EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

BaobabView: Interactive construction and analysis of decision
trees

Citation for published version (APA):

Elzen, van den, S. J., & Wijk, van, J. J. (2011). BaobabView: Interactive construction and analysis of decision
trees. In Proceedings IEEE Symposium on Visual Analytics Science and Technology (VAST 2011, Providence,
RI, USA, October 23-28, 2011) (pp. 151-160). Institute of Electrical and Electronics Engineers.
https://doi.org/10.1109/VAST.2011.6102453

DOI:
10.1109/VAST.2011.6102453

Document status and date:
Published: 01/01/2011

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 28. Sep. 2025

https://doi.org/10.1109/VAST.2011.6102453
https://doi.org/10.1109/VAST.2011.6102453
https://research.tue.nl/en/publications/a79e7242-6358-4d1b-bd7c-73ae85140d84

BaobabView: Interactive Construction and Analysis of Decision Trees

Stef van den Elzen*

Jarke J. van Wijk"

Eindhoven University of Technology

ABSTRACT

We present a system for the interactive construction and analysis of
decision trees that enables domain experts to bring in domain spe-
cific knowledge. We identify different user tasks and correspond-
ing requirements, and develop a system incorporating a tight inte-
gration of visualization, interaction and algorithmic support. Do-
main experts are supported in growing, pruning, optimizing and
analysing decision trees. Furthermore, we present a scalable de-
cision tree visualization optimized for exploration. We show the
effectiveness of our approach by applying the methods to two use
cases. The first case illustrates the advantages of interactive con-
struction, the second case demonstrates the effectiveness of analysis
of decision trees and exploration of the structure of the data.

Index Terms: H.1.2 [Information Systems]: User/Machine
Systems—Human Information Processing; H.2.8 [Database Man-
agement]: Database Applications—Data Mining; 1.3.6 [Computer
Graphics]: Methodology and Techniques—Interaction Techniques

1 INTRODUCTION

One of the main research areas in machine learning is classification,
a supervised learning method. In a classification problem each item
is defined by attribute values and a class label. The goal is to con-
struct a model that predicts the target class label for an item given
the attribute values. The model is constructed from a set of records,
the training set, for which the attribute values and according class
labels are known, such as historic data.

A decision tree is a model used for classification. It can be rep-
resented by a node-link diagram in which each internal node repre-
sents a test on an attribute, each link represents the according test
value, or range of values, and each leaf node contains a class label.
A decision tree is typically constructed by a recursive top-down
divide-and-conquer algorithm [9, 32, 33]. The construction starts
by considering the entire dataset, which is recursively partitioned
into mutually exclusive subsets. The main decisions to be made
during the construction are deciding on which attribute and test val-
ues to separate the dataset and when to stop splitting. The attribute
choice is based on an impurity measure such as Gini Gain [9], In-
formation Gain [33] and Gain Ratio [34].

A decision tree is sensitive to noise and outliers in the dataset,
causing the model to overfit the data. Two methods are used to over-
come this; stop growing the tree early [33] or fully grow the tree and
then prune the tree by deleting subtrees [35]. Pruning is typically
performed using a proportion of the data, the prune set, which is
not used for growing the tree. After construction, the prune set is
evaluated on the decision tree and nodes are deleted until accuracy
of the prune set no longer increases.

A decision tree is typically evaluated on a separate test or eval-
uation set containing records for which the class labels are known.
The records are evaluated on the constructed decision tree, proba-
bly leading to misclassifications. The accuracy of the decision tree

*e-mail: s.j.v.d.elzen@tue.nl
Te-mail: vanwijk @win.tue.nl

IEEE Symposium on Visual Analytics Science and Technology
October 23 - 28, Providence, RI, USA
978-1-4673-0014-8/11/$26.00 ©2011 IEEE

is defined as the proportion of misclassifications on this test set.
However, accuracy is not the only quality measure. For a decision
tree to be understandable, its complexity should be low, which can
be measured by the following metrics [36]: (1) the total number
of nodes; (2) total number of leaves; (3) tree depth; (4) number of
attributes used. Small trees containing few attributes are therefore
preferred.

Traditionally a decision tree is created by setting parameters,
running an algorithm and evaluating the constructed tree. The pa-
rameters are tweaked and the algorithm is run again. This process is
repeated until users are satisfied with the constructed decision tree.
Once the decision tree is constructed, it is used to classify data for
which the class labels are unknown.

Often, users constructing a decision tree are very knowledgeable
in their field, but possess little knowledge of decision tree construc-
tion algorithms. Therefore, users do not know the exact meaning
of all parameters and their influence on the constructed decision
tree. Furthermore, they have little to no knowledge about the al-
gorithms’ inner workings. Because of this lack of knowledge, the
decision tree construction is often a trial-and-error process and may
be very time-consuming. Even worse, domain experts are not en-
abled to apply their domain specific knowledge to optimize the de-
cision tree, because the algorithm is used as a black box and does
not allow them to steer it. Ankerst et al. [4] identify three important
reasons to include domain knowledge and use visualization:

e by providing adequate data and knowledge visualizations, the
pattern recognition capabilities of the human can be used to
increase the effectiveness of decision tree construction;

e due to their active involvement, users have a deeper under-
standing of the resulting decision tree; and

e when obtaining intermediate results from the algorithm, users
can provide domain knowledge to focus the further search of
the algorithm. Using domain knowledge has been recognized
as a promising approach for constraining knowledge discov-
ery and for avoiding overfitting.

Liu and Salvendy [23] extend this list further; the interactive
construction process: improves the effectiveness of modeling; en-
hances users understanding of the algorithm; and gives them greater
satisfaction with the task.

Recently the inability to incorporate domain knowledge in auto-
matic decision tree construction is acknowledged in industry, where
it is believed that interactivity can close the gap [8].

In this paper we present BaobabView, a tool for interactive con-
struction and analysis of decision trees that enables domain experts
to apply their domain specific knowledge. We think our tool pro-
vides a double example of a visual analytics approach. We show
how a machine learning method can be enhanced using interaction
and visualization; we also show how manual construction and anal-
ysis can be supported by algorithmic and automated support.

In Section 2 we identify user tasks and corresponding interac-
tion, visualization and algorithmic requirements. Next we discuss
related work in Section 3 and introduce our approach in Section 4.
To show the effectiveness of our method, two use cases are dis-
cussed in Section 5. We conclude with a summary of our results
and identify future work in Section 6.

151

152

Choose leaf

Leaf node with non-pure
class distribution

Attribute which best

separates classes Choose attribute

Based on Evaluate
confusion matrix misclassifications
Node with misclassified Choose internal
items on training data node

Based on
confusion matrix

Evaluate prune set
missclassifications
Node with misclassified

Items on prune data

e . Tree performs better on Choose leaf Choose internal
Splitpoints which separate runepset if node subtree node node
classes from each other o p
Define splitpoints would be pruned ———
~=. .. ~— Node is deleted,
@ Reducing the items are merged l; JL
Dataset is split in mutual Split node mlsclassmzd mzms, Change split Change split with sibling node Merge node with") (Prune all children
exclusive datasets according - L pasedon value(s) attribute) sibling of node
to attribute splitpoints and misclassification cost Subtree with node T
new nodes are created or domain knowledge as parent are deleted
(a) Grow. (b) Optimize. (c) Prune.

Figure 1: Steps of the (a) grow process; (b) optimize process; and (c) prune process.

2 UsER TASKS AND REQUIREMENTS

Users either want to edit the tree (grow, prune or optimize), use the
tree (classification) or analyse it (data exploration). Typically, users
often switch between the edit and analysis process. For each task
we identify important elements and extract requirements. In our
research, we mainly focus on the edit and analysis process.

2.1 Edit

The edit process can be divided in three subprocesses; grow, prune
and optimize. New leaf nodes in the decision tree are created by
splitting already existing leaf nodes. Pruning is achieved by delet-
ing subtrees or by merging two sibling nodes into one node. Opti-
mization is achieved by changing split attributes and tweaking split
values.

Grow process In the grow process users construct a decision
tree. First a leaf node is chosen based on the class distribution and
node size. Next a split attribute is chosen based on an impurity
measure or on the domain knowledge of the user. Splitpoints are
defined such that misclassifications are minimized, again based on
domain knowledge. Finally, the node is split and the process starts
over (see Figure 1(a)).

Optimize process In the optimization process the decision
tree is tweaked based on users’ domain knowledge. Misclassifi-
cations on the training dataset are identified based on the confu-
sion matrix [19]. Next the involved internal nodes are identified
and either the split attribute is changed or the split values are ad-
justed such that the cost of misclassifications is minimized (see
Figure 1(b)). Often misclassifications of one class are consid-
ered worse than misclassifications of another class. Users tweak
the split points based on this domain knowledge. Also, acquir-
ing values for one attribute can be more costly than for other at-
tributes [12, 39, 21].

Prune process In the pruning process users generalize the
constructed decision tree to prevent overfitting. First misclassifi-
cations on the prune set are evaluated with support of the confu-
sion matrix. Next the user merges the involved node or deletes the
entire subtree if this increases the accuracy on the prune set (see
Figure 1(c)).

2.2 Analysis

Analysis on the decision tree is performed to gain insight. By hav-
ing a thorough understanding of the decision tree users also gained
insight in the underlying structure of their data. The analysis is fur-
thermore useful to determine whether the decision tree is reliable
or not, or to see whether classification of a certain class is likely to
be correct or not; trees in which one class label is scattered among

many leaves are likely to misclassify this particular class. Further-
more leaves that contain few records are also likely to overfit the
data and / or misclassify it.

2.3 Requirements

We argue that a tight integration of visualization, interaction and
algorithmic support is the key to a powerful system to support all
different tasks. For each component, we define requirements in
Table 1. A decision tree visualized using a node-link diagram with
involved process elements is shown in Figure 2.

3 RELATED WORK

First a short overview of the state of the art in decision tree visu-
alization is given. Next interactive construction of decision trees is
reviewed.

3.1 Decision Tree Visualization

The most important visualizations that potentially could be used
to represent decision trees are the indentation diagram, node-link
diagram, treemap, treering and icicle plot. Treemaps and treerings
are never proposed in literature and will not be discussed.

In the indentation diagram each internal and leaf node are
shown textually. The parent-child relation is conveyed by indent-
ing the child with respect to the parent. Ankerst et al. [3], Do [11]
and Poulet et al. [31, 29, 30] use indentation diagrams to visualize
decision trees. While this diagram displays each of the decision
tree components (internal nodes, leaves, split predicates and class
labels), it is poor in conveying the overall structure of the decision
tree. If the tree is deep and has many nodes, it is hard to see which
nodes are on the same level. Furthermore it is difficult to see the
number of leaves, and the context may get lost if users have to scroll
because of limited screen space.

Figure 2: Decision tree node-link representation with annotated user
tasks grow, prune and optimize.

Table 1: Requirements to support users in interactive decision tree construction tasks.

Interaction Visualization Algorithmic support
Users need to be enabled to Show The system should
Grow choose leaf node class distribution at each leaf node suggest a leaf node based on class distribution
choose split attribute class distribution per attribute suggest a split attribute based on impurity measure
define split points node size suggest split points for the chosen attribute
let system grow subtree Automatically grow a subtree from a chosen node
Optimize | change split attribute confusion matrix of training set determine misclassifications on training set
change split points alternative attributes
Prune delete subtrees confusion matrix of prune set determine misclassifications on prune set
merge two sibling nodes prune set accuracy at each node determine prune set accuracy at each node that
would be the result of pruning the subtree
Analyse highlight class(es) whether a class is easy to separate from other classes
highlight attribute(s) what attributes are involved in the separation process
choose alternative datasets whether classes are difficult to separate from each other
effect on decision tree using alternative datasets

The most well known tree visualization is the node-link dia-
gram, used by Han and Cerone [17], Ware et al. [41] and Zhang et
al. [44]. Internal and leaf nodes are represented by node glyphs and
each parent-child relationship is represented by a link from parent
to child node. In the node-link diagram, compared to the inden-
tation diagram, it is easier to see the number of leafs and also to
determine which nodes are on the same level. The split points are
displayed on the links, the split attribute on the nodes and each leaf
contains a class label (see Figure 2). Nguyen et al. [27] use a 2.5D
variation on the node-link diagram. Nodes of interest are drawn on
top of blurred nodes which are not of interest. However, none of
the proposed methods show the full class distribution at each leaf,
and also node size is not conveyed. Barlow and Neville [6] use
multiple views. One view contains a node-link graph and another
view shows an icicle plot. Wlodyka et al. [42] show the percent-
age of the majority class at each leaf, still no full class distribution
is presented. Pham et al. [28] use a radial node-link diagram with
fish-eye zoom interaction method to explore decision trees. None
of the node-link variations integrate the data visualization with the
tree visualization.

Ankerst et al. [4] and Liu and Salvendy [23] use icicle plots to vi-
sualize decision trees. The icicle plots naturally convey node size,
which is a big advantage, and in both tree- and data visualization
are integrated. Ankerst et al. use pixel-based bar charts [2]. This
is a very compact data visualization and scales well, up to the point
where one record is smaller than a pixel, however one cannot see if
there are (large) gaps between classes in terms of attribute values.
The class distribution can be derived from each bar if the user is ca-
pable of estimating the number of records from one class by adding
all pixels of one color. This task becomes difficult if class values
are scattered among the node and there is no clear separation. Fur-
thermore, this pixel-based technique is mainly applicable to con-
tinuous valued attributes. Split values as well as split attributes are
not shown in the tree visualization. Liu and Salvendy use mosaic
plots [14] as data visualization, only targeted at categorical data.
From these plots, the class distribution at each node can be derived.
Also this visualization runs into scaling problems. From smaller
nodes the mosaic plot is not visible any more. This problem gets
worse as node sizes tend to get smaller and smaller, up to the point
where a node glyph is smaller than a pixel.

Wang et al. [40] propose to visualize decision trees using a com-
bined icicle plot and matrix view. Each of the individual items are
displayed in a similarity matrix view below the icicle plot. From
this visualization the node distribution can be derived however,
gaps between attribute values are not displayed because records are
placed in sequence independent of value. Furthermore, the icicle
plot tree visualization does not scale well. Teoh and Ma [38] pro-
pose a variation on the icicle plot in which the current node of inter-
est is shown as a large rectangle. The parent of each node is shown

as a smaller rectangle left of each node and children are shown as
smaller rectangles below the node. This tree visualization is inte-
grated with data visualization by visualizing the individual records
using either star- [26] or parallel coordinates plots, however, nodes
topologically far away from the focus node are displayed too small
to meaningfully convey the data visualization.

Xu et al. [43] propose to integrate decision trees with parallel
coordinates plots, but due to the nature of parallel coordinates plots
class distributions are not conveyed clearly, split attributes and split
values are implicit.

Most proposed methods from the literature do not integrate the
tree visualization with the data visualization. This has the advan-
tage that both views can be optimized for their sole purpose and one
view does not conflict with the other view or clutter it. However,
this method also suffers from drawbacks. The first obvious draw-
back is the need to switch between the views, which may cause
users to lose their context. Furthermore, only one node from the
tree can be selected to show the data visualization for the records
of that node. No overview is present in which both the overall tree
structure is conveyed and the according data at the nodes. The few
attempts in which the data visualization is well integrated with the
tree visualization, are either aimed at continuous attributes or cat-
egorical attributes and, except for the method of Ankerst et al., do
not seem to scale well.

Visualization of alternative datasets allows users to see the im-
pact on the performance of the derived model [18], however, none
of the described methods allow for this [25].

All current approaches are mainly targeted at supporting the
grow process. As we argued earlier, the prune, optimize and anal-
yse process are equally important. Some methods allow to prune
the decision tree but no visual support is offered. To support users
in all tasks, appropriate visualization techniques are developed and
described in this paper.

3.2 Interactive Construction

Ankerst et al. [3] enable the interactive construction of decision
trees via the use of circle segments [5]. Later, the circle segments
were replaced by pixel-oriented bar charts [4] and the interaction
was expanded in three ways: by letting the computer propose a
split to the user, by letting the computer expanding a subtree and by
automatically growing the tree. Y. Liu and Salvendy [23] provide
similar interaction mechanics. However, no support for optimizing,
pruning or analyzing the decision tree is provided. In Y. Liu and
Salvendy [24] (an extension on [23]), users are enabled to auto-
matically prune the decision tree after construction. However, the
user is again not involved in the pruning process, making it impos-
sible to incorporate domain knowledge. Han and Cerone [17] sup-
port the construction of decision trees in five ways: splitting a node
(growing), labelling a leaf node, unlabelling a leaf node, deleting all

153

154

oot Dabs_Quilty Expont ColosMlap Window Help

Decision tree
Main view

Preset layouts ---

Attribute view -

Visual confusion
matrix train set

Confusion matrices
magnify view
(on mouse hover)

2z
P09

blue > 97.83|
[

o g

Tree overview

e bt
P ————

Griginal name_ Cument rame =

Attribute legend ---|

Alternative dat

s 2o 373 2322

: [y adsasn: e e 1

Class legend -~

Visual confusion
matrix prune set

1 pree 2 s asxaz 2011 PR - B Data View

Figure 3: Interface of the interactive decision tree construction software with according proposed decision tree visualization; Based on adapted
node-link diagram. Nodes contain important decision tree components. Links are visualized as a stream of items.

children of a node (pruning), and inspecting a node. However, this
method is completely manual, no algorithmic support is provided.

Teoh and Ma [38, 26] allow for interactive construction of deci-
sion trees by painting an area of a star coordinate plot and assigning
an according class label to it. This procedure is completely manual
without algorithmic support, as well as the method of D. Liu et
al. [22].

Ware et al. [41], Poulet [31, 29, 30] and Do [11] allow for bi-
variate decision trees by enabling users to respectively draw a split
polygon and split line in a scatter plot visualization. In Ware et al.
users are not algorithmically supported. Poulet and Do both support
users algorithmically by suggesting the best split line.

Most systems partially meet the defined requirements on interac-
tion, visualization and algorithmic support. However, no algorith-
mic support is provided to support the pruning process. In addition,
algorithmic support on decision tree quality is limited and no sys-
tem is capable of highlighting classes, highlighting attributes and
visualizing alternative datasets to support the analysis process. Also
dynamically changing split values or attributes to test alternative
models is not supported, once a split attribute and value are chosen
they can not be changed without first deleting all child nodes. We
believe dynamically changing split points, attributes and datasets to
see the effect on the constructed decision tree are essential in the
grow, prune, optimize and analysis process.

4 BAOBABVIEW

In this section we present the solution we have developed to meet
the requirements given and to improve on previous work. We
named our tool BaobabView, because some of our tree visualiza-
tions (see Figures 10(b), 13 and 14) resemble the characteristic
shape of the baobab, an African tree. Also, in ancient times kings,
elders and leaders would hold meetings under huge baobabs to dis-
cuss important matters. The trees provided shelter, and they be-
lieved that the spirit of the baobab would always help them make
wise decisions .

We argue that the key for a successful system is tight integra-
tion of visualization, interaction and algorithmic support. Visu-
alization is needed to provide insight in data, tree and classifier

Uhttp://www.golimpopo.com/activity-detail_baobab-tree_15.html

behavior. Interaction is needed to incorporate domain knowledge
in the decision tree, when choosing split attributes and split values,
and pruning the tree. Furthermore, interaction is needed to enable
hypothesis testing, by changing split attributes and values. Finally,
algorithmic support is needed to support users in construction and
enable decision tree evaluation.

In BaobabView users are enabled to manually construct a deci-
sion tree, automatically grow a selected node or import a complete
decision tree, generated by the J48 algorithm of Weka [16] for ex-
ploration or optimization. Users are enabled to optimize and prune
a decision tree. Exploration is supported in analysing both the deci-
sion tree and underlying structure of the data. Users are enabled to
easily switch between tasks. For each task, users are supported by
linked views, preset layouts and according interaction techniques.
Figure 3 shows the complete user interface of BaobabView.

4.1 Decision Tree View

The first design decision concerns the visualization of the tree struc-
ture. Barlow and Neville [7] compared node-link diagrams, tree-
maps, tree-rings and icicle plots on their ease of identification of
tree topology; ease of identification of node relationships; ease of
identification of leaf sizes; and user preference. From this study
the icicle plot and node-link diagram were the most favorable. The
node-link diagram has the disadvantage that node size is not demon-
strated, therefore an icicle plot would be preferred. However, be-
cause we want a tight integration of tree and data visualization, we
need the data visualizations to be displayed on the nodes, which
inevitable leads to aspect ratio problems when using an icicle plot;
nodes deeper in the tree get smaller and smaller until they no longer
convey the data visualizations in a meaningful manner.

By using a node-link diagram as opposed to the icicle plot we
are given an extra component, namely the link, which we use to
convey node size. The width of each link is set proportional to the
number of items that is flowing from the parent node to the child
node, e.g., if the incoming link at a node is thick then many items
are contained in this node, if the incoming link is very thin then
only a few items are present. To visualize the distribution of classes
for a link between two nodes, the wide link is split into bands, each
colored according to the class and given the according proportional
width. To convey the link better and make it aesthetically more

centroid-row > 13.50

Split predicate

Class distribution 171

brickface sky

folage - Class names

Split attribute name:

Data visualization

\
\
‘ s . B
Split attribute minimum : - Splitpoint
and maximum value H 2.2
splitpoint ﬁ
class histogram WE
. Splitpoint

51 value

Number of class items left of splitpoint Number of class items right of splitpoint

Figure 4: Proposed solution to visualize a node.

pleasing, the link is drawn as a Bézier curve. Finally, we choose
for a top-down node-link diagram as opposed to a radial node-link
diagram, because here the positions of the nodes have a semantic
meaning, i.e., child nodes can be horizontally ordered on split pred-
icates; child nodes containing records with lower values of the split
attribute are positioned to the left of nodes with higher values of the
split attribute.

As a default layout algorithm to position the nodes of the de-
cision tree we use the Sugiyama algorithm [37] as part of the
graphviz [13] implementation, which performs the steps described
by Gansner et al. [15].

Nodes are visualized as rectangles, showing relevant information
as stacked elements to users for performing their tasks (see Fig-
ure 4). The first two elements are relevant for all nodes, the others
primarily for interior nodes. All elements can optionally be hidden,
if an aspect is not relevant or if an overview is needed.

The split predicate is displayed using plain text. Because the
predicates are based here on a single attribute, they are easy to un-
derstand and we do not need a sophisticated visualization metaphor.

The class distribution of the set of items at a node is visual-
ized using a horizontal bar. Each class is given an area of the bar,
proportional to the class quantity. This visualization has some nice
properties. It is space-filling, and in our opinion, from the horizon-
tal bar visualization it is easy to perceive if a node contains multiple
classes or consists of only one class. This information is important
to decide if we need to split the node further.

The attribute class values and distributions (data visualization)
for a prospective split attribute are visualized using a Streamgraph
[10]. Each class is visualized using a different colored stack in
the Streamgraph. In our prototype we experimented with four
other data visualizations: dot plots, boxplots, stacked histogram
and smoothed stacked histogram (see Figure 5). We enable users

Figure 6: Ranked and sorted attributes based on gain ratio for the
segment dataset from the UCI repository [1].

Fooooooo

to visualize any combination of data visualizations, for example, a
Streamgraph with overlayed dot plots to identify individual values.
We found that the Streamgraph yields the most effective percep-
tion of class distribution and quantities. For nominal attributes, we
present a stacked histogram to users in which each bar represents
one enumerated value.

Splitpoints are visualized using a dashed line, the split value is
displayed in a yellow box at the lower end of the splitline. The
Streamgraph data visualization is not very precise, and while the
relative data quantities can be perceived (colored areas), the abso-
lute values are not present. We solve this problem by introducing
(movable) splitpoints with class histograms at both sides of the
splitpoint. The histogram bars are colored according to the classes.
The value is displayed inside the bar, denoting the actual number of
items at the left and right side of the splitpoint. The true quantities
are perceived and the user is enabled to see the effect of the split by
moving the splitpoint. Note that when the splitpoint is dragged, the
sum of the number of elements in the left and right interval remains
constant, and hence the total width of the histogram bars remains
constant. This gives a stable and smooth impression; the user can
drag the splitpoint and watch the bars move.

The tree overview provides a contextual overview of the main
view and navigation support. Both the main view and the overview
support zooming, panning and filtering (collapsing and expanding
subtrees).

4.2 Attribute View

The attribute view shows the data visualization of each attribute for
a selected node. The attributes are sorted based on a user selected
impurity measure (Gini Gain [9], Information Gain [33], Gain Ra-
tio [34]). As default impurity measure, Gain Ratio [34] is used,
such that users can directly see the most appropriate candidate at-
tributes for splitting the node. The gain ratio is a value between
zero and one; a value of one is assigned if a class can be per-
fectly separated from the other classes, a value of zero is assigned
if the attribute does not allow separating one class from the other
classes. The Streamgraphs show the class distributions, and show
users which classes can be split off. If we rank and sort the at-
tributes horizontally with highest gain ratio value at the left and
worst gain ratio value at the right end, we obtain a visualization as
shown in Figure 6. Each attribute is given a thick colored border
(user-defined colormap) with hatch pattern indicating the goodness
of split for the according attribute; in the example, green and fine-

exgreennean eigeennesn

P
—
- 1
-

388 388 22 E

egreennen

g ogrermen

N,

a2 £ 22 3388 22

(a) Dot plots. (b) Boxplots.

(c) Stacked histogram.

(d) Smoothed histogram. (e) Streamgraph.

Figure 5: Different data visualization methods (individual or combination) provided to users. (a) Dot plots: Over-plotting is solved by transparency.
Outliers can be detected. (b) Boxplots: Showing individual class distributions. However, area of the boxplots is misleading because it does not
represent quantity. For example quantities for red and blue only differ 3 items. (c) Stacked histogram: Showing individual class distributions
as well as quantities. Interpretation is difficult due to discontinuities in colors. (d) Smoothed histogram: Discontinuities are prevented for easier
interpretation. (e) Streamgraph: Reducing wiggles and spikes. In our opinion, the Streamgraph is best suited to see individual class distributions

as well as quantities.

grained hatch pattern indicates a gain ratio value of 1 whereas red
and a coarse-grained hatch pattern represents a gain ratio value of
0. The sorted list in combination with the domain knowledge of
users allows them to choose the appropriate attribute for splitting
the nodes. Furthermore, users are enabled to inspect a table show-
ing correlation values of all attribute pairs.

4.3 Visual Confusion Matrix

A decision tree can be evaluated on misclassifications by inspect-
ing the confusion matrix. A confusion matrix M is an n X n matrix,
where 7 is the number of classes. It displays the number of correct
and incorrect classifications. The horizontal axis denotes the known
class labels for each record, the vertical axis denotes the class labels
as classified by the decision tree. On the intersection of a row i and
a column j the number of classifications M; ; is displayed. The di-
agonal axis shows all correctly classified items. From this diagonal
axis, we can calculate the accuracy of the tree which is displayed in
the upper left corner of the matrix. Items that are off diagonal are
misclassifications. Figure 7 shows our visual confusion matrix.
Each cell in the visual confusion matrix is given a varying
grayscale color according to the quantity M; ;. This color encod-
ing allows one to quickly see if there are cells that contain many
misclassified items. Each non-empty cell in the matrix contains
two stacked rectangles. The width of the rectangles is proportional
to M; j. The upper rectangle is colored to the known class label and
the lower rectangle to the given class label (see Figure 8). If the
item is misclassified then the stacked rectangles both contain colors
from the given class and the known class, enabling users to see if
a class is misclassified. Each item on the horizontal axis shows a
summary of the according column by a rectangle made up of plac-

Known classes Class recall
Known class
brickface sky foliage cement window path grass
el N BN
Tree accuracy 085 19 2 21 2 25 2 18
- Recall: 1 Recall: 0.96 | Recall: 0.9 Recall: 0.55 Recall: 0.6 Recall: 1 Recall: 0.94
Class name H " - | I I
B 32 19 1 7 4 1
. P:0.59 F:0.74
Number of items
L. 24 24
Class precision Precision: 1 F:097
1 b
2| pihe U o 2 2
i M | |
. 38 s n
Classified by tree £ eon F.062 8
4
. &l | |
Misclassified items §-1-mvig , B
P:0.93 F:0.73
Correctly classified <
items e 2
s 17 7
Class f-measure Precision: 1 F:0.97
Figure 7: Visual confusion matrix.
Known label - - - - __ .] Cement
Classified labels -~ -~~~ l [l Brickface
I Il Foliage
ffffffffff Correctly classified
Knownlabels- =R <« § ' |} Foliage misclassified
Classified label - as Cement
77777777 Cement misclassified
as Foliage

Figure 8: Visual confusion matrix cells explained.

ing each item in the column as a sequence. This rectangle represents
the recall [19] of a class. If the recall is high, then the rectangle is
uniformly colored; if it is low, it is made up of many different class
colors. Similarly, the vertical axis items represent a summary of
each row, showing the precision [19] of a class. Finally, each di-
agonal item shows the harmonic mean of the precision and recall,
known as the f-measure.

The visual confusion matrices in the user interface (see Figure 3)
show the classification results for both the train and prune set of
the current decision tree and are linked to the main- and the data
view. If the mouse is hovered over a cell in the confusion matrix
the according nodes in the decision tree, which misclassify these
items, are highlighted. If a cell of the confusion matrix is clicked,
the actual misclassified records are highlighted in the data view.

4.4 Interaction

For each of the user tasks interaction techniques are implemented
according to the requirements. Dependent on operations, different
tree layouts are useful, which are discussed in the next sections. We
implemented many options to control the layout of the tree and the
visualization of the nodes, such that a wide variety of designs can
be produced and evaluated. For each user task an according preset
layout is defined. Users are enabled to easily switch between the
different preset layouts. We use animation techniques to guide the
user in the transition. Close-up inspection of the tree is facilitated
via zoom-pan options and a separate navigation window.

Grow Users are enabled to first choose a leaf node, next choose
the split attribute and finally define split point values for this at-
tribute. If splitpoints are added to a node, the splitpoints are posi-
tioned such that class separation according to gain ratio is as high as
possible. The user is then enabled to fine tune the splitpoint value.
We enable users to select a node and grow the tree automatically
further if manual splitting is too challenging.

In the growing process users quickly need to identify leaf nodes
that need to be split further, therefore they are enabled to lay out
all leaf nodes on the same level. As an additional feature, users can
see the leaf distributions by grouping leaf nodes based on majority
class, or use a combination of both layouts. Figure 9 shows the
default and optional layouts.

Prune At each internal node, the accuracy of the train and
prune set that would be the result of pruning the subtree is com-
puted. If the prune set accuracy of the entire tree would be bet-
ter when the subtree of a node is pruned, the node is increased in
size and colored (user-defined colormap) according to which node
could be pruned best first, in line with the cost complexity prun-
ing method [9]. We enable users to prune a subtree or to merge a
leaf node with a sibling node. Furthermore, users are enabled to in-
spect outliers and noise through the inspection of dot plots at each
node. By hovering over a dot, the according attribute values are
highlighted in the data view.

For the layout of the nodes in the decision tree, we adapted the
Sugiyama algorithm such that edges with greater weight are drawn
shorter and more straight. Each edge is given a weight according
to the number of items. Nodes with fewer items, likely overfitting
the data, are therefore pushed to the side of the tree and are easily
identified.

Optimize Optimization of a decision tree is achieved by chang-
ing split attributes or split point values on any node in the decision
tree. Nodes that are subject to optimization can be identified using
both visual confusion matrices. Furthermore, users are enabled to
use their domain knowledge to change the split attribute at a node or
fine-tune the split value(s) such that misclassification cost is mini-
mized. Also, users are enabled to apply domain knowledge in terms
of attribute cost to optimize the decision tree. Costly attributes used

(a) Default layout. (b) Leaves grouped. (c) Leaves on same level. (d) Leaves grouped on same level.

Figure 9: Additional layouts providing users more insight. (a) Default grow process layout. (b) All leaves are grouped based on majority class,
enabling users to see the deepest level of a class in the tree and the number of involved leaves. (c) All leaves on same level. Enabling users to
identify which nodes need to be split further, based on the class distribution bars. (d) All leaves grouped on majority class and positioned on the
same level. Providing users with insight on leaf distributions.

Lt

=
72

T L
[i"'*ii&=-=-=lf'

- o~ -

—— g

Ly ==
(a) Standard node-link diagram, as preset layout for grow
process, showing data visualizations and class distributions
at each node.

‘SKEWNESS ABOUTIMAIORIS174100

2= Missclassifications

"
v

(b) Same tree as Figure 10(a) optimized for analysis. Note
that, complementary to the standard node-link diagram,
much insight becomes available by the use of color-banded
links: bus and van class are easy to separate from the rest of
classes. Opel and Saab class are difficult to separate. Opel
is misclassified often as Saab using this decision tree (Blue
stream ending in green node).

Figure 10: Tree layouts for editing and analysis processes.

in the decison tree can be changed to alternative attributes. All op-
timizations made to the decision tree are propagated to the involved
subtrees which are updated in realtime. Additionally, all linked
views such as the confusion matrices and attribute views are up-
dated to reflect all changes. This enables users to directly see the
effect of different hypotheses.

Finally, users can load different datasets and visualize them by
the constructed decision tree. This visually shows the effect the
decision tree has on different datasets and misclassifications, next
to that, overfitting can be detected.

Analysis When analyzing the overall tree and data, users are
mainly interested in the structure. Therefore, we put emphasis on
the links and do not show the Streamgraph and splitpoints at each
node in the analysis preset layout mode. Furthermore, the class
distribution is not shown because it can be derived from the links.
Additionally, we do not show the node glyphs but only the split
predicate. Each link is drawn as a continuous stream of items, from
root to leaf node. Figure 10 shows the decision tree preset layouts
for the grow and analyse process.

For the preset layout, we use the adapted Sugiyama algorithm
with weighted edges. The layer separation height depends on the
number of items in the nodes. Links containing more items are
given a greater height. In addition, the width of the links and nodes
are proportional to their size. To optimize the readability and inter-
pretation of the decision tree we minimize the number of crossing
edges by sorting the class sequence at each node. The class order-
ing is determined by taking the weighted x-position of the leafs for
one class and then sorting these.

Additionally we allow users to focus on interesting classes by
highlighting of the involved paths. Important attributes used in the
decision tree can be explored by giving each node the according
split attribute color.

5 UsEe CASES

In the following sections, two case studies are presented that
demonstrate the edit and analyse process. The first use case shows
the interactive construction process, including growing, pruning
and optimization. The second use case shows the effectiveness and
scalability of the continuous color-banded links on complex deci-
sion trees for analysis purposes.

5.1 Interactive Construction

In this use case, we construct a decision tree for image segmentation
data [1]. The instances, regions of 3x3 pixels, are drawn randomly
from a database of 7 outdoor images. The images were next hand-
segmented to create a classification for every pixel. The dataset

157

158

region-centroid-raw

exgreen-mean

intensity-mean

Vedge-mean

-

Figure 11: Decision tree after 10 splits. Highlighted node is difficult
to split manually. Right image shows some Streamgraphs of the al-
ternative attributes that can be used to split the node. Note there is
no attribute that can be used to separate the involved classes easily.

contains 2310 instances, 19 continuous attributes and 7 classes. We
divide the dataset into 3 subsets; the first, 40 percent of total dataset,
to use as train set in BaobabView; the second, 30 percent, to use
as prune set; the third, 30 percent of total dataset, to evaluate the
constructed decision tree.

Within a few minutes we make the first 10 splits, which are fairly
straightforward choices. In the splitting process we choose for dif-
ferent attributes and splitpoints than presented to us by the system
(the choices the classifier algorithm would take). Often the algo-
rithm tries to split off only a few items, ignoring the main classes to
be separated. For example in a node with three classes and distribu-
tion D = {2,28,25} the algorithm would split off the class with two
items, while we decide it is better to separate the classes with 28
and 25 items. Splitting of the two items does not contribute much
to the decision tree and is likely to overfit it.

Next we are confronted with a node that does not lend itself for
separation easily (see Figure 11). After inspection of the alterna-
tives in the attribute view, we decide manual splitting this node fur-
ther is too hard. We therefore choose to automatically grow this
node further. Next we decide we are done growing the tree, there
are no leaf nodes left that have a highly impure class distribution.
Now we want to prune the tree based on the accuracy of the prune
set. We select the prune mode and are presented with the nodes
that have a higher or equal accuracy on the prune set, if this node’s
subtree would be pruned. We see that many of the automatically
generated branches can be pruned. We prune the tree until there
is no accuracy improvement on the prune set. Now we inspect the
confusion matrices whether one class is misclassified a lot. This is
not the case and we conclude we are done constructing the decision
tree, presented in Figure 12.

Our resulting tree has 29 nodes in total and uses only 6 of the
19 attributes. Now we evaluate the constructed decision tree on
the evaluation dataset. The accuracy of our constructed tree on the
evaluation set is 93.2%. To compare our method to a traditional
decision tree construction we construct a decision tree with the J48
algorithm of Weka (including pruning with default settings) on the
same datasets and evaluate on the same evaluation dataset. The tree
has an accuracy of 94.5% on the evaluation dataset, slightly better
than our approach, however the constructed decision tree contains
75 nodes, more than 2.5 times our number of nodes. Furthermore,

After automatic |
grow the
node.

Analyse preset
after pruning.

Prune preset. i
S ”E’};E

Analyse preset
o= - witl_w highlighted] ”wj}_:_
pa I:-_- attributes. P ‘Lm _L_\
- < AR
\ 55 Pa l LL\
=& [—

Figure 12: Decision tree in grow mode after automatic growing of
hard to separate node (left). Decision tree in prune mode showing
nodes bigger that can be pruned according to the prune set accuracy
(middle). Final decision tree after pruning in analyse mode (upper
right), also shown with nodes colored according to split attributes
(lower right).

there are 12 involved attributes in the decision tree, twice as much
as compared to our number of attributes used. Our tree is therefore
easier to interpret and because we were actively involved in the con-
struction process, we gained additional knowledge about the data.
For example, we observed that the grass, path, cement and brickface
classes are relatively easy to separate from the rest of the classes
and that the foliage and window classes are difficult to separate
from each other. Furthermore, we were enabled to use our domain
knowledge by choosing appropriate attributes, tweaking splitpoints
and decide which subtrees to prune.

5.2 Data Exploration

For the exploration use case we use medical data to determine the
location of primary tumors. The data is provided by the Institute
of Oncology of the University Medical Centre in Ljubljana, Yu-
goslavia [20] and obtained from the UCI repository [1]. The data
consists of 22 classes and 17 attributes. We choose to import the
decision tree, generated by the Weka J48 algorithm (Weka imple-
mentation of the C4.5 algorithm of Quinlan [33]), and use this to
explore the underlying structure of the data. The imported tree con-
sists of 154 nodes; 66 internal nodes and 88 leaf nodes.

We switch to analyse mode such that paths are visualized as con-
tinuous streams of items from root to leaf and no node glyphs are
present, as described in Section 4.4 (see Figure 13). From the vi-
sualization we directly see that lung, and, are
easy to distinguish from the rest because they lead to thick streams
and do not split much. We see that rectum and stomach tumors are
very similar and hard to separate, because the two streams are en-
tangled. The same thing is true for pancreas and gallbladder tumors.
Furthermore we notice from both the tree and the visual confusion
matrix that stomach tumors are often misclassified as ovary tumors
when using this decision tree, therefore extra care should be taken
if ovary is determined.

Next we are interested whether there are any differences in diag-
noses for male and female. We prune the entire tree and split the
root node on the sex attribute. Subsequently we choose to automat-
ically grow the decision tree from both the constructed male and
female child nodes. We see (Figure 14) that s

, and prostate tumors are more diagnosed in males; fe-
males are diagnosed with breast, gallbladder, and ovary.

By highlighting individual class paths we observe that both sexes

neck

lung

sex = female.

breast

head_and_neck

Figure 13: Primary tumor location decision tree imported from Weka,
showing easy to separate classes (upper right), hard to separate
classes (lower right) and misclassifications (lower left).

are diagnosed with , stomach and lung tumors. The paths
of these classes split high in the tree and continue their paths to both
the male and female branches.

6 CONCLUSIONS

Our aim was to develop a tool for the interactive construction and
analysis of decision trees that supports all aspects of this process,
and offers a combination of visualization and automated support,
such that domain experts are enabled to bring in their domain
knowledge and to perform their tasks effectively and efficiently.

We approached this as a design problem. Rather than inventing
just one new visualization and building on top of that, we first an-
alyzed the activities in detail, derived requirements from these, and
next generated and selected solutions for all aspects. A simple but
important lesson we learned was that different activities require dif-
ferent visualizations, each showing the most relevant information
as clearly as possible. We used a multiple view approach, but also
found that a parametrized visualization of the tree itself was useful
and effective. This enables the user to select different layouts and
different information to be shown, where smooth, animated transi-
tions help to maintain situational awareness.

We think our approach is an advancement over previous solu-
tions, especially concerning the span of supported tasks (construc-
tion, pruning, analysis), the tight integration of automated methods,
and the rich variety of visualizations offered. As far as we know,
none of the systems proposed in literature offers this set of fea-
tures. As an example, the work of Ankerst et al. does not support
users in the pruning and analysing tasks, does not allow for dynamic
changes and visualization of alternative datasets and also, we think
that pixel-based bar charts are less clear than Streamgraphs. We
have built upon a number of existing methods, such as a node-link
diagram to visualize the tree, Streamgraphs to visualize distribu-
tions, and the confusion matrix to show information. Our particular
combination and integration is novel as such, but also we provide

i_m-r:m Ve NG —amy
). ‘

‘axillar = yes degree-ofife = well

Figure 14: Primary tumor location decision tree constructed by man-
ual first-split on sex, next automatically constructed. Showing typical
diagnoses for males (lower left) diagnoses for females (lower right)
and diagnoses of both sexes (upper right).

new solutions for a variety of issues. Specifically, we developed
a flexible layout method for trees; visual annotations to the confu-
sion matrix; a widget to enable the user to modify split points while
giving detailed feedback on the effect of changes; and the use of
color-banded edges with variable width to visualize the flow of the
data through the tree.

Finally, we have shown the effectiveness of the tool for different
types of use by presenting two use cases.

6.1 Future Work

In our research, we mainly focused on the edit and analyse user
tasks. We think that interactive use of decision trees can be valu-
able and should be explored in future research, for instance to show
users why certain classifications were made. We have shown our
tool to three experts in decision trees, and they were very posi-
tive and appreciated the wide range of functionality offered and the
clear visual feedback. However, the application should be tested
more thoroughly by domain experts for real-world cases to identify
the value in practice together with a formal user study evaluation.
Setting up a controlled, quantitative experiment will not be easy,
as we do not aim just for improved accuracy, but also hope to pro-
vide users with more insight and confidence in the results, which
aspects are difficult to quantify. Finally, formal comparisons of our
approach with other decision tree visualization methods should be
conducted.

REFERENCES

[1] D. N. A. Asuncion. UCI machine learning repository.
http://www.ics.uci.edu/~mlearn/MLRepository.html, 2007.

[2] M. Ankerst. Visual data mining with pixel-oriented visualization tech-
niques. Technical report, The Boeing Company P.O. Box 3707 MC
7L-70, Seattle, WA 98124, 2001.

[3] M. Ankerst, C. Elsen, M. Ester, and H.-P. Kriegel. Visual classifica-
tion: an interactive approach to decision tree construction. In KDD

159

160

[4]

[5]

[6]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

’99: Proceedings of the fifth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 392-396, New York,
NY, USA, 1999. ACM.

M. Ankerst, M. Ester, and H.-P. Kriegel. Towards an effective cooper-
ation of the user and the computer for classification. In Proceedings of
the sixth ACM SIGKDD international conference on Knowledge dis-
covery and data mining, KDD 00, pages 179-188, New York, NY,
USA, 2000. ACM.

M. Ankerst, D. A. Keim, and H.-P. Kriegel. Circle segments: A
technique for visually exploring large multidimensional data sets. In
Proceedings on Visualization, Hot Topic Session, San Francisco, CA,
United States, 1996.

T. Barlow and P. Neville. Case study: Visualization for decision tree
analysis in data mining. In Proceedings of the IEEE Symposium on
Information Visualization 2001 (INFOVIS’01), pages 149-152, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

T. Barlow and P. Neville. A comparison of 2-d visualizations of hier-
archies. In IEEE Symposium on Information Visualization, page 131,
Los Alamitos, CA, USA, 2001. IEEE Computer Society.

A. Blumenstock, M. Mueller, C. Lanquillon, S. Kempe, J. Hipp, and
R. Wirth. Interactivity closes the gap: Lessons learned in an auto-
motive industry application. In Proceeding of the 2010 conference
on Data Mining for Business Applications, pages 17-34, Amsterdam,
The Netherlands, 2010. IOS Press.

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and
Regression Trees. Wadsworth and Brooks, Monterey, CA, 1984.

L. Byron and M. Wattenberg. Stacked Graphs — Geometry & Aes-
thetics. IEEE Transactions on Visualization and Computer Graphics,
14(6):1245-1252, 2008.

T.-N. Do. Towards simple, easy to understand, and interactive decision
tree algorithm. Technical report, College of Information Technology,
Cantho University, 2007.

P. Domingos. Metacost: a general method for making classifiers cost-
sensitive. In Proceedings of the fifth ACM SIGKDD international con-
ference on Knowledge discovery and data mining, KDD 99, pages
155-164, New York, NY, USA, 1999. ACM.

J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Wood-
hull. Graphviz - Open Source Graph Drawing Tools. Graph Drawing,
pages 483-484, 2001.

M. Friendly. Visualizing Categorical Data. SAS Publishing, 1st edi-
tion, 2001.

E. Gansner, E. Koutsofios, S. North, and K.-P. Vo. A technique for
drawing directed graphs. IEEE Transactions on Software Engineering,
19(3):214 -230, March 1993.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. The weka data mining software: an update. SIGKDD Explor.
Newsl., 11:10-18, November 2009.

J. Han and N. Cercone. Interactive construction of decision trees. In
Proceedings of the 5th Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining, PAKDD ’01, pages 575-580, London, UK,
2001. Springer-Verlag.

W. Johnston. Model visualization, pages 223-227. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2002.

R. Kohavi and F. Provost. Glossary of terms. Mach. Learn., 30:271—
274, February 1998.

I. Kononenko, I. Bratko, and R. Roskar. Experiments in automatic
learning of medical diagnostic rules. Technical report, Faculty of Elec-
trical Engineering, E. Kardelj University, Ljubljana, 1984.

C. Ling, V. Sheng, and Q. Yang. Test strategies for cost-sensitive deci-
sion trees. IEEE Transactions on Knowledge and Data Engineering,
18(8):1055-1067, August 2006.

D. Liu, A. Sprague, and J. Gray. Polycluster: an interactive visualiza-
tion approach to construct classification rules. In Proceedings of In-
ternational Conference on Machine Learning and Applications, pages
280 — 287, December 2004.

Y. Liu and G. Salvendy. Design and evaluation of visualization support
to facilitate decision trees classification. Int. J. Hum.-Comput. Stud.,
65:95-110, February 2007.

Y. Liu and G. Salvendy. Interactive visual decision tree classifica-
tion. In Proceedings of the 12th international conference on Human-

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

computer interaction: interaction platforms and techniques, HCI'07,
pages 92105, Berlin, Heidelberg, 2007. Springer-Verlag.

Y. Liu and G. Salvendy. Visualization support to better comprehend
and improve decision tree classification modelling process: a survey
and appraisal. Theoretical Issues in Ergonomics Science, 8(1):63-92,
2007.

K.-L. Ma and S. T. Teoh. Starclass: Interactive visual classification
using star coordinates. In Proceedings of the 3rd SIAM International
Conference on Data Mining, pages 178—185. The 3rd SIAM Interna-
tional Conference on Data Mining, 2003.

T. Nguyen, T. Ho, and H. Shimodaira. Interactive visualization in
mining large decision trees. Knowledge Discovery and Data Mining.
Current Issues and New Applications, 1805:345-348, 2000.

N.-K. Pham, T.-N. Do, F. Poulet, and A. Morin. Interactive explo-
ration of decision tree results. In International Symposium on Applied
Stochastic Models and Data Analysis, ASMDA’07, pages 152-160, La
Cane, Grcee, 2007.

F. Poulet. High dimensional visual data classification. Pixelization
Paradigm, 4370:25-34, 2007.

F. Poulet. Visual data mining. Towards Effective Visual Data Mining
with Cooperative Approaches, pages 389—406, 2008.

F. Poulet and E. Recherche. Cooperation between automatic algo-
rithms, interactive algorithms and visualization tools for visual data
mining. In Proceedings of Visual Data Mining @ ECML, the 2nd Int.
Workshop on Visual Data Mining, PAKDD 02, 2002.

J. R. Quinlan. Induction of decision trees. Mach. Learn., 1:81-106,
March 1986.

J. R. Quinlan. C4.5: programs for machine learning. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1993.

J. R. Quinlan. Improved use of continuous attributes in c4.5. J. Artif.
Int. Res., 4:77-90, March 1996.

J. R. Quinlan. Simplifying decision trees. Int. J. Hum.-Comput. Stud.,
51(2):497-510, 1999.

L. Rokach and O. Maimon. Top-down induction of decision trees
classifiers - a survey. IEEE Transactions on Systems, Man, and Cyber-
netics, Part C: Applications and Reviews, 35(4):476-487, November
2005.

K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual under-
standing of hierarchical system structures. /EEE Transactions on Sys-
tems, Man and Cybernetics, 11(2):109-125, February 1981.

S. T. Teoh and K.-L. Ma. Paintingclass: interactive construction, visu-
alization and exploration of decision trees. In Proceedings of the ninth
ACM SIGKDD international conference on Knowledge discovery and
data mining, KDD ’03, pages 667-672, New York, NY, USA, 2003.
ACM.

P. Turney. Types of cost in inductive concept learning. 2000.

J. Wang, B. Yu, and L. Gasser. Concept tree based clustering visual-
ization with shaded similarity matrices. In IEEE International Confer-
ence on Data Mining, volume 0, page 697, Los Alamitos, CA, USA,
2002. IEEE Computer Society.

M. Ware, E. Frank, G. Holmes, M. Hall, and 1. H. Witten. Interactive
machine learning: letting users build classifiers. International Journal
of Human-Computer Studies, 55(3):281 — 292, 2001.

A. Wlodyka, R. Mlynarski, G. Ilczuk, E. Pilat, and W. Kargul. Vi-
sualization of decision rules - from the cardiologists point of view.
Computers in Cardiology, 2008, pages 645-648, September 2008.

Y. Xu, W. Hong, N. Chen, X. Li, W. Liu, and T. Zhang. Parallel filter:
A visual classifier based on parallel coordinates and multivariate data
analysis. Advanced Intelligent Computing Theories and Applications.
With Aspects of Artificial Intelligence, 4682:1172-1183, 2007.

J. Zhang, L. Gruenwald, and M. Gertz. Vdm-rs: A visual data mining
system for exploring and classifying remotely sensed images. Comput.
Geosci., 35:1827-1836, September 2009.

