid in layers, synchronized to share
the same view and coordinate systems but disjoint. In doing so,
the selection can then be updated without changing the graphical
structure managed by the visualization, and the visualization is not
affected by the interactive selection changes.

This separation of concern is important for modularity, not only
for the selection but also for other transient objects used in inter-
actions [22, 23]. For example, an interaction implementing lasso
selection by dragging the pointer requires drawing the selection
lasso. This object is a feedback of the ongoing interaction; it does
not belong to the visualization or the selection layer. For the sake of
modularity, graphical objects with specific semantics should then
be drawn in their layer to avoid interference and resolve ambiguity
during picking [23]. Improvise [64] also uses layers to separate the
visualization from the graphical objects used for the interactions.
Visualization systems such as ggplot2 and Vega support layering
for visualization purposes only, e.g.,, adding a regression curve on
top of a scatterplot. Our model also relies on layering to achieve
modularity, extensibility, and composition.

Many standard interactive tools provide feedforward, but very
few visualization systems provide it. Implementing feedforward
is difficult without library support because it requires changing
the graphical appearance of the visualization without changing it
for real. Although the HCI and visualization literature praise the
benefits of feedforward, no library provides specific support for
it. With Libra, we describe possible mechanisms to support it in
generic ways by relying on undo/redo to show the result early and

Yue et al.

undo it if not validated. Layers can also show the animation of
actions, such as layout changes, without performing them on the
main visualization.

2.2 Interaction Models

Interaction models were a popular topic in HCI research to provide
abstractions, mechanisms, and guidance for the implementation
of graphical user interfaces (GUIs). There has been a long history
starting with Smalltalk’s MVC model [49] that separates software
components into three parts: the Model, View, and Controller. After
evolving through many steps [29], a few MVC variants like the
Model-View-Presenter model [48] have been adopted by the indus-
try. Based on these models, component-based architectures [41]
that promote the separation of concerns between components and
reusability have become popular for building user interface com-
ponents. For example, React [27] provides a set of components
that can be composed to build complex user interfaces, allowing
customization of most aspects of each component. Unfortunately,
existing components are tied to their specialized interactions and
vice versa, and, to our knowledge, none of the existing component
architecture aims at separating them.

The visualization reference model is a high-level architecture
model [11] that has been adopted and improved by the visualization
community [30, 37]. It describes well the rendering pipeline used
in information visualization, from data to view, but it is less precise
in explaining the interaction part, not mentioning any particular
component dedicated to event handling. Heer and Agrawala [30]
have listed several design patterns used in the Prefuse system [31].
However, their patterns address only a few aspects of interaction.
Most importantly, a set of patterns only provides partial solutions
to a system’s architecture. Yi et al. provide a taxonomy of inter-
action techniques [71] including seven categories (select, explore,
reconfigure, encode, abstract/elaborate, filter, and connect), which
is abstract.

The instrumental interaction model [3] is a general model aimed
at describing the whole interaction. It is inspired by how humans
use instruments to manipulate objects of interest in the physical
world: an instrument is a mediator between users and objects of
interest. Recently, Jansen and Dragicevic [37] adapted this model
to visualization settings by unifying it with the visualization refer-
ence model [11] for describing, comparing, and criticizing beyond-
desktop visualization systems. However, it is still a conceptual
model. It does not identify the essential components for the im-
plementation of interaction techniques and thus cannot be used
for generating new interactions. In contrast, our model describes
interactions concretely.

3 Libra Interaction Model

In this section, we first present the design goals for our interaction
model, then describe the essential components for characterizing
interactive visualizations, and finally highlight the differences be-
tween our model and the ones supported by existing libraries.

3.1 Design Goals

To fully support the design, reuse, extension, and combination of
visualization interactions, we established the following three design
goals:

Libra: An Interaction Model for Data Visualization

DG1: Complete and transparent model to fully implement
direct manipulation. The model should allow complying
with Shneiderman’s principles of direct manipulation [53] as
explained in section 2.1. To apply to any data visualization,
it should cover all aspects of interaction management for 2D
interfaces. To facilitate extensibility, our model exposes all
its mechanisms transparently. In terms of expressive power,
it should allow for building interaction-rich visualizations
beyond stereotypes, including all the exemplar interaction
techniques such as Excentric Labels [6, 25], Dust & Mag-
nets [72], and DimpVis [38].

DG2: Software modularity to maximize reuse, extension,
and combination of interactions. Our model provides
the ability to create completely new interactions and reuse,
extend, and combine existing ones, allowing AD to create
interaction-rich applications and ID to enrich the interac-
tions available to AD and eventually to EU.

DG3: Compatibility with the existing libraries while separat-
ing interaction from the visual representations. Several
existing visualization systems can create rich but static vi-
sual representations (e.g., by implementing the GoG [67]).
Our model allows to reuse existing systems with sim-
ple adaptations, mainly by separating the background and
foreground with layers. In doing so, our model can maintain
high compatibility with existing visualization systems by
“wrapping” interactions around them.

Here, “reusing” refers to the ability to directly utilize already de-

signed interactions in a visualization. “Extending” implies that some

components of an interaction can be added or removed. “Com-
bining” means either composing multiple interaction techniques
sequentially or running them in parallel, e.g., a hover interaction
can be combined with a drag interaction as shown in the example
of Figure 8.

3.2 Our Model

Figure 2a illustrates the architecture of our model, where interaction
instruments manage interactions originating from the visualization
views. Each instrument, associated with a view and its layers, acts
as a mediator between the user and the visual presentation of the
data. It transforms user input into parameter changes across the
data transformation, visual mapping, or view rendering stages of
each layer. These changes produce interaction effects, which might
involve visualized data items and provide corresponding feedback
in the relevant layers.

Building on this architecture, interactions with a visualization
view can be formally defined as:

Interaction:= (name, layers, instruments, effects),

where name uniquely identifies the interaction, and layers, instru-
ments, and effects represent the target, means, and results of the
interaction, respectively. This structured model allows most AD to
combine instruments and, when necessary, tailor them to specific
needs by leveraging the defined components.

3.3 Layers

Layers are components providing methods for drawing visual el-
ements, picking them, and cloning them to another layer. They

CHI ’25, April 26-May 01, 2025, Yokohama, Japan

are essential for separating the interaction management, involving
transient objects, from the main visualization, satisfying DG3. Each
layer can manage a data model that creates and updates the layer’s
visual elements using a graphical transformer. Libra relies on the
following four standard layers for visualization applications:

e Background layer: under the main layer, displays the visual
elements (e.g., axes and tick lines). By default, it does not
react to picking. Its data model is composed of the visual-
ization axes, rendered in the background with tick lines and
labels.

e Main layer: shows the main visual representation and al-
lows picking visualized data items. Its data model is the
static visualization data model rendered as the visual items
associated with the visualized data items.

o Selection layer: stacked on top of the main layer, visualizes
the selected data items without any awareness from the main
layer’s visualization and allows picking them. Its data model
is a set of items from the main layer’s data model that are
selected, and rendered using the same geometry as the item
in the main layer using specific visual channels to highlight
them.

e Transient layer: on top of the selection layer, shows and
dynamically updates transient interaction objects, such as
a selection rectangle used to select the visualized items in-
teractively. By default, it does not react to picking. Its data
model is simply a list of visual objects to render directly.

Layers are stacked and displayed in the order described above,
although an instrument can change it if needed. For more complex
interactions, an instrument can create a new layer; see the label
layer and histogram layer used by the Excentric Labeling instrument
in Figure 3c.

3.4 Instruments

As shown in Figure 2b, instruments translate the received low-
level events into higher-level actions through interactors that are
executed by services. In this way, each instrument with a unique
name can be specified as follows:
Instrument:= (name, interactors, services).

Since one instrument manages multiple layers, it can evaluate any
of them to determine how to interpret an event. For example, when
the selection instrument receives a mousedown event, it first checks
the selection layer. If the selection layer is empty and the main layer
contains an item under the mouse, the item is selected and passed
to the selection service (see below) to update the data model and
selection layer. If no item is found under the mouse, the instrument
can create a rectangle in the transient layer and initiate a rectangle
selection (brushing) by starting an interactor (see below).

Based on a set of existing instruments, AD can extend them by
replacing or inserting new interactors and services. Figure 2b shows
how different components communicate within an instrument. Af-
ter receiving an input event, the instrument decides how to handle
it according to the event position, the contents of the layers, and
if an interactor has already been created to handle further events.
The instrument can start an interactor to map low-level events to
high-level actions. Next, the interactor’s actions are interpreted by
e.g., invoking the selection service to select visual items of interest

CHI 25, April 26-May 01, 2025, Yokohama, Japan

I Raw Data I—>I Data Table

Transformlng

Visual forms

change | change . change
params l params ' " new layers ! params

Yue et al.

Feedforward

Feedback ~‘

interaction effects

Dispatching

Instrument

(b)

Figure 2: Our interaction model (a) and the communication between components within an instrument (b). (a) The top row
represents the visualization reference model, where our model wraps the visual mapping and view rendering into a graphical
transformer. The bottom row corresponds to the instrument for manipulating the three stages. The objects resulting from
the interactions, transient or persistent, are shown on the new layers, their associated visual effects updating the view. (b)
For the input events, the instrument first interprets them in the context of the layers and uses an interactor to translate
them into high-level actions. These actions subsequently use the selection service or other services, and produce interaction
effects—feedforward and feedback—that are shown in their corresponding layers, and commands that enable undo/redo.

for further manipulation, potentially using other services. Finally,
the instrument generates interaction effects, including feedforward
(optionally) and feedback on the layers—such as moving a cluster
centroid in Figure 1c—and, in the end, produces a command object
that records the involved services and the changed data items—
such as the changed centroid position. In doing so, the instrument
separates the event-driven part done by the interactor from the
interpretation of the sequence done by the service. We now describe
the interactors, services, and effects in detail.

Interactors. In Libra, we call interactor any kind of state machine
that transforms the sequence of events received by the instrument
into higher-level actions. When an instrument uses an interactor, it
binds its actions to instrument-specific actions. For example, when
the drag instrument receives a mousedown event with an item under
the mouse position, it creates a trace interaction. The start action
saves the current selection. The running action moves the item
along the mouse trace. The stop action, triggered by the mouseup
event, creates a selection command with the collected selection and
restores the saved state. The command returned to the instrument
is eventually added to the history manager, a global component
responsible for managing commands, and then executed.

New interactors can emulate the default one, e.g., for handling a
tablet instead of the mouse, providing actions are compatible with
the default interactor, hence with all the instruments relying on it.
If incompatible, it can provide a different set of actions, requiring
the extension of instruments by AD or ID, or the creation of a new
instrument by ID.

Services. During interactions, fundamental operations (e.g., selec-
tion) or common computations (e.g., analysis or layout) are often
used across multiple instruments. To enhance modularity and con-
sistently support undo/redo, these are encapsulated as services,
which manage interaction-related functionality, undo/redo, and
states rather than serving as mere function calls or data storage.
In addition to the default ones, services can be flexibly extended
based on interaction needs, such as an analysis service for tasks
like interactive k-means clustering.

Each service provides core functionalities, including state man-
agement through shared variables, computational operations, and
inter-component communication. Services are often linked to graph-
ical transformers to display the data items they manage (e.g., the
selection service in Figure 3c) and can share processed items with
other services for further manipulation. Services also coordinate
with other components, notifying graphical transformers (if present)
to update their layers upon completing their tasks. In the following,
we describe the selection, layout, and analysis services.

Selection Service. For automatically managing the selection over
visual and data spaces, each instrument in Libra uses a default se-
lection service, which maintains a list of items that are selected
by the user. Assuming each item has an identifier, it associates a
Boolean value to each item identifier. Due to the separation of in-
teraction and visualization, the selection service provides a method
to perform queries and update the selection when performing com-
posite dynamic queries. In our model, selection can be performed
in data space (similar to the SQL WHERE clause) or visual space (by
picking), according to the instrument’s semantics. The graphical
transformer associated with the selection service iterates over all
the selected items, accesses the related graphical elements from the
main layer, and either copies them on the selection layer or creates
proxies, changing some of their visual appearance (e.g., color) to
look highlighted.

Once the target objects are selected, other services can use the
selection to manipulate them or to introduce new related elements
(e.g., annotations). The cascade of creations can update the transient
layer, selection layer, or others. In other words, our model supports
a cascade of models to handle sequences of interactive data analysis
tasks.

For a given target object, additional visual elements around (and
on a layer above) the selected object can be created and processed
(see Figure 8). If the target object of the interaction is one or multiple
items (e.g., hovering), a visual proxy of these items is usually added
to the selection or transient layer to appear highlighted in the
same view. Moreover, some interactions (e.g., a rectangular brush)
require identifying the value range that encloses the selected items

Libra: An Interaction Model for Data Visualization

for highlighting the ones inside, translating queries from visual to
data space.

Layout Service. Most visualization toolkits provide a few layout
algorithms allowing for direct manipulation, such as force-directed
graph layouts. Layout services decouple the implementation of the
actual layout from the direct manipulation to control it. A layout
service computes a new layout with the interaction parameters,
such as the new position of a set of items. Once a new layout is
obtained, the service shares the obtained positions of all items
with the corresponding graphical transformer for updating visual
encoding.

Analysis Service. Visual analytics applications often employ data
analysis algorithms including clustering, regression, and classifica-
tion. Our model supports an analysis service to run statistical or
machine learning algorithms on the data of interest and manage
the results as a dedicated service. The data model managed by these
services can be visualized in a specific layer. For example, the clus-
tering service in Figure 1 shows the centroids of clusters computed
on multidimensional items, and the histogram service in Figure 3
shows the distribution of a quantitative attribute for the selected
items, overlaid on the main layer.

Interaction Effects. Interaction effects consist of feedforward
and command with their feedback. During and after performing
an action, feedforward and feedback need to be shown similarly
to the user. Yet, the feedforward is usually shown in a transient
layer, while the feedback can be shown in the main or another
persistent layer. If any data item or visual element in the main layer
is changed, the main layer will be refreshed; if there is a selection
layer, the changed selected elements are then updated.

When an action is performed by an instrument (e.g.,, selecting
items), all the services invoked along with the data they modify
are recorded in a Command object. This object is managed by
a history manager, a global component that manages operations
independently of any specific service for undo/redo. This design
ensures consistent tracking of interactions and allows for undo
when needed. In Figure 1a, the Command updates the selected
status of data items, and the visual feedback highlights the selected
items in blue. The Command is first executed and then stored in
the history manager. For continuous commands like dragging a
selection rectangle, each new command replaces the latest in the
history manager.

Communication between Components. Our model requires
coordinating the communication between multiple components.
For example, an instrument can call a service API, and the service
can forward the changes to other services or update a layer through
a graphical transformer. The instruments associated with the layers
among different views also need to communicate. Libraries use
various mechanisms for coordination, such as shared variables in
ggplot2 or live properties in Improvise. Our model does not pre-
scribe a particular mechanism but requires one for communication
and coordination. In doing so, a dataflow graph among components
is constructed. As a user provides input events to one view, an
update propagates through the dataflow graph and triggers updates
to the related layers.

Since an instrument is composed of well-specified components,
ID can compose new instruments by assembling these components,

CHI ’25, April 26-May 01, 2025, Yokohama, Japan

and AD can reuse these instruments to provide rich interactions to
EU. Each instrument can be adapted across input modalities (e.g.,
mouse and touch) by re-binding different input events into the in-
teraction; it can also be extended by involving different interaction
services. In doing so, both DG1 and DG2 are satisfied.

3.5 Comparing Libra to Existing Models

Table 1 shows the differences between our model and the support
of popular visualization libraries along five aspects related to inter-
action management.

Layer. While layers have been used by ggplot2 [65] and Vega/Vega-
Lite to superimpose multiple semantically related representations
in a view, they are not used to specify interaction. So far, only
Improvise and IVTK match our model’s use of layers to manage
both visualization and interaction.

Interactor. Instead of implementing an interactor as a state ma-
chine, Improvise, IVTK, Prefuse, and D3 use the callback model
that requires users to manually maintain all states, except D3 pro-
viding a few generic interactions, such as pan and zoom, that can
trigger user-defined actions. Using FRP streams and signals, Vega
and Vega-Lite provide the mechanism to support a state machine.
All the implementations bind the state machine to actions, leading
to a strong coupling between visual representation and interaction
feedback. In contrast, our model introduces two stages in the man-
agement of events: interactor to transform low-level events into
high-level actions and binding of high-level actions to commands.
The first stage allows reusing interactors for different interactions
similar at the state-machine level [42] and the second is the basis
for reversible actions [53] (undo/redo).

Selection as Service. Since D3 does not use layers, it only supports
the selection of the nodes in a document object model (DOM) tree,
that usually contains all the visual marks. For visual marks in one
specific layer, Improvise, IVTK, and Prefuse match our model which
supports selecting them in both data and visual space. In contrast,
the selection model provided by Vega/Vega-Lite is done exclusively
in data space and is difficult to adapt to work in the visual space,
e.g., for selecting a complex shape (as in Figure 8).

Command. None of the libraries provide them with persistent data
changes. While Improvise maintains a history of specific high-level
(variable change, query, render) and low-level (keyboard, mouse,
painting) interaction events in a running visualization, it does not
implement undoing these actions or any others. IVTK and Prefuse
have command-like objects but do not support undo/redo. To main-
tain the separation between interactors and data services, our model

Table 1: How existing systems’ interaction models match our
model, regarding five components: interactor, layer, selection,
command, and feedforward; * means partial support, “Vis”
and “Int” indicate support for visualization and interaction,
respectively.

‘Improvise IVIK Prefuse D3 Vega/Vega-Lite

Interactor X X X X N
Layer Vis+Int Vis+Int X X Vis
Selection as Service v v v X v*
Command v v v X X
Feedforward X X X X X

CHI 25, April 26-May 01, 2025, Yokohama, Japan

Libra.Interaction.build({ {{comp:‘LabellngLayoutService‘,“
inherit: 'HoverInstrument', i evaluate: ({result}) => {
name: ‘'ExcentriclLabelingInstrument', ! // The input is the
override: [{ H selection result

find: 'SelectionService', let labeling =
comp: 'CircleSelectionService' H excentricLabeling(result);
Iy i // Directly use the existing

Yue et al.

Excentric labeling instrument

updated
view

insert: [{ layout algorithm
find: 'CircleSelectionService', return labeling;
flow: [// Hidden some params // The return value will be
{comp: 'HistogramService'}, used as the input of
{comp: 'HistogramTransformer'} H next component
134 i1},
find: 'CircleSelectionService', i{comp: 'DrawLabelTransformer’,
flows. [.. ¢ redraw:({layer, result}) => {
i{comp: 'LabellngLayoutServ1ce'}.L_E // Draw result on the layer
i {comp:_'DrawlabelTransformer'} ! i d3.select(layer.getGraphic())
131 .data(result)...

ackground:,

" layer

main laye

1

(a) (b)

Ifléction t
layer:

Figure 3: [llustrating the design of a new instrument with Libra. js. (a) The specifications for creating an excentric labeling
instrument [6, 25]; (b) the specifications for creating a new layout service and the corresponding transformer; (c) (top left) The
components used for composing an excentric labeling instrument to support this interaction for scatterplots; (bottom left) the
main layer and the other three layers generated by interactions; and (right) the final result.

prescribes the use of commands supporting undo/redo, only record-
ing high-level actions performed on the data services.
Feedforward. As far as we know, none of the existing libraries
provide support for feedforward. Our model prescribes feedforward
when possible, which is often made simpler to implement using the
history management mechanism.

In summary, none of the libraries support undo/redo and feed-
forward, two essential mechanisms for direct manipulation char-
acterized by our model. Improvise and IVTK show the lowest dis-
crepancy to our model, but they do not provide a state machine,
making it hard for ID to extend and combine interactions. All the
systems except Vega/Vega-Lite provide a transparent model for
interaction management. Although Vega/Vega-Lite provide a state
machine, they do not allow for communicating the extracted signals
with external components, and their execution model is hidden in
a dataflow graph, making it harder for ID to reuse, extend, and
combine interaction primitives.

4 Implementation of Our Model

There are many ways to implement our model, regardless of the
library used. As a proof of concept, we implemented a prototype in
JavaScript called Libra. js and show that it can specify interaction
techniques to static SVG visualizations created by any JavaScript
libraries. It only requires ID to implement the few methods of our
Layer APL

Furthermore, we have added a declarative mechanism in our
model that shows how interactions can be reused, extended, and
combined with a simple syntax. Interactions can be designed in
four ways: creating instruments, reusing instruments, reusing and
extending/specializing instruments, and combining instruments.
Although it can take specific ID skills to create a new instrument
(understanding the full interaction model), AD skills are usually
sufficient to reuse, extend, and specialize instruments. We present
the interaction API designed to provide a concise and structured
specification of interaction instruments. This type of specification
consists of several properties such as inherit, layers, insert, override,
and remove (see Figure 3a and Figure 4a). With the interaction API,
AD and ID can easily specify interactions.

Figure 3 shows the specification for composing and extending
the built-in hover instrument to explore a scatterplot. The built-in
histogram service and the corresponding transformers are com-
posed to show the statistics for the selected points, while a newly
created labeling layout service and the corresponding transformer
are used to display the labels. In the following, we mainly describe
how we implement the three major components.

4.1 Layers

By default, all visual elements are rendered as SVG elements, and
we extend the picking methods provided by the web browser to
support the query of arbitrary graphical shapes. We implement the
background, main, selection, and transient layers with SVG groups.
For creating the visual elements used during interactions, Libra. js
provides built-in graphical transformers with redraw functions,
which can be overridden. For the selection layer, a service can
“clone” marks from the main layer to show them in the selection
layer with a highlighted appearance; this mechanism is meant to
avoid interfering with the main layer’s visual representation. The
transient layer can create graphical objects, such as a brushing
rectangle or a lasso, typically as a visual representation for the se-
lection instrument. Hence, users can create their objects in existing
layers or create specific ones. Figure 3b shows the specification of
creating a transformer to display all labels.

4.2 Interactors

A state machine can be implemented in many ways and our default
interactor is based on a Garnet-like [42] state machine with three
states: “Start”, “Running”, and “Outside.” State transitions are trig-
gered by low-level events, defined as
Interactor:= (name, state, transitions),

where the transitions determine how the interactor responds to
different input events and changes states accordingly. The outside
state refers to the input device going out of the active region. For
each low-level input event, the interactor extracts event informa-
tion (e.g., a mouse position) and uses this information to trigger a
higher-level action (see Figure 4b). When an instrument uses an
interactor, it binds its generic actions to instrument-specific actions.

https://Libra.js
https://Libra.js
https://Libra.js

Libra: An Interaction Model for Data Visualization

Libra.Interaction.build({ q)
nherit: 'DragInstrument',

a 'TouchDragInstrument',
verride: [
find:'MouseTraceInteractor',
actions:

dragstart: drag: leave:
touchstart, [touchmove, touchleave,
mousedown \ MOUSEMOVeRy 1 s0leave

action: "dragstart", -
events: ["mousedown", start running - °~Ut
"touchstart"], side
transition: [["start", back:
"running"1], dragend: touchenter,
}, ... // And other transitions touchend, mouseup mouseenter
i15))) L 4)
(@) (b)

Figure 4: Extending the trace interactor used by the drag
instrument in Figure 1c to support touch operations. (a) The
Libra. js specification that adds the touch operations to the
interactor; (b) a state machine with the transition between
states triggered by different low-level events.

For example, when the drag instrument receives a mousedown event
with an item under the mouse position, it creates a trace interaction.
Its start action will find and save the current selection. Its running
action will move the item following the mouse trace. Its stop action
triggered by the mouseup event will create a selection command
with the collected selection and revert the selection to the saved
state. The command returned to the instrument is eventually added
to the history manager and executed. The Libra. js specification in
Figure 4a illustrates the extension of the trace interactor to support
touch operations. Other interactors can be created by ID if needed,
e.g., for speech-based or multimodal interaction; see the examples
in the supplemental material.

New interactors can emulate the default one, e.g., for handling
a tablet instead of the mouse, providing actions compatible with
the default interactor hence with all the instruments relying on it,
or incompatible, providing a different set of actions, requiring the
extension of instruments by AD or ID, or the creation of a new
instrument by ID.

4.3 Data Services

In Libra. js, services can communicate with other services and
graphic transformers through shared variables. They notify the
graphical transformers (if there are any) to update their layers
when their work is completed. A service with a unique identifier is
defined by:

Service:= (name, type, params, operationOrComputation).
where the type categorizes the service (e.g.,, selection, layout, anal-
ysis), params are configuration parameters for customizing the
service’s behavior, and operationOrComputation specifies the data
processing or manipulation performed by the service.

Libra. js provides several built-in services for AD to reuse and
extend, which can be divided into two classes: generic and specific.
The generic ones are compatible with a large number of visualiza-
tions and instruments, like the selection service, and the specific
services are visualization or interaction-specific, e.g., layout ser-
vices for arranging visual elements generated by interaction or
e.g., histogram services triggered by interaction for inspecting the
distribution of the data items, see examples in Figure 3.

Selection Service. In Libra. js, the graphical transformer associ-
ated with the selection service iterates over all the selected items,
accesses the related graphical elements from the main layer, and

CHI ’25, April 26-May 01, 2025, Yokohama, Japan

copies them on the selection layer after changing some of their
visual appearance (usually their color) to look highlighted. Layout
Service. Libra. js provides the two standard data services: selec-
tion and layout. For our implementation of excentric labeling, as
shown in Figure 3b, a label layout service is created and inserted
in the interaction composition for manipulating the items selected,
passed by the selection service. Here, Libra. js does not use a se-
lection layer but a new label layer for showing the arranged labels
because this layer has a different interaction semantics than the
selection.

More advanced examples of the selection service and more ser-
vices like analysis service are discussed in Section 2—4 of the sup-
plemental material.

4.4 Commands, Feedback and Feedforward

To manage commands and enable undo/redo functionality, Libra. js
leverages the Trrack history manager [18] and adheres to the Com-
mand design pattern. Commands are implemented as classes with
three essential methods:

e execute(): executes the action and stores the current state of

affected data models;
o undo(): reverts the action using the previously stored state;
and

e redo(): re-applies the action
To support continuous interactions, ID can use a boolean flag to
determine whether the command is continuous [36]. Once a com-
mand is executed, affected services will notify their corresponding
transformers to update their respective layers. These transformers
utilize the latest state of data models as the data source to provide
visual feedback.
Feedforward. In Libra. js, feedforward is implemented by using
a graphical transformer to render a set of transient objects on the
transient layer, orchestrated by an instrument; it is invisible to
the underlying data models. It indicates the running status of the
actions to the user when the interaction starts. Once the interaction
is finished, all feedforward objects are removed. See the example of
the selection rectangle used for brushing in Figure 1a.

When feedforward is expensive, the response time and user
experience can be affected by the computational cost of e.g., an
ML algorithm or the number of elements involved. We suggest
employing approximate or progressive methods [24] to achieve real-
time feedforward. For example, this can be done by using a small
number of iterations in ML or using a set of judiciously chosen data
samples. There are several efficient approximate methods for query
processing [12] and clustering [2]. It is crucial for ID to thoughtfully
consider the intrinsic data characteristics, the algorithm involved,
and the visualization to ensure that feedforward does not become
detrimental to interaction.

4.5 Reuse, Extend and Combine of Instruments

To treat interactions as first-class citizens, Libra. js introduces
high-level mechanisms to facilitate reuse, extension, and combina-
tion of interactions. AD can specify an interaction by customizing
multiple aspects of an existing instrument using four operators:
insert, flow, override, and remove (see Figure 3 and Figure 4).

https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js

CHI ’25, April 26-May 01, 2025, Yokohama, Japan

Insert/Flow: Building on an inherited instrument, the insert opera-
tor first locates an existing service and then uses the flow operator
to chain all the newly added services with a transformer. A newly
added service receives the output of an existing service as its input
and either passes its result to a service or, for the final stage, to a
transformer. To facilitate the analysis of data items from multiple
perspectives, users can define multiple flows with the results of
these flows presented in distinct layers. A more formal definition
of this operator is

insert(parentComponent, [flow1, flow2, ...]), where

flow := [newComponent1, newComponent?2, ...].

The insert operator accepts a parentComponent and an array of
flows as arguments. Each flow is an array of new components (e.g.,,
services or transformers) that are sequentially chained together.
For example, the specification “insert:[{find:’CircleSelectionService’,
flow:...}, ...]” in Figure 3 adds the layout and histogram services as
two separate flows.
Override: The override operator allows replacing an existing com-
ponent with a new one with the syntax “override(existingComponent,
newComponent),” while maintaining all connections in the in-
teraction chain. As shown in Figure 4, the specification “over-
ride:[{find:..., transitions:...}]” shows that low-level input events
can be reconfigured to support additional input modalities. Like-
wise, the selection service in Figure 3 is replaced by a circle selection
service.
Remove: The remove operator deletes a specified component and,
optionally, all its dependent components, maintaining the validity
of the interaction chain. This behavior is controlled through the
syntax “remove:[find:..., cascade:true/false]”

By chaining all components including interactors, selection ser-
vice, other services, and graphical transformers through shared
variables [60], Libra. js constructs a dataflow graph that manages
the communication between the components. If Libra. js does
not provide some desired services like the label layout service in
Figure 3, ID can define them as new data services for AD to use
them in existing interaction components.

4.6 Adapting to Different Libraries

Libra. js is designed to augment rather than replace existing visu-
alization libraries by managing the interaction components of the
visualizations created by the original library.

To specify interaction for SVG visualizations created by different
libraries, is only required to provide an abstract base class
of layers, inheriting and overriding the methods for managing
and querying the visual marks specified by the original library.
Specifically, they need to re-implement the initialization method
for creating and managing the collection of visual marks. As for
Vega and Plot, she only needs to specify the name of visual marks
that belong to the same layer, while an additional “g” element is
required in D3 to manage all related visual elements.

Since the visual queries can be performed in either data or visual
space, she needs to re-implement the corresponding API She is
required to reimplement data-query methods since data is stored
in different SVG DOM attributes in different libraries, while we
provide a generic method for querying SVG visual elements. We

Yue et al.

refer to the D3 and Vega bindings as Libra. js-D3 and Libra. js-
Vega, respectively. With the abstraction of our model, Libra. js
shares the same interaction semantics for different libraries while
providing a consistent interaction model. Specifically, the inter-
action specifications of Libra.js-D3 and Libra. js-Vega define
different layers to be rendered by distinct engines. The original
libraries render static visual elements, while those created during
interactions are rendered by Libra. js-D3 or Libra. js-Vega. To
ensure visual consistency, different layers share global information
(e.g., scale, color mapping, etc.).

5 Evaluation of Libra

As an interaction model [3], Libra should have descriptive, gen-
erative, and evaluative powers. The former two powers allow it
to capture a wide range of existing interactions for visualizations
and assist designers in creating new ones, while the evaluative
power provides metrics for comparing alternative interactions [3].
Interaction for visualization is defined as “the interplay between a
person and a data interface involving a data-related intent, at least
one action from the person, and an interface reaction perceived
as such” [21]. This definition can be seamlessly mapped to Libra’s
components, such as layers, instruments (interactor and services),
and interaction effects (feedforward, feedback, and commands).
Specifically, action and data-related intent align with the interac-
tor and service within the instrument, while reaction corresponds
to interaction effects, with feedforward and feedback potentially
revealed in certain layers. Given the broad design space of our
model, suitable metrics for evaluating interaction techniques in
visualization remain an open question. In the following, we only
demonstrate the descriptive and generative powers of Libra by us-
ing it to analyze existing interaction techniques and don’t discuss
its evaluative power.

Descriptive power. To demonstrate the descriptive power of our
model, we conducted a comprehensive analysis of 3753 papers col-
lected in VisPubData [34]. We initially shortlisted 99 papers based
on their contributions to interaction techniques. To identify rel-
evant papers, we searched for terms related to interaction in the
abstracts, such as “interact” and “interactive,” and extended this
list of terms to include additional terms like “interface,” “insight,”
and “analyze” We then labeled these papers based on four key cri-
teria: additional layers in interaction creation, extending generic
interactors for low-level event handling, undo/redo commands, and
services beyond selection for data transformation. Due to space con-
straints, we present a mapping table (Table 2) that illustrates only
three interaction techniques as examples. A detailed version of the
reference table and the labeled papers is available in the supplemen-
tary materials. The result shows that 94/99 surveyed papers require
services for data transformation, highlighting the crucial role this
component plays in interaction techniques. Additionally, 24 papers
incorporate custom-made undo/redo commands, 18 necessitate ex-
tensions to generic interactors for low-level event handling, and 66
require additional layers for interaction creation. These numbers
indicate the significance of layers and services in interaction tech-
niques while also suggesting that generic interactors are adequate
for most interactive visualizations. Notably, the relatively low usage
of undo/redo commands in existing systems indicates that most

https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js

Libra: An Interaction Model for Data Visualization

CHI ’25, April 26-May 01, 2025, Yokohama, Japan

Table 2: Mapping Interaction Techniques to Libra Components

Component Filtering and Dynamic Interactive Lenses Dust & Magnet
Queries
Layers Query interface as individual ~Additional layer for lens effect Magnet layer, dust layer, back-
layer ground layer
Interactor Mouse trace interactor Mouse position interactor Mouse trace interactor for
magnets, mouse position in-
teractor for dust
5 Selection Selects data subset Selects pixels or data subset Selects data item
E Serv.
E Dedicated N/A Lens layout service Magnet position service, dust
Serv. layout service
Feedback Reflected on main layer Overlay of lens effect on base Updates on respective layers

visualization

systems suffer from the lack of a history management mechanism.
To provide a clear understanding of the descriptive and generative
power, we take three interaction techniques as examples.

Filtering and Dynamic Queries allow the display of interesting data
subsets through a query interface (e.g., linked views or widgets).
In Libra, the query interface is treated as an individual layer. An
interactor translates low-level events into high-level actions, which
then invoke the selection service to update the main layer. Instead
of classifying this interaction at the data level [69] or view level [13],
Libra seamlessly integrates it into the visualization pipeline, where
the intent of data selection is managed by the service, and the
reaction is reflected through feedback on the main layer.

Interactive Lenses create localized and temporary changes within
a visualization, adjusting the visual representation in selected ar-
eas [57]. Once the lens is removed, the visualization returns to its
original state. Aligning with the conceptual model of interactive
lens [57], Libra defines this interaction with two services: a selec-
tion service to select pixels or data subset and a dedicated service
for adjusting the visualization underneath the lens. By showing the
lens effect on an additional layer, the final visualization is updated
by overlaying it with the base visualization. By using specific layout
services, the fisheye lens [63] and edge lens [68] for the node-link
diagram can be described by Libra.

Dust & Magnet [72] is a multivariate data exploration technique
composed of a magnet layer showing the attributes as colored rect-
angles that can be dragged, and a dust layer showing all data items
as points that can be hovered. Clicking a pixel on the background
layer creates a new magnet and recomputes the layout of all points
that are updated on the dust layer; dragging a magnet also triggers
a recomputation of the point positions; and hovering a point in the
main layer highlights it in a different color.

After associating the magnet layer with the drag instrument,
Libra defines two services: the magnet position service and the dust
layout service. The magnet position service computes the positions
of the magnets based on the user’s drag actions, while the dust
layout service calculates the new positions of the data points based
on their attraction to the magnets. These new positions are shared
with the respective layers’ graphical transformers to update the

visualization. Similarly, Libra associates a hover instrument to the
dust layer to highlight its points of interest. In doing so, the drag
action triggers the magnet position service and the dust layout
service to compute the new positions, while the hover action does
not conflict with the dragging.

By describing these systems in terms of our model’s components,

we demonstrate how existing interactive visualization systems can
be analyzed and understood within this framework, highlighting
its descriptive power and flexibility across a range of visualization
tools and interaction paradigms.
Generative power. As for its generative power, since all the inter-
active visualizations can be decomposed into our components, we
can reuse, combine, and extend existing and new techniques easily
and then refine each component independently; this ability gives a
generative power to Libra, in contrast with traditional monolithic
approaches. Hence, an interactive visualization can be improved
by adding more existing interaction techniques as well as refin-
ing existing ones, with little or no change from the visualization
side. For example, interactive lenses can be easily combined with
Dust&Magnet to explore the data items in the dust layer. In doing
so, experimenting with novel interaction techniques becomes eas-
ier and can be done starting with existing components, initially
without changing them and later by refining them if necessary. It
provides a constructive path to newer interactions, minimizing the
effort to implement them and fostering experimentation.

6 Evaluation of Libra. js

To demonstrate the effectiveness of Libra. js, we first show how
it facilitates the implementation of interactions with use cases,
and then quantitatively compare Libra. js-D3 and Libra. js-Vega
with D3 and Vega in two aspects: i) the usability analysis of vi-
sualization notations with three metrics [39] and ii) the runtime
performance.

6.1 Expressiveness

As described in section 4.6, Libra. js can be adapted to different
visualization libraries; we implemented Libra. js-D3, Libra. js-
Vega, and an experimental binding for Plot. In this section, we
demonstrate the expressiveness of our prototype Libra. js by using

https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js

CHI ’25, April 26-May 01, 2025, Yokohama, Japan

i: 0.06:
ffi‘ Il ||| | ||“
a)

|“|I.ul’E .\@ %ﬂ

AReny w O

// Create a main layer on the existing SVG and use D3 to handle its group element
const svg = d3.select("svg");

const mainLayer = Libra.lLayer.initialize('D3Layer',{

name: 'mainLayer', container: svg.node()

)

const g = d3.select(mainLayer.getGraphic());

// Move existing visual specification codes into the main layer
g.selectAll("rect").data(data).join("rect")

.attr("x", d=>d.x).attr("y", d=>d.y).attr("height", d=>d.frequency);

(d

1
2
3
4
5}
6
7
8
9

Figure 5: Examples of reusing built-in instruments: (a) hov-
ering, (b) multiple clicking, and (c) brushing; and (d) a code
snippet for gluing existing visualizations with Libra. js’s in-
strument.

Libra.Interaction.build({

Origin
° Emm inherit: 'PanInstrument',
Japan layers: [mainLayerl,
orush sharedVar: {translateX,
translateY}

Libra.Interaction.build({
inherit: 'ZoomInstrument',

1
2
3
4
5
6 })
7
8
9
0
1

layers: [mainLayer],
10 sharedVar: {scaleX, scaleY}
1 1)
(b)
1 const zoom = d3.zoom().on("zoom", zoomed); 1 {::data":"...,
2 params": [{
. 8 grid"
2 svg.call(zoom); 2 ealach "intérval“,
3 function zoomed({transform}) { g }]blnd Sl
4 const zx = transform.rescaleX(x); 7 it K': "circle"
5 const zy = transform.rescaleY(y); 8 I d" Elrz Sl
6 gx.call(xAxis, zx); e 8 & u
; . 9 x":{"field":"Horsepow."},
7 gy.call(yAxis, zy); ot CHES o] MO
8 gGrid.call(grid, zx, zy); £ VAN SRS
9} ! ! ! 11 "stroke":{"field":"Cyl."}
12 }}
(©) (d)

Figure 6: Comparing the implementations of Libra.js, D3
and Vega-Lite for the panning & zooming. (a) The snapshots
for zooming a scatterplot. (b) The Libra. js specification con-
sists of the separated pan and zoom instruments, and (c,d)
the D3 implementation and Vega-Lite specifications coupling
pan and zoom operations.

Libra. js-D3 to create a variety of interactions for visualizations
from the simplest to the most complex through reusing, combin-
ing, and extending a set of built-in instruments. All the examples,
including visualizations created by Vega and Plot, are available on
the accompanying website libra-js.github.io, and the correspon-
dence between the examples and Yi et al’s taxonomy of interaction
techniques [71] is shown in the supplemental material.

Reusing Instruments. We provide six built-in instruments: hover,
click, brush, drag, pan, geometric zoom and semantic zoom instru-
ments; each of them has the corresponding interactor and selection
service. Figure 5(a-c) shows three examples that can be created by
reusing these instruments. To reuse these instruments, AD first
wraps the existing visual specification code into the main layer,
which only requires 5 lines of code (see lines 2-6 in Figure 5d). Tak-
ing the hover instrument as an example, AD attaches the built-in
hover instrument to the main layer and sets the value of a specific

Yue et al.

1 Libra.Interaction.build({
2 inherit: 'HoverInstrument',
3| layers: [mainLayer],
4| // Insert the normalization service after
5 the selection service
6 inser
7 ‘SelectionService’,
8
9 {comp: 'NormalizeService'},
10 {comp: 'MainTransformer'}
11 1
12| 1],
13 // Override the default transformer
14 override:
15 find: 'SelectionTransformer',
16 comp: 'LineTransformer’
17 }
18/})

(b)

Figure 7: Example of composing instruments for implement-
ing (a) the index chart and (b) corresponding code snippets
for composing these new instruments with Libra. js.

shared variable to change the appearance of the selected items (e.g.,
“fill: red”). Note that the built-in transformer reads the datum from
the selected element and displays the data information around the
selected mark. Similarly, AD can specify the pan & zoom interac-
tions [5] for a scatterplot in Figure 6a by binding the corresponding
instruments to the main layer and setting the shared translation and
scale variables, see Libra. js specification in Figure 6b. The D3 and
Vega-Lite specifications shown in Figure 6¢ and 6d rely on the D3-
zoom library [20] and the interval selection, which both encapsulate
the pan and zoom operations together. Compared to Libra. js, they
are limited in extensibility. For example, automatically enabling
panning when the size of a canvas exceeds the viewport size, as in
Kyrix [55], is not straightforward in D3. Achieving this functional-
ity requires conditionally enabling event listeners and managing
state coordination, which can be both complex and error-prone.
Likewise, Figure 1d shows a straightforward reuse of built-in in-
struments to implement a hover interaction that displays each data
item’s image. In contrast, using D3 or Vega requires AD to manually
handle event callbacks (e.g., mouseover and mouseout) or define
signals, resulting in more lines of code for a similar functionality.
Extending Instruments. AD can extend new instruments by
reusing various built-in interactors and services. Figure 7 shows
the index chart created in this way. Figure 7b illustrates how AD
implements an Index Chart [52] shown in Figure 7a for comparing
multiple series in a line chart with Libra. js. When the cursor
hovers over the line chart, a vertical line appears, indicating the
data value at that point on the x-axis, and all the rest of the data
points are normalized by rescaling with the current value (see Fig-
ure 7a). This interaction can be achieved by inheriting the built-in
hover instrument, as shown in line 2 of Figure 7b. To normalize the
whole data with the selected data value, AD inserts a normaliza-
tion service to chain with the selection service (lines 6-12). Rather
than highlighting selected data elements, AD overrides the default
selection transformer with a line transformer to indicate the cursor
position with a line (lines 14-17). Similarly, AD extends the click
instrument in Figure le with a filter service to highlight all the
points of the same class.
Combining Instruments. ID can create new instruments by com-
bining the built-in instruments with new interactors and services.
Figure 1f shows an example that combines a drag instrument with
a point hover instrument to enable interactive k-means clustering

https://libra-js.github.io/
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js

Libra: An Interaction Model for Data Visualization

on the MNIST dataset. Here, we further demonstrate the comnation
of interactions with DimpVis.

DimpVis [38] is a direct manipulation technique for exploring
time-series data shown in a scatterplot at one time-point. Hover-
ing or touching any data points in the scatterplot reveals a time
trajectory showing the evolution of the selected item through time.
Dragging the selected item over the trajectory enables temporal nav-
igation, where the scatterplot is updated to the data at the currently
selected extent. The dragged position is snapped to the nearest po-
sition in the trajectory, requiring geometric computations in visual
space. Figure 8a shows two snapshots of the scatterplot for interac-
tive exploration of the Gapminder data [26], with each tuple consist-
ing of five properties: fertility, life expectancy, country, region, and
year in multiples of 5. Figure 8b shows the core Libra. js specifica-
tion, and Figure 8c presents the corresponding architecture diagram,
clarifying the input/output relationships among components and
explaining how the behavior propagates from one component to
another. ID puts all the data points of the scatterplot into the main
layer and then uses the interaction API to create interactions. She
first associates the built-in hover instrument (line 2) and the drag
instrument (line 11) with the main layer (lines 3 and 12). To display
the time trajectory when hovering or dragging a point, she first
takes the scale information of the scatterplot as the global shared
variables (line 4) for the selection service to find the selected data
item. Then, she inserts a new flow consisting of a filter service and
a trace transformer (lines 5-9), which are responsible for filtering
the data in terms of the country property (lines 7-8), connecting
the points of two properties (fertility and life expectancy) of one
selected country with a line in temporal sequence (line 9) shown on
the automatically generated trace layer rendered by Libra. js. For
the drag instrument, she inserts an additional flow that connects
the selection service to the nearest point service (lines 17-20) for
finding the year nearest to the drag point in the trajectory. Here,
the trace layer containing the time trajectory is referenced in a
variable shared with the nearest point service. Then, she shares
the nearest point with the interpolation service (lines 21-22) for
calculating new interpolated quantitative properties (fertility, life
expectancy, and year) of all data points. These interpolated proper-
ties are passed to the main transformer through the shared variables
(line 23) to create smooth transitions between years. Note that the
interpolated year is rounded to a multiple of 5. Figure 8c visualizes
the relationship among these components, where the command of
the interpolation service helps maintain the interaction history. To
persist the interpolation result, the command is executed to update
the interpolated data while re-drawing the layer consisting of all
points after the interpolation is computed.

We further compare the implementations of Libra. js with D3
and Vega, with the major pieces of code provided by the DimpVis
authors [19] and the Vega authors [59] shown in Figure 8d and Fig-
ure 8e. Since the Vega-Lite implementation does not fully support
all required interactions, such as dragging a point through time, we
do not consider it here. However, it is worth noting that Libra. js
can enhance the Vega-Lite implementation to enable the full range
of interactive functionality. Although the D3 implementation nicely
structures the involved functions, it still requires ID to manually
maintain the communication between different functions and the

CHI ’25, April 26-May 01, 2025, Yokohama, Japan

state of transient objects (e.g.,, time trajectory). Vega eases the im-
plementation of callback functions but manages all selections in
data space, whereas searching the nearest point in the time trajec-
tory is natural in the visual space. Hence, its specification takes an
approximate method based on the previous and next time points;
they might yield incorrect nearest points in some cases.

The Libra.js-D3 and Libra. js-Vega specifications both fol-
low our interaction model Libra; however, they are not directly
reusable across languages for two key reasons. First, the libraries
use different data structures for mapping data to visual elements.
For instance, in D3, data is stored in the “data” field, while in Vega,
it is stored in the “data.datum” field. As a result, users must ac-
count for these differences when managing data mappings in the
interaction-related layers. Second, if interactions involve changes
to the visual elements in the main layer, the associated rendering
procedures must be wrapped by Libra. js’s graphical transformers,
which require certain code to be specified by the original libraries.
In a similar fashion regarding the visualization techniques, Observ-
able Plot and Vega rely on the GoG but are also incompatible with
each other.

6.2 Metrics-Based Analysis

Rather than conducting a heuristic evaluation with the Cognitive
Dimensions of Notations framework [7], as done in several other
technical articles such as [51], we quantitatively assess three aspects
of notation in a library: viscosity [28] (the difficulty of changing
specifications), economy [35] (the number of elements and rules a
user must remember when using the notation), and terseness [28]
(the ability to express a lot in a small space). We employ three
metrics proposed by Kruchten et al. [39], including sprawl (the
median distance between all pairs of specifications), vocabulary
size, and specification length.

To do so, we first choose the Wikipedia clickstream dataset [66]
with good coverage of variable types to create a variety of static vi-
sualizations (e.g., bar charts, scatter plots, line charts, treemaps, and
maps). Then, we follow the interaction taxonomy [71] to specify a
few interaction techniques, including hovering, brushing, panning,
and geometric zooming for all charts, semantic zooming and ex-
centric labeling for scatter plots and treemaps, and some advanced
ones such as index chart and Dimpvis. After implementing these ex-
amples with D3, Libra. js-D3, Vega, and Libra. js-Vega, we form
26 examples of interactive visualizations and then run the metric
evaluation with the web-based tool NotaScope [39]. To alleviate
the bias of the coding style, we run bootstrapping experiments for
each metric and use Kernel Density Estimation (KDE) to draw the
distribution. We did not consider Vega-Lite since it cannot specify
interactions like excentric labeling and Dimpvis.

Figure 9a-c shows the results with three scatterplots of pair-
wise metrics computed from the specifications. We can see that
Libra. js-D3 and Libra. js-Vega have lower sprawl than the origi-
nal D3 and Vega, respectively, indicating that our interaction model
largely reduces the cost of changing an interactive visualization to
another one. Yet, Libra. js-D3 exhibits the longest specification
length and the largest vocabulary size. We speculate that it is be-
cause Libra. js is not designed to be consistent with D3. Unlike

https://github.com/notascope/notascope
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js

CHI 25, April 26-May 01, 2025, Yokohama, Japan

Libra.Interaction.build({
inherit: 'HoverInstrument',
layers: [malnLa{er]
sharedVar: {scaleX, scaleY, scaleCol
insert: [{//Use trace transformer
find: 'SelectionService',
flow: [{comp: 'FilterService',
sharedVar:...//Filter by coun
{comp: 'TraceTransformer'}

CONOUIRWN R

Libra.Interaction.build({

inherit: 'DragInstrument',
layers: [mainLayer],
sharedVar: {scaleX, scaleY, scaleCol
insert: [...,//Use trace transformer
{//Another flow

find: 'SelectionService',

flow: [{comp: 'NPService',

sharedvVar: {
referenceLine: tracelLayer

{cémp: ‘InterpolationService’,
sharedVar:...//Year divisible by
{comp: ‘'mainTransformer'}

(b)

) 2
i y I 24 }11)

(a)

1 d3.behavior.drag()

2 .origin(function(d){

3 return {x:d.nodes[scatterplot.currentView] [0],

4 y:d.nodes [scatterplot.currentView] [1]}

5)

6 .on("dragstart", function(d){

7 scatterplot.clearHintPath();// Clear the previous drawn trace

8 scatterplot.previousDragAngle = 0;// Reset the interaction state
9 scatterplot.draggedPoint = d.id;// Mark node as selected in data
10 scatterplot.selectPoint(d);// Draw trace for the selection
11 })
12 .on("drag", function(d){
13 scatterplot.updateDraggedPoint(d.id,
14 d3.event.x, d3.event.y,
15 d.nodes);
16 // Find NP on line, interpolate the data, and update the position
17
18 .on("dragend",function (d){
19 scatterplot.snapToView(d.id,d.nodes);// To ensure the year exists
20 1)

(d)

or},
i

or},

5},

CONOUI A WN L

Yue et al.

hover
instrument

{...// 43 lines of transforms for interpolating the data

"signals": [...// 62 lines of signals for recording the selection

// Use signals to partially implement the NP algorithm

{// The distance between the current active point and cursor
“name": "thisDist", "value": @, "on":[{ "events": "mousemove, touchmove",

"update": "isActive ? sqrt(pow(x()-tX, 2) + pow(y()-tY, 2)) : thisDist"
}1}, {// The distance between the previous point and cursor
"name": "prevDist", "value": @, "on":[{ "events": "mousemove, touchmove",
"update": "isActive ? sqrt(pow(x()-pX, 2) + pow(y()-pY, 2)): prevDist"
}1}, {// The distance between the next point and cursor
"name": "nextDist", "value": @, "on":[{ "events": "mousemove, touchmove",
"update": "isActive ? sqrt(pow(x()-nX, 2) + pow(y()-nY, 2)) : nextDist"
}1}, {// Find nearest point between active point and previous point
"name":"prevScore", "value": @, "on":[{ "events": "mousemove, touchmove",
"update": "isActive ? ((pX-tX) *x (x()-tX) + (pY-tY) * (y()-tY))/
prevDist || -999999 : prevScore"
}1}, {// Find nearest point between active point and next point

"name":"nextScore", "value": @, "on":[{ "events": "mousemove, touchmove",

"update": "isActive ? ((nX-tX) *x (x()-tX) + (nY-tY) * (y()-tY))/
nextDist || -999999 : nextScore"

}1}, ...// Other visual encodings

©

Figure 8: Implementing the DimpVis interaction technique. (a) Two snapshots of this interaction; (b) Libra specification (custom
components in orange); and (c) communication between all components, where the orange ones are defined by ID. (d) D3 code
requiring ID to provide callback functions for all three events. (e) Vega specification for finding the point nearest to the point

dragged on the time trajectory.

D3, Vega decouples low-level event processing from visual repre-
sentation, and hence Libra. js-Vega replaces the signals and event
streams used by Vega to specify interactions and reuse similar lines
of gluing code as the one of the original Vega. However, Vega has
large variations in specification length and vocabulary size. After
checking the specification of each example, we found that Vega uses
fewer lines of code for specifying simple interactions but requires
long codes for complex interactions.

In contrast, Libra. js-Vega uses a consistent number of lines of
code for the different interactions. Thus, it forms a compact distri-
bution in three scatterplots with the smallest sprawl and reasonably
small specification length and vocabulary size. We conclude that
Libra. js enables easy changes to specifications, while Libra. js-
Vega provides concise and learnable specifications for interaction.

To further learn the differences in the interaction specifications
of Libra. js-D3 and Libra. js-Vega, we manually extracted the in-
teraction components from the full specifications of each interactive
visualization and then evaluated them using the NotaScope metrics.
Here, we present only the scatterplots for the metrics sprawl and
specification length, with additional metrics provided in the supple-
mental material. As shown in Figure 9d, Libra. js-D3 exhibits sim-
ilar specification lengths to Libra. js-Vega but has slightly greater
sprawl. Upon reviewing the specifications, we identified that the

main difference arises from the sections involving the original li-
brary specifications (e.g.,, modifying the main layer). Specifically,
Libra. js-D3 shows greater variation in defining both simple and
complex static visualizations, while Libra. js-Vega demonstrates
less variation due to its declarative abstraction.

6.3 Comparative Performance Benchmarks

We perform the benchmark study comparing the Libra. js version
of D3 and Vega with the original D3 and Vega measured in terms of
interactive frame rate. Following the configuration for evaluating
Vega [51], we utilized the same three examples: brushing & linking
a scatterplot matrix, a time-series overview+detail visualization,
and panning & zooming a scatterplot, where both D3 and Vega
implementations are available. For each example, we use the Cy-
press tool [73] to perform automated testing with datasets ranging
from 100 to 100,000 tuples, conducting 50 trials per size. To mitigate
the influence of browser-based just-in-time (JIT) optimizations, we
launch a fresh Chrome browser instance for each test. All tests were
performed on a system equipped with an Intel i3 8400, NVIDIA
GeForce GTX 1080 Ti, 32GB RAM, and Windows 11, using Chrome
122.0.6261.69. The versions of D3 and Vega are 7.8.5 and 5.27.0,
respectively.

https://Libra.js
https://Libra.js
https://Libra.js

Libra: An Interaction Model for Data Visualization

Library
@ D3
Vega Va0
® Libra.js-D3
® Libra.js-Vega

o ' |
0 40 "800 1200 1600 2000 Zd00 2800 | 13

Specification Length ;
(@) H

Specification Length

Median specification bytes

Vocabulary Size

Number of unique tokens

Sprawl
Median distance between specs

TTTVecabulaiy SiZé T T T T T T T S 5RaW

400

0 400 800 1200 1600 2000 2,400 2801 0 200 400 60 &0 1000 12000

o
Spe(cbigicatinn Length Sprawl ;

Figure 9: We run 1k bootstrapped variations for each met-
ric based on our gallery, with (a-c) and without the static
visualization code (d), and show the results via a scatter plot
with a Kernel Density Estimation (KDE) of each pair of met-
rics: specification length, vocabulary size, and sprawl. Each
scatter represents the median value of one variation, while
the shaded regions represent the areas containing 75% of the
probability mass of each library’s KDE distribution.

Figure 10 presents the average frame rates for three interactive
visualizations, where Libra. js-D3, Libra. js-Vega, and Vega con-
sistently outperform D3. This aligns with the findings reported by
Satyanarayan et al. [51]. In the examples of brushing & linking a
scatterplot matrix and the time-series overview+detail visualization
shown in Figure 10a and Figure 10b, Libra. js-D3 and Libra. js-
Vega demonstrate superior interactive performance compared to
D3 and Vega. As the number of data items increases, Libra. js-
D3 and Libra. js-Vega are significantly faster than D3 and Vega.
We speculate that this advantage might be caused by different
redrawing strategies, where Libra. js only draws the selected el-
ements on the selection layer. D3 requires redrawing the entire
visualization, resulting in the worst performance, while Vega also
redraws the subset of all data tuples affected by interactions. In
Figure 10c, Libra. js-D3 and Libra. js-Vega perform similarly to
D3 but slightly worse than Vega. We speculate that this difference
is their direct access to view transforms, and we will profile them to
understand why. Overall, Libra. js’s performances without deeper
optimizations are competitive with the other libraries. In the fu-
ture, we aim to explore these optimizations and integrate them into
Libra.js.

7 Conclusion, Limitations & Future Work

We introduce an interaction model that supports the creation, reuse,
extension, and combination of rich interaction techniques for data
visualization. Building on and extending previous work in HCI and
visualization, our model, Libra, incorporates key concepts such
as layers, instruments, feedback, and feedforward. By managing
interactions independently of visual representations, Libra provides

CHI ’25, April 26-May 01, 2025, Yokohama, Japan

a comprehensive abstract framework. This separation of concerns
overcomes a key limitation in existing systems, where interactions
are often tightly coupled with visualization rendering, limiting their
adaptability and reuse.

To demonstrate the expressiveness and flexibility of our model,
we present Libra. js, a prototype that supports various interac-
tions for visualizations through a declarative syntax. Libra. js
allows concise association of a diverse set of instruments with
visual elements for simple interactions while remaining expres-
sive enough to describe most advanced interactions found in the
literature.

7.1 Limitations

Libra is designed for 2D visualizations and does not take into
account 3D, VR, or AR, where the layering concept might be insuf-
ficient to clearly separate data representation from interaction ele-
ments. While we have primarily focused on pointer- and keyboard-
based interactions, we have also experimented with Libra using
more advanced non-standard and virtual input devices (e.g.,, voice-
based interactions). Libra can be extended to support them through
appropriate interactors, though some devices might require deeper
modifications, particularly for handling multimodal interactions
such as “put that there”-style commands [17].

Yet, our article review (section 5) shows that most research fo-
cus on 2D visualizations. We are confident that a large portion of
the advanced interactive 2D visualizations from the review could
be reimplemented using Libra, often in a more compact form, as
demonstrated in the metric-based evaluation of Libra.js (sec-
tion 6.2).

Learning cost of Libra. js. While our metric-based evaluation fo-
cuses on specification length, vocabulary size, and sprawl, we recog-
nize the importance of other critical factors, particularly learnability.
Similar to learning D3—with its power and associated complexity—
there is also a learning curve for developers to fully grasp our model
and Libra. js. Rather than developing additional metrics to jus-
tify this, we prioritize creating more examples—both to explore
advanced visualization interactions and to help users better under-
stand our model. While this may add some complexity, it ultimately
enhances the landscape of visualization interactions, reinforcing
the core advantage of our model: treating interactions as first-class
citizens in visualization systems.

Implementation of Interactors. Our model does not specify how
interactors should be implemented or specified. Many formalisms
exist in the HCI community [44] with no clear consensus on which
one is best; we believe that many of them can be used to implement
interactors in Libra and that library designers should choose the
one they consider the most suited.

Use of Layers for Selection. At a more concrete level, our model
assumes that interaction effects occur on the transient layer or
selection layer, which might not be true in some cases. For example,
brushing scatterplots often de-emphasize the unselected points
by using dimmed colors while keeping the color of the selected
points. In our model, layers would be a natural mechanism to stack
a visualization with the unfiltered visual elements under a filtered
colored version, and the instrument could be either a brush-able

https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js

CHI ’25, April 26-May 01, 2025, Yokohama, Japan

SPLOM Brushing & Linking

2
3

g

8
=
5

3

Frame Rate (fps)
8
3

Frame Rate (fps)
©
g

3
3

°

100 500 1k S 1o sok 100k %100 500
Number of Data Points

(a)

Time Series Overview + Detail

1k 5k 10k
Number of Data Points

Yue et al.

Scatterplot Panning & Zooming

o
8

g

@D3

Vega
®Libra.js-D3
®Libra. js-Vega

=
5

//

Frame Rate (fps)
3 8

3

50k 100k %00 500

1k 5k 10k
Number of Data Points

(c)

Figure 10: Average frame rates for three interactive visualizations (higher means faster): where (a) brushing and linking on a
scatterplot matrix; (b) brushing and linking on an overview+detail visualization; and (c) panning and zooming on a scatterplot.

scatterplot or a range slider [40]. It would require an alternative
interaction policy within Libra.

In the future, we plan to experiment with this filtering style that
needs to dynamically adjust the drawing order of layers.

7.2 Future Work

Libra. jsis designed to be highly extensible, allowing it to manage
interactions across a wide range of devices. By handling new event
types at the interactor level, Libra. js can accommodate emerging
interaction modalities, such as speech, gaze, or gesture inputs from
mobile, wearable, or immersive devices. This adaptability ensures
that Libra. js evolves with changing user interaction paradigms.

In addition, Libra. js can be extended to support synchronous
collaboration by incorporating features like real-time feedback on
users’ cursors and viewports. This functionality can be implemented
in an extra layer, similar to the approach used in CocoNutTrix [33],
enabling users to collaborate and interact seamlessly within the
same environment.

Building on the k-means service we described, we aim to develop
additional machine learning-driven services to enhance the expres-
siveness of our instruments, leveraging the scikit-learn toolkit [47].

Acknowledgments

This work is supported by the grants of the National Key R&D Pro-
gram of China under Grant 2022ZD0160805, NSFC (No0.62132017
and No.U2436209), the Shandong Provincial Natural Science Foun-
dation (No.ZQ2022JQ32), the Beijing Natural Science Foundation
(L247027), the Fundamental Research Funds for the Central Uni-
versities, and the Research Funds of Renmin University of China.
The authors thank Andrew M. McNutt and Oliver Deussen for their
valuable suggestions.

References

[1] Harold Abelson and Gerald J. Sussman. 1996. Structure and Interpretation of
Computer Programs (2nd ed.). MIT Press, Cambridge, MA, USA.

[2] Maria-Florina Balcan, Avrim Blum, and Anupam Gupta. 2009. Approximate
clustering without the approximation. In Proceedings of the twentieth annual
ACM-SIAM symposium on Discrete algorithms. SIAM, 1068-1077.

[3] Michel Beaudouin-Lafon. 2000. Instrumental interaction: an interaction model

for designing post-WIMP user interfaces. In Proc. SIGCHI Conf. Human Factors

Comp. Sys. 446—-453. doi:10.1145/332040.332473

Michel Beaudouin-Lafon. 2004. Designing interaction, not interfaces. In Proceed-

ings of the working conference on Advanced visual interfaces. ACM, Gallipoli Italy,

15-22. doi:10.1145/989863.989865

[5] Benjamin B Bederson. 2001. PhotoMesa: a zoomable image browser using quan-
tum treemaps and bubblemaps. In Proceedings of the 14th annual ACM symposium
on User interface software and technology. 71-80.

[4

=

[6] Enrico Bertini, Maurizio Rigamonti, and Denis Lalanne. 2009. Extended Excentric
Labeling. Computer Graphics Forum 28, 3 (2009), 927-934. doi:10.1111/j.1467-
8659.2009.01456.x arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-
8659.2009.01456.x

[7] Alan F Blackwell, Carol Britton, Anna Cox, Thomas RG Green, Corin Gurr,
Gada Kadoda, Maria S Kutar, Martin Loomes, Chrystopher L Nehaniv, Marian
Petre, et al. 2001. Cognitive dimensions of notations: Design tools for cognitive
technology. In International conference on cognitive technology. Springer, 325-341.

[8] Michael Bostock and Jeffrey Heer. 2009. Protovis: A graphical toolkit for
visualization. IEEE Trans. Vis. Comput. Graphics 15, 6 (2009), 1121-1128.
doi:10.1109/tvcg.2009.174

[9] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D* Data-Driven
Documents. IEEE Trans. Vis. Comput. Graphics 17, 12 (Dec. 2011), 2301-2309.
do0i:10.1109/TVCG.2011.185

[10] Steven P. Callahan, Juliana Freire, Emanuele Santos, Carlos Eduardo Scheideg-

ger, Claudio T. Silva, and Huy T. Vo. 2006. VisTrails: visualization meets data

management. In ACM SIGMOD Conference. 745-747.

Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman. 1999. Readings in

Information Visualization: Using Vision to Think. Morgan Kaufmann.

Surajit Chaudhuri, Bolin Ding, and Srikanth Kandula. 2017. Approximate query

processing: No silver bullet. In Proceedings of the 2017 ACM International Confer-

ence on Management of Data. 511-519.

Ed Huai-hsin Chi and John T. Riedl. 1998. An operator interaction framework for

visualization systems. In IEEE Symposium on Information Visualization. 63-70.

Hank Childs, Berk Geveci, Will Schroeder, Jeremy Meredith, Kenneth Moreland,

Christopher Sewell, Torsten Kuhlen, and E. Wes Bethel. 2013. Research challenges

for visualization software. Computer 46, 5 (2013), 34-42. doi:10.1109/mc.2013.179

[15] Jungu Choi, Deok Gun Park, Yuet Ling Wong, Eli Fisher, and Niklas Elmqvist.

2015. Visdock: A toolkit for cross-cutting interactions in visualization. IEEE Trans.

Vis. Comput. Graphics 21, 9 (2015), 1087-1100. doi:10.1109/tvcg.2015.2414454

Gregory H. Cooper and Shriram Krishnamurthi. 2006. Embedding dynamic

dataflow in a call-by-value language. In European symposium on programming.

Springer, 294-308. doi:10.1007/11693024_20

[17] James L. Crowley. 2018. Put That There: 20 Years of Research on Multimodal
Interaction. In Proceedings of the 2018 on International Conference on Multimodal
Interaction, ICMI 2018, Boulder, CO, USA, October 16-20, 2018, Sidney K. D’Mello,
Panayiotis G. Georgiou, Stefan Scherer, Emily Mower Provost, Mohammad So-
leymani, and Marcelo Worsley (Eds.). ACM, 4. doi:10.1145/3242969.3276309

[18] Zach Cutler, Kiran Gadhave, and Alexander Lex. 2020. Trrack: A Library for
Provenance-Tracking in Web-Based Visualizations. In 31st IEEE Visualization
Conference, IEEE VIS 2020 - Short Papers, Virtual Event, USA, October 25-30, 2020.
IEEE, 116-120. doi:10.1109/VIS47514.2020.00030

[19] d3dimpvis 2013. DimpVis: Prototyping for direct interaction techniques with
information visualizations. https://github.com/vialab/dimpVis. Accessed: 2023-
03-14.

[20] d3zoom 2016. D3-zoom. https://github.com/d3/d3-zoom. Accessed: 2023-03-14.

[21] Evanthia Dimara and Charles Perin. 2019. What is interaction for data visualiza-
tion? IEEE Trans. Vis. Comput. Graphics 26, 1 (2019), 119-129. doi:10.1109/tvcg.
2019.2934283

[22] J.-D. Fekete. 2004. The InfoVis toolkit. In IEEE Symposium on Information Visual-
ization. 167-174. doi:10.1109/INFVIS.2004.64

[23] Jean-Daniel Fekete and Michel Beaudouin-Lafon. 1996. Using the Multi-Layer
Model for Building Interactive Graphical Applications. In Proceedings of the
9th Annual ACM Symposium on User Interface Software and Technology. ACM,
109-118. doi:10.1145/237091.237108

[24] Jean-Daniel Fekete, Danyel Fisher, and Michael Sedlmair. 2024. Progressive Data
Analysis: Roadmap and Research Agenda. Eurographics. 231 pages. doi:10.2312/
pda.20242707

[25] Jean-Daniel Fekete and Catherine Plaisant. 1999. Excentric Labeling: Dynamic
Neighborhood Labeling for Data Visualization. In Proc. SIGCHI Conf. Human
Factors Comp. Sys. 512-519. doi:10.1145/302979.303148

[11

[12

[13

[14

[16

https://doi.org/10.1145/332040.332473
https://doi.org/10.1145/989863.989865
https://doi.org/10.1111/j.1467-8659.2009.01456.x
https://doi.org/10.1111/j.1467-8659.2009.01456.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2009.01456.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2009.01456.x
https://doi.org/10.1109/tvcg.2009.174
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/mc.2013.179
https://doi.org/10.1109/tvcg.2015.2414454
https://doi.org/10.1007/11693024_20
https://doi.org/10.1145/3242969.3276309
https://doi.org/10.1109/VIS47514.2020.00030
https://github.com/vialab/dimpVis
https://github.com/d3/d3-zoom
https://doi.org/10.1109/tvcg.2019.2934283
https://doi.org/10.1109/tvcg.2019.2934283
https://doi.org/10.1109/INFVIS.2004.64
https://doi.org/10.1145/237091.237108
https://doi.org/10.2312/pda.20242707
https://doi.org/10.2312/pda.20242707
https://doi.org/10.1145/302979.303148
https://Libra.js
https://Libra.js
https://Libra.js
https://Libra.js

Libra: An Interaction Model for Data Visualization

[26]

[27]
[28

[29]

[30]

[31]

[32]

[33

[34]

[35]

[36]

[37

[38]

[39

[40]

[41]

[42

[43

[44]

[45

[46]

[47

[48

[49]
[50]

[51]

[52

Gapminder Foundation. [n. d.]. Gapminder trendalyzer. http://www.gapminder.
org. http://www.gapminder.org

Cory Gackenheimer. 2015. Introduction to React. Apress.

Thomas RG Green. 1989. Cognitive dimensions of notations. People and computers
V (1989), 443-460.

Derek Greer. [n.d.]. Interactive Application Architecture Patterns. http:
//aspiringcraftsman.com/2007/08/25/interactive-application-architecture/. Ac-
cessed: 2023-02-23.

Jeffrey Heer and Maneesh Agrawala. 2006. Software Design Patterns for Infor-
mation Visualization. IEEE Trans. Vis. Comput. Graphics 12, 5 (2006), 853-860.
doi:10.1109/tvcg.2006.178

Jeffrey Heer, Stuart K. Card, and James A. Landay. 2005. Prefuse: a toolkit for
interactive information visualization. In Proc. SIGCHI Conf. Human Factors Comp.
Sys. 421-430. doi:10.1145/1054972.1055031

Jane Hoffswell, Arvind Satyanarayan, and Jeffrey Heer. 2016. Visual debugging

techniques for reactive data visualization. Computer Graphics Forum 35, 3 (2016),
271-280.

Petra Isenberg, Anastasia Bezerianos, Nathalie Henry, Sheelagh Carpendale,
and Jean-Daniel Fekete. 2009. CoCoNutTrix: Collaborative Retrofitting for In-
formation Visualization. IEEE Comput. Graph. Appl. Mag 29, 5 (2009), 44-57.
doi:10.1109/MCG.2009.78

Petra Isenberg, Florian Heimerl, Steffen Koch, Tobias Isenberg, Panpan Xu, Chad
Stolper, Michael Sedlmair, Jian Chen, Torsten Moller, and John Stasko. 2017. vis-
pubdata.org: A Metadata Collection about IEEE Visualization (VIS) Publications.
IEEE Transactions on Visualization and Computer Graphics 23, 9 (Sept. 2017),
2199-2206. doi:10.1109/TVCG.2016.2615308

Kenneth E Iverson. 1980. Notation as a tool of thought. Commun. ACM 23, 8
(1980), 444-465.

T,j. Jankun-Kelly, Kwan-liu Ma, and Michael Gertz. 2007. A Model and Framework
for Visualization Exploration. IEEE Trans. Vis. Comput. Graphics 13, 2 (2007),
357-369. doi:10.1109/TVCG.2007.28

Yvonne Jansen and Pierre Dragicevic. 2013. An interaction model for visual-
izations beyond the desktop. IEEE Trans. Vis. Comput. Graphics 19, 12 (2013),
2396-2405. doi:10.1109/tvcg.2013.134

Brittany Kondo and Christopher Collins. 2014. Dimpvis: Exploring time-varying
information visualizations by direct manipulation. IEEE Trans. Vis. Comput.
Graphics 20, 12 (2014), 2003-2012. doi:10.1109/TVCG.2014.2346250

Nicolas Kruchten, Andrew M McNutt, and Michael] McGuffin. 2023. Metrics-
Based Evaluation and Comparison of Visualization Notations. IEEE Transactions
on Visualization and Computer Graphics (2023).

Qing Li, Xiaofeng Bao, Chen Song, Jinfei Zhang, and Chris North. 2003. Dynamic
query sliders vs. brushing histograms. In Extended abstracts of the 2003 Conference
on Human Factors in Computing Systems, CHI 2003, Ft. Lauderdale, Florida, USA,
April 5-10, 2003, Gilbert Cockton and Panu Korhonen (Eds.). ACM, 834-835.
doi:10.1145/765891.766020

M Douglas McIlroy, J Buxton, Peter Naur, and Brian Randell. 1968. Mass-produced
software components. In Proceedings of the 1st international conference on software
engineering, Garmisch Pattenkirchen, Germany. 88-98.

Brad A. Myers. 1990. A new model for handling input. ACM Trans. Inf. Syst. 8, 3
(1990), 289-320. doi:10.1145/98188.98204

Brad A. Myers. 1991. Separating application code from toolkits: eliminating the
spaghetti of call-backs. In Proceedings of the 4th Annual ACM Symposium on User
Interface Software and Technology, James R. Rhyne (Ed.). 211-220. doi:10.1145/
120782.120805

Brad A. Myers. 2024. Pick, Click, Flick!: The Story of Interaction Techniques. ACM
Books, Vol. 57. ACM. doi:10.1145/3617448

Donald A Norman. 1999. Affordance, conventions, and design. interactions 6, 3
(1999), 38-43.

observable-plot [n. d.]. Observable Plot | The JavaScript library for exploratory
data visualization. https://observablehq.com/plot/. Accessed: 2024-02-23.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.
doi:10.5555/1953048.2078195

Mike Potel. 1996. MVP: Model-View-Presenter — The Taligent Programming
Model for C++ and Java. http://www.wildcrest.com/Potel/Portfolio/mvp.pdf.
Access: 2023-02-23.

Trygve Mikjel H. Reenskaug. 1979. The original MVC reports.

Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.
2017. Vega-lite: A grammar of interactive graphics. IEEE Trans. Vis. Comput.
Graphics 23, 1 (2017), 341-350. doi:10.1109/tvcg.2016.2599030

Arvind Satyanarayan, Ryan Russell, Jane Hoffswell, and Jeffrey Heer. 2016. Re-
active Vega: A Streaming Dataflow Architecture for Declarative Interactive
Visualization. IEEE Trans. Vis. Comput. Graphics 22, 1 (Jan. 2016), 659-668.
doi:10.1109/TVCG.2015.2467091

Arvind Satyanarayan, Kanit Wongsuphasawat, and Jeffrey Heer. 2014. Declarative
interaction design for data visualization. In Proceedings of the 27th Annual ACM

CHI ’25, April 26-May 01, 2025, Yokohama, Japan

Symposium on User Interface Software and Technology. 669-678. doi:10.1145/
2642918.2647360

Shneiderman. 1983. Direct Manipulation: A Step Beyond Programming Lan-
guages. Computer 16, 8 (1983), 57-69. doi:10.1109/MC.1983.1654471

Luke S. Snyder and Jeffrey Heer. 2024. DIVI: Dynamically Interactive Visualiza-
tion. IEEE Trans. Vis. Comput. Graph. 30, 1 (2024), 403-413. doi:10.1109/TVCG.
2023.3327172

Wenbo Tao, Xiaoyu Liu, Yedi Wang, Leilani Battle, Cagatay Demiralp, Remco
Chang, and Michael Stonebraker. 2019. Kyrix: Interactive pan/zoom visualizations
at scale. Computer Graphics Forum 38, 3 (2019), 529-540.

Jim Thomas and Joe Kielman. 2009. Challenges for visual analytics. Information
Visualization 8, 4 (2009), 309-314. doi:10.1057/ivs.2009.26

Christian Tominski, Stefan Gladisch, Ulrike Kister, Raimund Dachselt, and Hei-
drun Schumann. 2017. Interactive lenses for visualization: An extended survey.
Computer Graphics Forum 36, 6 (2017), 173-200. doi:10.1111/cgf.12871

Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using
t-SNE. Journal of Machine Learning Research 9, 86 (2008), 2579-2605. http:
//jmlr.org/papers/v9/vandermaaten08a.html

vegadimpvis 2018. Global Development Example. https://vega.github.io/vega/
examples/global-development/. Accessed: 2023-03-14.

Allan Vermeulen, Gabe Beged-Dov, and Patrick Thompson. 1995. The pipeline
design pattern. In Proceedings of OOPSLA’95 Workshop on Design Patterns for
Concurrent, Parallel, and Distributed Object-Oriented Systems. Citeseer.

John M. Vlissides and Mark A. Linton. 1990. Unidraw: A Framework for Building
Domain-Specific Graphical Editors. ACM Trans. Inf. Syst. 8, 3 (July 1990), 237-268.
doi:10.1145/98188.98197

Zhanyong Wan, Walid Taha, and Paul Hudak. 2002. Event-driven FRP. In In-
ternational Symposium on Practical Aspects of Declarative Languages. Springer,
155-172.

Yunhai Wang, Yanyan Wang, Haifeng Zhang, Yinqi Sun, Chi-Wing Fu, Michael
Sedlmair, Baoquan Chen, and Oliver Deussen. 2018. Structure-aware fisheye
views for efficient large graph exploration. IEEE transactions on visualization and
computer graphics 25, 1 (2018), 566-575.

Chris Weaver. 2004. Building Highly-Coordinated Visualizations in Improvise. In
IEEE Symposium on Information Visualization. IEEE, 159-166. doi:10.1109/INFVIS.
2004.12

Hadley Wickham. 2016. ggplot2: Elegant Graphics for Data Analysis (2nd ed.).
Springer Publishing Company, Incorporated.

Wikimedia Foundation. 2017. Wikipedia Clickstream. https://meta.wikimedia.
org/wiki/Research:Wikipedia_clickstream. Accessed: 2024-03-15.

Leland Wilkinson. 2012. The grammar of graphics. In Handbook of computational
statistics. Springer, 375-414.

Nelson Wong, Sheelagh Carpendale, and Saul Greenberg. 2003. EdgeLens: An
Interactive Method for Managing Edge Congestion in Graphs. In IEEE Symposium
on Information Visualization. 51-58. doi:10.1109/INFVIS.2003.1249008

Michael Wybrow, Niklas Elmgqvist, Jean-Daniel Fekete, Tatiana Von Landesberger,
Jarke J van Wijk, and Bjorn Zimmer. 2014. Interaction in the visualization of
multivariate networks. In Multivariate Network Visualization: Dagstuhl Seminar#
13201, Dagstuhl Castle, Germany, May 12-17, 2013, Revised Discussions. Springer,
97-125.

Chhavi Yadav and Léon Bottou. 2019. Cold Case: The Lost MNIST Digits. CoRR
abs/1905.10498 (May 2019). arXiv:1905.10498 https://arxiv.org/abs/1905.10498
Ji Soo Yi, Youn ah Kang, John Stasko, and Julie A. Jacko. 2007. Toward a deeper
understanding of the role of interaction in information visualization. IEEE Trans.
Vis. Comput. Graphics 13, 6 (2007), 1224-1231. doi:10.1109/tvcg.2007.70515

Ji Soo Yi, Rachel Melton, John T. Stasko, and Julie A. Jacko. 2005. Dust & Magnet:
multivariate information visualization using a magnet metaphor. Information
Visualization 4, 3 (2005), 239-256. doi:10.1057/palgrave.ivs.9500099

Jidong Zhai, Jianfei Hu, Xiongchao Tang, Xiaosong Ma, and Wenguang Chen.
2014. CYPRESS: Combining Static and Dynamic Analysis for Top-Down Com-
munication Trace Compression. In International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2014, New Orleans, LA, USA, No-
vember 16-21, 2014, Trish Damkroger and Jack J. Dongarra (Eds.). IEEE Computer
Society, 143-153. doi:10.1109/SC.2014.17

http://www.gapminder.org
http://www.gapminder.org
http://www.gapminder.org
http://aspiringcraftsman.com/2007/08/25/interactive-application-architecture/
http://aspiringcraftsman.com/2007/08/25/interactive-application-architecture/
https://doi.org/10.1109/tvcg.2006.178
https://doi.org/10.1145/1054972.1055031
https://doi.org/10.1109/MCG.2009.78
https://doi.org/10.1109/TVCG.2016.2615308
https://doi.org/10.1109/TVCG.2007.28
https://doi.org/10.1109/tvcg.2013.134
https://doi.org/10.1109/TVCG.2014.2346250
https://doi.org/10.1145/765891.766020
https://doi.org/10.1145/98188.98204
https://doi.org/10.1145/120782.120805
https://doi.org/10.1145/120782.120805
https://doi.org/10.1145/3617448
https://observablehq.com/plot/
https://doi.org/10.5555/1953048.2078195
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf
https://doi.org/10.1109/tvcg.2016.2599030
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1145/2642918.2647360
https://doi.org/10.1145/2642918.2647360
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1109/TVCG.2023.3327172
https://doi.org/10.1109/TVCG.2023.3327172
https://doi.org/10.1057/ivs.2009.26
https://doi.org/10.1111/cgf.12871
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://vega.github.io/vega/examples/global-development/
https://vega.github.io/vega/examples/global-development/
https://doi.org/10.1145/98188.98197
https://doi.org/10.1109/INFVIS.2004.12
https://doi.org/10.1109/INFVIS.2004.12
https://meta.wikimedia.org/wiki/Research:Wikipedia_clickstream
https://meta.wikimedia.org/wiki/Research:Wikipedia_clickstream
https://doi.org/10.1109/INFVIS.2003.1249008
https://arxiv.org/abs/1905.10498
https://arxiv.org/abs/1905.10498
https://doi.org/10.1109/tvcg.2007.70515
https://doi.org/10.1057/palgrave.ivs.9500099
https://doi.org/10.1109/SC.2014.17
https://pubdata.org

	Abstract
	1 Introduction
	2 Background
	2.1 Direct Manipulation in VIS
	2.2 Interaction Models

	3 Libra Interaction Model
	3.1 Design Goals
	3.2 Our Model
	3.3 Layers
	3.4 Instruments
	3.5 Comparing Libra to Existing Models

	4 Implementation of Our Model
	4.1 Layers
	4.2 Interactors
	4.3 Data Services
	4.4 Commands, Feedback and Feedforward
	4.5 Reuse, Extend and Combine of Instruments
	4.6 Adapting to Different Libraries

	5 Evaluation of Libra
	6 Evaluation of Libra.js
	6.1 Expressiveness
	6.2 Metrics-Based Analysis
	6.3 Comparative Performance Benchmarks

	7 Conclusion, Limitations & Future Work
	7.1 Limitations
	7.2 Future Work

	Acknowledgments
	References

