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ABSTRACT

Electroencephalography (EEG) remains a common data collection technique in the field of

Neuroscience. Improvements in EEG devices are often expressed as increases in temporal or spatial

resolution. The concrete result of these improvements is an ever-increasing amount of data to be

processed. Appropriately analyzing EEG data is a complex process requiring detailed provenance

to be recorded at each step of the processing workflow. VisTrails is a provenance-based workflow

system adapted to enable the processing and visualization of EEG data. To create a suite of tools

amenable to EEG analysis, VisTrails was extended to include functionality for manipulating arrays

and matrices, digital signal processing, and conversion utilities for visualization. The resulting tool

has proven useful in several studies rooted in neuroscience and has led to several new insights about

working memory and cognition.

Working memory has been described as short-term retention of information that is no longer ac-

cessible in the environment, and the manipulation of this information for subsequent use in guiding

behavior. Working memory is viewed as a cognitive process underlying higher-order cognitive

functions. Studies show psychomotor processing speed and accuracy account for considerable

variance in neural efficiency. This study compared the relative effects of active and sham 10 Hz

repetitive transcranial magnetic stimulation applied to dorsolateral prefrontal cortex on indices

of neural efficiency in healthy participants performing a working memory paradigm that models

the association between working memory load and task behavior. Previous studies identified a

relationship between diminished neural efficiency and impaired working memory across a broad

array of clinical disorders. In the present study, the authors predicted there would be a main effect

of stimulation group on accuracy and processing speed, hence, neural efficiency. We observed a

main effect of stimulation for reaction time without an effect on accuracy; even so, there was a

robust effect of stimulation on neural efficiency.

Effectively evaluating visualization techniques is a difficult task often assessed through feedback

from user studies and expert evaluations. We present an alternative approach to visualization

evaluation in which brain activity is passively recorded using electroencephalography (EEG). These

measurements are used to compare different visualization techniques in terms of the burden they

place on a viewer’s cognitive resources. In this work, EEG signals and response times are recorded

while users interpret different representations of data distributions. This information is processed



to provide insight into the cognitive load imposed on the viewer. This work describes the design of

the user study performed, the extraction of cognitive load measures from EEG data, and how those

measures are used to quantitatively evaluate the effectiveness of visualizations.
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CHAPTER 1

INTRODUCTION

1.1 Motivation
In the art community, provenance refers to the source of an object, its history of owners and

caretakers, the preservation and restoration techniques applied to it, and the various documents

accompanying sales or transferral of the artefact. The idea of provenance also translates to scientific

experimentation in the form of detailed notes regarding the particulars of an experiment, the com-

putations performed, and the results and insights gained. Recording provenance in science helps to

interpret, analyze, and reproduce the results of an experiment, calculation or simulation.

Provenance is not new to scientific endeavours. Laboratory notebooks have traditionally been

the recording medium of choice for scientific provenance, but with the advent of high performance

computing, the volume of data quickly overwhelms this method. Fortunately, recent efforts have

been focused on this problem [21, 143].

The VisTrails System is a provenance management system designed to support exploratory

interaction with both computational and visualization tasks [52]. Its extensible architecture and

support for advanced visualization and computational functionality make it amenable for enabling

rich provenance capture in EEG data analysis and visualization.

Electroencephalography (EEG) allows scientists to study the awake and alert brain in a noninva-

sive way by measuring voltage differences across the scalp. These voltage differences are generated

by the coordinated electrical activity of collections of neurons working together in the cerebral

cortex. By examining the expression of these voltages at the scalp, neuroscientists gain additional

understanding of the macroscopic function of the brain in terms of its functional units.

Although there are other methods to examine the alert human brain, EEG has several distinct

features that are particularly important to its use in Neuroscience studies. Since EEG is measuring

voltages expressed on the scalp and generated by the neural substrate performing work, generating

a view of coordinated activity in the brain is possible. Additionally, because raw EEG data are

represented as real valued timeseries collected at the sensor locations, the power of digital signal

processing is leveraged to provide an effective suite of tools during analysis. Finally, EEG sensors
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are often anchored in a flexible headset. EEG headsets are then connected, sometimes wirelessly, to

a signal receiver allowing both movement and change in posture and orientation.

EEG is an important tool for the study of the brain, but its strengths also impose unique chal-

lenges that must be addressed. High resolution EEG data collected at many spatial locations may

provide a low level representation of brain activity, but making sense of these data remains difficult.

Visualization methods have been devised to provide scientists with spatial contexts upon which

hypotheses may be formed, analyzed, and tested [82, 150].

Working memory has been described as short term retention of information that is no longer

accessible in the environment, and the manipulation of this information for subsequent use in

guiding behavior [43]. Working memory is widely viewed as a cognitive process that underlies

an array of higher order cognitive functions, such as reasoning [129], planning [62], and problem

solving [44], for instance. Over the past few decades, such studies have developed a substantial body

of convergent evidence that supports a critical role for prefrontal cortex (PFC) in mediating working

memory performance. For example, in a study aimed to identify the relationship between working

memory demand and task performance, Rypma et al. found that task factors exert their effects

largely during working memory encoding [129]. Subject factors influence on task performance

occurred mainly during working memory retrieval. In an fMRI study, subjects performed a working

memory task that required them to maintain from one to eight letters over a brief delay [127]. Neural

activity was measured during encoding, maintenance, and retrieval task phases. With increasing

memory load, the researchers observed that reaction time increased and accuracy decreased. Addi-

tionally, a decline in ventrolateral PFC (VLPFC) activation was seen during encoding, whereas

dorsolateral PFC (DLPFC) activation increased during maintenance and retrieval. The authors

concluded that VLPFC mediates working memory storage and that DLPFC mediates memory or-

ganization processes that facilitate supracapacity working memory storage. Interestingly, high

performing subjects in toto showed less activation than low performing subjects, hence, suggesting

that high performers utilized fewer neural resources in resolving task requirements. In comparison

to low performers, such task performance could plausibly be seen as an example of greater neural

efficiency. Even so, higher scoring performers showed activation increases with increasing memory

load during maintenance and retrieval in lateral PFC. Overall, low performing subjects showed more

activation than high performing subjects, but high performers showed minimal activation increases

in DLPFC with increasing memory load. The authors suggested that their results indicate that

individual differences in neural efficiency and cognitive strategy mediate individual differences in

working memory performance [127] (Rypma et al., 2002).
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These studies, taken along with the work of Wolfgang Klimesch show that working memory

performance is directly measurable by careful inspection of EEG [77, 78]. Direct inspection of

working memory performance enables scientists to develop mechanisms to manipulate the neural

rhythms subserving the working memory systems. One such way of manipulating memory is with

repetitive transcranial magnetic stimulation (rTMS) [11, 35, 78, 135]. rTMS delivers a series of

magnetic pulses to the cortex where it then induces changes in the electrical potentials in the

collection of neurons in that area. In this manner, the function of neural assemblies is changed

in a localized area and in a controlled way.

By manipulating the rhythms and oscillations in cortex, the systems that are controlled by neural

assemblies may be influenced. Evidence to support the hypothesis that rTMS manipulates the

performance of neural assemblies, particularly those associated with working memory, has been

generated by several studies [7, 94, 95, 120]. Using rTMS to manipulate the neural circuit sub-

serving working memory may affect neuropsychiatric disorders with working memory or cognitive

dysfunction. In this way, new treatments may be developed that directly influence brain function

without the use of pharmaceuticals. One neuropsychiatric disorder that may be amenable to this

technique is schizophrenia.

Schizophrenia has been recognized for more than a century as a psychotic disorder in which

psychosocial recovery is uncommon, principally due not to psychotic symptoms which are relatively

easy to treat, but to disabling impairment of cognitive functions first recognized by Emil Kraepelin

in 1893 [87]. Kraepelin described poor outcomes in social functioning, associated with impairments

of attention, motivation, problem solving, learning, and memory as the principal features of this

disorder. Kreapelin’s assessment still holds — less than 15% of patients with schizophrenia recover

[27, 99]. There is still no treatment for cognitive dysfunction seen in schizophrenia or other

neuropsychiatric disorders [67, 102, 123]. Recent reports from the NIMH supported MATRICS

researchers regarding the development of a consensus for a standardized battery of neuropsycholog-

ical instruments to identify and measure the principal cognitive deficits of schizophrenia reinforces

the importance of cognitive impairment in schizophrenia [64].

Although working memory is able to be manipulated through the careful application of rTMS,

the ability to monitor its performance also presents new and exciting opportunities. Since work-

ing memory and cognitive processes are linked [14], the mechanisms developed to monitor these

systems may be able to give us new insights into the cognitive loads imposed on people by certain

visualization techniques. By reducing the cognitive demands of interpreting data, new methods may

be developed to more quickly and accurately portray the most salient aspects of scientific data to

scientists.
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Efficient visualizations facilitate the understanding of data sets through an appropriate choice

of visual metaphor. Within the field of visualization, there exist numerous display strategies, many

of which can be applied to similar types of data. These various techniques often create distinct

imagery, emphasizing particular data characteristics or visualization goals. In most cases, several

rendering techniques are appropriate; however, some methods may present salient information more

quickly and accurately. The choice of best visualization technique for a particular data set is difficult

to make. The visualization expert must not only determine an appropriate technique for the type of

data, but also ensure the chosen method will answer the questions posed by domain experts. The

difficulty of this choice is exacerbated by the lack of exhaustive visualization evaluation detailing

the effectiveness of methods for particular types of inquiry.

Often, evaluation of visualization techniques is conducted through expert assessments and user

studies, which typically judge a visualization using verbal feedback and user performance. While

some measures of usability and effectiveness are relatively easy to quantify, such as increases in

users’ response speed or decreases in their error rates, others are problematic. For example, it

is difficult to assess improved understanding and insight because those metrics tend to be highly

subjective. Approaches to evaluation which rely on verbal feedback can be influenced by personal

preference, user expectations, cultural biases within scientific fields, and resistance to change. The

work described in this paper strives to evaluate visualization techniques objectively by using passive,

noninvasive monitoring devices to measure the burden placed on a user’s cognitive resources.

The study we present in this paper explores the amount of work, defined by cognitive load,

needed to interpret a visualization. We evaluate some simple visualization methods by measuring

the brain activity through electroencephalography (EEG). A framework is defined for the processing

and analysis of the acquired EEG sensor data which allows for the interpretation of difficulty of a

visualization task. We believe the results of this study to be an important advancement of objective

visualization evaluation.

1.2 Contributions
This dissertation presents a suite of processing tools to process, analyze and visualize EEG data,

and two studies performed using this provenance-enabled environment. The first study investigates

the measurement and manipulation of working memory performance using EEG. The second study

uses working memory performace measured by EEG in concert with Cognitive Load Theory to

develop a measure of cognitive load associated with various types of visualization.

The main contributions of this dissertation can be divided into three distinct categories: the

use of a provenance aware environment for EEG processing, the use of EEG data during the
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measurement and manipulation of human working memory, and the use of EEG in user studies

of visualization.

The provenance management system, VisTrails, was chosen as the platform of choice for exten-

sion to include a suite of tools useful for the analysis and visualization of EEG data. The flexibility

and feature set of VisTrails, combined with the large number of preexisting libraries available to it

via Python, made VisTrails the best choice for modification [8]. The contributions related to the

use of a provenance aware environment are discussed in detail in Chapter 3 and are summarized as

follows:

• The extension of the VisTrails Provenance Management System to incorporate analysis and

visualization of EEG Data.

• The discussion of the utility of VisTrails in its role processing data collected during neuro-

science experiments.

The development and acceptance of repretitive transcranial magnetic stimulation by the neuro-

science communities opened new avenues for innovative research. Exposing the brain to this type of

stimulation temporarily alters the way in which neuron assemblies communicate, thus manipulating

the higher level functions for which they are responsible. A study was performed and is discussed

in Chapter 4 by which the extent of manipulation of working memory is found. Additionally, the

processing of EEG data to measure the spectral consequences of magnetic stimulation is developed

and refined. The contributions related to the use of EEG data to the measurement and manipulation

of working memory are as follows:

• A multidisciplinary approach to the collection, analysis, and visualization of EEG data in

neuroscience experiments.

• The use of repetitive transcranial magnetic stimulation (rTMS) to induce robust enhancement

to working memory performance.

• The spectral analysis of EEG data to extract measures of working memory performance.

Measuring working memory performance provides a window into the function of the brain as

the decision making process is carried out. Using the established links between working memory

and cognition [14], a user study was developed to explore the cognitive implications of different

visualization methods (see Chapter 5). The contributions of the execution and analysis of this study

are summarized as:

• The use of EEG to inspect brain activity while interpreting visualizations.
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• The use of cognitive load as a objective measure of visualization effectiveness

• The formulation of cognitive load based on its spatial, spectral, and temporal organization.

• The use of working memory as an estimation of cognitive load.

The work presented in this dissertation has been previously been published [6–9, 46, 120].



CHAPTER 2

BACKGROUND

This chapter provides the background for the remainder of this dissertation by reviewing relevant

previous works. Section 2.1 reviews provenance and provenance management systems relevant for

the discussions in Chapter 3. Section 2.2 presents background on electroencephalography (EEG)

and its significance in assessing working memory performace necessary for the work described

in Chapter 4. Finally, Section 2.3 highlights previous work exploring Cognitive Load Theory

and evaluation methods for visualization. This background relates to the discussion presented in

Chapter 5.

2.1 Provenance
The word “provenance” is commonplace when studying art or archaeological artifacts. The

provenance of an object captures the entire chain of custody from the time it is created to the

present, an important piece of information in art history and achaeology. Provenance is not new

to scientific endeavours. Laboratory notebooks have traditionally been the recording medium of

choice for scientific provenance, but with the advent of high performance computing, the volume

of data quickly overwhelms this method. Fortunately, recent efforts have been focused on this

problem [21, 143].

2.1.1 Digital Provenance for Scientific Data
There are many ways to represent provenance in a computational environment. Freire et al.

provide a full discussion on the various types of provenance and the mechanisms by which it is

captured, stored, and queried [52]. Provenance is expressed in two distinct forms — prospective

provenance and retrospective provenance. Prospective provenance records the specification of a

task whereas retrospective provenance captures the operations performed on data and information

about the execution environment to ensure a proper history [40]. Prospective provenance may be

thought of as a recipe to generate a data product while retrospective provenance is similar to a

detailed log of a computational task.

Several systems for managing provenance in scientific computing and visualization are avail-

able. Many of these systems use a prospective provenance pardigm represented as a workflow to de-
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fine the operations performed on the input data. Environments such as Kepler [22] and Taverna [73]

have created a provenance management layer to support their workflow system. However, systems

such as the VisTrails Project have been designed around the capture of provenance information

rather than adding functionality to an already existing system [1].

2.1.2 The VisTrails Environment
The VisTrails System is a provenance management system designed to support exploratory

interaction with both computational and visualization tasks [52]. Its extensible architecture and

support for advanced visualization and computational functionality make it amenable for enabling

rich provenance capture in EEG data analysis and visualization.

The design of the VisTrails system places importance on the collection and maintenance of

provenance [84]. VisTrails’ visual programming model, easy extensibility, and rich feature set

allowed for rapid implementation of the various components necessary to support EEG processing

and analysis.

Three primary views in VisTrails enable the interaction with provenance information, workflow

components, and final visualization products. Change based provenance regarding the contruction

of various workflows is captured and displayed in the Version Tree. Each oval in the Verstion Tree

represents a complete workflow. Selecting a specific version allows interaction with its workflow

via the Workflow View. In many cases, the results of workflow execution are displayed in the

Spreadsheet Window. Each cell of this spreadsheet is capable of rendering the results as complete

3D visualizations, 2D graphs, or even annotated tables.

VisTrails enables the creation and execution of workflows composed of computational elements

called modules. Modules are distributed in packages and connected to one another to generate

an executable workflow. Although many workflows use a small collection of static operations,

VisTrails provides some modules designed to increase its flexibility. In particular, the Python Source

module allows a user to write custom code to interact with the workflow in nonstandard ways. Vis-

Trails is also capable of interacting with other execution engines. By interfacing with other Python

packages such as mlabwrap (http://mlabwrap.sourceforge.net), VisTrails gains the

ability to run algorithms in the Matlab environment. In this way, VisTrails may utilize the algorithms

implemented in the EEGLab suite of tools.

2.2 Electroencephalography and Working Memory
Electroencephalography (EEG) measures brain activity by monitoring electrical potential gen-

erated by the cortex on the surface of the scalp. Each voltage sensor in an EEG system measures
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activity at a discrete location and expresses the information in the form of a time series. Neurosci-

entists have utilized EEG to gain a richer understanding of brain functions [28, 58].

2.2.1 EEG Processing and Visualization
EEG analysis utilizes various techniques from the signal processing community. One problem

of considerable interest during EEG analysis is signal mixing as multiple signal sources in the

brain are recorded by each EEG electrode. Independent Component Analysis (ICA) [75] provides

a method for separating independent signals from the EEG mixture [76] recorded during Event

Related Potential studies.

Raw data from a single EEG sensor are expressed as a time series. This representation of data

is well suited to a variety of processing methods [100, 107]. Additionally, spectral decomposition

methods play an important role in the analysis of EEG data [7, 78, 120]. Unfortunately, there is no

consensus on the specific transforms to use during analysis. Windowed Fourier Transforms [15],

Wavelet Transforms [137], Gabor Transforms [144], and S-Transforms [8] have all been applied to

EEG data.

The variety of techniques used to process EEG data presents a problem for the development of

unified analysis environments. Two such environments, EEGLab [41] and FieldTrip [109], extend

the Matlab Environment (http://www.mathworks.com), implementing both low level and

high level functionality to provide EEG specific features. Extending a computational environment

is advantageous as it enables the use of existing, well tested components.

Many different techniques have been developed for visualizing time series data. Aigner et

al. present a survey covering visualization methods spanning a number of temporally sensitive

datasets [3]. One of the primary goals of visualizing time series data is to extract patterns, or cycles,

within the ensemble. VisTree [92] organizes collections of time series to visually detect patterns

in them. Similarly, Yankov et al. use multiple dot plots to discover patterns in a spreadsheet like

array [164].

There have also been several visualization methods taking into account the unique challenges

related to EEG data. Using the known spatial layout of the EEG sensor net enables additional

cues to inform the scientists. Spectral Topomaps [82], Tiled Parallel Coordinate Maps [151], and

Functional Unit Maps [150] all leverage this additional information to enhance the visualization.

Using spatial information in these visualizations helps scientists gain additional insight into brain

activity.
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2.2.2 Working Memory
Working memory is responsible for the retrieval, manipulation, and processing of task related

information and has functional importance to a variety of cognitive activities including learning,

reasoning, and comprehension [14]. It is often useful to think of the working memory system

in terms of a computer architecture in which working memory acts as the central processing unit

(CPU) with direct connections to temporary data buffers (RAM) in the form of short term memory,

and external communications (IO) through sensory perceptions and resulting reactions [14]. Of

course, the actual working memory system is much more complex than a computer, and therefore

dividing up the processes of the system is not always possible, as many of the functions occur across

the same neural substrate [37].

Through the use of EEG, neuroscientists have learned that working memory is organized in

both the spatial [13, 37] and spectral [45, 78] domains. Although a strict spatial segmentation of

the brain in terms of working memory activity is impossible, Braver et al. show that the working

memory processing is measurable in the prefrontal cortex of the brain [25] while Constantinidis et

al. explore a more complete neural circuit for spatial working memory [38].

2.3 Cognition and Visualization
2.3.1 Cognitive Load Theory

Cognitive load theory [148] describes the relationship between the capacity of working memory

and the cognitive demands of a particular task. The core of the theory is that people have a limited

cognitive capacity during learning and problem solving tasks. The way in which information is

presented can affect the amount of load placed on the working memory system and thus affect per-

formance [47]. Cognitive load theory distinguishes three types of cognitive load: germane, intrinsic,

and extraneous [33]; each distinctly affecting learning and decision making. The combination of

the three types characterize the overall cognitive load [140].

2.3.1.1 Germane cognitive load
Germane cognitive load is the load devoted to learning new cognitive schema [148]. These

schema are internal representations formed in the learning process which are used over and over

and may be relevant to many tasks. Once these cognitive schema are in place, the contribution of

germane cognitive load to the overall load is minimal.

2.3.1.2 Intrinsic cognitive load
Intrinsic cognitive load describes the demands on working memory capacity generated by the

innate complexity of the information being examined [148]. This load represents the portion of
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overall cognitive load that is influenced by the difficulty of the underlying task at hand and cannot

be manipulated by the design of the task. An example of intrinsic cognitive load is the inherent

challenge involved in adding two numbers compared to the greater challenge in solving more

advanced arithmetic problems.

2.3.1.3 Extraneous cognitive load
Extraneous cognitive load measures the additional load placed on users by the design of a

task [114]. This type of load can be controlled by the way information is presented [140]. For

example, a table of numbers describing 1-dimensional distribution data imposes more extraneous

cognitive load on a user to understand than the visual representation of a histogram containing the

same data.

2.3.2 Visualization Evaluation
A substantial barrier to the evaluation of visualization techniques is the complexity of the task.

Not only must a technique appropriately portray the data, but it also must sufficiently outperform

equivalent rendering techniques. While appropriate measures for these requirements are difficult

to formulate, there exists the additional challenge that most visualization problems are highly

application dependent; visualization techniques that are validated as effective for one particular type

of problem may not perform well for another one, even if the two are similar. Many visualization

techniques are presented with evaluations which rely on technical improvements such as speedups,

or the management of larger data sets. However, the use of human factors, user studies or expert

evaluations is becoming more common.

User studies are effective ways of evaluating everything from visualization methods [88, 133]

to complex environments such as airplane cockpits [134] and surgical simulators [121]. These

classes of user studies generally use post experiment surveys in conjunction with timing and task

related data to form a foundation for additional statistical analysis. These user studies leverage both

empirical data collected during the user task as well as subjective data collected after the experiment.

While user studies have become an important tool in the assessment of visualization methods,

they are not always the best evaluation technique. Kosara, et al. [85] show that user studies are

effective at answering specific questions, such as “Does a specific method of streamline rendering

show vorticities better than others?” Similarly, Cleveland and McGill [36] use evaluation studies to

answer focused questions about data visualized in different ways.

Human factors play an important role in the study of the impact of scientific visualization

on research. They are particularly important during the evaluation of visualization systems. An

example of this type of system is Kosara, et al. using semantic depth of field [86] in which renderings
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strive to induce perceptual changes in the user. Tory and Möller [153] offer a thorough discussion

of human factors in both user study methods, and also in visualization design.



CHAPTER 3

VISTRAILS: EEG VISUALIZATION AND

ANALYSIS IN A PROVENANCE RICH

ENVIRONMENT

This chapter is organized as follows: in Section 3.1 we discuss the VisTrails System and how

it is extended to provide the necessary functionality. Section 3.2 tackles the problem of realtime

collaboration. Section 3.3 discusses the specific singal processing and visualization features added

to VisTrails. Section 3.4 then gives presents a concrete example of processing and visualization

within the VisTrails environment while Section 3.5 provides a discussion of the work.

3.1 The VisTrails System
Figure 3.1 provides an illustration of the VisTrails environment. Three primary views in Vis-

Trails enable the interaction with provenance information, workflow components, and final visu-

alization products. Change based provenance regarding the contruction of various workflows is

captured and displayed in the Version Tree. Each oval in the version tree represents a complete

workflow. Selecting a specific version allows interaction with its workflow via the Workflow View.

In many cases, the results of workflow execution are displayed in the Spreadsheet Window. Each

cell of this spreadsheet is capable of rendering the results as complete 3D visualizations, 2D graphs,

or even annotated tables.

VisTrails enables the creation and execution of workflows composed of computational elements

called modules. Modules are distributed in packages and connected to one another to generate an

executable workflow. Figure 3.2 depicts the directed graph that performs a Fast Fourier Transform

(FFT) on an input EEG and displays the results. Although this workflow uses a small collection of

static operations, VisTrails provides some modules designed to increase its flexibility. In particular,

the Python Source module allows a user to write custom code to interact with the workflow in

nonstandard ways. VisTrails is also capable of interacting with other execution engines. By interfac-

ing with other Python packages such as mlabwrap (http://mlabwrap.sourceforge.net),

VisTrails gains the ability to run algorithms in the Matlab environment. In this way, VisTrails may

utilize the algorithms implemented in the EEGLab suite of tools.



14

Fi
gu

re
3.

1:
T

he
V

is
Tr

ai
ls

In
te

rf
ac

e:
T

he
w

or
kfl

ow
vi

ew
(l

ef
t)

al
lo

w
s

th
e

us
er

to
cr

ea
te

a
w

or
kfl

ow
fo

r
ex

ec
ut

io
n.

T
he

vi
su

al
iz

at
io

ns
fo

rm
ed

by
w

or
kfl

ow
s

m
ay

be
re

nd
er

ed
on

th
e

V
is

Tr
ai

ls
Sp

re
ad

sh
ee

t(
ri

gh
t)

.
E

ac
h

of
th

e
w

or
kfl

ow
s

in
V

is
Tr

ai
ls

is
co

nt
ai

ne
d

in
a

un
iq

ue
en

tr
y

in
th

e
V

is
Tr

ai
ls

V
er

si
on

Tr
ee

(m
id

dl
e)

.I
n

th
is

ca
se

,o
nl

y
pa

rt
of

th
e

tr
ee

is
sh

ow
n

an
d

th
e

w
or

kfl
ow

an
d

vi
su

al
iz

at
io

n
ar

e
de

fin
ed

in
th

e
ve

rs
io

n
hi

gh
lig

ht
ed

in
gr

ee
n.



15

Figure 3.2: A VisTrails workflow that generates and displays a signal composed of two frequencies.
The workflow is able to display both the original signal (bottom left) as well as its Fourier Transform
(top right) from within the same workflow.
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The VisTrails system has proven to be successful in a variety of applications including teaching

visualization [142], combining simulation and visualization with provenance [72], collaboratively

designing analyses and visualizations [46], and in comparative visualization [9]. The ability of

VisTrails to function not only as an analysis and visualization platform, but also as a teaching tool is

important for multidisciplinary collaboration. By enhancing communication between neuroscience

experts and visualization experts, VisTrails enables deeper and more robust collaboration between

different scientific fields.

3.1.1 Provenance-Enabled Operations
One of the primary reasons VisTrails is a good candidate for EEG processing is its provenance

management system. The VisTrails version tree (See Figure 3.1) not only manages the evolution of

a collection of workflows, but it also provides advanced interaction with the recorded provenance

and other metadata. Users may issue text based queries to find specific nodes on the version tree

containing the query text in the node name, notes, or even which user was responsible for the change.

However, utilizing provenance enables additional types of queries to be issued and operations to be

performed [29, 53, 136].

One way that provenance information is leveraged in VisTrails to enhance user experience is

through the use of subworkflows. A subworkflow functions as a single module within an existing

workflow, but is composed of multiple modules and connections reflecting its desired functionality.

Because a subworkflow is constructed as if it were simply a special type of VisTrails workflow, the

provenance associated with it is maintained allowing changes in its definition to be rapidly applied

to all workflows using it. By creating collections of subworkflows, complex computations may

be expressed in workflows as single modules similarly to the transparent abstraction afforded by

functional programming [84].

Searching for specific workflows is often difficult, particularly when the search space is large.

Additionally, constructing a query to find a specific set of workflows is challenging if the defining

features of the target workflows are based in their structures. VisTrails solves this problem in its

query by example interactions [53]. Query by example allows users to search for specific workflows

by constructing interesting workflow fragments to search for. An example of this type of structural

query is seen in Figure 3.3. Allowing users to contruct queries as if they were manipulating

workflows provides a more intuitive search mechanism to find workflows of interest.

Provenance is also useful for quickly determining the differences between two different work-

flows. To that end, VisTrails employs a visual diff by which the provenance metadata are analyzed

to determine the structural differences underlying functional changes [53]. Figure 3.4 illustrates

the use of a visual diff to highlight the structural changes required to change rendering methods.



17

(a
)

(b
)

Fi
gu

re
3.

3:
St

ru
ct

ur
al

qu
er

ie
s

in
V

is
Tr

ai
ls

ar
e

pe
rf

or
m

ed
th

ro
ug

h
th

e
qu

er
y

by
ex

am
pl

e
in

te
rf

ac
e.

C
on

st
ru

ct
in

g
pa

rt
ia

lw
or

kfl
ow

s
de

fin
es

th
e

qu
er

y.
Q

ue
ry

re
su

lts
ar

e
re

fle
ct

ed
in

th
e

ve
rs

io
n

tr
ee

.
A

qu
er

y
se

ar
ch

in
g

fo
r

th
e

m
od

ul
es

re
sp

on
si

bl
e

fo
r

te
xt

ur
e

ba
se

d
vo

lu
m

e
re

nd
er

in
g

(a
)

ha
s

a
di

ff
er

en
t

se
to

f
re

su
lts

fr
om

a
qu

er
y

co
nc

er
ne

d
w

ith
tim

e
fr

eq
ue

nc
y

de
co

m
po

si
tio

n
(b

).
It

is
po

ss
ib

le
fo

r
w

or
kfl

ow
s

to
co

nt
ai

n
el

em
en

ts
of

bo
th

qu
er

ie
s,

as
is

re
fle

ct
ed

in
th

e
hi

gh
lig

ht
in

g
of

co
m

m
on

ve
rs

io
ns

.



18

Because the VisTrails provenance mechansims record changes to workflows, a visual diff is much

like an arithmetic difference. Scheidegger et al. explore the idea of using such a difference to

automatically update workflows in VisTrails [136]. This method of visualization by analogy allows

workflows to be easily updated to reflect changes in visualization, processing, or analysis. This

process is detailed in Figure 3.5.

3.2 Collaboration in VisTrails
In order to support realtime collaborative design workflows, we need a provenance architecture

that supports a collection of versioned workflows and a centralized provenance repository that all

collaborators can access. We require a versioning system because each user needs to know how

their collaborators’ work relates to their own. More importantly, we need to protect the users’

work; we should not blindly erase or update their own changes. A centralized repository is needed

to manage all the workflows and to provide the means for notifying collaborators when changes

occur. The combination of these two methods not only allows users to efficiently share collections

of workflows, but also enables them to see the entire history of the workflow specifications as they

develop in realtime, regardless of how many users collaborate on the project.

3.2.1 Workflow Evolution Provenance
Because we expect to encounter a large number of changes to a workflow specification, espe-

cially in a collaborative environment, it can be inefficient to store specifications for all different

versions of the workflows. The change based provenance model [54] provides a concise repre-

sentation for workflow evolution history. This model captures the changes applied to a series of

workflows, akin to a database transaction log. As a user modifies a workflow (e.g., by adding a

module, changing a parameter or deleting a connection), the provenance mechanism transparently

records each change action. We can then reconstruct any workflow specification by replaying the

sequence of captured changes from an empty specification to the desired version.

The change based model not only captures changes as a workflow evolves, but it also presents

external changes to collaborators in a meaningful way. An important feature of this representation is

that it can be visualized as a version tree, where each node corresponds to a workflow specification

and each edge corresponds to the sequence of changes that transforms the parent specification into

the child. Because the version tree captures all changes, users have great flexibility for exploring

different alternatives without worrying about losing the ability to go back to a specific version.

They can perform arbitrary undos and redos—any workflow version is easily recalled by selecting

the corresponding node in the version tree. Additionally, users can easily see how their collaborators

have taken different approaches to solving related problems and how their techniques relate to their
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Figure 3.4: The visual diff in VisTrails highlights the structural and functional differences between
two individual workflows. In this example, modules highlighted in blue are unique to the workflow
using VTK to plot 2D spectral data. Similarly, modules in orange are responsible for plotting the
same data using MatplotLib.

own ideas. As discussed below, we leverage this layout to inform users of changes without forcing

them to immediately consider or integrate those changes.

3.2.2 Centralized repository
In order to efficiently capture and broadcast workflow changes, we use a relational database

management system (RDBMS) for our centralized repository. We chose to use an RDBMS because

these systems provide secure access protocols, support concurrent transactions from multiple users,

and include trigger mechanisms for alerting users when the database is updated. These features

are essential to ensure data consistency and to support realtime updates in our collaborative infras-

tructure. Other kinds of database systems that support these features could also be used in our

infrastructure.

To use an RDBMS for our repository, we need to map the necessary provenance information

to a relational schema. Because we use the change based representation, a collection of related

workflows is stored as a tree. This tree contains metadata and an ordered set of actions that

correspond to user modifications to workflows. Each action, in turn, consists of a sequence of

atomic operations. For example, a paste action that adds a set of modules and connections to

an existing workflow contains a sequence of operations: add module, add connection,
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etc.. An operation, besides its data payload (e.g., module specification, connection specification,

parameter value), includes metadata (e.g., the user who performed the action and annotations). Each

of these entities (actions, operations, payloads) is stored in its own table, permitting a normalized

(redundancy free) representation. In addition to storing the changed based representation of work-

flow evolution, the schema also supports explicit workflow specifications and workflow execution

information. Execution information can be important when users are unfamiliar with the collection

of workflows and wish to know which workflows are routinely used and which workflows were

successfully executed.

3.2.3 Synchronized Design
One of the contributions of this paper is a new method for automatically capturing workflow

changes performed by multiple users and alerting them about these changes immediately and un-

obtrusively. This allows users, in different geographically distributed locations, to collaboratively

design and refine workflows, like in the scenario illustrated in Figure 3.6. We accomplish this

by committing the local changes (performed by each individual user) to a centralized repository,

sending the changes out from the repository to each collaborator, and adding the changes to each

collaborator’s local version tree. Note that we are not merging workflow specifications but synchro-

nizing workflow evolution provenance. Each collaborator can continue their work and they need not

even view the new changes. Before describing the implementation of our prototype, we describe

the algorithm for synchronizing the version tree.

3.2.4 Algorithm
There are two key requirements for our algorithm. First, we need a way to save data from a local

version tree to the centralized repository. Second, we need a way to load data from that repository

to update the collaborators’ local version trees. Below, we describe the mechanisms we developed

to satisfy these requirements.

Recall that the version tree is induced by a set of actions A. Each action a ∈ A has a unique

identifier derived by the function id : A→ N, where id assigns the smallest unassigned integer to a

new action. This function is trivially monotonic: given a1,a2 ∈ A,

id(a1) < id(a2) ⇐⇒ a1 was added before a2

We will leverage this property to easily determine what has changed in a given version tree.

Specifically, let

N(A) = max
ai∈V

id(ai)
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be the largest action id in a set of actions A. Then, for two sets of actions, A1 ⊆ A2, the set of new

actions, ∆A, is

∆A = {a ∈ A2 | N(A1) < id(a)≤ N(A2)}

This means that we can efficiently determine which actions a user requires to update his version

tree. If a user has copied all of the actions in the database up to id ND, then we only need to copy

actions ai with id(ai) > ND from the database. Conversely, if a user has already saved all actions up

to NL to the database, only actions ai with id(ai) > NL need to be sent to the database. Figure 3.7

shows a simple example of the steps of the algorithm.

3.2.4.1 Relabeling
Determining the set of new actions is easy when one of the two sets being compared is a superset

of the other. However, when multiple users are collaborating, we might not be in this situation.

Consider the scenario shown in Figure 3.8, where user A and user B made changes at the same

time. Both clients will try to simultaneously save their actions to the database before being notified

of the other’s changes. In each of their local version trees, they both have actions with id 7, but

these actions are not the same. Assuming A’s request gets to the repository first, her action will be

given id 7 while B’s action will become id 8. Thus, after pushing out the other’s updates, A and B

will have the same tree except that the ids of the nodes may differ.

Since an update of the ids in the local version tree might interfere with a user’s current work, we

choose to maintain a set of local ids that can be mapped to the global repository ids. Specifically,

we maintain a bijective map

M : idglobal↔ idlocal

Let Mlocal denote the reverse mapping from global to local and Mglobal denote the forward mapping

from local to global. All user operations will be accomplished using the local ids, but whenever we

need to save to the centralized repository, we translate everything to the global set of ids. Figure 3.8

shows an example of this relabeling.

3.2.4.2 Beyond Action
As described earlier, an action contains metadata and a set of atomic operations. The metadata

and the atomic operations, in turn, contain their own ids and may also include references to other

entities. Thus, the relabeling of an action needs to update these references as well. For example,

each action stores both its own id (action.id) and its parent id (action.prev id). If we update the id

of the action referenced by action.prev id, we also need to update the prev id field. The same is true

for child objects. Suppose the connection in an add connection operation references the two
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Figure 3.7: The synchronization algorithm. Client A creates a new change (labeled as version
3). This new version is automatically saved to the repository (Step 1). Whenever the repository
is updated, it notifies all clients of the new change (Step 2). All clients (including Client B) then
incrementally update themselves (Step 3).
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Figure 3.8: Relabeling. Because two users may make updates at the same time or may temporarily
lose their connections with the repository, the ids of their nodes may not correspond with the
repository’s ids. To solve this problem, each client stores the tree according to its own local ids
and maintains a map to the repository’s global ids.
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modules it connects by id. If we remap the id of one or both of those modules in an add module

operation, we need to update the ids in the add connection operation as well. This requires

an ordering that respects the properties being updated; we impose an explicit order on modules

and connections so that all modules are relabeled before connections to ensure all references are

updated.

3.2.4.3 Algorithm Specifics
We combine the method for determining new actions with our relabeling strategy to obtain

robust algorithms for incrementally loading from and saving to a database. Algorithm 1 describes

the loading algorithm and Algorithm 2 summarizes the saving algorithm. In each algorithm, we use

either the database or local version tree to update the other depending on the direction, ensuring

that new ids are assigned, existing ids are remapped, and the global-to-local mapping M is updated.

Note that all entities are updated in place, copying only the (new) required information from one

side to the other.

3.2.5 Implementation
We have implemented the synchronization mechanism on top of the VisTrails system

(http://www.vistrails.org). The implementation consists of a client/server architecture

shown in Figure 3.7. The server side is a MySQL database that stores version trees. Users can create

synchronization sessions through the user interface (see below). The standard VisTrails database

schema has been extended to store information about synchronized sessions. This information

includes the ids of synchronized version trees, user ids, IP addresses, and port numbers. A database

trigger uses this information to notify clients when relevant updates are available. The notification

is done by an external MySQL function that uses a socket to connect to the client. The message

to the client includes the version tree id number so that the client can request the updates for that

version tree. Note that messages about changes to a given version tree are sent to all users using that

version tree, except to the user whose changes activated the trigger.

The client side application is a modified version of VisTrails; the modifications include code

for performing incremental updates and saves against the database and for receiving notification

messages from the database. Because the system contains a controller object for each version tree,

we use it to monitor these notifications and start update procedures. Because the controller is linked

to the GUI, we also need to redraw the version tree whenever synchronization modifies the tree.

To set up synchronization, users need to select (or create a database) to serve as a centralized

repository. This database must have the schema as outlined above and the synchronization triggers

that send the update notifications. Once the database is in place, users connect to the database and
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Algorithm 1: Incremental Load Algorithm
Input: The local version tree V , idV (the id function for V ), the global-to-local id
map M, and the centralized repository D.
Output: None. It updates both V and M in place.
LOAD(V , idV , M, D)
(1) max id← Query V for the maximum id
(2) A← Query D for all actions with id > max id
(3) foreach a in A:
(4) Create a′, a local copy of a
(5) a′.id← idV (a)
(6) a′.prev id←Mlocal(a.prev id)
(7) Add pair (a.id,a′.id) to M
(8) Add a′ to V

Algorithm 2: Incremental Save Algorithm
Input: The local version tree V , idD (the id function for D), the global-to-local id
map M, and the centralized repository D.
Output: None. It updates both V and M in place.
STORE(V , idD, M, D)
(1) max id← Query D for the maximum id
(2) A← Query V for all actions with id > max id
(3) foreach a in A:
(4) Create a′, a global copy of a
(5) a′.id← idD(a)
(6) a′.prev id←Mglobal(a.prev id)
(7) Add pair (a′.id,a.id) to M
(8) Add a′ to D

select the version trees they want to share. After that, the synchronization (sync) mode can be

enabled with the push of a button. From that point on, the version tree will be kept in sync with the

central repository and the other users. To help distinguish between versions, those created by other

users are shown in blue while a user’s own versions are highlighted in orange.

3.2.6 Issues

3.2.6.1 Mutable objects
The monotonicity of the version tree is required for the synchronization process. Change actions

and operations are immutable: they are never modified after they are stored in the repository. Thus,

the system only needs to check for new objects in order to perform synchronization. There are,

however, mutable objects associated with actions for which this optimization cannot be applied.

For example, VisTrails has version tags and version annotations associated with workflows that
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can be modified, and these modifications are not saved as actions. Version tags assign text labels to

workflow versions while version annotations store general notes about the version. Because changes

to these objects are nonmonotonic (and destructive), all objects must be saved and loaded during

each incremental load/save. Locally, we can keep a flag that indicates whether or not the entity

changed so that we only need to save it when it does, but the same cannot be done for the global

repository. Nonetheless, since the volume of mutable data is small, we copy all instances during an

incremental load.

3.2.6.2 Integrating changes
One nice feature of our synchronization framework is that it does not require the user to integrate

another user’s changes. However, consider the situation where two users (A and B) are working on

a similar problem, and they have attacked different pieces of it from a common starting point. Each

has seen that the other has made changes, but they wanted to finish their own piece. Later, when

they decide to integrate these changes, user A can switch to B’s version and make the changes

applied in her own version. A more efficient alternative would be for user A to use the analogies

mechanism [136] implemented in VisTrails to automatically apply the changes from one branch to

another.

3.2.6.3 Local parameters
Workflows may not always have the same meaning to all users, and they may disagree about

certain parameter settings or methods used. For example, an input filename parameter may differ

between two users because the users store the file in different disk locations. Currently, the only way

to deal with such local parameter settings is to create a different version for each set of parameters.

This means that a change in one user workflow will not propagate to the other version, which is

not desirable. A solution to this problem could be to separate the shared workflow from the local

settings creating a division of the workflow in some way.

3.2.6.4 Data sharing
The ability to share data is an important part of collaboration. For workflows, you may want

to share output data as well as input and intermediate results. This can be done with a data pool

which maintains up-to-date data items created by the users. This would make it possible for users

not only to see each other’s results, but also use the data as inputs to other workflows. The COVISA

project[162] implements this kind of data sharing. Users can exchange data and directly use them in

their pipelines. Another system that implements the idea of a data pool is the Data Playground[60].

The Data Playground provides a workflow editor that is highly data centric, letting users view and
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import data while they compose workflows that in turn create new data items. This gives the users

control over their data while they experiment with different data manipulation operations. The

prototype only works for one user but it shows how a data centric view can be used in collaborative

workflow design.

3.2.6.5 Module packages
A requirement for users to be able to share workflow specifications is that they both use the

same repository of module packages. Module packages contain sets of modules that perform

similar functions, much like web services. If one collaborator is missing a module, a workflow

containing that module cannot be executed. For collaborations that require many different packages

and libraries, an effective mechanism is needed for sharing, for example, through the use of public

repositories or automatic methods for users to import module packages from other users as they are

required. The packages are often platform specific and versioned, so finding the right package is not

trivial. This requires packages to use a good version scheme, with possibly backward compatible

packages. There also need to exist different versions for different platforms so that the users

platform can be identified and the correct package used. Another way to handle module sharing

is to use shared computing infrastructure, such as the TeraGrid (http://www.teragrid.org), which

can provide a comprehensive set of packages.

3.2.7 Collaborative Design in Multidisciplinary Research
In today’s scientific community, it is rarely the case that novel scientific discoveries can be made

by a single person. Unfortunately, in many instances of close collaboration, the various domain

experts are unable to work in the same location. These types of relationships benefit greatly from

the ability to concurrently modify a given workflow description.

An example of the advantages gained from collaboratively designed workflows can be seen

in collaborations between the authors at the University of Utah and researchers at the Center for

Coastal Margin Observation and Prediction (CMOP).1 CMOP scientists, located in Oregon and

Washington, often spend a significant amount of time describing the various processing and analysis

methods they employ to understand their data. While in many cases e-mail is satisfactory for sharing

knowledge with collaborators, in some situations, a more immersive collaborative workspace is

required.

When a task relating to a specific researcher’s area of expertise is being considered, it is often

necessary to synchronize processing workflows to arrive at a desired result. By allowing scien-

1http://www.stccmop.org
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tists at the CMOP centers in Oregon to work synchronously with researchers at the University of

Utah, the critical task of communication is enriched. Instead of relying on e-mail and telephone

conversations to ask important, and often time consuming, questions, scientists can explore and fix

each others’ processing and parameterization errors in realtime. This behavior is exemplified in

Figure 3.9. This degree of collaborative design reduces the number and severity of communication

based misunderstandings as well as increases the level of productivity of everyone involved in the

project.

There are existing mechanisms that can be used for collaborative design of workflows. One of

the most general and common methods of realtime collaboration is through remote desktops like

VNC [122]. By using this in the design of a workflow, users can see each others’ operations like

dragging modules around and creating connections. But for more efficient modes of interaction,

both users need to be in control simultaneously, and be able to choose whether to take notice of

other users’ activities. In addition, provenance information would be lost, since it would not be

possible to distinguish changes performed by different users.

A related area is that of collaborative visualization such as the COVISA project[162] and No-

CoV [158]. COVISA enables several modes of collaboration like sharing data, sharing control of

parameters and instructor driven collaboration where one user is in control of another user’s pipeline.

NoCoV enables users to collaboratively edit a pipeline consisting of instances of Notification Web

Services. Both of these systems enable collaboration in the creation of the visualization pipeline but

they do not support the exchange or existence of different versions of the pipeline.

The use of realtime collaboration has been explored in other areas. Cobrowsing [48] enables

multiple people to browse the by sharing a Web browser view and following links together. Similar

to VNC, cobrowsing is useful when a user wants to guide another through a browsing session.

However, unlike VNC where the whole desktop is shared, in cobrowsing users only share a browser

view. Cobrowsing can thus be more efficient, since only clicks within a browser view need to be

propagated to the users.

A more indirect way of sharing workflows is through public repositories, like myExperiment [61]

and Yahoo! Pipes [163], that have become available recently. These repositories foster the reuse of

knowledge. They provide search interfaces that allow the users to locate workflows that solve a par-

ticular task, and then integrate these workflows into their own. The synchronization infrastructure

we propose could potentially be a useful feature offered by these sites.

3.3 EEG Analysis and Visualization
Workflows created in VisTrails provide more than enough functionality for a robust suite of EEG

analysis tools. Additionally, VisTrails allows large and complex workflows to enable interaction
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and comparative visualization. As in other systems, this flexibility often introduces unnecessary

difficulties for users of the tool. To address this extra layer of complexity, a package of VisTrails

modules has been created to simplify the construction of analysis and visualization workflows.

3.3.1 Signal Processing in VisTrails
VisTrails’ ability to interact with multiple libraries and programming languages through Python

is an important advantage to the use of the system. The NumPy (http://numpy.scipy.org)

and SciPy (http://www.scipy.org) Python packages give Python the support to handle not

just arrays, but matrices through a collection of robust processing and manipulation routines. Many

of the routines provided by SciPy, particularly those in the signal processing toolkit, are computa-

tionally expensive. These more costly algorithms are implemented outside of the Python environ-

ment in high performance languages such as C and FORTRAN. The NumSciPy VisTrails package

wraps these Python packages to expose their functionality within VisTrails.

Several signal processing techniques useful for the analysis of EEG data are implemented in

high performance environments and exposed for use in Python. Optimized Fast Fourier Trans-

forms (FFTs) and Short Time Fourier Transforms (STFTs) are provided by the SciPy package.

Additionally, numerous other packages are available to Python not only by SciPy, but also through

the wrapping of external libraries facilitated by ctypes package (http://python.net/crew/

theller/ctypes) as discussed by Anderson et al. [8].

Of particular interest to EEG processing is the Stockwell Transform [147]. This time frequency

transform is used in spectral analysis as it is similar to the continuous wavelet transform yet maps

directly to the complex frequency domain. This functionality is made available to VisTrails by

leveraging ctypes with NumPy array structures. Combining C-style arrays with Python in this way

enables easy integration of new functionality with the existing NumPy and SciPy module packages

in VisTrails.

Figure 3.10 illustrates some of the fundamental differences between the STFT, (Continuous)

Wavelet Transform and the Stockwell Transform. While the STFT offers a mapping to the com-

plex Fourier Domain, the resolution of the transform is determined solely by the support of the

windowing function applied. This dependence results in a uniform tiling of the time frequency

space. Unline the STFT, the Continuous Wavelet Transform provides an adaptive tiling of the time

frequency domain, resulting in more optimal resolutions in both time and frequency. However,

this transform is a mapping not to the complex Fourier domain, but to a time-scale space in which

pseduofrequency is determined by the scale of the wavelet basis function, and the notion of phase

is not well described. The Stockwell Transform, on the other hand, takes advantage of the direct
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mapping of a time series to the complex Fourier domain as well as the adaptive resolution properties

of the Continuous Wavelet Transform [147].

3.3.2 Visualization in VisTrails
Visualization in VisTrails is accomplished through the use of specialized visualization libraries

such as the Visualization Toolkit (VTK) [138]. The dataflow paradigm used in VTK is similar to

that of VisTrails and enables a straightforward translation into the module based design of VisTrails

packages. Unfortunately, the size and complexity of VTK represents a substantial barrier for novice

users. To address this issue, the VisTrails Brainiac package utilizes subworkflows to abstract the

details of VTK rendering methods into simple, easy to use single Modules.

In addition to VTK based visualization, other plotting and rendering libraries are easily incor-

porated into VisTrails. Matplotlib [74] provides plotting functionality for use with native Python

datatypes as well as NumPy arrays. Matplotlib’s scripted nature also exposes the full gamut of plot

parametrizations to the user. However, the flexibility afforded by Matplotlib is often cumbersome

when it is not needed. To address this problem, Modules in the NumSciPy VisTrails package have

been created to wrap the most commonly used plotting functionality within a single Module.

The VisTrails spreadsheet is also amenable to comparative visualization and analysis [9]. By

giving users access to a robust spreadsheet on which results are displayed, side-by-side compar-

isons become possible. The direct comparison of results in a spreadsheet interface is particularly

useful when assessing the strengths and weaknesses of different processing techniques and when

visualizing multiple data products as seen in Figures 3.11 and 3.12.

3.4 VisTrails as an EEG Processing Environment
The field of Neuroscience often uses both multimodal data as well as computationally complex

algorithms to analyze data collected from participants in a study. Here, we performed a study in

which Magnetic Resonance Imaging (MRI) is combined with Electroencephalography (EEG) to

examine working memory performance. The MRI provides a three-dimensional depiction of the

structure of the brain and presents a natural spatial organization for the EEG sensors. EEG data

are collected from 64 sensors placed on the scalp. These sensors measure the voltages at the scalp

generated by brain activity.

The use of MRI data in conjunction with the known EEG sensor locations highlights spatial

relationships between the sensors and the brain activity they measure. During more complex

analysis, MRI data is often used to determine participant specific finite element meshes for use in

solving the inverse problem, assigning scalar values to the cortical surface based on data collected at

sensor locations more robustly than interpolation schemes. Solving the inverse problem in this way
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is useful for tasks such as source localization for epileptogenic regions of the brain. Fortunately,

for determining spatial relationships between active brain regions and EEG sensors, radial basis

function interpolation has proven to be a good approximation [108]. Regardless of the method by

which scalars are mapped from discrete point locations to a surface representation, data collected

from different acquisition methods must be fused into a coherent representation.

For the type of data fusion necessary for advanced visualization of EEG data to be performed,

the MRI data must first be registered with the EEG sensor locations, as seen in Figure 3.13. In this

case, sensor locations were provided by the hardware vendor in normalized Talairach Space [149].

To properly align sensor locations with anatomical fiducials, the MRI volume was transformed in

an offline process to ensure that both sensors and participant specific MRI data were described in

the same coordinate system. Registration of the EEG sensors with the MRI data is important for

several aspects of the visualization process: the visualization of sensor locations provides additional

context when interpreting the rendering, and registered sensor locations are a necessary input when

mapping data from individual sensors to the cortical surface.

The transformation of MRI data into Talairach Space is also advantageous for segmentation [49].

In VisTrails, the functionality of the Insight Toolkit (ITK) is leveraged to enable on the fly segmen-

tation of MRI data. Figure 3.14 shows an example workflow used to segment and render the cortical

surface extracted from an MRI volume. The figure highlights the flexible nature of VisTrails and

its ability to use multiple, independent libraries within a single workflow. Here, ITK performs 3D

segmentation to extract the cortical surface while the Visualization Toolkit (VTK) volume renders

the result to validate its performance.

Visualizing EEG data while respecting the spatial positions of the electrodes is important when

examining activity across the cortical surface. Methods such as topographic maps [108] use simple,

two-dimensional representations of a head to provide spatial cues for the visualization, as seen in

Figure 3.15. However, VisTrails’ abilities to use multiple, external libraries in concert make more

advanced visualizations possible.

The use of MRI data with the known EEG sensor locations highlights spatial relationships

between the sensors and the brain activity they measure. During more complex analysis, MRI data

are often used to determine participant specific finite element meshes for use in solving the inverse

problem, assigning scalar values to the cortical surface based on data collected at sensor locations

more robustly than interpolation schemes. Solving the inverse problem in this way is useful for

tasks such as source localization for epileptogenic regions of the brain. Fortunately, for determining

spatial relationships between active brain regions and EEG sensors, Radial Basis Function (RBF)

interpolation has proven to be a good approximation [108]. Figure 3.15 compares visualizations



37

Fi
gu

re
3.

13
:

V
is

ua
liz

in
g

E
E

G
se

ns
or

s
al

on
g

w
ith

pa
rt

ic
ip

an
t

sp
ec

ifi
c

M
R

I
da

ta
(i

ns
et

)
pr

ov
id

es
ad

di
tio

na
l

sp
at

ia
l

cu
es

to
be

tte
r

un
de

rs
ta

nd
E

E
G

re
su

lts
.T

he
V

is
Tr

ai
ls

w
or

kfl
ow

us
ed

to
ge

ne
ra

te
th

is
re

nd
er

in
g

ta
ke

s
ad

va
nt

ag
e

of
th

e
of

fli
ne

re
gi

st
ra

tio
n

of
se

ns
or

lo
ca

tio
n

to
M

R
Id

at
a

an
d

us
es

on
ly

af
fin

e
tr

an
sf

or
m

at
io

ns
to

ap
pr

ox
im

at
e

ab
so

lu
te

se
ns

or
po

si
tio

ns
.I

ti
s

w
or

th
w

hi
le

to
no

te
th

at
se

ns
or

lo
ca

liz
at

io
n

in
th

is
m

an
ne

ri
s

an
ap

pr
ox

im
at

io
n;

it
is

po
ss

ib
le

to
re

co
rd

pr
ec

is
e

se
ns

or
lo

ca
tio

ns
at

da
ta

ac
qu

is
iti

on
tim

e
by

us
in

g
ad

di
tio

na
lh

ar
dw

ar
e.



38

Figure 3.14: The ability of VisTrails to draw upon the features and capabilities of many libraries
is useful when segmenting MRI data. Here, the cortical surface is segmented from an MRI volume
using the Insight Toolkit (ITK) and then rendered (inset) using the Visualization Toolkit (VTK).
Modules in blue represent ITK functionality, while those in green are from the VTK package.
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(a) (b)

(c) (d)

Figure 3.15: Topographic maps representing a resting period (a) and stimulation period (b) are
compared with three-dimensional renderings mapping scalars to the cortical surface extracted from
MRI data (c,d). Spatial context is better preserved in the three-dimensional rendering and enhanced
by interactive capabilities.
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using topographic maps with those formed by using participant specific data directly, both of which

use RBF interpolation to map scalar data from the sensor locations to the domain representing the

head or cortex.

Although both topographic maps and 3D renderings using RBF interpolation provide good

spatial cues for understanding brain activity measured by EEG, it is important to inspect the raw data

from each sensor as well as their respective time frequency transforms. To appropriately explore

data in this way, VisTrails uses VTK’s interaction abilities combined with the computational abilities

of Numpy and Scipy. Figure 3.16 shows how the various interactive elements of VTK may be used.

Users may interact with a clipping plane to expose more or less of the cortical surface by removing

portions of the MRI. Additionally, each EEG sensor is selectable allowing users to inspect the raw

data streams produced at each electrode. In this way, a more complete picture of brain activity is

formed, allowing more robust interpretations by scientists.

3.5 Discussion
Tools allowing rapid exploration of large and multimodal datasets are more important than

ever in scientific research. Interpreted languages, like Python, provide a solid foundation for the

development of powerful, yet flexible data analysis and visualization tools. However, flexibility

of analysis and visualization must be combined to enhance the exploration process. The VisTrails

system is a visual programming paradigm in which computational elements are represented by

drag-and-drop modules that are connected together to form programs. The drag-and-drop system

makes replacing functionally equivalent computations, such as replacing an STFT with a Stockwell

Transform, easy to do.

Providing a tool that supports flexible visualization and analysis allows scientists to draw more

insightful conclusions. Additionally, the ability to change analysis techniques enables important

insights to be gained more quickly. Using visual programming paradigms, like VisTrails, makes

changing analysis techniques easier for nonprogrammers, facilitating the use of the tool for insight

generation.

The VisTrails infrastructure can be integrated with any workflow system that captures workflow

evolution provenance. Our implementation of the synchronization mechanism on top of the Vis-

Trails system shows that workflow systems can be a powerful tool for realtime collaboration. Users

can collaborate efficiently and effectively, exploring different branches and taking advantage of

each others’ progress. Together with techniques for data sharing and remote execution, this enables

efficient creation of complex workflows.

By leveraging the concise representation of workflows provided by the change based provenance

model, synchronization is efficient: only incremental changes need to be propagated to collaborating



41

(a
)

(b
)

Fi
gu

re
3.

16
:V

is
Tr

ai
ls

w
or

kfl
ow

s
of

te
n

co
nt

ai
n

gr
ou

ps
of

m
od

ul
es

fr
om

di
ff

er
en

tl
ib

ra
ri

es
.T

he
w

or
kfl

ow
de

pi
ct

ed
he

re
(a

)l
oa

ds
an

d
pr

oc
es

se
s

E
E

G
da

ta
w

ith
th

e
N

um
Sc

iP
y

V
is

Tr
ai

ls
Pa

ck
ag

e
(y

el
lo

w
),

be
fo

re
us

in
g

th
e

re
su

lts
to

co
lo

r
sp

he
re

s
re

pr
es

en
tin

g
E

E
G

el
ec

tr
od

es
(b

lu
e)

,t
he

pr
ep

ro
ce

ss
ed

co
rt

ic
al

su
rf

ac
e

(g
re

en
),

an
d

ra
w

se
ns

or
di

sp
la

ys
(o

ra
ng

e)
.

T
he

se
da

ta
ar

e
th

en
co

m
bi

ne
d

w
ith

a
vo

lu
m

e
re

nd
er

in
g

of
th

e
M

R
I

da
ta

(p
ur

pl
e)

an
d

di
sp

la
ye

d
si

de
-b

y-
si

de
w

ith
th

e
ra

w
E

E
G

da
ta

an
d

th
ei

rt
im

e
fr

eq
ue

nc
y

de
co

m
po

si
tio

n
(g

re
y)

.T
he

re
su

lts
of

th
is

w
or

kfl
ow

ar
e

pr
es

en
te

d
in

tw
o

lin
ke

d
vi

ew
s

in
th

e
V

is
Tr

ai
ls

Sp
re

ad
sh

ee
t(

b)
.



42

users. However, further experiments are needed to assess the scalability of the current implementa-

tion.

We believe that our provenance based synchronization mechanism can be applied to applications

other than workflows. Combined with techniques to visualize provenance information, this mech-

anism can serve as a powerful platform for collaborative design in general. Users can share their

work effectively while inspecting each others’ contributions. The application of our synchronization

infrastructure in other areas of computational design is a direction we plan to pursue in future work.

Facilitating collaboration between VisTrails experts and domain scientists reduces the amount

of time to arrive at insightful understanding. Realtime collaboration allows remote collaborators

an additional layer of infrastructure to be leveraged during the formation of processing, analysis

and visualization workflows. This type of collaboration helps to eliminate more of the barriers

associated with long distance collaboration.

In addition to making changes to analysis techniques easier, Python has also proven to be ex-

cellent at combining related, yet disparate data into a single, useful representation. This data fusion

is exemplified in Figure 3.16 which has successfully combined structural volumetric data with

processed time series data. Analysis taking spatial data into account is common in neuroscience;

however, most of these techniques respect spatial relationships by scientists selecting groups of

sensors located at specific places to focus their analysis efforts. Providing neuroscientists the ability

to examine their dataset as a whole allows insightful analysis to be performed more quickly. The

efficiency gained by better utilizing visualization as a tool stems from new and unexpected behavior

being identified more easily.



CHAPTER 4

MEASURING, MANIPULATING, AND

VISUALIZING WORKING MEMORY

PERFORMANCE

This chapter is organized as follows: Section 4.1 outlines the functional role of working memory

in the human brain, with particular attention paid to its part in neurological disorders. After dis-

cussing the means by which working memory may be measured and manipulated in Section 4.2, an

experiment designed to validate these methods is outlined in Section 4.3. Section 4.4 then presents

the results of the experiment. Section 4.5 then outlines a method by which EEG data in their

entirety may be queried and visualized followed by a discussion of the experiment and visualization

technique in Section 5.5.

4.1 Working Memory Dynamics
To be able to properly assess the spectral evolution of EEG associated with working memory,

each trial in an experiment is processed with respect to its own intertrial rest period. The individual

alpha (8–12 Hz) and theta (3–7 Hz) frequencies are determined for both the trial and rest period and

their amplitudes measured [78]. By comparing these values, a shift of both the individual frequen-

cies as well as their amplitudes are revealed. The degree of change in these amplitudes, weighted

by the amount of shift in the frequency domain, determines the working memory characteristics for

each single trial.

4.1.1 Working Memory in Neurological Disorders
Schizophrenia has been recognized for more than a century as a psychotic disorder in which

psychosocial recovery is uncommon, principally due not to psychotic symptoms which are relatively

easy to treat, but to disabling impairment of cognitive functions first recognized by Emil Kraepelin

in 1893 [87]. Kraepelin described poor outcomes in social functioning, associated with impairments

of attention, motivation, problem solving, learning, and memory as the principal features of this

disorder. Kreapelin’s assessment still holds — less than 15% of patients with schizophrenia recover

[27, 99]. There is still no treatment for cognitive dysfunction seen in schizophrenia or other
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neuropsychiatric disorders [67, 102, 123]. Recent reports from the NIMH supported MATRICS

researchers regarding the development of a consensus for a standardized battery of neuropsycholog-

ical instruments to identify and measure the principal cognitive deficits of schizophrenia reinforce

the importance of cognitive impairment in schizophrenia [64]. With regard to our study, it is also

notable that psychomotor processing speed measured as reaction time received a strong endorsement

for inclusion in the MATRICS test battery.

On the molecular scale, emerging evidence supports a model of cognitive impairment in schizophre-

nia that is associated with a complex array of polymorphic alleles. Such variants have been shown to

be associated with inheritable impairments of cognitive function [30, 119, 139]. So far, attempts to

develop new pharmacologic agents based on these important genetic findings have not been success-

ful. In this regard, our plan to develop a macroscalar (neural circuit) approach to impaired memory

using alpha frequency (10Hz) rTMS is supported by evidence showing a predictive relationship

between EEG alpha band power and working memory task performance [11, 35, 78, 135]. Evidence

to support the relationship between cognitive deficits in patients with schizophrenia and low alpha

spectrum power in the Dorso Lateral Pre-Frontal Cortex (DLPFC) of first episode, neuroleptic naı̈ve

patients with schizophrenia is also supported by the study of Ford and colleagues [50] who found

reduced frontotemporal alpha band coherence in an auditory event related potential study comparing

healthy subjects with patients. Finally, the study of Klimesch [79] lends strong support for this work.

These investigators compared alpha frequency rTMS, sham and 20Hz rTMS, directed to the frontal,

parietal or occipital cortices. Important to our goal of developing a circuit based treatment model

for impaired memory, studies show that compared to healthy subjects patients with schizophrenia

have lower prefrontal alpha band power and lower peak alpha frequency [50].

4.2 Measuring and Manipulating Working Memory
Frequency and target specific effects have been observed in studies of cognitive domains includ-

ing working memory: for example, enhancement of picture naming and posterior superior temporal

cortex [105]; enhancement of episodic memory and left inferior PFC [83]; analogic reasoning and

left DLPFC [20]; mental rotation of 3D objects and mesial frontal and right parietal cortex [79].

Finally, Luber et al. showed that TMS could enhance working memory [94]. They predicted that

healthy subjects performance on a delayed match-to-sample task would be enhanced when TMS

of 1, 5, or 20 Hz was applied to either left dorsolateral prefrontal or midline parietal cortex during

the delay phase of the task. They found 5 Hz, but not 1 Hz or 20 Hz, stimulation to the midline

parietal site during delay resulted in a significant decrease in RT without a corresponding decrease

in accuracy. In a second experiment, 5 Hz rTMS was applied to the parietal site during the delay or

during presentation of the probe. Reaction time enhancement occurred only with stimulation during
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the delay phase. The authors concluded TMS could enhance working memory performance under

specific conditions of time, target, and stimulation frequency.

Var(Θ) = 1− 1
n

√
(

n

∑
i=1

cos(Θi))2 +(
n

∑
i=1

sin(Θi))2 (4.1)

ω =
1

Var(Θ)
(4.2)

We determine the power spectral density of the pre- and poststimulation preprocessed EEG

data by first computing the power spectra of the signal extracted in the time domain. The Fast

Fourier Transform was applied first to yield a phasor at each wave number. We then determined the

magnitude of the phasors in order to ascertain power at a specific frequency. Phase was extracted

from the directionality of the phasor. The initial phase analysis provided a phase histogram that

was used to derive circular statistics. Care was taken to calculate such statistics while respecting

the periodicity of the phase domain. The expression in equation (4.1) was used to compute phase

variance; the expression in equation (4.2) was used to compute the phase synchrony index (PSI).

Figure 4.1 illustrates the effect of 10 Hz rTMS on phase synchronization in a representative subject

that was actively stimulated. Note the difference of poststimulation PSI for active compared with

sham 10Hz rTMS.

Figure 4.2 illustrates the power spectrum of the alpha band frequencies in the same region of

the DLPFC before and after 10 Hz rTMS. After stimulation, the same cortical area experienced

a nontrivial increase in mean alpha power and an increase in alpha peak frequency. Increases in

power and shift of the alpha peak are associated with a shorter reaction time, as reflected in Table

4.1. Finally, our data also show an association between active stimulation and the degree of induced

alpha band phase synchrony in the stimulated region. Sham stimulation was was not associated with

perturbations of alpha power, frequency, synchrony, or improved performance.

4.2.1 The Sternberg Paradigm
Task stimuli and computation of reaction timess and accuracy were derived using Presenta-

tion 9.90 software (Neurobehavioral Systems, San Francisco, CA). A single trial of this task was

composed of four phases: stimulus (a 5- or 7-item string of uppercase consonants and vowels was

presented at the center of a 19 inch video monitor for 1.5 sec), delay (participants focused on a

fixation marker appearing at the center of the computer monitor while maintaining the previous

string in memory for 1.5 sec), probe (a single uppercase letter appeared at center screen for 3 sec),

and response (participants were instructed to decide as quickly and accurately as possible whether

the probe was present in the previous string, and to respond by pressing one of two keypad buttons; if
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(a) (b)

(c) (d)

Figure 4.1: Comparison of pre- and poststimulation phase plots support the prediction that 10
Hz rTMS directed to the prefrontal cortex induces alpha frequency synchronization while sham
stimulation shows no such effect. The phase histograms of both the sham and active prestimulation
groups ((a) and (c), respectively) show a uniform distribution of phase at rest. After stimulation,
the sham group shows a placebo effect (b) while the active group exhibits a drastic change in phase
synchrony (d).
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Figure 4.2: Prefrontal cortical broadband power spectral density in a subject in the active 10Hz
rTMS group exhibits an apparent increase in broadband power with stimulation. 10Hz rTMS may
also perturb alpha mean frequency: note the poststimulation induction of an alpha-1 peak not present
prestimulation.
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Table 4.1: Sternberg task reaction time pre- and poststimulation with 10 Hz repetitive transcranial
magnetic stimulation by group. These data show that working memory is robustly manipulated by
application of rTMS.

δF F Sig
PreStim RT : BetweenGroups 1 0.720 0.407

WithinGroups 18
PostStim RT : BetweenGroups 1 5.700 0.028

WithinGroups 18
RT Di f f erence: BetweenGroups 1 15.262 0.001

WithinGroups 18
Le f t PostStim RT : BetweenGroups 1 7.378 0.014

WithinGroups 18
Le f t RT Di f f erence: BetweenGroups 1 17.676 0.001

WithinGroups 18
Right PostStim RT : BetweenGroups 1 3.981 0.061

WithinGroups 18
Right RT Di f f erence: BetweenGroups 1 11.388 0.003

WithinGroups 18

there was a response within 3 sec, it was recorded, and the next trial began. If there was no response,

the trial was marked as an error, and the next trial began). A minimum baseline accuracy of 80%

on the 5-item, and 70% on the more difficult 7-item task was required to continue. If necessary,

participants were allowed to repeat each of the training paradigms once and were disqualified if

they failed to make the minimum accuracy score. Training and testing phase item strings had equal

numbers of randomized and counterbalanced true positive and true negative probes.

4.2.2 Repetitive Transcranial Magnetic Stimulation
Increasingly, transcranial magnetic stimulation (TMS) is used as a research tool for mapping

brain function and modification of neural processes during working memory tasks that engage PFC.

TMS has been shown to be a safe, noninvasive means of stimulating the awake and alert human

cerebral cortex brain in carefully screened subjects [159]. For instance, Koch et al. [81] used a

repetitive TMS (rTMS) approach to disambiguate the spatial distribution and reciprocal interactions

of different regions of the parietofrontal network in healthy human participants performing a spatial

working memory task. These researchers compared the effect of 25 Hz rTMS on neural activity

within PFC and posterior parietal cortex (PPC) during the delay and decision phases of the task.

Trains of rTMS at 25 Hz were applied to PPC, premotor cortex, and right DLPFC alternatively

during the two phases. They found that TMS during the delay phase in both parietal cortex and

DLPFC interfered with performance. When 25Hz rTMS trains were applied during the decision
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phase, they observed interference in DLPFC, but not in PPC or premotor cortex. The researchers

interpreted that their results suggest two distinct neural circuits may exist in DLPFC: A local neural

network subserving decisional processes and a second neural population functionally interconnected

with PPC that was activated when spatial information was maintained temporarily in working

memory [81].

Brandt et al. investigated the role of DLPFC and PPC in a visuospatial delayed response

task [24]. Using high frequency rTMS, the researchers interfered temporarily with cortical activity

in DLPFC and PPC during the maintenance period in order to determine whether rTMS to DLPFC

or PPC during maintenance affects accuracy of memory guided saccades. Stimulation over DLPFC

significantly impaired accuracy of amplitude and direction of saccades. They concluded that,

within this network, DLPFC mediates the mnemonic representation and PPC with the sensory

representation of spatially defined perceptual information [24].

Studies of the chronometrics of working memory phase evolution have used TMS in conjunction

with fMRI to induce a temporary lesion that is intended to interfere with task performance, hence,

identifying a causal role for the targeted cortical region in mediating working memory task perfor-

mance. Such studies have shown that the effects of rTMS on cognitive performance are dependent

on domain, experimental design, cortical target, stimulation frequency, timing, and duration of

TMS application relative to the stage of task processing. Consequently, most studies of working

memory and the role of PFC have been aimed to identify whether and precisely when functional

disruption of PFC would degrade working memory performance. For example, Mull and Seyal

aimed to determine whether transient functional disruption of DLPFC would impair performance

in a working memory task in which participants were shown sequences of letters and asked to

decide if the letter just displayed was the same as the letter presented three trials back [106].

Single pulse TMS was applied over DLPFC between letter presentations. TMS to left DLPFC

caused increased errors relative to controls. The authors concluded that their results supported the

idea that DLPFC played a crucial role in this paradigm. Deleterious effects of TMS to LPFC on

working memory were also observed by Osaka et al. in a study using paired pulse TMS [111].

Albeit fewer in number, studies showing beneficial effects of TMS on working memory have also

observed a critical role for stimulation frequency and timing relative to the phase of task evolution.

For example, individual power and peak frequency attributes of alpha band oscillations have been

shown to predict performance on a working memory task [79, 94]. In a previous study, the present

authors designed a combined EEG–TMS study of the interaction between working memory Ne,

alpha band oscillations, and 10 Hz rTMS applied to DLPFC prior to the onset of a Sternberg task [7].

We predicted first that compared with sham 10 Hz rTMS would significantly reduce psychomotor
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processing speed indexed as RT. Second, we predicted that improvement in RT would be associated

with a 10Hz rTMS induced increase in pretask alpha power and pretask alpha band phase synchrony.

We identified a robust association between 10 Hz rTMS perturbed individual mean peak alpha

frequency and alpha spectral phase synchrony on task performance.

4.3 Experimental Methods
4.3.1 Experimental Design

This was a single blind, sham controlled study (Figure 4.3). In 32 healthy participants, active or

sham 10 Hz rTMS was directed to either right or left DLPFC 10 sec prior to the onset of a Sternberg

short term verbal recognition memory paradigm. Five 5-sec trains of 10 Hz rTMS (for a total of

250 pulses) were applied to DLPFC ending 10 sec prior to task onset. Stimulation was followed by

48 single trials of 6- and 8-item strings of capital letters that were randomized and counterbalanced.

Next, 250 additional pulses of 10 Hz rTMS were delivered to DLPFC of the same side, followed by a

second set of 48 single trials of 6- and 8-item strings of capital letters. After a 15- to 20-min rest, the

same sequence of events was repeated on side 2. Outcome measures were pre- and poststimulation

accuracy, reaction times, and neural efficiency by stimulation group.

4.3.2 Participants
The Investigational Review Boards for the University of Utah and Veterans Health Affairs of the

Salt Lake City Health Care System approved this study. Thirty-four medically healthy, right handed

participants, ages 18–55 years, from the University of Utah and the Salt Lake City community were

admitted to the study free of exclusionary conditions for TMS [159] and without a past or present

psychiatric disorder. All participants had a negative screen for drugs of abuse on the morning of the

study. Participants were instructed not to drink caffeinated beverages for 12 hours prior to testing.

Participants were compensated for their time. Group assignment to stimulation (active or sham) and

side first stimulated (S-1) were pseudorandomized and counterbalanced.

4.3.3 Paradigm Training
Task stimuli and computation of reaction times and accuracy were derived using Presentation

9.90 software (Neurobehavioral Systems, San Francisco, CA). A single trial of this task was com-

posed of four phases: stimulus (a 5- or 7-item string of uppercase consonants and vowels was

presented at the center of a 19-inch video monitor for 1.5 sec), delay (participants focused on a

fixation marker appearing at the center of the computer monitor while maintaining the previous

string in memory for 1.5 sec), probe (a single uppercase letter appeared at center screen for 3

sec), and response (participants were instructed to decide as quickly and accurately as possible
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whether the probe was present in the previous string, and to respond by pressing one of two keypad

buttons; if there was a response within 3 sec, it was recorded, and the next trial began. If there

was no response, the trial was marked as an error, and the next trial began). A minimum baseline

accuracy score of 80% on the 5-item, and 70% on the more difficult 7-item task was required to

continue. If necessary, participants were allowed to repeat each of the training paradigms once and

were disqualified if they failed to make the minimum accuracy score. Training and testing phase

item strings had equal numbers of randomized and counterbalanced true positive and true negative

probes.

Participants were trained and tested between 11:00 a.m. and 1:00 p.m. They were familiarized

with the task and response procedures by practicing to use their right first finger to press one of

two buttons (YES or NO) on a handheld keypad as comfortably quickly as possible while attending

to a fixation cue at the center of a 19-inch computer monitor. Baseline values of accuracy and

reaction time were derived from 20 randomized and counterbalanced 5- and 7-item single trials of

the Sternberg task.

4.3.4 Subject Stimulation and Testing
During the experiment, participants were comfortably seated in an individually adjustable chair.

Participants single pulse TMS resting motor threshold was determined by identification of the lowest

level of TMS machine output that would induce a visible contraction of the first dorsal interosseous

muscle of the dominant hand on 5 of 10 pulses delivered with a 10-sec interpulse interval. A

MagStimTM Super Rapid stimulator with physically identical sham and active air cooled figure-

of-eight coils (Magstim, Whitland, Dyfed UK) was used to deliver TMS pulses directed to either

left or right DLPFC. The sound generated by capacitor discharge was identical in the two coils; the

sham coil did not generate a sensorimotor stimulus. A custom designed mechanical coil holder was

used to maintain contact between the midpoint of the 70 mm figure-of-eight coil and the location

of the frontal scalp overlying right or left DLPFC. To determine the scalp correlates for targeting

of DLPFC, we used the measures 1020 EEG system [68]. Positioning of the coil on the scalp was

determined by the measured position of EEG sensors F3 (left) and F4 (right). Participants used

disposable in ear sound protection during the experiment. Side stimulated first (S-1) was randomly

assigned and counterbalanced.

A brief period of acclimation to the laboratory environment was followed by the onset of five

5-sec trains of 10 Hz rTMS with an intertrain interval of 10 sec at 100% of resting motor threshold

for a total of 250 pulses of 10 Hz rTMS. Stimulation ended 10 sec prior to the onset of the first 48

single trials of the task. In order to minimize the effects of practice on performance, single trials in

the testing phase were composed of more difficult 6- or 8-item uppercase letters pseudorandomly
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presented and counterbalanced for true positive and true negative probes. This sequence was

repeated once more on S-1. Following a 15- to 20-min rest period, the entire sequence was repeated

on S-2; hence, the study totaled 192 single trials and 1000 pulses of 10 Hz rTMS.

4.4 Experimental Results
Thirty-four right handed men and 12 women recruited from the Salt Lake City, Utah community

participated in this study. Two subjects in the actively stimulated group were unable to complete

the study due to the development of moderate muscle contraction headaches. In both cases, the

headaches spontaneously resolved. There were no adverse events in the sham group. All participants

achieved the minimum 5- and 7-item training accuracy on their first attempt.

4.4.1 Analyses
Skewness and kurtosis in the distribution of dependent variables were identified and normal-

ized with square root transformation. Repeated measures ANOVA with Bonferroni correction for

multiple comparisons was used to identify the main effects of stimulation, S-1, and interactions

between stimulation and S-1. Dependent variables were covaried with resting motor threshold and

age. Pairwise comparisons were used to determine the within subject effects of active and sham 10

Hz rTMS on accuracy and reaction time by task load.

4.4.2 Demographics
There was no difference in mean age between stimulation groups or by sex. Mean age by

Stimulation group: active = 28.6 (σ = 5.68); sham = 30.88 (σ = 11.2); independent samples two

tailed t test for equality of means; equal variance not assumed: t(31) = 0.707, p = .478. Mean age

by Sex: male = 28.75 years; female = 29.50 years; two tailed t test: t(30) = 0.25, p = .80. There

was equal distribution of the sexes between groups [Pearson uncorrected chi-square test: χ2(1,

n=32)=0.139, p=.710].

4.4.3 Resting Motor Threshold
The groups were evenly matched for the intensity of stimulation indexed as resting motor

threshold and expressed as a percent of maximum machine output [active resting motor threshold =

67%, sham = 66%; two tailed t(34) = 0.252, p = .4484].

4.4.4 Statistical Analysis
There was no main effect of S-1, and no interaction between S-1 and stimulation. Measures

of dependent variables did not covary with resting motor threshold, sex, or age. In the absence
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of a main effect of S-1, prestimulation and poststimulation values of dependent variables were

collapsed across side for subsequent analysis. There were no prestimulation differences between

groups regarding accuracy, reaction time, or neural efficiency. There was, however, a robust main

effect of stimulation on poststimulation reaction time and neural efficiency, but not accuracy, as

presented in Tables 4.2 and 4.3.

In this study, 10 Hz rTMS was directed to right or left DLPFC 10 sec prior to task onset, pre-

dicting there would be a main effect of stimulation on accuracy, reaction time, and neural efficiency.

We observed a robust main effect of stimulation in the comparison of poststimulation reaction time

and neural efficiency, but not accuracy. The mean poststimulation reaction time in the active group

was 219 msec (±0.16) faster than the prestimulation baseline, whereas the mean poststimulation

reaction time in the sham group was 30 msec (±0.16) slower than the mean baseline reaction time.

Pairwise comparisons of pre- and poststimulation reaction time, accuracy, and neural efficiency

were computed by comparing the relatively easier 5- and 7-item (prestimulation) measures with

the 6- and 8-item (poststimulation) measure. Pairwise comparisons of the 5- and 7-item training

reaction time data (Table 4.4) show a small but nonsignificant within subject difference in both

groups for this comparison. Specifically, pairwise comparisons in the actively treated group showed

that compared with the larger 6-item and 8-item poststimulation loads, the 5-item prestimulation

reaction time was slower when the converse would be expected. Similar results were seen when

the comparison of the prestimulation 7-item reaction time was compared with the poststimulation

8-item reaction time. In the sham group, the same comparisons failed to show a difference for pre-

or postmeasures of reaction time, accuracy, or neural efficiency (Figures 4.4 and 4.5).

4.5 Visualizing Working Memory
Signals and time series represent one of the most ubiquitous forms of data in science and

engineering. With the advent of electronic equipment, time series acquisition and analysis became

commonplace in many fields of research.

The analysis of time series data relies on the detection of both the obvious and the subtle spectral

properties of signals. More apparent aspects of signals, such as periodicity and general patterns and

trends, are often determined by direct inspection of the time series itself. Weber et al. revived a

method of time series visualization first proposed by Antonio Gabglio in 1888 whereby the input

data were visualized on an expanding spiral [56, 161]. This method allows periodicity of a signal

to be established visually. Exploring recurrences, patterns, and periodicity while preserving the

temporal locality of each occurence was discussed in arc diagrams by Wattenberg [160].

Examining time series data to extract patterns, regardless of periodicity, is another important

aspect of signal processing. Of particular interest is the occurrence of a given pattern or anomaly in



55

Table 4.2: Effects of 10 Hz rTMS on the accuracy, reaction time, and neural efficiency of working
memory.

Descriptive Statistics
Active Sham

Mean SD Mean SD
Pre rTMS Accuracy 0.920 0.07 0.970 0.03
Post rTMS Accuracy 0.870 0.06 0.860 0.05
Pre rTMS Reaction Time 1.117 0.08 1.010 0.10
Post rTMS Reaction Time 0.874 0.05 1.014 0.11
Pre rTMS Efficiency 0.832 0.17 0.969 0.21
Post rTMS Efficiency 0.995 0.13 0.866 0.20
Mean Efficiency Change 1.200 0.30 0.90 0.10

Table 4.3: Significance analysis of the effects of 10 Hz rTMS on the accuracy, reaction time, and
neural efficiency of working memory.

Repeated Measures: ANOVA
F(d f = 1,30) Sign f icance

Pre rTMS Accuracy 0.019 0.892
Post rTMS Accuracy 0.012 0.915
Pre rTMS Reaction Time 3.170 0.086
Post rTMS Reaction Time 7.380 0.011
Pre rTMS Efficiency 1.628 0.212
Post rTMS Efficiency 5.344 0.028
Mean Efficiency Change 14.253 0.001

Table 4.4: Pairwise comparisons of the effects of 10 Hz rTMS on accuracy, reaction time, and
neural efficiency.

Two-tailed Pairwise Comparisons
t p

Active
Pre-vs-Post Accuracy 2.362 0.0340
Pre-vs-Post Reaction Time 4.417 0.0010
Pre-vs-Post Neural Efficiency -4.993 0.0002
Sham
Pre-vs-Post Accuracy 3.113 0.008
Pre-vs-Post Reaction Time -1.264 0.228
Pre-vs-Post Neural Efficiency 0.986 0.342
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Figure 4.4: Comparative effects of active and sham 10 Hz rTMS on working memory reaction
time. Compared with sham, the group treated with active 10 Hz rTMS applied to the dorsolateral
prefrontal cortex 10 sec. before onset experienced a 219ms enhancement of reaction time.
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more than one time series. Yankov et al. describe a system in which dot plots are used to assess and

visualize the similarities and differences of two signals [164]. Likewise, Lin et al. demonstrated

that symbolic representations of time series can be used to detect, extract, and visualize nontrivial

patterns found across many distinct signals [91, 92].

When processing collections of signals, it is important to align the various time series to ensure

that the acquisition times correlate correctly. This alignment is essential for the proper extraction of

features in the signal. To alleviate the problems associated with acquisition timing errors, Chu et al.

developed time warping schemes to properly align these data [34]. Additionally, Aach et al. present

a detailed discussion of various time warping algorithms as they are applied to the time series based

evaluation of RNA expression collected for large numbers of genes [2].

Visualization of raw time series data is effective in extracting overt qualities of the input data.

However, subtle features, such as estimated power spectral density, require a different class of pro-

cessing techniques. Although the theory of frequency analysis for time series had been formalized

in the 19th century, its broad application was not realized until relatively recently [23].

The standard frequency analysis techniques, Fourier and Fast Fourier Transforms, treat entire

signals as atomic elements. This type of analysis loses the time dependent aspect of evolving time

series. To address this, the Short Time Fourier Transform (STFT) is often used to produce a time

frequency plane representing the frequency content of a signal as it evolves in time [5]. Another

decomposition that highlights time frequency evolution is the Wavelet Transform. Stéphane Mallat

furthered hierarchical wavelet based techniques in engineering applications [96] enabling wavelet

transforms to be applied to a wide range of disciplines and signal types [12, 101].

Aggregating related images into a single visualization is often an effective means of determining

relationships between the various members of the input set. Design Galleries allow an intuitive

means of exploring large parameter spaces by examining images organized by the parametrization

used to generate them [97]. Dimensionality reduction techniques such as Locally Linear Embedding

[126] and IsoMap [152] are solutions that preserve local neighborhood relationships. These methods

often present data in an exploration interface similar to design galleries. Although these methods

provide solutions to many of the problems encountered during the visualization of EEG data, no

method exists to adequately visualize these data in their entirety; instead, each method focuses on a

small subset of the dimensions inherent in the data.

4.5.1 Data Acquisition and Processing
Many techniques developed to inspect biological time series data have proven to be useful in

various analysis tasks, but they do not focus on the spectral properties fundamental to the study

of working memory. The applications of time frequency analysis and visualizations to biological
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signals are particularly interesting. McNames et al. explored various visualization techniques

applied to different classes of biologically generated time series [100]. With the introduction of

highly accurate, high density electro- and magnetoencephalography arrays, a flood of new data

regarding signals generated in the brain has made the simultaneous visualization of many time

series a necessity. A large body of work has focused on the processing and visualization of multiple

signals acquired through EEG [150, 151].

In order to properly study the function of working memory in the human brain, data in the form

of EEG time series are acquired, processed, analyzed, and interpreted. Unfortunately, while several

visualization techniques are applicable to EEG data, a more specific set of requirements is imposed

by the study of spectral dynamics in working memory. One requirement, the ability to visualize

many time frequency planes simultaneously, precludes the use of many common EEG visualization

methods from being employed. While these methods are both practical and useful in the study of

EEG data as a whole, they do not provide an adequate solution to the specific needs of this study.

Our study of working memory began with the collection of 64 channel EEG data sampled at 1

kHz during a working memory task. Each participant in the study was assigned to either the control

or experimental group to determine the rTMS stimulation parameters. The working memory task

was administered using a 142 single trial Sternberg paradigm [145] after the application of rTMS

directed at the DLPFC, the brain area thought to be primarily responsible for working memory

function. The resulting dataset is a collection of 64 individual signals (one signal for each EEG

electrode) with labels segmenting the signals into each of the 142 single trials. Combined with

sensor positions, each EEG signal can be reliably mapped to the spatial location from which it was

collected.

4.5.2 Data Analysis
After acquisition, each segmented signal must be processed and analyzed. We examine the

spectral evolution of the alpha frequencies. These analyses require the use of time frequency

decompositions to extract the spectral content from the EEG data. Each decomposition maps a

one-dimensional, temporal input signal to a two-dimensional domain of time and frequency. In this

work, we take advantage of the various properties of the S-Transform [147]:

S(τ, f ) = | f |√
2π

∫∞
−∞ h(t)e−

(t−τ)2 f 2

2 e−i2π f tdt,

where h(t) is the input signal, and f and τ are the frequency and time point being calculated,

respectively.
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While there exist several transforms capable of representing a signal in the time frequency

domain, each transform brings with it a unique set of advantages and restrictions. The S-Transform

is similar to the generalized Wavelet Transform [96], as it represents a similar packing of the

time frequency plane with basis atoms. An important consequence of the S-Transform’s choice

of basis is a direct mapping to the Fourier Spectrum. In contrast, both the Continuous and Discrete

Wavelet Transforms represent frequency in terms of the dyadic dilation of the basis atom — the

pseudofrequency. Figure 4.6 illustrates the decomposition of a signal in time to a time frequency

representation of energy density. This time frequency plane shows alpha activity in the parietal

cortex evolving over time.

The notion of frequency in terms of the Fourier Spectrum is important for the study of working

memory. The Fourier Domain forms a well understood base for analysis, whereas wavelet based

methods rely on more abstract mappings to frequency. Additionally, the evolution of the frequency

spectrum over time is a key component in the study of brain mechanics. The inclusion of the

S-Transform into our processing pipeline was motivated by its ability to provide a direct mapping to

the Fourier Domain while maintaining an adaptive resolution scheme like the Wavelet Transform.

As with any time frequency representation, the image like nature of the two-dimensional domain

complicates the simultaneous visualization of a large collection of time frequency planes. The

expression of a dataset of this type as a whole is important when exploring the correlations and

interdependencies between the various signal sources comprising the data.

4.5.3 Data Visualization
Because the time frequency data collected and derived from EEG signals are multidimensional,

no single visualization technique can be employed to examine every aspect of them. Topographic

maps show EEG data collected on the scalp by coloring a surrogate head according to the voltage

identified at that time and position [82]. This organization allows topographic maps to present a

view of EEG data that reinforces the spatial organization given by the physical sensor locations.

Instead of overlaying multiple EEG traces to accommodate many sensors to show general trends in

collected signals, topographic maps like those shown in Figure 4.7 present two-dimensional views

of the data. Viewing the data in this manner enhances the spatial information associated with alpha

band activation across the entire cortical area covered by the EEG sensors.

Typically, topographic maps display information associated with signal voltages acquired from

EEG sensors. However, Figure 4.7 shows a generalization of this technique using scalars associated

with spectral power at the alpha frequencies. This is done to present spatial information associated

with the given frequency band. Although topographic maps enable scientists to visualize the spatial

relationships of EEG signals acquired on the scalp, they can only be formed with respect to a single
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Figure 4.6: The Stockwell Transform of a single sensor’s data. (Top) A plot of the raw data trace.
(Bottom) The S-Transformed representation of the sensor’s raw data. Since this visualization shows
all representable frequencies at each timestep, this view allows the time series’ frequency evolution
to be thoroughly analyzed.
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time and scalar value. Animation of topographic maps helps visualize time dependent data, but

an overview of the spectral dynamics is lost. This limitation inhibits the visualization of spectral

properties as they evolve in time and frequency.

Unline topographic maps that use individual samples from each time frequency plane, mul-

tidimensional scaling techniques, such as IsoMap, [152] produce groupings of time frequency

planes using each plane’s entire content. Figure 4.8 displays the result IsoMap’s grouping using

our distance measure described in Section 4.5.4. The figure demonstrates that IsoMap’s pair wise

distance comparison provides a mechanism that appropriately clusters time frequency planes with

similar features. While IsoMap provides a representation of all planes in relation to one another

it is difficult to visualize all time frequency planes simultaneously using this view of the dataset.

We adopt the notion of distance measures for grouping spectral planes to construct time frequency

volumes.

4.5.4 Constructing Time Frequency Volumes
Because EEG collected at the scalp measures voltage generated by a relatively large portion

of the cortex, neighboring sensors often exhibit strong correlations in the acquired time series.

However, as processing tasks migrate to different parts of the brain, these correlations strengthen and

weaken accordingly. Since working memory is identified by recognized spectral patterns, scientists

can measure the overall performance of a person’s working memory [7].

Exploring a dataset in terms of the correlations exhibited between its individual components

remains an effective way to explore and analyze data [155]. Gonzalez and Woods show that

correlation provides an accepted method for measuring the similarity between two different images

[63]. In the case of this working memory study, correlations are found between time frequency

images collected by the various sensors and the resulting decomposition of the given signal. We

use the correlation between these image planes to measure similarity between the time frequency

decompositions we calculate.

We analyze working memory through correlations between the various sensors in the EEG

network and the spectral patterns associated with its activation. Since the degree of correlation

and its time lag are both important in determining links between areas of the brain, we must respect

these values when determining similarities between time frequency planes.

The degree of correlation between images f and g is given by the global maximum of the

convolution image:

c = max( f ?g).
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We combine the degree of correlation with the euclidean distance between the center of the time

frequency plane, o( f ), and the location of the maximum correlation to form a weighting coefficient

c′x,y:

c′x,y = ‖o( f )−argmax( f ?g)‖2,

where x and y represent the coordinates of the global maximum of f ?g. Since the analysis of time

frequency evolution of working memory places more importance on frequency localization than

time localization, a two-dimensional gaussian weighting function is used to independently control

any shifts in the correlation separately in the time and frequency domains:

w(x,y) = e
−( (x−ox( f ))2

2σ2
t

+ (y−oy( f ))2

2σ2
f

)
,

where σx and σy are the gaussian parameters in each dimension and ox( f ) and oy( f ) are the x and y

components of the offset of the global maximum and the center of the time frequency plane. This

Gaussian is then combined with the previous weighting coefficients to yield the distance measure:

‖ f ,g‖2 = 1− c′x,y · c ·w(x,y).

This formulation incorporates the time lag of correlations, enhancing the analysis of spatial orag-

nization of neural circuitry.

This distance measure describes the normalized similarity between two time frequency repre-

sentations, f and g. By incorporating the maximum correlation’s distance from the center of the

image, changes corresponding to shifts in both the time and frequency domains are independently

weighted. This independence is important to the study of brain mechanics as spectral properties

appearing at different times indicate the order in which various areas of the brain are activated by a

single stimulus. Shifts in the frequency domain are suppressed by narrowing the gaussian weighting

function in the frequency domain. This weighting prevents frequencies generally indicative of

processing outside the context of working memory from influencing the ordering.

4.5.4.1 Ordering the Time Frequency Volume
The function ORDER-VOLUME describes the greedy process governing the pair wise compar-

isons used to form the correlated signal volume. The ORDER-VOLUME method takes a collection

of time frequency planes, C, and a user defined key plane, k as inputs to form the final ordering of

the correlated volume, Cv. As the ordering is generated by comparing pair wise distances across the
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time frequency collection similarly to the comparisons performed in IsoMap, the resultant volume

retains neighborhoods of similar planes.

ORDER-VOLUME(C,k)

1 output = List()
2 while size(output) < size(C)
3 do
4 Vc = List()
5 for each Ci in C
6 do
7 cor = correlate(Ci,k)
8 Vc.append(cor)
9

10 output.push(Vc.max())
11 Vc.remove(Vc.max())
12 k = Vc.max()
13
14 return out put

The ORDER-VOLUME method is responsible for computing all pair wise correlations with the

user specified key plane. This operation is equivalent to traversing a fully connected graph by locally

maximizing path lengths defined by our distance measure. By placing the highest correlated plane

in the output volume and using it as a new key plane to measure similarities with the remaining

planes, a greedy ordering is induced that highlights common features in a local setting while also

forming a global ordering separating time frequency planes that are substantially different from the

key plane. In this way, the ORDER-VOLUME method forms an approximation to a multidimensional

scaling solution.

Figure 4.9 demonstrates how the appropriate placement of individual slices within a volume

affects the correlation between neighboring planes. In this figure, a synthetic dataset was reordered

based on the global correlation with a key plane as well as our ORDER-VOLUME method. Since the

ORDER-VOLUME method of progressive correlation greedily places highly correlated planes into

the volume, it has a greater degree of interslice correlation than does this global method.

4.5.4.2 Correlation and Coherence
Because the greedy approach to ordering by correlation described above is sensitive to user

specified input, different orderings of the same time frequency collection are generated for different

user defined key planes. This flexible ordering of the volume is useful in exploring the spectral

dynamics both across times and frequencies of interest as they change due rTMS application.
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Figure 4.9: Interslice correlation depends greatly on the order the slices appear in the new volume.
Ordering the slices of a synthetic dataset using a global correlation method does not maintain high
correlation levels throughout the entire volume as our greedy progressive correlation.
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Coherence between slices is important to maintain because as correlation measures the global

similarity between two inputs, coherence measures the similarities between them on a feature-by-

feature level in the Fourier Domain. The coherence, r(x,y), of two signals is given by the normalized

cross spectral density of the two inputs, where the cross spectral density is Rxy and the autospectral

density is Rxx [32]:

r(x,y) = R2
xy

RxxRyy

To measure the coherence of an ordered volume of time frequency planes, a pair wise measure of

coherence is made. Coherence and correlation are similar metrics. The greedy approach presented

here maintains high levels of coherence between slices of the volume as compared to other methods.

This coherence allows scientists interpreting the volume to track specific activation patterns as the

brain activity moves throughout the cortex.

While this technique is well suited for visualizing features present in a dataset composed of

related, yet independent members, it can also be used to enhance the coherence between planes

in other volumetric data. Figure 4.10 depicts a synthetic dataset consisting of multiple, concentric

spheres. Due to the spherical nature of the dataset, it is symmetric about any plane intersecting

the center of the volume. Since symmetry implies that congruent slices of a volume are separated

by a number of other slices, our greedy approach to coherence ordering will create volumes that

are not symmetric with respect to the planes being analyzed. While symmetries in datasets pose

interesting questions regarding the reconstruction of volumetric datasets such as in Figure 4.10, it

is advantageous when aggregating related, yet independent, time frequency planes to know that

symmetry in the resulting volume will be avoided. Avoiding symmetry in time frequency volumes

allows features in time frequency planes to be ordered such that they maximize the coherence

between them and their features.

4.6 Discussion
This study compared the relative effects of active and sham 10 Hz rTMS directed to the right and

left DLPFC on psychomotor processing speed and accuracy, indices of neural efficiency, in healthy

participants performing the Sternberg task, a short term verbal recognition memory paradigm that

has been shown to model the association between working memory load and task behavior [146].

Previous studies of the role of DLPFC in working memory have been designed to identify the

temporal and spatial dynamics of the computational role of DLPFC in a working memory network.

For example, Osaka et al. investigated the role of executive function in human left DLPFC in

eight normal participants using low frequency TMS after fMRI activation confirmed a role for
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left DLPFC [111]. TMS was applied to left DLPFC immediately after subjects finished reading

sentences from the reading span test, a measure of verbal working memory. They found a significant

deterioration of performance in this working memory task, hence, supporting a crucial role for

DLPFC in working memory. Koch et al. used an rTMS approach to investigate the temporal and

spatial dynamics of the parietofrontal network in normal subjects performing a spatial working

memory task [81]. They aimed to compare neural activity in the relevant areas during the delay and

decision phases of the task. Trains of rTMS at 25 Hz were directed to PPC and right DLPFC during

the two phases. Premotor cortex was used as a spatial control. They observed that TMS interfered

with performance during the delay phase in the posterior parietal and DLPFC sites. There was no

effect for the control site. When rTMS trains were applied during the retrieval phase, interference

was observed only in DLPFC. The authors concluded that their study identified an example of

parallel processing in the parietofrontal network of spatial working memory during the delay phase.

The results of Koch et al. represent additional evidence of the critical role of DLPFC during both

the delay and the retrieval phases of a working memory task. Mottaghy et al. observed significant

interference with working memory reaction time after 180 msec of left PFC stimulation [103].

Results in a similar vein were observed by other researchers [104, 106, 117]. The present study was

designed, in part, to identify a putative role for DLPFC in the neural efficiency of a working memory

task. Accuracy declined to a similar extent in both groups, likely due to the effects of memory load,

hence, supporting the conclusion of previous studies that also found no effect of TMS on working

memory task accuracy [42, 94, 95]. In turn, such findings suggest that the effect of 10 Hz rTMS

on reaction time when directed to DLPFC 10 sec prior to task onset mediates the enhancement of

neural efficiency. Additionally, these data suggest that the retrieval phase of this working memory

task may be the temporal boundary of the observed effects.

Results of the present study are in line with Rypma et al., who set out to identify the neural

bases of interindividual differences in cognitive performance [128]. They had participants perform a

simple speed of processing task during fMRI scanning. In certain prefrontal cortical regions (PFC),

faster performers used fewer neural resources than slower performers, whereas in other PFC and

parietal regions, they used more. These results were interpreted to suggest that a critical determinant

of interindividual differences in cognitive performance was the efficiency of interactions between

brain regions. In order to perform well, slower individuals may utilize more prefrontal resources

than faster individuals [128].

Taking into account the lack of difference between groups in baseline reaction time (Table 4.5),

together with a robust reaction time enhancement with active stimulation, and considering that

participants in both groups had equal practice experience over the course of experiment, one might
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Table 4.5: Pairwise comparisons of reaction time and memory load for each stimulation group. In
the actively stimulated group, the 5-item prestimulation Reaction Time (RT) is slower than the 6-
and 8-item variants; in the sham group, the 6- and 8-item reaction times are slower than the 5-item
variants, as would be expected.

Mean
Group RT (I) RT (J) Di f f erence(I− J) SEM Signi f icance
Active 5-item 6-item 0.278 0.07 0.00610

8-item 0.252 0.07 0.0170
7-item 6-item 0.167 0.03 0.0001

8-item 0.141 0.03 0.0005
Sham 5-item 6-item -0.046 0.03 1.0000

8-item -0.101 0.04 0.1930
7-item 6-item 0.098 0.04 0.1450

8-item 0.052 0.05 1.0000

plausibly argue that our data support the conclusion that the poststimulation difference in task

performance between groups is best explained as a difference between active and sham stimulation

(Table 4.5). Even so, we recognize valid challenges to these conclusions. Our results were specific

to accuracy, reaction time, and neural efficiency; even so it is possible that the effects were due

to a priming effect of rTMS on psychomotor functions that are also mediated through prefrontal

networks [124, 157]. Although we would suggest that it is unlikely the observed effects are strictly

due to learning, inasmuch as both the sham and active rTMS groups had equal opportunity to

practice, we recognize there may have been an interaction between 10 Hz rTMS and the learning of

a response strategy that results in faster but not more accurate responses. An additional challenge

to our conclusions is related to the capacity limits of short term memory [39, 98]. To overcome

such limitations, study subjects may devise strategies, such as chunking to successfully perform

at supracapacity limits, which can affect neural activity in a complex way, leading to potential

complications in the interpretation of results. In view of the high capacity nature of the task we

used in this study, it is possible that chunking or other mnemonic strategies may have been used to

manage supracapacity aspects of task performance.

The underlying neurobiological mechanisms subserving the effects of TMS on working memory

neural efficiency are unclear. In a previous exploratory study, the present authors found that 10

Hz rTMS applied to DLPFC in healthy humans resulted in a significantly enhanced measure of

individual mean peak alpha frequency, and enhanced within band 1012 Hz phase synchrony [7].

These results are in line with Klimesch et al., who showed that mean peak alpha spectral frequency

(individual alpha frequency) is related to memory performance [79]. Klimesch et al. showed that

compared with attentional demands, memory performance exerted the strongest effect on individual
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alpha frequency. The difference in individual alpha frequency between good and bad memory per-

formers peaked when subjects retrieved information from memory. During retrieval, the individual

alpha frequency of good performers was 1.25 Hz higher than that of bad performers.

Brignani et al. found that low frequency TMS over primary motor cortex induced a synchro-

nization of the background oscillatory activity in the stimulated region [26], hence, suggesting

that TMS effects may involve short term modification of the neural circuitry sustaining motor

behavior [26, 77, 89]. Emergent evidence suggests that a diminished capacity to synchronize

distributed neural assemblies mediating working memory may be a critical and enduring underlying

mechanism of impaired working memory in a broad array of seemingly disparate neuropsychiatric

disorders such as schizophrenia [10, 51, 55], depression [93], Alzheimers disease [112, 165], and

autism [156].

Despite such recognition, there is no treatment for impaired memory in any such disorder. TMS

has been shown to mediate events at the neural synapse [59]. In light of previous work, this suggests

that such effects may be related to 10 Hz rTMS induced phase state perturbation [7]; if so, it may

also suggest a role for TMS as a clinical tool for neural circuit repair or enhancement [116, 135].

In a study with 24 subjects, Hamidiet al. used high frequency rTMS to evaluate the role of DLPFC

in memory guided response to two different types of spatial working memory tasks [66]: one

requiring a recognition decision about a probe stimulus (operationalized with a yes/no button press),

and another requiring direct recall of the memory stimulus by moving a cursor to the remembered

location. In half the trials, randomly distributed, rTMS was applied to DLPFC, and in a separate

session, to the SPL, a brain area implicated in spatialworking memorystorage. A 10Hz (3 sec, 110%

of motor threshold) train of rTMS was delivered at the onset of the response period. They found that

only rTMS applied to DLPFC significantly affected performance. When 10 Hz rTMS was directed

to right DLPFC, accuracy declined on delayed recall trials. When 10 Hz rTMS was directed to left

DLPFC, accuracy on the delayed recognition trials was enhanced. These findings support DLPFC

role in memory guided response and suggest that the nature of this role varies depending on the

processes required for making a response. Koch et al. used an rTMS approach to investigate the

temporal dynamics and reciprocal interactions of different regions of the parietofrontal network in

normal subjects performing a spatial working memory task [81]. They aimed to compare neural

activity in these regions in the delay and decision phases of the task. Trains of rTMS at 25 Hz were

delivered over PPC, premotor cortex (SFG), and DLPFC of the right hemisphere alternatively during

the two phases. They observed TMS interference during the delay phase for PPC and DLPFC sites

of stimulation, with no effect on the control site. When rTMS trains were applied during the retrieval

phase, task interference was limited to DLPFC. The authors concluded their study supporting the
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existence of a parallel processing network that was active during the delay phase of the task. They

concluded that in DLPFC, two task specific networks coexisted: a local neural network subserving

the decisional processes, and a second neural population functionally connected to PPC that was

activated when spatial specific information maintained in memory was made available for use.

Luber et al. designed a delayed match-to-sample task in which rTMS at 1, 5, or 20 Hz was

applied to either left DLPFC or midline parietal cortex during the delay phase of the task [94]. Only

5 Hz stimulation to the parietal site resulted in a significant decrease in reaction time with no effect

on accuracy. In a second experiment, 5 Hz rTMS was directed to the parietal site during either the

maintenance or retrieval phase of the recognition probe. Reaction time enhancement occurred in

the retention phase but not the probe phase. They concluded their results suggest that 5 Hz rTMS

may improve working memory performance when stimulation of a specific frequency was timed to

a specific phase of task performance.

Earlier work to show that TMS may enhance prefrontal oscillatory synchrony in spectral bands

subserving working memory information processing [7], as noted above, lends support to the idea of

developing a neural circuit based model for the treatment of memory impairment using noninvasive

brain stimulation (NIBS) methods such as TMS. Presently, evidence to support an NIBS based

approach is supported by work to show improved clinical status in depression [110], hallucinations

in schizophrenia [4, 71], and posttraumatic stress disorder [65, 113].

Visualization of the data in rTMS studies is often problematic as it requires the fusion of

many data types. Fortunately, systems such as VisTrails not only provide the infrastructure for

this task, but also include tools for collaboration and analysis. Unfortunately, generating and

modifying these workflows requires a substantial amount of expertise. To assist scientists better

manipulate the analyses and visualization, VisTrails may be used through workflow medleys [131]

and VisMashups [132]. Figure 4.11 shows the VisMashup application allowing scientists to more

easily interact with complex analysis and visualizations for the assessment of this rTMS experiment.

Section 4.5 has presented a method enabling scientists to visualize a large number of time

frequency planes derived from EEG sensor traces, as seen in Figure 4.12. In particular, these data are

used to study the dynamics of the neuronal assemblies subserving working memory in humans and

how these rhythms are manipulated by repetitive transcranial magnetic stimulation. Our proposed

visualization technique was used to assist in the analysis of the collected EEG data. Figure 4.13

shows a volume of the alpha frequencies generated from a single trial of the administered Sternberg

test as discussed in Section 4.5.1. The high energy densities present in the volume, shown in red,

indicate the activation of working memory. By ordering the volume with our greedy heuristic, the

progression of activity in this band through the EEG sensor network is elucidated. In particular, the
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neural circuit is indicated by energy propagation through the volume, corresponding to the activation

of different sensors.

While correlation between sensors is important to scientists studying the time frequency evolu-

tion of EEG signals, coherent representations of these planes provide additional information. Figure

4.13 depicts the movement of brain activation from sensor to sensor through time. The movement of

activation is represented in the pair wise correlated volume by shifts of activation energy in the time

axis. Activation patterns of this type highlight both known and potential neural pathways, or circuits,

responsible for collectively processing and responding to stimuli. In the case of working memory,

the highlight neural circuit shows the connectivity between the dorsolateral prefrontal, temporal

and the parietal cortices predicted by Constantinidis et al. [38]. In this manner, we are able to

track activation in the alpha band throughout a known circuit. Our visualization offers information

regarding a range of frequencies. We exploit this property to inspect the resulting volume not

just for the spectral properties of the alpha, but any time frequency patterns correlated with these

activations. This is possible because they are grouped together in the volume, making them more

noticeable. This correlation is important when investigating the principal effects of rTMS on the

spectral dynamics of multiple frequency bands.

The visualization method for EEG data ensembles discussed in Section 4.5 is implemented as a

small collection of VisTrails Modules. Because of their modular nature, this visualization technique

may be added to any existing visualization using EEG data formed as a VisTrails workflow. This

extension further enhances the flexibility of VisTrails as a complete EEG analysis and visualization

platform.



CHAPTER 5

EVALUATING VISUALIZATION

EFFECTIVENESS USING EEG

This chapter details the method by which cognitive load imposed by visualization is measured

using electroencephalography. Previous methods of measuring cognitive load during a user’s task

have been developed that include an additional task to perform in order to strain the cognitive

system of an individual [70] so that it robustly affects the user’s time to complete the operation.

This method utilizes the direct inspection of brain activity to gauge the difficulty associated with

interpreting different visualizations of similar data. A user study was performed to validate this

approach, with all analysis steps performed in the VisTrails environment.

This chapter is organized as follows: Section 5.1 presents an overview of the techniques used to

capture working memory performance and cognitive load via EEG. Section 5.2 then outlines a user

study performed, with Sections 5.3 and 5.4 providing details on the extraction of cognitive load and

the results of the user study, respectively. Section 5.5 concludes with a discussion of the study and

results.

5.1 Working Memory
Working memory is responsible for the retrieval, manipulation, and processing of task related

information and has functional importance to a variety of cognitive activities including learning,

reasoning, and comprehension [14]. It is often useful to think of the working memory system

in terms of a computer architecture in which working memory acts as the central processing unit

(CPU) with direct connections to temporary data buffers (RAM) in the form of short term memory,

and external communications (IO) through sensory perceptions and resulting reactions [14]. Of

course, the actual working memory system is much more complex than a computer, and therefore

dividing up the processes of the system is not always possible, as many of the functions occur

across the same neural substrate [37]. Although a strict spatial segmentation of the brain in terms

of working memory activity is impossible, Braver, et al. show that the working memory processing

is measurable in the prefrontal cortex of the brain [25] while Constantinidis, et al. explore a more

complete neural circuit for spatial working memory [38]. Working memory is also divided into
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visuo-spatial, phonological, and executive subsystems [13]. In this work, our processing techniques

focus on the visuo-spatial and executive working memory circuits by weighting contributions from

the prefrontal cortices more heavily than those of the parietal regions.

5.1.1 Cognitive Load Theory
Cognitive load theory [148] describes the relationship between the capacity of working memory

and the cognitive demands of a particular task. The core of the theory is that people have a limited

cognitive capacity during learning and problem solving tasks. The way in which information is

presented can affect the amount of load placed on the working memory system and thus affect per-

formance [47]. Cognitive load theory distinguishes three types of cognitive load: germane, intrinsic,

and extraneous [33]; each distinctly affecting learning and decision making. The combination of

the three types characterizes the overall cognitive load [140] (Figure 5.1).

5.1.1.1 Germane cognitive load
Germane cognitive load is the load devoted to learning new cognitive schema [148]. These

schema are internal representations formed in the learning process which are used over and over

and may be relevant to many tasks. Once these cognitive schema are in place, the contribution of

germane cognitive load to the overall load is minimal.

5.1.1.2 Intrinsic cognitive load
Intrinsic cognitive load describes the demands on working memory capacity generated by the

innate complexity of the information being examined [148]. This load represents the portion of

overall cognitive load that is influenced by the difficulty of the underlying task at hand and cannot

be manipulated by the design of the task. An example of intrinsic cognitive load is the inherent

challenge involved in adding two numbers compared to the greater challenge in solving more

advanced arithmetic problems.

5.1.1.3 Extraneous cognitive load
Extraneous cognitive load measures the additional load placed on users by the design of a

task [114]. This type of load can be controlled by the way information is presented [140]. For

example, Figure 5.2 shows two ways to describe data. On the left is a numerical description and

on the right is a visual one. The box plot quickly gives a summary of the data through a visual

presentation, while the numerical display requires more extraneous cognitive load to extract the

properties of the data.
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Figure 5.1: The combination of germane, intrinsic, and extraneous load to form working memory
capacity and the impact of higher cognitive load (bottom curve) on task performance(top curve).
Note that cognitive load peaks prior to the user’s response to the task.

3, 5, 28, 78, 72, 40, 52, 37
76, 6, 26, 68, 96, 70, 66, 75
34, 33, 20, 74, 36, 85, 99, 51
99, 33, 18, 38, 14, 18, 37, 53
25, 8, 69, 85, 25, 65, 30, 28
12, 87, 59, 54, 6, 30, 16, 59
97, 66, 23, 84, 87, 76, 36, 15
97, 87, 93, 12, 70, 56, 94, 97 -

6

Box Plot
3

47

99

Table of Data

Figure 5.2: An example of extraneous cognitive load. Both figures represent the underlying data;
however, the visual nature the box plot facilitates understanding by taxing the working memory
system less than the numerical description.
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5.1.2 Measuring Cognitive Load
One method of measuring the various types of cognitive loads is by using task completion time

and accuracy. Another method of measuring cognitive load is the NASA-TLX test [70]. This test

describes cognitive load in terms of subjective responses to a post experiment survey. However, EEG

based processing is capable of determining cognitive load magnitude by analyzing the temporal,

spectral, and spatial patterns of brain activity. The Aegis simulation environment [18] was evaluated

using EEG to monitor the amplitude of brain activity induced by situational properties of the task.

In this way, cognitive strains placed on the participants involved in the study were measured.

In our study, we employ EEG to measure brain activity related to cognitive load and working

memory; however, other physiological measures, such as pupil dilation or galvanic skin response

have also proven useful in assessing cognitive load [80, 141]. Physiological measures in user studies

do not always attempt to measure cognitive stresses directly. Recently, eye tracking technology

has shown great utility in studying topics ranging from graph comprehension [31] to the use of

contextual cues in visualization [115]. However, it is still unclear to what degree these techniques

capture cognitive responses elicited by visualization.

We exploit the spatial, temporal, and spectral organization of the neural circuits subserving

working memory to measure its performance, as in [37]. The neural circuitry is monitored through-

out the experiment using EEG. Although brain activity used to measure cognition is not visible in

the raw EEG data, each data channel is processed to extract the spectral components associated

with cognition and specifically, working memory [78]. By measuring the performance of working

memory, we measure the overall cognitive load imposed on a user in realtime. This realtime

measurement cannot easily distinguish one cognitive load subtype from another; however, the

processing techniques allow us to make temporally sensitive analyses.

5.2 User Study of Cognitive Load
This user study is designed to evaluate different visualization techniques by measuring the

amount of extraneous cognitive load each rendering imposes on the viewer. In this study, the

general model of cognitive load described by Figure 5.3 is used. Because extraneous cognitive load

is influenced by the way in which information is presented to the viewer, measuring its differences

between visualization types provides insight into how the presentation of the data affects working

memory and cognition. In order to reduce the complexity of this task, we have chosen to use simple

visualization methods in this study. To this end, we compare variations of the box plot to see which

is most effective in displaying a statistical data distribution.
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The box plot is a graphical data analysis construct used to visually describe the distribution of a

data set by indicating the minimum, median, and maximum data values, as well as the interquartile

range (the range between the 25th and 75th percentile). The canonical box plot [155], (Figure 5.4a),

does this by encompassing the central 50% of the data with a box, indicating the median with a

crossbar, and extending lines out to the minimum and maximum values. Due to the box plot’s sim-

plistic representation of the underlying data, its use has become prolific in the scientific community,

most notably to express error or variability within a data set. The extensive use of the box plot

has supported various visual modifications, such as reducing the number of lines used to depict

the plot [118, 154] (Figure 5.4b-c), or adding information about the density of the underlying data

distribution [16, 69, 118] (Figure 5.4d-f).

The collection of box plots shown in Figure 5.4 were compared in this study to determine

the extraneous cognitive load of each plot type. The plots were created based on 500 different

normal distributions of size 100. For each distribution, the mean and standard deviation were picked

uniformly random from [0,1] and [0.25, 0.75] respectively. For a single trial, two distributions are

chosen and displayed using two types of box plots and the participant is asked to choose which of

the distributions has a larger interquartile range.

5.2.1 Extracting Extraneous Cognitive load
EEG measures of cognition account only for overall load through the tracking of working

memory performance; however, our interest lies in measuring extraneous cognitive load. In order

to extract extraneous cognitive load from overall cognitive load, the design of the user study must

effectively control for the other cognitive load subtypes.

Germane cognitive load is controlled for by collecting subjective data relating to participant

expertise. In a post experiment survey, each participant rates their ability in interpreting the vi-

sualizations, and this information is used to approximate germane load on a per user basis. The

responses to each question on the survey are given on a Likert scale [90], which asks respondents

to specify their level of agreement to a statement. The survey questions are specifically designed to

capture both user expertise in the interpretation of statistical data as well as the aesthetic qualities

of each visualization technique. To negate the cognitive contribution of germane load, participants

were required to be familiar with one-dimensional distribution data, and thus had preformed cogni-

tive schemas. Germane cognitive load per participant was then judged to be negligible.

Intrinsic cognitive load is represented by task difficulty. When comparing various types of box

plots, task difficulty refers to the complexity intrinsically present in deciphering differences in the

interquartile range of two data sets, independent of the plotting method. When comparing images,

the task is facilitated by examining common reference points within the two images. In the case
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Figure 5.4: The plots used in the study. The left 3 plots are variations of the box plot: a) The Box
Plot [155], b) Abbreviated Box Plot [118], c) Interquartile Plot [154]. The right 3 are box plots with
additional density information: d) Vase Plot [16], e) Density Plot [118], f) Violin Plot [69].

of assessing which of two box plots has a larger interquartile range, the relevant common reference

points are the locations of the first and third quartiles, and the median. The greater the similarity

between the medians, the better the correspondence between the images, making the underlying

task easier. However, as the distributions’ interquartile ranges become similar, determining the

distribution with the larger range is more difficult.

The measure of task difficulty takes into account both the interquartile range, IQR, defined as

the difference between the first and third quartiles, IQR = Q3−Q1, and the median, m̃, of the two

underlying data distributions. Since we restrict the range of the generated distribution to be [0,1],

we can define task difficulty between two distributions, i and j, as d(i, j) = 0.5(1−|IQRi− IQR j|+

|m̃i− m̃ j|). By formulating task difficulty in this way, we are guaranteed that each single trial has a

difficulty in the range [0,1] in which 1 represents the highest degree of difficulty. In practice, task

difficulty and thus intrinsic cognitive load was uniformly distributed in the range [0.4,0.8].

5.3 Data Analysis
Investigating the effects of different visualization techniques in terms of cognitive load requires

the analysis of the various data products generated during the experiment. Time series data collected

by EEG hardware must be rigorously processed to extract relevant working memory and cognitive

load measures. Similarly, specific values acquired from user interaction must be manipulated to

determine the task difficulty and reaction times experienced during each trial. Finally, each of
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the various data products must be statistically analyzed to ensure cognitive load measures are

appropriate for visualization evaluation.

5.3.1 Data Acquisition
A group of 17 individuals consisting of 10 males and 7 females participated in the user study.

The user study consists of 100 independent single trials preceded by a resting period of 1-minute

during which baseline values for EEG are collected. Figure 5.5 shows a participant during a single

trial of the experiment. Each trial begins with a 2-second period in which no images are shown,

and is followed by the display of two box plots, side by side, as shown as the stimulus at the top

of Figure 5.6. The participant is asked to choose the plot with the largest interquartile range as

quickly as possible, and respond by pressing the appropriate directional arrow button on a standard

keyboard.

Timing and response data are recorded during the experiment through custom written display

and acquisition software. A timer with 10 microsecond resolution was used to record response

times during each of the single trials. In addition to the timing data used to determine reaction time,

each distribution’s central moments and the response given by the participant are recorded for later

analysis.

Figure 5.5: A participant is fit with the EEG headset to monitor brain activity for the duration of
the 100 trial experiment. Distribution visualization pairs are presented side-by-side during each trial
and a keyboard is used to enter responses.
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Figure 5.6: The experimental data collection and analysis workflow. EEG is collected during each
of the 100 trials and then segmented into Baseline and Stimulus Epochs. These epochs are then
processed using the S-Transform for each sensor. The resulting time frequency planes are further
processed to extract the gravity frequency and energy density for the theta and alpha bands of
frequencies in each epoch. These values are combined in the Cognitive Analysis resulting in a
single time series of cognitive load for each sensor. These time series are then combined through
spatially aware averaging to form the overall cognitive load for the trial.
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Figure 5.7: Sensor placement around the prefrontal cortex of the 14 data channels in the Emotiv
EEG. The regions in red show the Gaussian weighting used to emphasize the regions of the brain
most related to working memory.

EEG data are collected at 128 Hz from an Emotiv EPOC wireless EEG headset (http://

www.emotiv.com). The Emotiv headset exposes 14 data channels with two bipolar reference

electrodes spatially organized using the International 10–20 system, as seen in Figure 5.7. The

Emotiv Software Development Kit (SDK) provides a packet count functionality to ensure no data

are lost, a writable marker trace to ease single trial segmentation tasks, and realtime sensor contact

to ensure quality measurements.

During the experiment, a unique marker value is inserted into the marker trace to signal the

end of the 1-minute resting period. Additional markers are inserted each new trial, the presentation

of each pair of distributions, and the user response which signals the end of a single trial. The

EEG record is then segmented, using the marker trace, into the resting segment, used as a baseline

measurement of brain activity, and 100 single trials. A single trial includes a 2-second resting period

used to form intertrial baseline measurements, followed by the presentation of the distribution pair.

Each trial may be of variable length due to reaction time differences, so a window of 1.0 seconds

surrounding the user response forms the trial epoch.during the study.
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Since our cognitive load measure is computed from EEG, care must be taken to account for the

spatial organization of the brain. Rowe, et al. discuss the roll of the prefrontal cortex of the brain

in various aspects of working memory [125]. The spatial activation sites were found to be quite

localized; however, EEG experiences volume conduction causing activity generated at a single point

to be measured at multiple sensors. To help account for this, spatial averaging was performed using

Gaussian weights centered at the prefrontal cortex on each brain hemisphere defined in the 10-20

electrode placement system, as shown in Figure 5.7. The parametrization of the Gaussian was set to

encompass sensors F7 and F3 and their contralateral pair F4 and F8 in the first standard deviation.

There were no substantial differences between the left and right hemispheres found during later

analysis.

5.3.2 EEG Signal Analysis
The first step in processing the raw EEG signals is to segment the 14 time series (one for each

sensor) into individual trials. Next, each trial is divided into the intertrial baseline and the trial

stimulation. Both of these tasks use the markers inserted into the EEG record, as discussed in

Section 5.3.1. The baseline and stimulus signals are then transformed, using the S-Transform to

determine the power change and frequency shift induced by the stimulation. These values are used to

calculate the cognitive load experienced at each of the 14 sensors for the trial in question. Spatially

averaging these 14 values gives a single measurement for cognitive load. Figure 5.6 shows the

workflow of the experiment from data collection through analysis.

5.3.2.1 Artifact Detection and Removal
Since EEG measures voltages at the scalp, there are many possible sources for data contamina-

tion that must be addressed. Artifacts related to eye blinks and other muscle movements in addition

to physical movements of the sensors themselves must be removed before the EEG traces can be

processed. We have adapted work by Berka, et al. to decontaminate EEG signals generated by

Emotiv hardware [17] and rely on the Emotiv SDK to automatically detect eye blinks. Since muscle

contraction and control are generally governed outside of the frequency range of interest [130], we

are able to use frequency band limiting procedures such as low pass, high pass and notch filters to

adequately remove these signal components. If, after removing EEG artifacts, the energy densities

of the alpha or theta frequency bands are changed by more than 20% of their original values, the trial

is removed from all further analysis. This criterion is informed by the bad channel removal method

discussed by Anderson, et al. [7]. In this study, we threw out 3% of the trials due to excessive signal

degradation from movement and 1.5% due to high change in spectral densities, totalling 4.47% of

the total trials being removed from further analysis.



89

5.3.2.2 Spectral Decomposition of Cognitive Load
In order to understand cognitive load, we must examine the spectral characteristics of the EEG

signals. Based on the work of Klimesch [78], we focus our analysis on the alpha (7.5 – 12.5 Hz)

and theta (4 – 7.5 Hz) frequency bands, which have been identified as reflecting cognitive and

memory performance. We use the S-Transform [147] to decompose the signal into an appropriate

time frequency representation. The S-Transform was chosen over other transformations because it

offers adaptive spectral and temporal resolution similar to the Wavelet Transform and is a direct

mapping to the complex Fourier Domain.

To be able to properly assess the spectral evolution of EEG associated with working memory,

each trial is processed with respect to its own intertrial rest period. The individual alpha and theta

frequencies are determined for both the trial and rest period and their amplitudes measured [78].

By comparing these values, a shift of both the individual frequencies as well as their amplitudes are

revealed. The degree of change in these amplitudes, weighted by the amount of shift in the frequency

domain, determine the working memory and cognitive load characteristics for each single trial, as

described in Equation 5.2.

Our computation of cognitive load derived from EEG uses the individual mean frequencies in

both the alpha and theta frequency bands. The mean frequency is computed as:

f (ω) =

n−1

∑
i=0

Iω(i) fω(i)

n−1

∑
i=0

Iω(i)

(5.1)

where ω is the frequency band in question, n is the number of frequency bins in ω , fi is the frequency

at bin i and Ii is the energy density of ω at frequency bin i. This formulation of mean frequency is

used to compute the frequency shifts in both the alpha and theta wavebands. The frequency shift

of a waveband is given by ft(ω)− fb(ω) where ft is the frequency content determined from EEG

collection during each trial and fb is the frequency content collected during intertrial rest periods.

Additionally, the change in energy density in a waveband, ∆| f (ω)|, is the difference of energy

densities at the mean frequencies: ∆| f (ω)|= | ft(ω)|− | fb(ω)|.

Klimesch identified working memory performance decreases during task related stimulation

expressed as theta power decreases with simultaneous alpha power increases with respect to baseline

measurements [78]. We form our model of cognitive load per trial, L(t), as the combination of

frequency and power changes in both the alpha and theta bands.

L(t) = ∆| ft(α)| ft(α)−∆| ft(θ)| ft(θ) (5.2)
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5.4 Cognitive Load User Study Results
Using direct inspection of brain activity during a visualization task provides us with additional

empirical data regarding the effectiveness of different rendering methods. Because EEG measure-

ments are not corrupted by the participant’s subjectivity or the benefit of hindsight, as may be

the case during post experiment surveys, they are well suited for determining the effectiveness of

visualization.

Based on our EEG recordings and subsequent analysis, the canonical Box Plot was found to

place the least strain on the user’s cognitive resources for the task at hand. Table 5.1 shows the

computed cognitive load for each plot type using both Gaussian and constant spatial averaging. The

table indicates the Box plot and the Density Plot incurred the lowest cognitive load scores (in bold)

using Gaussian and constant weighting, respectively. This result highlights the effect of the spatial

averaging on overall cognitive load. Using Gaussian weights helps account for the brain’s natural

spatial organization, providing a more reliable measure. Interestingly, the Violin and Interquartile

plots induced the highest cognitive load (in italics). This may be due to greater visual complexity

or the reduction of distinguishable visual elements; however, the validation of such claims warrants

additional study.

Reaction time is important in determining working memory performance and capacity [146].

While reaction time cannot measure working memory performance directly, it is an appropriate

means of capturing the aggregated performance and capacity of working memory. As the role of

reaction time in determining working memory performance is well explored [7, 120], we focus our

analysis on the assessment of brain activity via EEG processing.

Figure 5.8 plots the computed cognitive load and the reaction time from this experiment against

the task difficulty for each trial spanning all participants in the user study. The figure suggests

correlation between task difficulty and both reaction time as well as the measurement of cognitive

load; as the difficulty of the task increases, so does the computed cognitive load and reaction times.

However, there is a relatively large variance in both cognitive load and reaction times, particularly

in the investigation of high difficulty tasks. One explanation for this large variance is an incorrect

model for task difficulty. The computed task difficulty (Section 5.3) uses only the median and

interquartile range of each distribution. Exploring different formulations for task difficulty may

result in a more robust correlation between each trial’s computed difficulty and the cognitive load

computed. Additionally, our cognitive load measure weights contributions from the alpha and theta

frequencies equally. It is possible that a more advantageous combination of theta and alpha spectral

changes exists, but adequately exploring the nuances of these formulations is beyond the scope of

this paper.
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Table 5.1: Computed cognitive load for each plot type. Constant and Gaussian spatial averaging
are shown. Lowest cognitive load scores are highlighted in bold while highest scores are italicized.

Box Abbrv. Interquartile Vase Density Violin
Constant 1.101 1.284 1.214 1.571 0.830 1.619
Gaussian 0.815 0.833 1.563 1.203 1.285 1.492

5.4.1 Statistical Analysis
In order to determine significant correlation between the measured data and visualization type,

we employ paired 2 tailed T-tests. T-tests were used to determine significance of spectral properties

departing from baseline measurements taken as well as spectral differences between visualization

types. All statistical tests used the null hypothesis that there is no significant change between the two

distributions being analyzed. Each distribution tested was inspected to verify it was not multimodal

prior to analysis.

Table 5.2 displays the maximum significance values (p values) as computed for cognitive load

by the 2 tailed T-tests. Of particular interest are the high degrees of similarity between the Box

Plot and Abbreviated Box Plot (Box and Abbrv. in Table 5.2) and the Violin and Interquartile Plots

(Violin and Interquartile in Table 5.2). All tests were performed with cognitive loads computed

using Gaussian weights as discussed in Section 5.3.1.

5.5 Discussion
In this study, we explored different methods of visualizing distribution data. For each method

under consideration, the cognitive load associated with interpreting the interquartile range was

determined. While each of the visualizations used for this study displayed the interquartile range of

a distribution in some way, not each rendering displayed the same amount of data associated with

Table 5.2: Pairwise significance values for cognitive load of the Box Plot (Box), Abbreviated Box
Plot (Abbrv.), Interquartile Plot (Interquartile), Vase Plot (Vase), Density Plot (Density) and Violin
Plot (Violin). While most significance values are below 0.01, some pairs of comparisons generated
similar distributions. The Box Plot and abbreviated version score similarly as do the Interquartile
and Violin Plots.

Box Abbrv. Interquartile Vase Density
Violin 0.001 0.001 0.134 0.0015 0.0015

Density 0.001 0.001 0.003 0.002 x
Vase 0.001 0.001 0.0015 x x

Interquartile 0.001 0.001 x x x
Abbrv. 0.216 x x x x
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each underlying data set. For example, the Violin Plot rendered the sample density as described by

its histogram whereas the Box Plot did not. These differences enable a different set of questions

to be asked about these visualizations that cannot be asked about other visual representations. This

study, like others, focuses on the effectiveness of visualization method with respect to a single subset

of appropriate interpretation tasks.

Until recently, the expense of EEG technology greatly limited its application in the field of

user studies. The Emotiv EPOC headset used in this experiment provided a cost effective means

of EEG acquisition. However, although this system conforms to the international 10–20 standard

for electrode placement, getting each electrode in the proper position is important and nontrivial.

Additionally, the analysis and interpretation of EEG data remains difficult, requiring training and

expertise.

The visualizations and interpretations required during this user study were purposefully chosen

to be elementary. The simplicity of this study allowed participants to be chosen from a wide range of

potential candidates in order to minimize the potential for schema creation and over representation

of germane cognitive load. In addition to controlling germane cognitive load, this decision allowed

us to more completely regulate and estimate the contribution of intrinsic cognitive load during

each single trial. By acknowledging and controlling these two parameters, we were able to more

thoroughly process the resulting data without substantially complicating the analysis.

Minimizing the visualization and task complexity eased requirements for the analysis and pro-

cessing steps used in this study; however, the experimental design was still difficult. After deter-

mining the appropriate visualizations to use during the experiment, finding the proper interpretation

task proved to be arduous. Using too simple an interpretation task did not create enough cognitive

load to substantially influence working memory performance. Meanwhile, employing too complex

a task induced cognitive overload, complicating analysis. Cognitive overload was identified by the

movement of the individual alpha frequency outside of the 8–12 Hz band of frequencies, following

the results of Klimesch and Gevins, et al. [57, 78].

Much work has been done to explore the effects of practice on cognitive measures, as the

introduction of these effects often confound analysis. Berry, et al. [19] found that practice does

not expand the capacity of working memory and cognition, as was previously thought, but instead

improves the efficiency of data encoding. This finding implies that the inverse relationship between

available working memory capacity and cognitive load is maintained regardless of practice during

an experiment. The spectral dynamics of practice effects in cognition were explored by Gevins, et

al. [58]. Practice was found to decrease reaction time, but also increase spectral organization. The

spectral changes induced by practice comprised an increase in power and frequency modulation
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prior to the task onset. To mitigate the effects of practice in this study, we reevaluate baseline

conditions during the rest period before each trial begins. While this helps minimize the practice

effect in analysis for this study, reevaluating baseline performance may not be possible in more

complex, or time sensitive experiments.

The temporal, spatial, and spectral organization of brain activity enable both analysis and inter-

pretation. Despite an adequate tool set for the processing and general analysis of EEG signals, their

interpretation requires domain experts. The multidisciplinary nature of this study was essential for

proper examination of the results we collected. Without the close collaboration between computer

scientists, neuroscientists, and psychiatrists, the success of this study would have been jeopardized.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The use of the provenance management system, VisTrails, for the analysis and visualization of

EEG data from two studies of working memory have been presented in this dissertation. Although

VisTrails is not the only system used for EEG data analysis [41], it is currently the only one that

was designed to capture full provenance of any modification made to the underlying processing

workflow. Chapter 3 details the use of EEG analysis within VisTrails, including using external,

opimized processing libraries. These techniques were then applied to data collected during a study

of working memory in which repetitive transcranial magnetic stimulation (rTMS) was used to

manipulate the neural circuits subserving the working memory process discussed in Chapter 4. It

was found that working memory was robustly manipulated by rTMS in a way measurable by EEG.

This induced change of working memory performance may be leveraged as part of a treatment

regimen for people suffering from debilitating neurological disorders such as schizophrenia [7].

Another study was then performed to examine the links between working memory performance,

cognitive load, and the difficulty inherent to interpreting visualizations in Chapter 5. In this study,

VisTrails-provided functionality was the only system in which data were analyzed. This study found

that data collected from EEG may be processed to form a measure of cognitive load associated to

the visual representation of data. By comparing the cognitive loads induced by various types of

visualizations of similar data, a measure of visualization efficacy is formed. However, this efficacy

score is valid only for the specific set of questions posed during the experiment.

There are several avenues for future work that are immediately apparent. As the VisTrails envi-

ronment is continually updated, new functionality and provenance enabled operations become pos-

sible. Evaluating the utility of these functions with respect to EEG and other biomedical data must

be done to properly incorporate functionality into existing collaborations. Furthermore, advances

in signal processing, visualization, and the understanding of EEG interpretation will necessarily

require further extension of the module packages developed for VisTrails. Without these updates,

VisTrails as an EEG processing and visualization platform will stagnate.

The consequences of the findings discussed in Chapter 4 may be profound, but require more

work to properly verify. The application of rTMS to healthy individuals was shown to have robust
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positive effects on working memory performance. Individuals suffering from neuropsychiatric

disorders containing underperforming or malfunctioning working memory may benefit from rTMS

as a treatment. Although pharmaceutical methods exist for the treatment of individuals with diseases

such as schizophrenia, these options neither address the root causes of the disease nor guarantee

results. Treatment of these neurological disorders via rTMS may provide a better alternative to

patients who are unresponsive to pharmacological treatments or may increase the efficacy of the

drugs used in them. However, as this method as a potential treatment is in its infancy, several more

studies in this direction are necessary.

The assessment of visualization through the examination of EEG data is an entirely new ap-

proach to the field. The study presented in Chapter 5 used only the simplest of data and visualization

techniques. Employing more visualization methods, including 2D and 3D renderings, color, and

more complex datasets is necessary. The results of these studies should be stored in a database

in order to then catalogue and compare the features of visualization that may increase or decrease

cognitive loads.

A database of visualization effectiveness containing many different tasks and visualizations

would likely provide additional insights into the nature of visualization. In particular, such a

database may help to classify different visualization methods by linking features highlighted by

a particular technique with the cognitive load they impose. The classification of visualizations in

this way may assist researchers striving to formalize the field of visualization.

Finally, the link between working memory, cognition, and EEG may further be exploited in

a variety of ways. Determining methods with lower cognitive costs associated with them may

benefit several different fields. Studies using EEG to evaluate teaching techniques may lead to more

effective, or more personalized, teaching tools. Studying the effects of cognitive overload may lead

to the development of new and better coping mechanisms. Better coping with cognitive overload

will likely lead to faster knowledge generation. While these possibilities exist for future study, they

all have a common prerequisite. Each avenue for future work depends entirely on more studies

using EEG and cognition to be performed.



APPENDIX

EXPERIMENTAL REPRODUCIBILITY

The use of VisTrails as an EEG processing platform was discussed in Chapter 3. Although this

chapter explored the use of the Brainiac VisTrails package for signal analysis, its functionality is

derived from the modules in more basic packages. The Brainiac, NumSciPy, and VisualAsses pack-

ages have been made available under the Lesser GNU General Public License (LGPL). The source

code for these VisTrails packages and the VisTrails associated with the figures in this dissertation

are available at:

http://www.sourceforget.net/projects/vt-brainiac

A.1 Abstractions Over VisTrails Workflows
The Brainiac VisTrails package discussed in Chapter 3 contains modules that represent ab-

stractions over partial workflows. These abstractions allow users to more easily create complex

workflows out of simpler functional components. As pointed out in Chapter 6, Brainiac does not

make full use of recent additions to VisTrails, most notably the increased support for abstractions

called Subworkflows.

Utilizing the subworkflow support in new versions of VisTrails simplifies the construction of

abstractions useful to EEG analysis and visualization. While the existing Brainiac package uses ab-

straction at the code level, as seen in Listing A.1, new abstraction mechanisms support the creation

of new modules using the VisTrails interface (Figure A.2). Although the Brainiac package supports

abstraction versioning via package versioning, this system is both brittle and inefficient. Since the

new VisTrails subworkflow system utilizes a full VisTrails representation for each abstraction, each

new module maintains its own version history and may be interchanged in workflows at will.

Adopting the new VisTrails subworkflow system increases the robustness of Brainiac abstrac-

tions. As subworkflows are constructed from within the VisTrails environment, all of the benefits

gained from using VisTrails become available to the Brainiac package. These include per abstraction

provenance and versioning, modification of abstractions through analogy, and the rich querying

mechanisms of VisTrails.
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c l a s s Bra in iacVolumeRender ( B r a i n i a c R e n d e r , Module ) :
d e f p r o c e s s c o m p u t e ( s e l f ) :

i f s e l f . v o l t e x t u r e :
s e l f . mapper = v t k . vtkVolumeTextureMapper3D ( )

e l s e :
s e l f . mapper = v t k . v tkVolumeRaycastMapper ( )

s e l f . mapper . S e t I n p u t C o n n e c t i o n (
s e l f . g e t d a t a ( ) . v t k I n s t a n c e . G e t P r o d u c e r ( ) . G e t O u t p u t P o r t ( ) )

s e l f . vprop = v t k . v tkV o lu meP rop e r t y ( )
s e l f . t f . s e t o n v t k v o l u m e p r o p e r t y ( s e l f . vprop )
s e l f . volume = v t k . vtkVolume ( )
s e l f . volume . SetMapper ( s e l f . mapper )
s e l f . volume . S e t P r o p e r t y ( s e l f . vprop )
i f s e l f . p l a n e != None :

s e l f . mapper . A d d C l i p p i n g P l a n e ( s e l f . p l a n e . p l a n e . v t k I n s t a n c e )
s e l f . p l a n e . w id ge t . v t k I n s t a n c e . SetProp3D ( s e l f . volume )
bounds = s e l f . volume . GetBounds ( )

c x = ( bounds [ 1 ] − bounds [ 0 ] ) / 2 . 0
c y = ( bounds [ 3 ] − bounds [ 2 ] ) / 2 . 0
c z = ( bounds [ 5 ] − bounds [ 4 ] ) / 2 . 0
s e l f . p l a n e . w id ge t . v t k I n s t a n c e . S e t O r i g i n ( c x , c y , c z )

s e l f . p l a n e . w id ge t . v t k I n s t a n c e . S e t P l a c e F a c t o r ( 1 . 0 )
s e l f . p l a n e . w id ge t . v t k I n s t a n c e . P l aceWidge t ( )

re turn ( s e l f . volume , )

[pt]

Figure A.1: An example of Abstraction within the current framework of the Brainiac VisTrails
Package. Notice that each of the concrete modules in the abstracted workflow must be created and
connected within the module’s source code.
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Figure A.2: An example of Abstraction using VisTrails subworkflow system. Notice that the
subworkflow contains InputPort and OutputPort Modules to provide a concise interface and enhance
their ease of use.

A.2 Reproducible Analysis
The reproducibility of EEG analyses is enabled by the provenance tracking of VisTrails. Most

of the analyses throughout this dissertation are reproducible within VisTrails. The VisTrails files

used to create the visualizations and analyses may be found at:

http://www.sourceforget.net/projects/vt-brainiac

However, due to the fact that EEG and MRI data is collected from human participants, our IRB

protocol does not allow us to redistribute the source data. This makes the strict reproduction of the

results contained in this document not possible.
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