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Chapter 1

Introduction

“A picture is worth a thousand words.” Visualization has always been one of
the most important techniques to enhance user’s ability to reason and understand
statistical data [1]. Statistical charts, such as line charts and bar charts, are the de
facto means to present information among different data-intensive systems such as
Excel or business intelligence (BI) dashboards. The reason lies in the human ability
to recognize graphical representations much better than textual information [2].
By connecting the customers and their purchases with a node-link diagram, we can
see the popular products. By joining the temporal data with a line, we can see the
trends. By drawing the IF-ELSE statements as a flow chart, we can see the logic.
Therefore, visualization delivers the insights for people to understand numbers and
take action.

However, in the era of big data, people usually need to make decisions based
on millions of data. Simply plotting all the relevant information on a single chart
without preprocessing is far from ideal when users need to interact with millions of
transactions and trends. This problem is called Visual Scalability – the goal of visual
analysis is to acquire insights, and is affected by the size of the database and number
of distinct items in the visualization [3]. In other words, visualization becomes
ineffective when overplotting occurs. To address visual scalability, works apart from
data summarization mainly fall into three separate approaches: sampling, feature
extraction, and interaction. Sampling reduces the amount of data visualized (e.g.,
nodes in large graph [4]) without losing much context so that the picture becomes
clearer. Feature extraction attempts to encode or highlight several statistical
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Figure 1.1: Examples of approaches reducing visual scalability. (a) graph sam-
pling [4]. (b) feature extraction for cell movement [5]. (c) interactions for visual
recommendation [9].

information (e.g., average or counts) to address specific tasks [5, 6, 7]. Interaction,
which usually follows the visual analytic mantra: overview first, zoom and filter,
then details-on-demand [8], empowers users to select and explore a subset of
information at a time [9].

For data summarization, we are interested in grouping the data before visualizing
them. Generally, data summarization aims at finding a compact description of a
dataset. For example, similar items are grouped together to patterns, and these
patterns are prioritized for display so that the visualization will only show a few but
important insights without much redundancy. In other words, if we can compress
the visual complexity of the data, we can visualize it with the least amount of
encodings, thus making the visualization scalable.

To provide concrete examples of visual data summarization, we can take a look
at Figure 1.2. From the left-hand side of each chart, it is hard to identify what kinds
of patterns existed in the visualization. However, by arranging the same dataset
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Figure 1.2: Examples of visual data summarization.

into appropriate groups and orders, the patterns such as blocks and trends become
visible. Thus, we define the process of visual data summarization as the grouping
of homogeneous data, which results in clear and compact visualization. Overall,
there are two main challenges in visual data summarization. First, it is crucial to
formulate the summarization goals into data modeling frameworks for different data
primitives. The formulation should be robust to more complex combinations of
patterns in the dataset. Second, the algorithms to summarize the data should scale
to large data, given the needs of interactive data explorations. Users should be able
to compute the results on the fly using few computation resources like personal
laptops. The summaries should also come with the ability to accept user inputs for
refinements throughout the interactive data analysis and support top-down and
detail-on-demand analysis.

1.1 Contributions

In this thesis, we propose methods to efficiently summarize three types of data:
bipartite graph, time series, and classification models. Summarizing bipartite
graphs provides an example to group discrete attributes like the nodes in the data.
Then, we extend the idea to time series data, which are real-valued sequences.
Afterward, we explore the ways to summarize logic in a classification model that
has no structured data at the beginning. In short, we summarize the contribution
of each chapter of this thesis.
Summarizing Bipartite Graph. Bipartite graphs model the key relations in
many large-scale real-world data: customers purchasing items, legislators voting for
bills, people’s affiliation with different social groups, faults occurring in vehicles,
etc. However, it is challenging to visualize large-scale bipartite graphs with tens of
thousands or even more nodes or edges.

We propose a novel visual summarization technique for bipartite graphs based
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on the minimum description length (MDL) principle. The method simultaneously
groups the two different sets of nodes and constructs aggregated bipartite relations
with balanced granularity and precision. It addresses the key trade-off that often
occurs for visualizing large-scale and noisy data: acquiring a clear and uncluttered
overview while maximizing the information in it. We formulate the visual summa-
rization task as a co-clustering problem and propose an efficient algorithm based
on Locality Sensitive Hashing (LSH) that can easily scale to large graphs under
reasonable interactive time constraints.
Summarizing Time Series. Time series capture the behavior of many large-
scale real-world processes, from stock market trends to urban activities and health
informatics. However, it is challenging to visualize many time series that cover a
long time span.

We propose a new algorithm that summarizes time series using sequential
patterns. It transforms the series into a set of symbolic sequences based on
subsequence visual similarity using Dynamic Time Warping (DTW). Then, it
constructs optimum disjoint groupings of similar subsequences based on the frequent
sequential patterns. The grouping result, time-series visual summary, addresses
a key trade-off in visualizing large and noisy time series data: an uncluttered
superposition with a minimum number of small multiples. Unlike common clustering
techniques, our algorithm extracts similar subsequences (of varying lengths) that
are aligned in time.
Summarizing Classification Models. Feature importance explanation methods
on machine learning models have been popular to provide accurate explanations
to complex models and different data primitives such as tabular, image, or text.
However, unlike other global explanation methods such as decision trees or rules
that help users with little expertise in machine learning to understand predictive
models, feature importance explanations have been almost exclusively used to
explain the models locally for a single instance.

We propose an interactive visual summarization technique to understand and
explore feature importance explanations at scale, leveraging their versatility and
generality to a scalable understanding of predictive models. By grouping the
instances and important features, we can present the model’s rationale in a matrix-
based visualization to help general users develop and verify the classification model’s
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logical expressions without in-depth knowledge of machine learning.
Summarizing Heterogeneous Model Interpretations. Different feature im-
portance explanation methods generate predictive model interpretations with dif-
ferent intrinsic meanings and values. It thus becomes hard to compare the behavior
and quality of these methods.

We propose a topology-based framework to extract a simplified low-dimensional
representation of the set of local explanations for binary classifications. This is
accomplished by first modeling the relationship between the explanation space and
the class predictions as a scalar function and computing the topological skeleton
of this function. The persistence diagram of the features of this skeleton acts as
a signature for such functions, which are then be used to analyze and compare
different explanation methods.

1.2 Outline

Chapter 2 presents an in-depth overview for approaches addressing the challenges
of visual scalability. Chapter 3 presents the Bipartite Graph Summary for the
interactive summarization of large bipartite graphs. Chapter 4 describes the
Time Series Summary for summarizing the subsequence clusters in the large time-
series data. Chapter 5 presents the Machine Learning Model Summary for the
scalable understanding of feature importance-based explanations that convey a
classifier’s rationale to a dataset. Chapter 6 presents our work to summarize and
compare heterogeneous black box explanation models through topology based data
summarization. Finally, Chapter 7 concludes the dissertation, highlighting potential
future work.
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Chapter 2

Overview of Large Scale Visual
Analytics

As mentioned in Chapter 1, visual scalability is the main challenge in the
goal of visualizing large-scale data to users. While visual scalability can refer
to several aspects like high dimenstional data or multimodal distributions [10],
this thesis addresses the most common scalability problem – overplotting. Such
a problem easily occurs with the increasing cardinality (i.e., number of rows) of
the dataset. In an overly plotted visualization, the patterns of the dataset are
mitigated and ambiguous. For example, too much overlapping in scatterplots or
node-link diagrams will only display giant “dark masses” in the charts [11]. In this
chapter, we describe four main areas, including data summarization, that address
these visualization challenges.

2.1 Sampling

A popular approach to address the visual scalability problem is to sample the
visualized data so that the subset of data can present the visual structure of the
whole dataset with clarity. Intuitively, the challenge is to scale down the data size
without omitting rare but important data items representing the patterns. This can
be done automatically or interactively. For automatic sampling processes, we can
compare the patterns between the original data and sampled data with statistical
tests. For example, in graph sampling, we can define the graph properties as a set
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of distributions such as the counts of nodes with different in-degrees or out-degrees,
then we can compare the distributions between the sampled data and full data with
hypothesis testing [12]. On the other hand, we can visualize different subsamples
that plot the dataset with varying sampling rates and let users explore the data
with various resolutions [13]. By interacting with different subsamples, users can
acquire various sampling outcomes to make more accurate judegements.

Sampling has a clear advantage of efficient computations which enables ad-hoc
explorations of large data. However, it does not access to full information of the
dataset. Such a data loss can induce uncertainty which can adversely affect user
trust levels or lead to misconceptions when the users are overly trusting [14].

2.2 Feature Extraction

Another way to deal with visual scalability is to extract and visualize the
important features from the data that directly address the needs of data exploration.
For example, if users are interested in distributions of points grouped by different
labels in a scatter plot, we can group the dense regions for points in each label with
smooth shapes [15]. Also, in network visualization, the node-link diagrams can be
represented as Graph Thumbnails that emphasize the coarse structural properties for
comparisons among different graphs using small multiples [16]. These visualization
techniques usually change the existing visual representations to overcome perceptual
scalability issues. However, the new representations might need additional cognitive
training that might take a long time to be adapted to the general public [17]. Also,
since the features extracted often aim to solve a specific problem, the insights
obtained from such visualization might not apply to more general tasks.

2.3 Interactions

Visual analytics often address the scalability problem by leveraging user interac-
tions. One rule of thumb is the “Visual Analytics Mantra” – “Overview first, zoom
and filter, then details-on-demand” [8]. Interactive visualization often uses dynamic
queries [18] that updates the subsets of data to be visualized continuously when
the users adjust sliders or select items in the interfaces. The main challenge for this
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area is the response time for providing the results. Slow responses (500ms or more)
per interaction will cause users to reduce their activities and cover fewer data in
the exploration, which ultimately results in fewer insights [19]. To address this
issue, we can use pre-computed data cubes [20] or prefetching mechanisms [21, 22]
to compute the anticipated results before the users start the interactions.

The limitation of user interactions to explore large-scale data is the positive
linear relationships between data size and the number of interactions. Users often
use interactions to slice and dice the whole dataset into moderate-sized subsets for
browsing. Thus, when the size of data increases, analyzing the data becomes more
time-consuming and labor-intensive.

2.4 Data Summarization

Our thesis falls into the category of visual data summarization. In general, data
summarization can be seen as the approach to group the visualized elements so
that in each group, the visual elements are homogenous (i.e., look similarly). The
assumption for its effectiveness is that there are many repetitions and redundancy
of shapes (e.g., lines with the same trend) in the data, and users’ goal is to discover
these structures. Some notable examples include the visual summarization of event
sequences [23] and spatio-temporal data [24] to discover the respective patterns
for various actionable insights. Since the visual items within each group can be
easily compressed as they have similar shapes, the visualization can be drastically
simplified while representing all information in the dataset. In other words, visual
scalability is addressed by rearranging the visual elements.

To apply data summarization techniques to large-scale visual analytics, we need
to address two challenges. First, we need to define an objective function to evaluate
if a grouping is good or not. This allows us to group the data without supervised
metrics and determine the most visually friendly visual outcome. One common
way is to use information theory, which essentially calculates the number of bits
needed to recover the original data from a compression result. In visualization,
we can treat it as the residuals between an aggregation of a group and visual
elements inside the group. Also, contrary to clustering, data summarization does
summarize both the inputs and the attributes among the inputs. For example, we
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should split a time series into multiple groups of segments if it contains multiple
trends throughout the duration. Then, second, given an objective function, how
can we group the visual elements efficiently? As the grouping is concerned about
the structures beyond a single dimension (i.e., clustering rows) in the dataset, the
number of possible partitions can skyrocket quickly. Therefore, efficient methods
that compress the computation time to a linear scale are needed, especially in
interactive visual analysis scenarios.

Our thesis uses four types of data to demonstrate the use of data summarization
to address visual scalability, with an increasing difficulty. First, we use bipartite
graph to demonstrate how to summarize discrete nodes into a compact group of
similar nodes. Then, we demonstrate how to achieve similar outcome for continuous
variables with subsequence summarization of real-valued time series. Afterwards,
when users search for patterns in complex Machine Learning models which there
are not even a concrete data representation, we demonstrate how to reduce the
problem into a data summarization problem. Lastly, when heterogeneous data
needs to be compared, like different black box local explanations for predictive
models, we show how to simiplify them with topological data summaries.

2.5 Summary

Data summarization is a powerful data mining approach to group data into a
smaller set of homogenous visual attributes. With data summaries, we can plot the
visual attributes in separate charts to achieve visual clarity in statistical charts with
large-scale data. Apart from data summarization, sampling is another approach to
reduce the data needed to be displayed, feature extraction can consolidate a subset
of properties for visualization, and interactions are useful to explore the whole data
one part at a time.



10

Chapter 3

Bipartite Graph Summary

Understanding bipartite relations is the key to gain insight from data in a
variety of application domains. Such activity can often be seen in user preferences
identification on movie recommender systems [25], market basket analysis on sales
records [26] , political leanings analysis on roll-call vote records [27] and relationship
discovery in urban open data [28, 29]. As ”a picture is worth a thousand words,”
visualization plays an important role in landing a good hypothesis or direction for
domain experts to analyze bipartite relations at scale.

Recently many visualization techniques have been proposed to support bipartite
relation analysis [30, 31, 32, 33, 34]. Nonetheless, the increasing volume and
complexity of the data bring new challenges. First, revealing all information at once
will exceed human’s cognitive ability to conduct effective analysis. In our use cases
(Section 3.6.2) data either contains more than 170, 000 bipartite connections or
contains 5,000 - 43,000 nodes depending on the subset selected for analysis. Plainly
showing the data will be considered as infeasible. A better way to help analysts
start the data exploration is to construct a broad overview of the data instead
of showcasing each individual entity and bipartite connection. Second, noises are
prevalent in real-world datasets, thus the insights are common to contain artifacts
as well. Thus, what analyst needs is a robust visualization technique that reveals
the most general and salient patterns in the entire dataset.

To address these challenges, we describe a novel visual summarization technique
for bipartite relational data using an information-theoretic approach. We apply
the Minimum Description Length (MDL) principle [35] which provides a criteria
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to optimize the aggregation of bipartite relations to create a high-level overview,
balancing visual complexity and information loss in the display. We visually
represent the original data with the aggregated bipartite connections, and in the
meanwhile model the information loss with the corrections needed to recover the
original data from the aggregated graph.

Using the MDL principle in visual data summarization has been seen in hi-
erarchical data [36] and event sequence data [23], but applying it to large scale
bipartite relation data imposes new challenges and opportunities. Apart from
formulating the principle for bipartite relations, we also describe how to speed it up
with locality sensitive hashing (LSH) [37], which effectively improves the running
time without significantly degrading the results. We further introduce a tailored
and space efficient visualization design inspired by visual adjacency lists [38] to
display the aggregated bipartite relations. The compact visual design fits nicely in
a small multiples display for visual comparison of bipartite relations across different
subsets of data, which can be created by faceting on a selected node attribute. A
comprehensive visual analytic system is developed as well to support data explo-
ration at varying levels-of-detail, correlating domain-specific node attributes with
the relation patterns, and filtering and selecting subsets for focused analysis to cope
with the challenges in usabilities [39]. In short, our contributions are as follows:

1. We apply the MDL principle to pack large scale and noisy bipartite relation
data into a highly compressed representation which is suitable for a coarse-level
overview of the data.

2. We propose an efficient algorithm based on LSH to optimize the MDL opti-
mization process to facilitate interactive analysis.

3. We introduce novel visual analytics techniques and interaction designs for
exploring large scale multivariate bipartite graph data.

4. We present two example usage scenarios with real-world datasets and domain
specific analytic tasks that demonstrate the usability, effectiveness and general
applicability of our technique.
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3.1 Related Work

Bipartite graph exists in many application domains and a variety of visualization
techniques have been developed in the past. Here we categorize the related work into
plain bipartite graph visualization and bipartite graph aggregation for a high-level
overview of the data.

3.1.1 Bipartite relation visualization

The most common approach to visualize bipartite relations is to position two
sets of nodes on separated regions on the display and draw edges as (curved)
lines between the nodes. Related techniques can be seen in various visualizations
including semantic substrates [40], PivotPath [41], Jigsaw [42], and parallel node-
link bands [43]. All of them applied such principle to display bipartite relation
and encode additional attributes with node sizes and colors, edge widths, opacities
and coloring, etc. Another layout style for bipartite graph is unimodal, which
treats the bipartite graph as a whole without spatial separation. Such visualization
techniques use color, shape or other visual channels to distinguish the sets, which
can be seen in FacetAtlas [44], OntoVis [45] and Anchored Maps [46]. Besides
bipartite graphs can also be represented by adjacency matrices. The visualization
techniques usually build upon the simplest form of adjacency matrices and enhance
it with additional visual cues or interactive functionalities [47, 48]. Row and column
seriation techniques further facilitate pattern recognition in matrix displays [49, 48,
50]. Besides node-link diagrams and adjacency matrices, bipartite graphs can also
be visually represented by a hybrid of the two, highlighting the bi-cluster structure
detected by automatic algorithms as in Bixplorer [30], or visualizing additional
topological structures on top of the bipartite relations [51].

Bipartite graphs can also be generally represented as sets covered in a recent
survey about the state-of-the-art of set visualization techniques [52]. In general,
most of the techniques visualize a moderately sized dataset with at most hundreds
of sets/items. Our work focuses on providing a concise overview of large scale
bipartite graphs with tens of thousands or even more nodes and edges.

The techniques discussed above typically display a bipartite graph in its original
form with individual nodes and bipartite connections. To handle large scale data
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aggregation is usually necessary, which we discuss in the next section.

3.1.2 Bipartite relation clustering and visualization

To support scalable analysis and pattern detection on bipartite graph data,
work has been focusing on graph summarization through edge or node aggregation.
We group the graph summarization algorithms and the corresponding visualization
techniques into two major categories:

Algorithms including CHARM [53] and LCM [54] extracts bi-cliques in coordi-
nated bipartite relations. Bixplorer [30, 55, 56], BiSet [33], and BiDots [34] utilize
them to identify and visualize bi-cliques. The visualization techniques display such
structures using overlays on top of matrices/node-link diagrams, bundles edges
within a bi-clique in node-link diagrams [57, 58, 33], or combine both to form
a hybrid representation [30, 31]. However, real-world data is usually noisy and
missing links may create a lot of fragmented bi-cliques that overwhelm the users.
Although interactive exploratory visualization techniques can partly alleviate this
issue [33, 34], a high-level overview still cannot be obtained easily.

Another category of bipartite graph clustering algorithms simultaneously group
the nodes in the two partitions, relaxing the requirements on bi-cliques. Spectral
co-clustering [59] and spectral bi-clustering [60] were classical methods. Recently,
some bipartite visualization techniques utilize those algorithms to perform data
aggregation and reduce visual clutter in the display, including Xu et al. [32] and
Ming et al. [61].

ViBr falls into this research domain, although we formulate the co-clustering
problem with the information theoretic minimum description length principle
(MDL) [35], which allows the method to directly quantify and minimize the infor-
mation loss in the visual display. Recently, Veras and Collins [36] and Chen et
al. [23] apply it to construct high-level visual summary of hierarchical and temporal
event sequence data respectively to balance the conciseness and information content
in visualization. The MDL principle has also been applied to graph summarization
in the database and data mining research community. Navlakha et al. [62] is the
first work proposing summarization of general graphs with bounded error based on
a two-part representation of summary graph and corrections.

A similar approach (SCMiner) has been proposed by Feng et al. [63] for weighted
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bipartite graphs. However, our algorithm is accelerated with LSH which experi-
mentally reveals that our algorithm has over 300 times speed gain as compared to
SCMiner and three times speed gain compared to Cross-association [64] (a matrix
clustering algorithm), making it more suitable for interactive exploration of data.

We further propose a novel design to visualize the aggregation inspired by
the visual adjacency list design for dynamic graph visualization [38]. The visual
design provides a compact overview of the bipartite relations and facilitates visual
comparison across different subsets in the data. The analysts can facet on a selected
node attribute and compare the bipartite connections.

3.2 Minimum Description Length (MDL) for Bi-
partite Graph Summarization

In the following discussion we use U and V to denote the two sets of nodes
and the bipartite graph is R⊆ U ×V . In this section we first introduce a two-part
representation of a bipartite graph, inspired by the two-part representation of
general graphs in [62], which consists of a summary graph and a set of residual
edges. Combining it with the MDL principle we formulate an optimization goal
to identify a simultaneous grouping (i.e., co-clustering) of U and V such that the
corresponding summary graph can describe the original data balancing complexity
and information loss.

3.2.1 Two-part representation of a bipartite graph

The two-part representation is illustrated in Figure 3.1. Given a simultaneous
grouping of the nodes in U and V (Figure 3.1(a)), it consists of:

A summary graph S with the meta-nodes and their interconnections as
illustrated in Figure 3.1(b). An edge is created between two meta-nodes if the
connection is dense in the original graph. For example, it is almost a bi-clique
between {1,2,3} and {a,b,c}, therefore in the summary graph an edge is created
between these two meta-nodes. On the other hand only one edge exists in the
original graph between {1,2,3} and {d}, so the summary graph between these two
has no edges.
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Figure 3.1: A bipartite graph can be represented as a summary graph S with
corrections C. The original set requires 11 units of spaces (11 edges) while S and C
together only require 4 (2 in S and 2 in C).

A list of corrections C that can recreate the original data from the summary
graph. The summary graph is an approximate representation of the original data.
With the meta-edges we can infer that the interconnection between two clusters is
dense. However it is not enough to recover the exact bipartite connections. We need
to include additional corrections to remove the non-existing edges. For example,
between {1,2,3} and {a,b,c}, every edge exists except for (2, c), therefore we add
an additional correction to remove (2, c) which does not exist in the original graph
(Figure 3.1(c)). On the other hand, even when meta-edges do not exist in the
summary graph, it is still possible for some edges to appear in the original data,
therefore another type of correction add edges back. For example, between {1,2,3}
and {d} no edges exist except for (1,d), so we add back (1,d) (Figure 3.1(c)).

Combining the summary graph and the corrections we can fully recover the
original graph. The two-part representation is therefore a lossless representation of
the original data. The summary graph S can provide a coarse-level overview of the
data and the corrections C model the information loss in the display. The visual
complexity dramatically decreases in the overview and user can immediately grasp
the dominant connectivity patterns in the bipartite graph. Visual abstraction of
the data is even more critical for understanding bipartite relations with thousands
or even millions of nodes and edges when it becomes almost impossible to fit all
the raw data on a single screen.

The remaining problem is how to identify a summary graph which can best
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represent the underlying data balancing the visual complexity and information loss.
This problem eventually boils down to identifying an optimal grouping of the nodes
in U and V based on which we can bundle the edges to form the summary graph.

3.2.2 The MDL principle

We propose an algorithm to obtain an optimal grouping of the nodes in U

and V simultaneously following the minimum description length (MDL) principle.
The MDL principle states that the best model (or hypothesis) of a dataset should
minimize its total description length L, which consists of the model description
length and the description length of the original data with the help of the model:

L= L(M) +L(D|M)

For a bipartite graph, the model is the summary graph S and given a summary
graph we can use the corresponding corrections part C to recover the original data.
Our goal is to obtain an optimal grouping of the nodes such that it can minimize
the total description length of the summary graph and the corrections. To state it
more formally, we denote a bipartite graph as R⊆ U ×V . Our goal is to identify a
partition of U and V such that it can minimize the total description length:

LR(P,Q) = L(S) +L(C)

where P is a partition of U , Q is a partition of V , S⊆ P ×Q is the summary graph
and C is the set of corrections. The definition of C is:

C = (∪(p,q)∈Sp× q)⊕R

where ⊕ denotes the disjunctive union between sets. Since we only need to store the
meta-edge information for the summary graph, the description length is L(S)∝ ‖S‖
and the description length of the corrections is L(C)∝ ‖C‖. We further introduce
the parameters α, βP and βQ to control the penalty of the corrections and the
number of clusters, similar to Veras and Colins et al. [36] and Chen et al. [23]. To
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Figure 3.2: Illustration of summarization results of the MDL formulation using
three synthetic datasets with different ground truth co-cluster structures as shown
on the left of the figures. Each partition is computed three times with noise equal
to 10%, 30%, and 50%. The result shows that our approach captures the structures
in the synthetic data and is robust to noises.
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sum up, our goal is to find P and Q that can minimize the loss function:

LR(P,Q) = ‖S‖+α‖(∪(p,q)∈Sp× q)⊕R‖+βP‖P‖+βQ‖Q‖ (3.1)

where βP‖P‖+βQ‖Q‖ can be considered as two regularization terms which penalize
large number of node clusters. Larger βP and βQ results in smaller numbers of
clusters. An example of the effect can be found in Figure 3.3.

We illustrate our approaches’ outcome by visually inspecting the partitioning
results for different bipartite graphs with ground truth co-cluster structure with
the help of our algorithm (discussed in the next section). The results are shown in
Figure 3.2. We generate three synthetic datasets in the same way as in SCMiner [63]:
an empty set with no co-cluster structures Figure 3.2(a), one with two one-to-one
relations (Figure 3.2(b)), and one relatively complex graph with more node clusters
(Figure 3.2(c)). We increase the noise gradually to 10%, 30%, and 50% by creating
additional or missing edges in the bipartite graph for each synthetic dataset. It can
be observed that overall our approach can capture the structure in the bipartite
graph without any supervised number of groups and has good robustness over
noises. Our method creates less debris, as shown in an empty set Figure 3.2(a) that
when noises are increasing, the partition structure is less likely to break into more
concrete pieces, and the overall structure is maintained.

3.3 Computing MDL Representation

In this section, we first introduce a basic algorithm to find partition P and Q

and the corresponding summary graph S that can minimize the description cost
described in Equation 3.1. Then we describe a speed up strategy that applies
LSH [37], an efficient nearest neighbor search algorithm. We report the results
of a series of empirical experiments to verify the robustness of the algorithm and
compare it with other co-clustering algorithms.
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Figure 3.3: Summarization results of our vehicle dataset consisting of 2967 vehicle
logs with around 250 fault codes using different values of β. (a)β = 1; (b)β = 10;
(c)β = 100; Only co-clusters with more than 10% density are included.
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ALGORITHM 1: BM-MDL

Input: Two sets of nodes U and V and the bipartite relation R⊆ U ×V
Output: Partition of U , denoted as P and partition of V , denoted as Q, summary

graph S⊆ P ×Q
/* Initialization step */

1 P = {{u}|u ∈ U}; Q= {{v}|v ∈ V }
2 S = {({u},{v})|(u,v) ∈R}
3 ∆Lmax = 1

/* Iterative merging step, until no cost reduction is possible */

4 while ∆Lmax > 0 do
/* Merge clusters in P */

5 p0 = random select(P )
6 ∆Lmax = 0, pmax = undefined

7 for p ∈ two hop neighbors(p0,S) do
8 ∆L= 0
9 for q ∈ neighbors(p,S)∪neighbors(p0,S) do

10 ∆L+ = cost reduction for bundling((p,q),(p0, q),R,S)
11 end
12 ∆L+ = βP

13 if ∆L >∆Lmax then
14 ∆Lmax = ∆L, pmax = p

15 end
16 end

/* Merge two clusters if cost reduction is possible */

17 if ∆Lmax > 0 then
18 merge(p0,pmax,R,S)
19 end

/* Same procedure as for Q... */

20 end
21 return P , Q, and S

3.3.1 The BM-MDL algorithm

We first propose a basic version of the algorithm named BM-MDL (bipartite
graph mining with MDL) based on the approach proposed by Navlakha et al. [62].
The algorithm follows a bottom-up and greedy approach. Initially each node is
treated as an individual cluster. In each iteration, we identify a pair of clusters
to merge that will result in the maximum reduction in description length. The
process stops when the total description length no longer decreases. As a simple



21
speed up strategy, we use a randomized approach which picks a cluster randomly
and merge it with the best node in its hop-2 neighborhood, similar to Navlakha
et al. [62]. For example, in Figure 3.1, if node 1 is first chosen, the algorithm will
try to merge it with its 2-hop neighbors including node 2, 3, 4 and 5. Merging
node 1 and 2 creates two meta-edges ({1,2},{a}) and ({1,2},{b}) in S and two
additional correction edges (1, c) and (1,d) in C. Assuming α = 1, ∆L = 2 +βP

since there are two edges less in total and the number of node clusters in P reduces
by one. Similarly, the algorithm calculates ∆L by merging node 1 with node 3, 4
or 5, this result in ∆L= 3,1,1 respectively with an additional constant βP . The
algorithm therefore will choose node 3 and merge it with node 1. The procedure is
described in detail in Algorithm 1. The subroutine cost reduction for bundling in
line 10 calculates the change in description length by merging two meta-edges in
the summary graph, which is a necessary step for merging two meta-nodes. The
subroutine merge in line 18 updates the partitions P or Q and the summary graph
S by merging two meta-nodes. In Appendix (Section A) we provide more detail on
the two subroutines cost reduction for bundling and merge. In each iteration, the
algorithm computes the description length reduction for all the hop-2 neighbors of
a node. Assuming that the nodes have average degree of d, O(d2) hop-2 candidate
pairs have to be checked for each iteration [62].
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ALGORITHM 2: BM-MDL-LSH

Input: Two sets of nodes U and V and the bipartite relation R⊆ U ×V
Output: Partition of U , denoted as P and partition of V , denoted as Q
/* Initialization step */

1 P = {{u}|u ∈ U}; Q= {{v}|v ∈ V }
2 S = {({u},{v})|(u,v) ∈R}
3 ∆Lmax = 1
4 θ = 0.99, θcutoff = 0.1, λdecay = 0.9

/* Iterative merging step */

5 while θ > θcutoff do
6 TP = build lsh table(P,S,θ)
7 TQ = build lsh table(Q,S,θ)
8 while ∆Lmax > 0 do

/* Merge meta-nodes in P */

9 p0 = random select(P )
10 ∆Lmax = 0, pmax = undefined

11 for p ∈ query lsh table(p0,TP ) do
12 ∆L= 0
13 for q ∈ neighbors(p,S)∪neighbors(p0,S) do
14 ∆L+ = cost reduction for bundling((p,q),(p0, q),R,S)
15 end
16 ∆L+ = βP

17 if ∆L >∆Lmax then
18 ∆Lmax = ∆L, pmax = p

19 end
20 end

/* Merge two clusters if cost reduction is possible */

21 if ∆Lmax > 0 then
22 merge(p0,pmax,R,S)
23 end

/* Same procedure as for Q... */

24 end
25 θ∗= λdecay

26 end
27 return P , Q, and S
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3.3.2 Speeding up With LSH

The basic version of the algorithm is extremely time consuming due to the
need to compute and compare the potential cost reductions for merging each
pair of clusters with 2-hops in the bipartite graph. To speed up the algorithm,
we employ locality sensitive hashing (LSH) [37], which is an efficient method for
nearest neighbor search. We use LSH to efficiently identify the clusters with the
most similar bipartite connections measured by Jaccard similarity. The procedure
is described in Algorithm 2. Since LSH allows very efficient search for nodes with
similar bipartite connections, the number of candidate pairs to check is much less
than O(d2) [37].

Notice that the inner while loop in Algorithm 2 is similar to Algorithm 1 except
that now instead of identifying the best clusters to merge in the hop-2 neighbors, we
only search among those pairs of clusters with Jaccard similarity coefficient above
a certain threshold θ (line 12) which can be efficiently done approximately with
LSH [37]. Using the same example in Figure 3.1 and above, with a proper setting
of θ, if node 1 is first chosen, the algorithm will compare with node 3 only since
they have the greatest similarity of connecting edges, eventually 1 and 3 will be
merged as the description length will decrease. The outer loop sets θ at a relatively
high value (close to 1.0 as in line 4) initially and gradually decrease it by a fixed
decay rate λ. This allows the algorithm to prioritize the most similar clusters in
early iterations but still being exhaustive in the search at later stages.

3.4 Design Requirements

While creating the visual representations and analytics system we faced many
design decisions. To formulate our desiderata we interviewed a group of data
scientists in the automotive industry, whose main responsibility is to analyze large
amount of vehicle log data capturing the occurrences of different fault signals in
cars. One typical question they are trying to answer with such log data is: are
there any groups of cars that exhibit the same set of symptoms over the course
of their lifetimes? Insights like this enable large scale troubleshooting and exposes
hidden market segments since cars with similar faults will likely need common parts
for replacement or similar services in the repair shops. We list the analytic tasks
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Use case 1: vehicle fault analysis

(R⊆ vehicles × faults)
General case: bipartite graph analysis

(R⊆ U ×V )
Use case 2: roll-call vote analysis

(R⊆ legislators × bills)
Identify vehicles with similar
faults

T.a1 Identify nodes in U with
similar bipartite connections

Identify legislators that vote
similarly

Identify faults that co-occur in
cars

T.a2 Similar as T.a1 for V Identify bills voted by similar
legislators

Compare faults that occur in
different vehicle clusters

T.a3 Compare linkages be-
tween node clusters in U and
V

Compare bills voted by differ-
ent clusters of legislators

Assess the deviations of fault
occurrence patterns for vehicles
in the same cluster

T.a4 Assess the amount of cor-
rections needed to recover R
from S

Assess the deviations of voting
patterns for legislators in the
same cluster

Compare fault occurrences for
cars with different shared prop-
erties e.g. engine types

T.b Compare bipartite connec-
tions for nodes with different at-
tribute values

Compare voting records of dif-
ferent parties

Table 3.1: Task analysis. The two use cases correspond to the example usage
scenarios are described in Section 3.6.2.

gathered from the interview in the first column in Table 3.1.
We further investigate the possibility of generalizing the tasks in vehicle log

analysis to other application domains. In Table 3.1 (column 2) we first generalize
these tasks for an abstract bipartite graph with node attributes. Then we instantiate
the analytic tasks for another real-world application: roll-call vote analysis. The
instantiated tasks are also valid and critical in the corresponding application domain
(political science) as verified by a domain expert1. Eventually we aim at designing
a system that can address a core set of analytic tasks that appears in a wide range
of applications applying bipartite graph to model the key relations in the data.

We categorize the tasks in Table 3.1 into two groups (T.a1-4 and T.b). T.a1-4
focus on the topological structure of the bipartite relation. Applying the graph
summarization algorithm (BM-MDL-LSH) and visualizing the aggregated result
help analysts quickly gain an overview of the data to support T.a1-3. However, the
summary graph S alone is an inaccurate representation of the original data. To help
analysts better assess the significance and reliability of the aggregated bipartite
relations (T.a4), we also need to visually encode the amount of corrections C needed
to recover the original graph. T.b focuses on the attribute values of nodes and how
they are associated with the bipartite connections. The domain-specific attributes
(e.g. engine type in vehicle data, gender or occupation in movie preference data,

1We interviewed a research scientist working in the area of political science.
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Figure 3.4: ViBr interface. First analyst selects the data using the filters D
and computes a summarization A filtered by the density and the sizes of the
clusters B . From the adjacency list A she observes different fault patterns (a
and b). Splitting the summary view into small multiples 1 , several unique groups
of faults (e.g. c) only occur in vehicles with a particular engine code. Next level
of detail is shown by bringing up a matrix view for a particular block 2 . Labels
are always provided in the legend bar with text search G . The node attribute
value distributions and detail node information are displayed in E and table F
respectively.

and party in roll-call votes data) add context to further understand and interpret
the topological structure.

Besides supporting the analytic tasks described above, the system should also
enable detail-on-demand data exploration (R1) since a static, high-level visual
summary of data is seldom sufficient and analysts need to interactively drill down
to the details for verification or identify more fine-grained structures in the data.
Furthermore, the co-clustering algorithm creates node clusters and meta-edges with
varying strengths. To help the analysts identify salient patterns in the data we
should provide filtering mechanisms (R2) accordingly.
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3.5 The ViBr System

We have designed ViBr to address the analytic tasks and design requirements
discussed in Section 3.4, based on the summary graph generated by our technique
described in Section 3.2. ViBr allows users to gain an overview of large scale
bipartite relations with the summary graph (T.a1-4), adjust the granularity of
the visualization to drill down into details (R1), filter the data to focus on the
significant and salient cluster structures (R2) and apply the information encoded in
domain specific node attributes for comparison, explanation and verification (T.b).

3.5.1 Visual adjacency list

To support scalable visual exploration, we design an adjacency list style visu-
alization which is illustrated in Figure 3.5 (b). The visualization represents the
clusters on one side of the graph (i.e. clusters in U) as different rows and their
outgoing connections to clusters on the other side (i.e. clusters in V ) as colored
blocks stacked from left to right. Different colors represent different node clusters
in V . The height and width of the blocks are proportional to the number of nodes
contained in the two clusters. Some blocks are not entirely filled to indicate that
there are missing edges in the original graph. The filled height of the blocks is
determined by the density of the edges. The density is the number of edges between
two clusters p ∈ P and q ∈Q divided by the maximum number of possible edges.

density(p,q) = ‖p× q∩R‖
‖p‖ · ‖q‖

(3.2)

density(p,q) = 1 if the edges between p and q form a bi-clique. The blocks
are sorted from left to right based on the density of the edges connecting the two
clusters of nodes.

Compared with other visualization techniques such as node-link diagram with
two parallel lists of nodes (Figure 3.5(a)), flow map (Figure 3.5(c)) and adjacency
matrix (Figure 3.5(d)), the visual design results in an aligned and compact repre-
sentation. It benefits the searching and understanding of bipartite relations and is
adaptive to visualize graphs with different degrees of density. The key connections
in the graph are prioritized and they can be easily identified by scanning vertically.
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In flow map (Figure 3.5 (c)) the aggregated nodes in P and Q are arranged

in two parallel vertical lists and the aggregated links are drawn as curved edges
connecting the corresponding nodes. The widths of the edges are modulated based
on the density value computed with Equation 3.2. One advantage of the design
is that it allows the labels to be placed horizontally which can greatly improve
the readability and interpretability of the visualization. This advantage, however,
diminishes when the graph becomes much larger with thousands or even more
nodes. Our major concern about the flow map is the visual clutter caused by the
edges crossing each other, which makes it a challenging task to gain an overview
of the bipartite connections and compare subsets of data, even for graphs at a
moderate scale. Recent works identify bi-cliques in the graph and bundle the edges
correspondingly to reduce visual clutter [58, 33]. However these methods may fall
short for large scale bipartite graphs which could contain many small bi-cliques.
Adjacency matrix (Figure 3.5 (d)) is another possible design. In adjacency matrices
we use the filled proportion (similar to visual adjacency list) to encode the density
of the aggregated connections. Adjacency matrices are suitable for visualizing
dense interconnections [65, 66]. However it lacks space efficiency: for graphs with
relatively sparse interconnections the empty blocks still have to occupy the screen
space and the ’data-ink’ ratio is not high. Besides that, it is still a challenging task
to display readable row and column labels.

One important property of the adjacency list is that by filtering the blocks with
low density and small node cluster size in U and/or V we can obtain an extremely
compact overview of the bipartite relations. In Figure 3.6 we illustrate how the
visual adjacency list is gradually simplified by increasing the threshold on density
and the size of the node clusters. This property is especially useful for creating
small multiples of adjacency lists to compare the bipartite relations for different
subsets of data as illustrated in Figure 3.7. We use animated transition in the
system to further facilitate understanding.

For the default display of the aggregated graph, we choose the adjacency list
style design as it is a compact design and it distinguishes the node clusters with
vertical positions and color. Aligning rows in this way allows the separation of
node clusters at the first glance. In most of the cases it looks much clearer. Color
has scalability issues in assigning distinct values, but choosing it over the long
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Figure 3.5: Design alternatives: (a) original data with two parallel list of nodes in
U and V . The node clusters identified by the algorithm are highlighted; (b) the
adjacency list style design. Color encode the different node clusters in V . Each
rectangle block corresponds to an aggregated edge between two clusters in U and
V . The height and the width of the block are proportional to the number of the
nodes in the corresponding clusters. Filled proportion in each block encodes the
density of the aggregated edge. Blocked sorted from left to right by decreasing
density; (c) flow map with aggregated nodes and edges; (d) adjacency matrix with
aggregated rows and columns. Filled proportion in each block encodes same value
as in adjacency list.
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horizontal axis as in adjacency matrices creates a greater utilization of space. We
further extend the palette from ColorBrewer [67] with textures [68] such as .
In the example usage scenarios with real-world data (Section 3.6.2) we realize that
the distribution of bipartite connections are usually quite skewed and the color
plus texture encoding can create enough variations to differentiate the major node
clusters. We acknowledge that further user study is needed for a comprehensive
understanding of the perceptual scalability and crafting a set of optimal designs for
the texture patterns. We provide a legend (Figure 3.4 G ) indicating the belonging
nodes to each colored cluster. The system also supports text search of the node
names in the legend.

One drawback of the visual adjacency list is that the two sets of nodes (U and
V ) are not treated symmetrically in the visual representation. For U , the stacked
heights make it easier to compare and sum the sizes of the node clusters. For V , the
color encoding makes it easier to label the individual nodes in different clusters with
additional legend. In practice, we also provide adjacency matrix as an alternative
in the user interface and the analyst can switch between these two representations.

3.5.2 User Interaction

For effective exploratory data analysis, interaction is equally important as visual
representation. ViBr supports the following user interactions:
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Figure 3.6: Filter visual adjacency list with different threshold settings on: (1)the
density of the links, (2)the size of the clusters in U and (3)the size of the clusters
in V . From (a) to (c) the visualization is gradually simplified and the significant
patterns are highlighted.

Filtering: The system supports several filtering mechanisms such that analyst can
focus on a particular subset or the most significant clusters in the data:

1. Filter nodes by attribute values: ViBr supports selecting a subset of nodes
based on their attribute values (Figure 3.4 D ) such that the analysts can
focus on a relevant segment of the data.

2. Filter blocks in the adjacency list: Although the number of node partitions
can be controlled, noises in data can still produce small pieces that reduce
the available spaces and affect the clarity of color encoding. Therefore, three
filters are available (Figure 3.6, Figure 3.4 B ) to remove noises based on
different criteria: the density of the blocks and the corresponding size of the
node clusters in U and V . Users can choose to keep only blocks that are
significant in density or representative in size. The purpose is to emphasize
important relations for comparison and facilitate understanding. Figure 3.6(a-
c) illustrates the effect of different filtering threshold settings.

Compare bipartite connections by node attributes: For comparative analy-
sis of bipartite relations the system supports creating small multiples by slicing on
a selected node attribute (Figure 3.7). In the example illustrated in Figure 3.7 we
show the overview of the bipartite relation(Figure 3.7 (a)) and the result of faceting
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Figure 3.7: The system supports creating small multiples (b) from the original visual
summary (a) by slicing on a selected node attribute. This supports comparative
analysis across different subsets of data. The result shows a unique group of nodes
with very distinctive bipartite connections (c).

it on a particular node attribute(Figure 3.7 (b)). The result shows a unique group
of nodes with very distinctive bipartite connections (Figure 3.7 (c)) as the blocks
have complete different color compared to the other two small multiples.
Detail-on-demand: Users can select a block to perform drill down inspection.
The visual summary provides a high-level picture of the bipartite connections.
However user may request more details for either verifying the results of the
clustering algorithm or understanding the characteristics of a particular cluster.
ViBr supports several different mechanisms for drill down inspection:

1. When a mouse hovers over a block, a tooltip is displayed to show the number
of rows and columns and the density of the block.

2. When user clicks on a block, the detailed information of the corresponding
nodes in U and V will be displayed and updated in two different tables
(Figure 3.4 F and G ).

3. When user double clicks on a block representing the high level summary, a
new window will be created to reveal low level details of the bipartite relation
within it using an adjacency matrix style visualization(Figure 3.4 2 ). The
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co-clustering algorithm is invoked again to reorder the rows and columns in
the matrix to highlight the existence of any internal structures. User can
click on the matrix view then brush through the entries, so that the two data
tables will be further refined to highlight the information of the selected rows
and columns. Under certain circumstances improper parameter settings in
BM-MDL-LSH algorithm may result in an overly aggressive compression of
the data. The visualization may henceforth display nodes with drastically
different bipartite connections as one single cluster. Details provided by the
matrix view can help users verify the resemblance of items within the same
cluster to answer their hypothesis.

Brushing on coordinated views: The system visualizes node attribute value
distributions with univariate charts: bar charts for categorical variables, histograms
for (binned) numerical variables. These univariate charts are linked to the bipartite
graph visualization: upon selection of a cluster the filtered data are highlighted in
bar charts or histograms.

3.6 Evaluation

3.6.1 Evaluation of robustness and speed

In this section we present the experiments to evaluate our technique in terms of
robustness and speed. The evaluation takes references from other similar bipartite
relation summarization technique including the most recent SCMiner [63]. We
also include a binary matrix reordering algorithm named Cross-association (CA)
for reference [64]. We use the Python implementation for all the four algorithms.
SCMiner, CA and BM-MDL-LSH use Numpy 2 which wraps C for numerical
computation. We run the experiments on a Mac (OS Version High Sierra) with
2.3GHz Intel i7 CPU with 16GB RAM.

To evaluate the speed and the scalability the algorithm, we compare the running
speed across SCMiner, CA, BM-MDL and BM-MDL-LSH. SCMiner and BM-MDL
are similar [63, 62] since they all use 2-hop search to find candidate pairs of nodes
to merge. In the experiment, we use the 1M MovieLens dataset [69]. The dataset

2http://www.numpy.org/
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contains 1M movie ratings from ∼6000 users on ∼4000 movies (the density is ∼4%).
We compute the running speed by gradually increasing the sampling rate of the
movies and the users. The results in Figure 3.8 show that replacing the 2-hop
search with LSH drastically reduces the running time of BM-MDL. Based on the
calculation it improves the speed by more than 10 times for the full dataset. In
the meanwhile, SCMiner cannot finish under reasonable time constraints — the
running time exceeds 1 hour already for 50% data. Compared with the closest
candidate CA, BM-MDL-LSH achieves around three times speed gain, which makes
it a more practical choice for interactive bipartite relation exploration where the
analyst can iteratively select different subsets in the data and run the algorithm to
discover the underlying co-clusters.

Besides that we also further verify that BM-MDL-LSH does not introduce
significant degradation in the results when compared to BM-MDL, in terms of
description length reduction. We compare the percentage of reduction in description
length in Figure 3.8 for the two algorithms running on the sampled 1M MovieLens
data, with the same parameter settings for α, βP and βQ. The result shows that
BM-MDL-LSH in fact improve the results, which can be explained by the higher
threshold (close to 1) we set for LSH at the initial runs that prevents dissimilar
pairs of nodes from being merged. In the meanwhile, with an aggressive setting of
βs (to enforce less cluster numbers), BM-MDL groups even dissimilar nodes in the
initial iterations, which results in far from ideal reduction in the description length.

3.6.2 Example Usage Scenarios

We introduce two example usage scenarios to demonstrate the effectiveness of
our techniques. First we work with a researcher in political science to apply ViBr
to analyze the roll-call voting records on 668 subjects (e.g., bills, amendments,
resolutions, nominations) in the 115th United States House of Representatives in
2017. The data is collected from GovTrack.us3. The graph is constructed based
on 435 individual legislators’ votes on each subject. Overall we count 170,237
favorable votes. For each favorable vote we create a bipartite connection between
the corresponding legislator and the subject.

3https://www.govtrack.us/
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Figure 3.8: Left: comparison of running times of SCMiner, CA, BM-MDL and BM-
MDL-LSH on the 1M MoiveLens dataset [69] with different sampling percentage.
BM-MDL-LSH consistently outperforms others in terms of running speed. We
discard all the results that require more than 1200s to complete in the plot. Right:
comparison of the description length reduction of BM-MDL and BM-MDL-LSH. It
shows that BM-MDL-LSH does not degrade the basic methods and even outperforms
it in most of the cases.

The second work consists of a group of data scientists from the automotive
industry focusing on a dataset about around 7 million vehicles’ after-market repair
information. The dataset records the diagnostic trouble codes (DTCs) for each
vehicle. We create the bipartite relations based on the occurrences of the DTCs in
the individual vehicle. Each computation and visualization is bounded within an
individual car model. Therefore, the analysis of each car model consists of vehicles
amount ranged from 2,000 to 40,000. The exact vehicle identification number (VIN)
and the DTCs are anonymized for privacy concerns.

3.6.3 Congress voting analysis

A background of the 115th Congress is as follows: the Republicans occupied
more than half of the seats in both the Senate and the House of Representatives,
plus they had won the presidential election in 2016. Therefore, it is clear that
they act as the ruling party while the Democrats act as the opposition party. To
understand the dynamics in the congress we conducted the case study with a
researcher in political science and she helped document the findings.

Overview the bipartite structure in votes. The expert first runs the
co-clustering algorithm and creates a small multiple display by faceting on the
party affiliation (Figure 3.9(b)). The clusters of subjects being voted (e.g. bills,
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Figure 3.9: Using ViBr to analyze the bipartite structure of roll-call votes in the
US House of Representatives (115th Congress). (a) The Republicans mainly vote for
bills that favor the legislation (orange block); (b) Overview of the bipartite relations.
The two small multiples summarize the voting patterns of the Republicans and the
Democrats respectively;(c) Detailed matrix view of one block; (d) Both parties vote
for bills that are non-controversial. (e) The Democrats mostly vote for amendments
(gray and red block). Details can be found in Section 3.6.3.

amendments) are assigned with different colors. The relative areas of the colored
blocks in each subgraph shows that the two parties indeed have very different sets
of favored bills (or amendments and etc.) and the representatives usually vote
according to the consensus of their parties. Besides that, based on the total filled
area of the blocks, the Republicans vote “yes” more than the Democrats, showing
the proposed bills and rules are favorable to the ruling party.

Understanding roles of different parties in the legislation process. In
both subgraphs we observe a teal colored block, indicating that there are quite a
few number of proposals supported by both the parties. The expert clicked one teal
colored block in the Democrat’s partition (Figure 3.9 1 ) and opened the detailed
matrix view (Figure 3.9(c)) for further analysis. The co-clustering algorithm runs
again to reorder the rows and columns in the matrix view to reveal the internal
structures in the block. The expert brushed on the matrix view to review more
details (Figure 3.9 2 ) and observed that the Democrats mostly voted ”yes” on the
subjects about ”On Motion to Suspend the Rules and Pass” (Figure 3.9(d)), which
refer to the act of quickly passing the non-controversial bills for more efficiency in
the legislation process.

The orange colored subjects are rarely voted in favor by the Democrats while
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being supported by the majority of the Republicans as shown by its high density
in the partition (Figure 3.9(b). These subjects are mainly related to these cate-
gories(Figure 3.9(a): 1. Agreeing to the resolution for consideration, which means
agreeing to initiate the introduction of new bills; 2. Ordering the previous question,
which means the motion to end debate on a pending proposal and bring it to an
immediate vote; and 3. Passage, which means passing the proposal. It shows that
as the Republican party is now the majority party, more bills and legislations of
their interests and policy preferences will be proposed by them. Therefore they will
mostly agree on these actions which are conducive to the establishment of new laws
to fulfill their party interests. On the other hand, Democrats are more likely to
oppose such initiatives and prevent the bills from passing, since those would rarely
be compatible with their interests.

On the other hand, the subjects with votes mostly from the Democrats (gray
and red blocks) fall into these categories (Figure 3.9(e)): 1. Motion to recommit
with instructions, which means to send back the proposal for amendment; and 2.
Agreeing to the amendment, which refers to the amendment of several details in the
bill. Our expert then comes up with an interesting question: “Why do Democrats
like to vote for amendments?” She searches for the number of amendments voted
from the Democrats, and discovers that they support amendments more than the
Republicans. She then concludes that the Democrat’s support on amendments is a
clear reflection of the bargaining process in the legislature, as well as the general
balance of power between the two parties. Amendment is a subtle issue, which may
bring benefits to both the Democrats and the Republicans. As the minority party
in the House, the Democrats may find the bill drafted by the Republicans far from
their ideal policy position; however, this does not mean the Democrats have no
bargaining power in the Congress. Instead, through negotiations and even fierce
debates in the House, the Democrats may propose changes to specific articles in
the drafted bill through amendments, such that their interests and preferences are
represented. This helps explain why while the Democrats are reluctant to pass the
bill, they are more willing to seize the opportunity for amendments.
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3.6.4 Vehicle fault data analysis

In the second example usage scenario, we turn our attention to a completely
different application domain and analyze the occurrences of faults in vehicles. The
vehicle faults are recorded as DTC codes, which are warning messages generated
by different electric control units (ECUs) in vehicles. They indicate abnormality
in various sensor measurements or other types of malfunction in the hardware
and software system. A large portion of the DTC codes are standardized across
different makes and models while some of them remain unique to individual brands.
Given that the vehicles are increasingly complex, the repair shops rely heavily on
the historical record of DTCs to track the health statuses of the vehicles. When
a vehicle visits a repair shop the mechanics will collect the on-board DTC logs
and use them to perform more precise diagnosis and identify the suitable repair
procedures.

Large scale analysis of DTC occurrences in vehicles help understand the de-
mographics of vehicle faults, which would have great impact on the automotive
industry. It enables large scale troubleshooting such that early warnings can be
generated on the emerging fault patterns for the auto manufacturers before the
problem strikes a larger vehicle population. Besides that, it also enables experience
based repair by analyzing the most effective repair procedures for a particular set
of co-occurring DTCs. Regardless of the size of vehicle data being analyzed, our
analyst follows similar pipeline (Figure 3.4) supported by ViBr to acquire insights
that help understand the demographics of vehicle faults:

Search for co-clusters with high confidence. Our analyst’s first action
would be filtering out co-clusters by densities and sizes. In general the bipartite
relations between the vehicles and the DTCs are quite sparse. Among the ∼3000
different types of DTCs most of them seldom occur. To seek for meaningful and
significant clusters which can reflect the systematic fault patterns within a vehicle
population, it is necessary to focus on clusters with a larger number of vehicles and
relatively higher density. Therefore, the analyst adjusts the filters (Figure 3.4 B )
available in the system such that the dense and significant blocks become more
visible. (Figure 3.4 A ) shows the filtered result. There are around 10 large groups
of vehicles with different combinations of co-occurring DTCs. It reveals that vehicle
repair and maintenance requires highly customized services and inspecting the data
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visually is an effective way to uncover such multi-class situation.

Compare the co-occurring faults for different clusters of vehicles. The
vehicle clusters differ by either having a unique set of DTCs, or they could have
a common set of DTCs but differ by some additional ones. For example, the
temperature sensor problems (yellow block, Figure 3.4a) only appear in one of the
vehicle clusters, independent of all the other DTCs. While the other two groups of
vehicles (Figure 3.4 b) share a similar set of DTCs (purple+ pink blocks) but differ
by additional seat belt problems (light green block). Based on such observations
the analysts can isolate different sets of vehicles for focused analysis.

Analyze the correlation of fault patterns with vehicle properties.
Given the overview the analyst wants to understand whether the fault patterns
are associated with a particular subpopulation of vehicles that share the same
properties such as engine type or country. This can be done by partitioning the
vehicles on a selected property and separating the overview into small multiples
for comparison. For example, in Figure 3.4 1 , each small multiple displays a
summarized bipartite relation for a subset of vehicles with the same engine code.
The analyst finds out that the sensor faults (orange) and pressure actuator faults
(pink) only occur in vehicles with a particular type of engine (Figure 3.4 c).

Inspect details in the matrix view. To obtain detailed information the
analysts open the matrix view. In Figure 3.4 2 we give an example where a
dense purple colored block is double clicked and the matrix view is displayed for
the block showing the occurrences of DTCs in individual vehicles. The analyst
further brushed on the corresponding entries to obtain fine-grained information
of the vehicles and the DTCs such as the VIN number and the body type of the
vehicles (Figure 3.4 F ) and the description of the DTCs (Figure 3.4 G ).

3.6.5 Expert Interview

After recording the exploratory analysis process and findings from the experts in
the automotive industry and political science respectively, we gathered feedback on
the effectiveness and usability of the visualizations and their thoughts on potential
extensions/other applications with a few guiding questions, following the suggestions
proposed in [70].

Visual design. Overall, the domain experts appreciate the clarity and novelty
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of the summarization as well as the visualization output. Our political science
expert looks forward to not only examining votes for legislative bills, but also the
exact content of it. Given the summarization now available, she can analyze the
importance of certain policy issues through text analysis of the terms and phrases,
which contributes to agenda setting. She believes text visualization techniques like
word clouds can seamlessly be incorporated into the current system to help produce
more insights regarding political issues.

Outlook to further impact. The domain experts from the automotive
industry wants to add more critical labeling information in the data such as
parts that are replaced in a vehicle. These can be associated with the DTC
clusters identified by the algorithm, allowing repair shops to perform faster and
more accurate data-driven diagnostics and even alert drivers for potential failure.
Furthermore, our political science expert would like to apply the current techniques
to help her research in the area of international political economy to understand
the contemporary globalization pattern. She would like to summarize the trade
between countries distributed in different geopolitical regions and compare the
patterns over a period of time. She believes that it can revolutionize the traditional
way of showing data within her research community.

3.7 Conclusion

In this chapter, we visit the problem of summarizing large scale bipartite
relations and introduce a novel interactive visual analytics approach to address
the challenges. First, we propose an information-theoretic co-clustering algorithm
based on the MDL principle. The algorithm runs efficiently on large scale bipartite
graphs which makes it suitable to support interactive visual exploration. Then,
we present a comprehensive visual analytics system with a novel visual adjacency
list style design and multiple levels-of-detail to facilitate interactive exploration of
large scale bipartite graphs with multivariate node attributes. We present usage
scenarios with two real-world dataset and feedbacks from the domain experts to
demonstrate its effectiveness.
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Chapter 4

Time Series Summary

Time-series data analysis is prevalent in many applications. Data scientists and
domain experts engage in a wide range of time series exploration tasks such as dis-
covering patterns in urban activities (e.g., noises, traffic, and weather [71, 72, 73]),
identifying trends in highly volatile financial markets [74], and grouping human
mobility patterns from wireless telecommunication traffic data series [75, 76, 77, 78].
Analysts often rely on visual exploration as the first step to produce hypotheses
and acquire insights from many time series.

Many visualization primitives have been proposed [79, 80, 81, 82] to support
temporal data analysis. However, time-series visualization is challenging for complex,
large data [83]. The difficulties of visualizing time series without properly handling
the data are illustrated in Figure 4.1. First, different composite visualizations
face a tradeoff between scalability and visual clarity. While plotting time series
in each small multiple (i.e. (a) juxtaposition) is not feasible for large scale data,
plotting every time series in one chart (i.e. (b) superposition) deteriorates the
visual clarity quickly. The main reason for cluttering comes from the overlapping
among various shapes, which furthermore inhibits the usage of clutter reduction
techniques such as the aggregation by bands or density (Figure 4.1 (c) and (d)).
Therefore, the intuitive solution of visualizing time series without overplotting nor
under-utilizing small multiples is to cluster the whole time series with similar trends
then visualize each trend with one chart per cluster (Figure 4.1(i)). Yet, the problem
is not fully solved – time series in real life exhibit trends within subsequences in
arbitrary durations and time intervals. Only considering the whole time series for
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Figure 4.1: Illustration of the challenges of visualizing multiple time series. Without
an effective grouping of time series, the basic visualizations (a) – (d) suffer from
either visual clarity or scalability. (1) Clustering time series reduces the visual
clutters, and (2) grouping the similar subsequences further optimizes the number
of small multiples needed, resulting in a time series visual summary proposed in
our work.

clustering reduces the chances for each series to be grouped, consequently hindering
the reduction of small multiples and the emphasis of useful patterns. Thus, we
argue that the most effective visualization technique for large scale time series is to
extract their similar subsequences (Figure 4.1(i)). This opens a brand new research
challenge: how to present the time series subsequences that balance visual clarity
and the number of small multiples with computations that apply visualization
oriented metrics and return results in interactive time. Without loss of generality,
we define the time series subsequence clusters as a set of disjoint partitions of
real-value data series, which differs our problem setting to overlapping subsequence
clusters [84, 85, 86, 87, 88] (i.e. same data points visualized in multiple charts) and
clustering discrete event sequences [89, 90].

Besides the challenges of clustering time series subsequence with arbitrary
durations and time intervals, it is also computationally expensive to measure the
similarity between time series in terms of their shapes. As shown in Figure 4.1, the
second challenge for summarizing time series is the possibility of shifting among
similar trends of time series (Figure 4.1(ii)). It means that alignment is needed
among time series before measuring their similarity with metrics like Euclidean
distances, which, we will show in Section 4.3, imposes a dramatic computation
complexity for interactive data analysis.

As a result, we propose a novel visual summarization technique for multiple
time series that uses a sequential pattern mining approach and reveals the time
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series patterns that can appear in any time interval or set. We first propose a new
symbolic representation of time series which encodes the visual structure of each
time series subsequence in a discrete format, and how to compute them efficiently.
We furthermore introduce efficient algorithms that use the symbolic sequential
patterns as input and output optimal groupings of similar subsequences. The result
is a visual representation that balances the tradeoff between optimizing the number
of charts allocated for the time series and clutter.

Such a technique enables a scalable visual encoding to display time-series pat-
terns with low visual complexity. To leverage the technique for scalable time-series
visual analytics, we propose a carefully considered interactive system to facilitate
visual pattern discovery and understanding. We discuss the rendering strategies
to facilitate visual exploration and interaction of massive time-series data. In short,
our contributions are as follows:

1. We propose a novel time-series summarization technique that consists of a
new symbolic representation of time series and an optimization strategy to
compactly group the similar time series subsequences using the representation.

2. We propose efficient algorithms to construct the representation and extract
the time series patterns from the sequential patterns within seconds instead
of hours in straightforward DTW and pattern mining computations.

3. We present an accessible and scalable visualization interface to explore large
volumes of time series data with our time series summary.

4. We present two example usage scenarios with real-world datasets to demon-
strate the usefulness of our technique.

4.1 Related Work

4.1.1 Time Series Visualization

Aigner et al. [91] summarize time series visualization techniques based on the
data type (i.e. visualizing single or multiple time series) and dimension (i.e. whether
it is linear, cyclic, or branching and whether it is a point or an interval). Bach et
al. [92] provide a perspective of time series visualization as operations on a space-
time cube. The operations include extraction, flattering, filling, and geometric
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and content transformation. Historically, time series visualization started with the
introduction of line charts in the 18th century [79]. It can be encoded in small
multiples and sparklines [80] that used position as the only channel to encode
temporal data. Later on, visualization techniques also included channels such as
area or color to provide better scalability and density in the presentation. Examples
include horizon chart [82], which splits and superimposes a line chart vertically
with a few bands of ranges distinguished by color and color fields [93, 94, 95, 96],
which use hues to encode the values. Recently, these techniques have been shown to
result in different perceptions of similarities [97]. In particular, scalability is a major
challenge when visualizing multiple time series. Charts could lose discrimination
and become cluttered even with a fairly small number of time series (i.e eight
in Javad et al. [83]). Moritz et al. thus proposed a heat map approach to treat
the values in time series as independent pixels and plot the heat map of lines in
one chart [81]. This method reveals the density of lines but neglects the common
patterns from the contiguous movement in many time series.

Since these visualization techniques contain tradeoffs on different data charac-
teristics, interaction plays an important role in facilitating multivariate time series
analysis. TimeSearcher [98, 99, 100] uses brushing to select the time interval and
a value range of interest to filter or query similar time series. BinX [101] provides
options to aggregate time series in bins and visualizes the aggregate functions with
additional box plots and ranges. LiveRAC [80] integrates time series data into a
spreadsheet layout so that users can select and reorder the rows and columns to
perform inspection and manipulation in batches. ChronoLenses [102] and Care-
Cruiser [103] both use filtering and highlighting to provide focus and context
information of such data. Continuum [104], EventRiver [105], FacetZoom [106],
Midgaard [107], TimeNote [108], and KAVAGait [109] apply semantic zooming on
a time axis to visualize the data with different granularity and visual metaphors.

These techniques typically display time series in their original form. To handle
large-scale data, combining data abstraction techniques and visualization is usually
necessary.
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4.1.2 Time Series Mining and Visualization

Since time series visualization is vulnerable to occlusion, especially when the
lines are interleaving, many visualization techniques apply data mining approaches
for time series data analysis. See [110] for an in-depth survey of data abstraction
on visualizing time series.

When abstracting data to visualize large-scale time series, approximation tech-
niques are used to reduce complexity and dimension [111]. Symbolic Aggregate
Approximation (SAX) [112] is widely used to discretize a long time series. It trans-
forms long series into a short piecewise aggregate approximation (PAA) and then
converts the data into a string of symbols. The approximation works well for visual-
izing periodic time series. VizTree [113] and SAX Navigator [114] uses a hierarchical
tree to visualize the results of SAX; and Hao et al. visualize the motifs of these sym-
bols with colored rectangles [115]. Muthumanickam et al. apply a piecewise linear
approximation that minimizes the loss of gradient to visualize long time series [116].
GrammerViz [117] applies SAX to visualize variable length motifs. SOMFlow[118]
applies similar hierarchical clustering approaches for interactive time series clustering

Projection and clustering are used to gather similar time series together to reveal
underlying patterns. Steiger et al. visualize the pairwise distance matrix of multiple
time series into 2D projections and a Voronoi diagram [119]. Ward et al. use N-
grams to segment time series and project the data with PCA [120]. Van Goethem et
al. apply a method that detects trends of time series at the starting time point and
visualize the trends and subtrends with a river metaphor [121]. StreamStory [122]
transforms time series into a set of states to visualize the relationships among the
time series in a directed graph.

Instead of understanding time series as a whole, we can explore the statistical
properties such as variances and correlations instead. Pinus [123] is a triangle matrix
metaphor that visualizes the variances of time segments in all combinations of time
intervals. Kothur et al. [124] visualize the time series as color fields that encode the
correlations among other time series. TimeSeer [125] visualizes scagnostics with
scatter plots of data attributes at each time index to identify anomalies.

We propose a novel time series summarization technique that transforms time
series into compact symbolic sequences, considers the visual features of time series,
and produces results aimed at reducing visual complexity. We also propose efficient
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Figure 4.2: Pipeline of extracting the time series patterns (g1,g2,g3,g4) from the
time series in (a). (b) The series are discretized into sets of time segments with
equal length. (c) The segments in each time interval are labeled with the cluster to
which they belong. (d) The groupings of time segments are optimized based on the
frequent patterns from the sequences in (c). In the above example, if minsup = 2
(i.e. each output group has to contain at least 2 time series), the optimal groups
will extract subsequences from C11 + C21 , C12 + C21 , C31 + C41 and C32 + C42 .

algorithms that achieve 62 times speed up in constructing sequences compared to
a straightforward DTW clustering and attain interactive speed to extract the time
series patterns, making it suitable for interactive exploration of data.

4.2 Extracting Similar Time Series Subsequences

In this section, we first present the theoretical foundations to extract similar time
series subsequences as a visual summary. To cluster the time series subsequences
for clear and compact visualization, we focus on (1) transforming the time series
into discrete sequences and then (2) mining the frequent patterns from the
sequences. Breaking down time series into discrete sequences is the popular approach
to query similar subsequences [126, 112]. It treats the time series mining problem as
a sequence pattern mining problem. The challenges for visualization are constructing
the discrete subsequence that preserves visual similarity and extract sets of frequent
patterns with visual compactness as the objective.
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Figure 4.3: Illustration of Symbolic Aggregated Approximation (SAX).

4.2.1 Background on Time Series Subsequence Mining

Before proposing our framework to achieve time series, we first provide some
background information on how time series subsequence clustering is achieved in
general, inspiring much intuition on how we approach the problem. To retrieve
common time series subsequences, the key is to transform the real-valued time series
into discrete sequences. Figure 4.3 illustrates a popular technique called Symbolic
Aggregate approXimation (SAX) to achieve the discretization in many data mining
tasks [112]. First, the time series is split into w segments with equal durations.
Then, for each segment, an alphabet representing a range with equal probable
distribution is assigned based on the average of the values within the segment (i.e.,
piecewise aggregate approximation (PAA)). Since the time series becomes a discrete
sequence (or a string for an easier understanding), pattern mining techniques can
be applied to obtain the repetitive substrings among all sequences in the dataset.
These substrings thus imply the subsequence clusters in the time series.

SAX inspires our method in terms of discretizing the real-valued sequences into
a symbolic representation. Our main difference is how we can compute the symbols
that represent visual shapes instead of aggregated values. In Figure 4.3, we notice
that time segments with different shapes can result in the same alphabets. Thus
we need another way to define symbols for visualization.
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(a) ED

(b) DTW Distance = 0.88

Distance = 2.33

Figure 4.4: (a) Euclidean Distance (ED) sums up the L2 distance between the
points of two time series at the same temporal positions. (b) Dynamic Time
Warping (DTW) matches the points (i.e. the grey lines) first even though they are
not aligned on the time axis.

4.2.2 Time Series Visual Symbolic Representation

Let T be a set of m real valued time series, where each series T ∈ T

T = t1, t2, ..., tn ∀ti ∈ R, i ∈ I = {1, . . . ,n} (4.1)

has length n. I represents the time intervals where each T is defined. The proposed
approach begins by decomposing the time series T into a sequence of contiguous
time series segments (Figure 4.2(b))

T = s1⊕ s2⊕·· ·⊕ sn′ , (4.2)

where ⊕ is the concatenation operator and each si has size l. The value of l is
defined by users based on the shortest possible intervals of final patterns they want
to extract.

Given a subinterval of size l, we can split the time interval I where the times
series are defined into n′ = n

l subintervals Ii such that I = I1∪ I2∪·· ·∪ In′ . Our
goal is to identify groups of similar time series segments within each subinterval Ii,
so that each group of similar segments is represented by a symbol. This procedure
makes it possible to represent a time series as a sequence of symbols, one per
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segment Ii, leading to a more compact and easily interpretable representation of
the time series (Figure 4.2(c)). Specifically, let Ti be the set of time series segments
from T in subinterval Ii. We can cluster the segments in Ti according to their
similarity, assigning a symbol to each cluster. If we denote the clusters in Ii by
ci1, ci2, . . . , ciki

, where ki is the number of clusters in Ii, we can represent time series
T as T ′ = c1j1 , c2j2 , . . . , cn′jn′ (Figure 4.2(c)), where cij is the symbol assigned to the
jth cluster of interval Ii (here, we represent the cluster and the symbol assigned to
it with the same notation). The symbol cij is chosen such that the segment si ∈ T
defined on Ii is contained in cij (Figure 4.2(c)).

Dynamic Time Warping as a visual similarity metric. Choosing the
distance metric that reflects visual similarity is essential to a good clustering result.
Despite the abundance of similarity measures available in the literature [127, 128],
several studies (including crowdsourcing, user study, and data mining benchmarks)
indicate that Dynamic Time Warping (DTW) [129] performs better on average
than other measures both in terms of perception [130, 97, 131] and classification
accuracy [127]. Unlike Euclidean distance (ED) that only considers the correspond-
ing points in two time-series, DTW allows for small shifts on the time axis to
minimize the overall sum of distances. For example, in Figure 4.4, although the
two time-series have similar patterns (i.e., one peak), ED computes a much larger
distance than DTW because it does not perform a shape matching alignment of
points before computing the distances. Such an alignment invokes the Gestalt rule
of similarity: humans perceive lines with similar slopes as the same group [68]. For
these reasons, in our work, we use DTW in [132] to calculate the pairwise similarity
of each time segment.

Clustering technique for symbolic representation. We use agglomerative
hierarchical clustering with gap statistics [133] to automatically choose the number
of clusters. To facilitate effective visual analytics, we use a parameter α as clustering
strength with Gap statistics to adjust the number of clusters k̂:

k̂ = smallest k such that Gap(k)≥ 1
α
Gap(k+ 1)
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Pattern Support Pattern Support Pattern Support

C11 2 C32 2 C12 + C21 2
C21 4 C42 2 C21 + C32 2
C31 2 C11 + C21 2 C32 + C42 2
C41 2 C21 + C31 2
C12 2 C31 + C41 2

Table 4.1: Patterns in Figure 4.2(c) having minsup≥ 2.

4.2.3 Optimizing Groupings from Sequential Patterns

Once the symbolic sequences are established, we can apply sequential pattern
mining techniques to retrieve common time series subsequences from the dataset.
Before explaining the optimization process and its motivation, we first introduce
some nomenclature, mainly the concept of patterns and minimum support (minsup)
and their implications on the optimization outcome.

A pattern (i.e. sequential pattern) is a sequence of contiguous symbols and also
a set of intersected time series subsequences represented by the symbolic sequences
in our case. The length of a pattern is the number of such symbols in the sequence.
For instance, in Figure 4.2, C31 + C41 corresponds to a pattern of length 2. The
support of a pattern p, denoted sup(p), is defined as the number of time segments
that are members of p. For example, support of 3 means that there are three
segments in the pattern. The minimum number of time series segments that a
pattern must contain to be frequent is called minsup. Intuitively, minsup plays a
user-defined role in the meaning of trends in the time series data. It defines how
many similar series are needed to form a trend. Also, the lower the minsup value,
the greater the chance of obtaining longer frequent patterns, whereas larger minsup
values produce shorter patterns with more similar segments.

If one directly visualizes the time series segments inside the frequent patterns,
it can be certain that the time segments in each pattern are similar to each other.
However, it presents two main problems. Using the example in Figure 4.2(c), the
frequent patterns with minsup = 2 are illustrated in 4.1. First, the number of
frequent patterns can grow drastically when the minsup is set as a small number
because of the combinatorial explosion [134]. Second, these patterns might overlap
with each other, resulting in many repeated time segments displayed. Thus, our
goal is to find the minimum number of subsequence groups where each group
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contains time segments from the same pattern and the whole set of groups does
not contain repeated subsequences (Figure 4.2(d)).

Formally, given minsup, the optimization process is accomplished as follows.
For each set of subsequence groups {gi1 ,gi2 , · · · ,gis} ∈ Gi, where Gi ∈ G is one of
the possible sets,

gij ⊂ p where p is frequent

gij ∩gir = ∅ and sup(gij )≥minsup
(4.3)

Among all possible sets of subsequence groups satisfying Equation 4.3, we look for
the one with the minimum number of subsequence groups:

Ĝ = argmin
G∈G

|G| (4.4)

where | · | accounts for the number of elements in the set.
Intuitively, we use frequent patterns to identify significant and similar time series

subsequences in arbitrary lengths and discard those without enough supports. We
further minimize the number of groups needed to partition the similar contiguous
subsequences. Thus, we provide a minimal overview of unique temporal behaviors
along the time period, dramatically reducing the visual complexity and allowing
users to quickly grasp the dominant trends in a high volume of time series.

4.2.3.1 Parameter Tuning

Like other clustering algorithms, the whole subsequence clustering framework
contains three main parameters: window size I, clustering strength α, and minimum
support minsup. Typically, tuning the clustering results involves domain expertise,
such as the suitable durations to be defined as the sizes of time windows (e.g.,
the number of days for a stock market period and the number of series eligible a
trend). We can input these parameters for parameter tuning and have the cluster
quality metric (like the Silhouette index) as the objective score for an exhaustive
grid search. Due to the focus of interactive visualization computation, we do not
dive deep into this query optimization problem. In Section 4.5.2 we will show that
we can arrive at good results with minimal changes to these parameters.
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Figure 4.5: Illustration of TiVy’s visual summarization using synthetic dataset
composing of six main trends with different durations. By adding more complexities
of patterns hidden in different parts of the dataset (more details in Figure B.1),
our approach successfully extracts them into accurate subsequence clusters.

4.2.4 Illustration of Visual Summarization Result

To illustrate how our approach achieve the summarization of subsequence
clusters in the dataset, we design a synthetic dataset with different shapes in
multiple time intervals. The whole dataset contains six classes of shapes: cyclic

; normal ; increasing ; decrease ; upward shift ; and downward shift
. In each class, the time series have some deviations in temporal alignment and

amplitudes but plotting all of them within one plot would not cause too much
perception differences. We also generate these data with different durations and
combine them together to form the datasets shown in Figure 4.5. In Figure 4.5, we
can see that by successfully separating the time series based on the similarity of
subsequences, we can visualize the cluttered time series with a moderate number of
charts while enabling each chart to be visually clear. In the next section, we will
introduce an efficient algorithm to produce the results in Figure 4.5.

4.3 The TiVy Algorithm

We now present the TiVy (Time Series Visual Summary) algorithm to con-
struct the symbolic representations and obtain an optimal grouping of time series
subsequences (Algorithm 3). The algorithm mainly consists of three components:
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ALGORITHM 3: TiVy (Time Series Visual Summary)

Input :T – a set of time series as a m×n matrix
window size– window size
α – clustering strength
minsup – minimum support

Output : Ĝ – A list of subsequence groups
1 P← construct sequences(T , window size, α) /* transform time series to

discrete sequences */

2 D← {} /* dictionary to store pattern support */

3 prefix scan(P,minsup,null,D) /* compute pattern support */

4 Ĝ← extract groups(D,minsup) /* extract optimal groupings */

(1) constructing symbolic representations from the time series, (2) retrieving sup-
ports of the sequential patterns, and (3) construct an optimal grouping from the
sequential patterns.

4.3.1 Computing Symbolic Representations of Time Series

As mentioned in Section 4.2.2 and Figure 4.2(c), transforming a real-valued
time series to a discrete symbolic representation involves the clustering using DTW
metric. However, a straightforward clustering with DTW is infeasible even with
moderate-sized data. The distance computation has a time and space complexity
of O(m2), where m is the length of the time series. Also, although hierarchical
clustering can automatically choose the most optimal number of clusters, it requires
a pairwise distance matrix resulting in O(n2) time complexity, where n is the
total number of time-series. Thus, the total time complexity to construct symbolic
sequences from time series has a time complexity of O(m2n2). Even though it results
in an effective perceptual result, the lack of scalability hinders visual analytics
usage. Thus, we propose a novel clustering method to speed up the computations.
It mainly exploits the properties that the upper bound of DTW distance between
two time-series is the Euclidean distance. Therefore, we can group the time series
with Locality-sensitive hashing (LSH) [135]. Basically, we hash each time series t
into an integer bucket using the following hash function :

h(t) =
⌊
t ·x+ b

w

⌋
(4.5)
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ALGORITHM 4: construct sequences

Input :T – a set of time series
w – window size
α – clustering strength

Output : P – A set of symbolic sequences
1 m← T.shape[0] /* number of time series */

2 n ← T.shape[1] /* length of each time series */

3 S← array split(T ,w) /* split T into segments */

4 P← empty matrix(m,n/w)
5 for i=0; i < n / w; i++ do
6 s ← S[i]
7 cluster labels ← []
8 for j=0; j < m; j++ do
9 cluster labels[j] ← LSH(s[j])

10 end
11 sample ← []
12 for label in unique(cluster labels) do
13 sample.push(random select(s[cluster labels == label,:]))
14 end
15 dist sample ← pairwise distance( sample , ‘DTW ′)
16 linkage ← create linkage(dist sample,‘ward’)
17 sample labels ← gap rule(linkage,α)
18 for label, sample label in unique(cluster labels),sample labels do
19 cluster labels[cluster labels == label] ← sample label
20 end
21 P[:,i] ← cluster labels
22 end

where x is a random vector with each element sampled from Normal distribution
xi ∼N(0,1), w is a width representing the quantization bucket, and b is a random
variable sampled from the Uniform Distribution b ∼ unif [0,w]. The hashing
function ensures that if two time series are similar in terms of Euclidean distance,
the probability of going into the same bucket (i.e. P (h(ti) = h(tj))) will be high.
Then, instead of running the DTW clustering on the whole dataset, we can run it
with one sample from each hash bucket instead, which prunes most of the DTW
calculations. The outline of the algorithm contruct sequences (Algorithm 4 and
Figure 4.6) is as follows:

1. The clustering starts on segments in each time interval (line 5-6).
2. We are first interested in grouping the segments that are very similar to each

other (Figure 4.6(b)). Thus, our coarse clustering objective is to ensure similar
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ALGORITHM 5: prefix scan

Input : P̄ – an m̄× n̄ submatrix containing m̄ symbolic sequences with length n̄
minsup – minimum support
prefix – prefix sequence of the submatrix
D – A reference of dictionary P → { Time Segments }

1 if P̄ is empty then
2 return
3 end
4 first col ← P̄[1 :m,1] /* symbols on the current level */

5 for symbol, idx in unique(first col) do
6 if Size(idx)<minsup then
7 continue
8 end
9 D[prefix+symbol] ← D[prefix][idx,2 : n̄]

10 prefix scan(P̄[idx,2 :], minsup, prefix+symbol,D)
11 end

series are grouped into the same cluster. As mentioned above, we can use LSH
(line 8-10) to assign the coarse cluster labels to the time series.

3. To combine these clusters for the final result, we can conduct the clustering with
DTW distances and Gap Statistics (line 16-17) with only one random sample
from each coarse group (line 12-14). The pairwise DTW calculations needed
thus become much fewer.

4. Finally, we propagate the cluster labels obtained from each sample to the rest of
its members in the same coarse group (line 18-20), which completes the whole
process (Figure 4.6(c)).

4.3.2 Computing Support of Sequential Patterns

After constructing the sequences, we need to calculate the supports of each
patterns that appear in all sequences. Retrieving the supports of frequent patterns
is a computationally expensive sequence mining problem. Most existing algorithms
[136, 137, 138] retrieve sequential patterns without knowing all supports. However,
it is easier to retrieve them in our case. Our symbolic sequence T ′ contains ordered
symbols that never repeat within the same sequence. Thus, all patterns can be
presented by a tree-based data structure based on the prefix of their symbolic
sequences. (e.g. the time series represented in C12 + C21 + C31 are subsets from
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Figure 4.6: Clustering time series with DTW distance directly (from (a) to (c)) is
an expensive computation. To speed up, we first (b) coarsely partition the data
with LSH, then we can sample from each partition to compute DTW clustering
with a smaller set of data.
the ones represented in C12 + C21 ) Thus, we extract patterns by grouping the time
series symbol-by-symbol from the beginning of the symbolic sequences to the end
(Algorithm 5). The algorithm handles one time interval in each recursion (line
4). The time series indexes (as rows in the input) are grouped together to the
next recursion if they have the same symbol at the current interval (as column), or
be split into different recursions if not (line 5). The time series will be stored in
the dictionary if their patterns’ supports are not smaller than minsup; else, the
recursion will stop (line 6-9).

4.3.3 Extracting the Optimal Groupings

Since the number of frequent patterns is exponential to the number of sym-
bols [139], and the number of possible sets of groupings G is the binomial sums (i.e.,
O(2n)), finding the set of optimal groupings is extremely hard. Thus, the proposed
algorithm follows a greedy approach that evaluates the frequent patterns one by
one, with a priority given to long frequent patterns. The intuition is that if the
subsequence groups from long patterns are chosen, it is likely to reduce the groups
from shorter patterns, which requires more groupings to cover the same number of
time intervals. The outline of the algorithm extract groups (Algorithm 6) is as
follows:
1. As each group of subsequences contains time segments, which are subsets of

a pattern (Equation 4.3), the algorithm extracts and removes the groups of
subsequences from the dictionary of patterns’ support D iteratively until it
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becomes empty (line 2-3).

2. In each iteration, the algorithm only considers the longest patterns as the
candidates for extraction (line 4-5).

3. From the candidate list, the algorithm tries to extract as many groups from
these patterns as possible. Since the shorter patterns of these candidates must
have the same or greater supports, maximizing the extraction of groups from the
longer patterns prevents their subsets from being extracted. Such a condition of
whether the extraction is maximized is considered during each time a candidate
is evaluated (line 6).

4. In each evaluation, the supports of other candidates are minus by the number of
intersections of time segments with the evaluated candidates (line 9-13). If the
reduction of supports leads to a decrease of candidates that satisfy the minsup
condition (line 14), the evaluated candidate will be removed in the dictionary
without being extracted to the result (line 15-16). Otherwise, the candidate
is extracted to the result (line 19), and the dictionary is updated (line 20-30).
The update involves the removal of the same time segments shared between
the selected candidate and both other candidates (line 20-25) and remaining
patterns inside the dictionary (line 26-29).

4.4 Visualizing Time Series At Scale

In this section, we propose an efficient system to visualize time series at scale
with the time series summaries. By efficiency, we do not only consider the visual
styles to encode the time series effectively, but we also consider an accessible
and computationally efficient way to render thousands of temporal information
with a decent frame rate within a laptop. We first describe the analytical tasks
supported by time series summaries. Then, we present an efficient implementation
that leverages OpenGL and acts as a reusable widget in the Jupyter notebook.

4.4.1 Analytical Tasks

A visual summary of time-series effectively addresses the removal of visual
clutters and optimization of layout compactness. To address a visual analytics
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ALGORITHM 6: extract groups
Input : D: A dictionary of P → {Time Segments}

minsup: Minimum support
Output : Ĝ – A list of subsequence groups

1 Ĝ← []
2 while D 6= ∅ do
3 delete D[p] ∀p in D if Support(D[p]) < minsup
4 max length ← maximum length of patterns in D
5 Candidate ← {p | p in D} , where length(p) = max length
6 while Candidates 6= ∅ do
7 pcandidate ← random select(Candidates)
8 overlap patterns ← []
9 for p in overlapped patterns(Candidates,pcandidate) do

10 if Support(D[p]−D[pcandidate]) < minsup then
11 overlap patterns.push(p)
12 end
13 end
14 if Size(overlap patterns)> 1 then
15 delete D[pcandidate]
16 Candidates.remove(pcandidate)
17 continue
18 end
19 Ĝ.push(pcandidate)
20 for each pattern in overlap patterns do
21 D[pattern] ← D[pattern]−D[pcandidate]
22 if D[pattern]<minsup then
23 Candidates.remove(pattern)
24 end
25 end
26 combination ← {p | p in D} where D[pcandidate]∩D[p] 6= ∅
27 for each pattern in combination do
28 D[pattern] ← D[pattern]−D[pcandidate]
29 end
30 Candidates.remove(pcandidate)
31 end
32 end
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approach that leverages such a summary, we reference the book from Aigner et
al. [91], which describes a set of tasks involved in the time series data analysis.
The overall tasks include classification, clustering, search and retrieval, pattern
discovery, and prediction. Our visual summary falls into the category of clustering.
The book references the classical paper regarding time series clustering by Van
Wijk and Van Selow [140]. Also, a recent paper related to visualizing trends in
time series [121] summarizes a set of clustering tasks from the book. Therefore, we
base our design considerations on the clustering tasks from these three references.
Furthermore, we include the system design tasks to maximize the real-world impact
of our software. The tasks are summarized below. T.1 and T.2 focus on the tasks
gathered from the surveyed time series clustering analysis and T.3 and T.4 focus
on the interactions involved when visualizing clusters with additional attributes.
Last, T.5 focuses on the scalability and accessibility of the system.
T.1 Identify common subsequences in large time series.

a. Understand the support of each cluster.
b. Understand the time interval and range of each cluster.

T.2 Understand the distribution of each subsequences cluster.
a. Assess the quality of each cluster.
b. Understand the shape differences among clusters.

T.3 Filter and zoom for specific clusters.
a. Highlight clusters by their temporal values.
b. Inspect individual time series within a cluster.

T.4 Compare clusters with different attributes.
T.5 Integrate to the real working environment.

a. Implement as an interactive widget inside the computation notebook
with low hardware requirement.

b. Render visualization with low latency and scale to real-world datasets.

4.4.2 Visualizing Time Series Summary

Designs to visualize multiple time series have been thoroughly studied [83].
However, when it comes to high volumes of temporal information, the main challenge
is the technical scalability to render millions of data points representing the lines
while performing various interactions seamlessly. We need to consider different
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Figure 4.7: Time series summary for 100,000 ECG signals in a WebGL based widget
in Jupyter notebook. Summaries of different shapes are visualized in different
small multiples for categorizing different waveforms to help proper diagnosis and
treatment (i, ii). (1) Visual Design: Each chart is shown with a bold line encoding
the representation and size of the summary. The time series inside can be encoded
as a band graph or density line chart. (2) Layout: Colors and positions encode the
labels of the summary, and the charts are sorted based on their pairwise similarity.

tradeoffs to balance the software efficiency and accessibility. Thus, we now propose
our time series visualization system (Figure 4.7), and discuss the visual encodings
that consider both visual clarity and rendering efficiency.

4.4.2.1 Visual Encodings

Since TiVy allows a holistic high-level summary of all subsequence clusters
in a time series dataset, each group could be visualized with a precise shape
(T.2) and displayed with the main statistics (T.1) such that users can quickly
acquire an overview of multiple clusters plotted on the same screen. Moreover, it
becomes feasible to use aggregated visual encodings and superposition visualization
in Figure 4.1(b) and (c) to present a more significant number of time-series inside
the cluster. Overall, our design considerations include the usage of band graph,
line chart, density line chart, and a central line to encode the time series inside
each summary (Figure 4.7 1 ).
Band graph. We provide two bands (i.e., range + 90% quantile) to visualize both
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the extrema and tighter bounds of the time series inside the cluster to balance
between the visual clarity and accuracy. The advantage is that since the time series
within each chart is homogenous, the band can accurately depict the trends and
hinder the noises (T.2). Also, in terms of rendering, we can use two polygons
to render two bands, which are much simpler than rendering millions of points
(T.5). We acknowledge the fact that further user study is needed to evaluate the
tradeoffs between clarity and uncertainty when choosing the number of quantiles
in uncertainty visualization.
Density line chart. To reveal original data points in the chart, we can use line
charts to visualize the time series. However, direct input of data points to the
rendering pipeline will easily hinder the system’s interactive performance. When
users pan and zoom the whole graph, each data point in the time series has to
undergo several linear transformations to define its new location in the screen.
For example, 100,000 time series with a cardinality of 180 will require 18 million
transformation operations. Worse still, to enable GPU acceleration such as OpenGL,
lines are commonly represented as 2D meshes (i.e., triangulated polygons), which
result in more vertices as input to the rendering pipeline. For a common laptop
and latency in milliseconds allowed only, users will easily experience lagging during
the interactions (T.5).

To address the increasing data points on rendering the line charts, we need
to avoid the rendering complexity to be linearly proportional to the number of
data points. One way to do so is to aggregate the input time series to 2-D density
maps, which are bounded to a fixed number of bins. By having a slight overhead to
compute the density map, we can instead input much smaller meshes for real-time
interactions. The color opacity encodes the density such that we can inspect the
distribution of temporal values inside the cluster (T.2).
Center line. To improve the reflection of the main statistics in the aggregated
plot (i.e., band graph), we use the medoid [141] in the cluster to present the main
shape. A medoid is the best representative line inside the cluster that has the
minimum sum of pairwise distances with other lines. Choosing a line instead of
using time-invariant averaging methods such as soft-DTW [142] or DTW Barycenter
Averaging [143] to compute an “average” line avoids computationally expensive
algorithms (O(N ·T 3 +N2 ·T 2)) for useful interactive analysis. We also encode the
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line width with the number of time series inside the summary to better estimate
cluster size (T.1).

4.4.2.2 Layout Strategies

To allocate the time series in a compact layout, we position each time series
chart as small multiples that fills the entire canvas from left to right and top to
down (Figure 4.7 2 ). Besides, when users supply an attribute to each summary
(e.g., class labels), we can encode the summaries with colors and group the same
ones by vertical positions (Figure 4.7(i)) to present clearer comparisons (T.4). Also,
summaries might share similar shapes among each other as well. Thus, we can sort
the summaries by their similarity. It can be done by first sampling one series from
each summary, then build a hierarchical cluster (i.e., linkage) with the samples and
obtain the order from the leaves in the hierarchy (Figure 4.7(ii)).

4.4.2.3 Interactions

Our widget provides the interactions to facilitate the exploration of time series
summaries (Figure 4.7A).
Pan and zoom. Since our rendering pipeline provides great computation efficiency
on the linear transformation on the graphics, users can easily pan and zoom the
whole canvas to focus on a subset of time summaries in real-time (T.2).
Filtering. Since each summary contains statistics such as the number of time
series and time intervals, our system provides two sliders that filter the summaries
based on that. These allow the users to explore the important trends effectively
within a specific time interval (T.1).
Toggles for different visual encodings and layouts. Our system provides
different toggles to reveal different visual encodings on demand. Users can either
display the summaries as band graphs or density lines and select whether they
want the central line or not. Furthermore, users can select whether they want the
summaries to be separated by the attributes or not (T.4).
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4.4.2.4 Implementation

Our algorithm and system are implemented with Python and can be used in
Jupyter notebook and Jupyter Lab. WebGL is required to render the time series
visualization. We use NumPy for most of our computations in TiVy and VisPy
for rendering the meshes representing different visuals in the time series views.

To reduce the latencies during visualization interactions, such as filtering or
switching the charts, we first compute the vertices of all possible visuals (i.e.,
polygons of band graphs, centerlines, and density lines) and store them in a buffer
object. Then, when each visualization is selected and shown, we can directly
import the locations to the rendering pipeline without creating the vertexes on
the fly. Our visualization interface is available in https://github.com/GromitC/
Jupyter-Time-Series-Visualization. .

4.5 Evaluation

In this section, we conduct both quantitative and qualitative evaluations on the
performances of the visual summary extraction pipeline, as well as use cases of the
summary results. Our goal is to demonstrate that:

1. Our pipeline computes and renders results in interactive time for large scale
data.

2. Using real-world datasets, our algorithm produces accurate and robust repre-
sentations to explore large scale medical and financial data.

4.5.1 Datasets and Apparatus

All of our experiments are conducted in a MacBook Pro with 2.4 GHz 8-
Core Intel Core i9 CPUs and 32GB RAM. For a fair comparison among different
algorithms, we do not perform our algorithms under a multi-core or distributed
environment. We use the following datasets for our experiments:
Stock Time Series. The dataset contains 4,470 company daily adjusted stock
prices in NASDAQ between the year of 2015-16. The industry sector for each stock
price are also provided.

https://github.com/GromitC/Jupyter-Time-Series-Visualization
https://github.com/GromitC/Jupyter-Time-Series-Visualization
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Figure 4.8: Run time improvment with LSH and indexing.

ECG dataset. We use the MIT-BIH Arrhythmia ECG dataset 1 that records
100,000 patients’ heart beat signals. Each signal has a cardinality of around 200
and we trim the trailing zeros for each signal. The heartbeats are annotated by
five groups of heart conditions.

4.5.2 Quantitative Evaluation

In this section, we report the effects of visual outcomes by different design choices
in the algorithm, and the performances with different scalability and alternatives.
Computation Scalability. We report the run time using the 100,000 ECG data
series as the example in Figure 4.8. To highlight the effect of LSH in reducing the
quadratic time complexity of DTW distance metric and hierarchical clustering in
the symbol construction step (Section 4.2.3), we sample the ECG data and compare
the run time between the algorithms with and without hashing optimization. We fix
our parameters on time windows and clustering strengths so that the final results
are the same. In Figure 4.8(a), it shows that our LSH optimization is able to speed
up the process from hours to within a couple of seconds. For the discrete pattern
mining process (Section 4.3.2, 4.3.3), we compare our grouping algorithms with
general purpose pattern mining approach [138]. In Figure 4.8(a), it shows that
given our unique structure of symbolic patterns, we can speed up the computations
from long time to seconds easily.

For the rendering pipeline, we report the preparation time of the buffers input to
1https://www.physionet.org/content/mitdb/1.0.0/

https://www.physionet.org/content/mitdb/1.0.0/
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Figure 4.9: Rendering preparation time and FPS.
the system and the interaction latencies during the filter, pan, and zoom operations
(Figure 4.9). We can see that by addressing the linear overhead of preparing the
visual buffers to the system which is an one-off computation only (Figure 4.9(a)),
we can achieve a seamless exploration of time series data in the interactive interface
with good FPS (Figure 4.9(b)).

4.5.3 Use Cases

In this section, we present two usage scenarios to demonstrate the effectiveness
of TiVy. First, we study whether our approach can summarize meaningful patterns
for correct categorization of the ECG data. Second, we apply our technique to
help financial analyst understand important trends in the financial stock market.
For both cases, we fix the time window size to one-tenth of the total durations,
clustering strength to 1, and minimum support to 50. The summarization outcomes
for both of them capture more than 95% data points in the datasets.

4.5.3.1 ECG Signal Classification

In this use case scenario, we demonstrate whether TiVy are able to visualize
large amount of time series effectively. We use the MIT-BIH Arrhythmia ECG
dataset 2. ECG is widely used in medical practices to monitor cardiac health.
Understanding the waveforms and attributing them to the correct categorization is
important for proper diagnosis and treatment. In this dataset, each signal consists

2https://www.physionet.org/content/mitdb/1.0.0/

https://www.physionet.org/content/mitdb/1.0.0/


65

Figure 4.10: A time series visual summary is a set of time series subsequence clusters
of varying lengths that groups visually similar time segments together. In a stock
market use case, a financial analyst use our algorithm, TiVy, to explore visual
summaries of 4,470 stock market time series in 2015-16 for portfolio construction.
(A) He first runs the algorithm to create subsequence clusters that cover main
trends in the dataset. (B) After identifying different trends in the market, he
identifies a common “v” shape pattern among stocks in the first three months of
2016 and splits the subsequence clusters by sectors to observe which sectors contain
this pattern.
of heartbeats annotated by at least two cardiologists. The annotations are mapped
to five groups suggested by AAMI: Normal (N), Supraventricular Ectopic Beat
(SVEB), Ventricular Ectopic Beat (VEB), Fusion Beat (F) and Unknown Beat (Q).
Exploring patterns among 100,000 time series. The overall summarization
result is shown in Figure 4.7. We presented the results to the cardiologists and
they quickly identified some interesting patterns. For example, the patterns in
Figure 4.7(i) are long flat lines of dropped beats, which are clear characteristics of
junctional escape beat belonging to the SVEB group. Also, Figure 4.7(ii) shows
strong contraction beats with a long pauses afterwards, which are symptoms related
to premature ventricular contractions. These illustrate that TiVy successfully
extracts the visually meaning patterns among 100,000 ECG signals, which corrobates
the verifications from two independent cardiologists.
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4.5.3.2 Financial Time Series Analysis

The second use case involved a financial analyst working with stock market
data to construct a portfolio. The dataset contains 4,470 company daily stock price
series between the year of 2015-16. The goal is to study the trends occurred in
the financial market to construct a portfolio that balances the risks in different
situations. The time series are normalized with zero mean and unit variance to
calibrate the trends with different numerical prices. In this use case scenario, a
portfolio manager uses TiVy to explore and select stocks for creating a portfolio
for his client through the understanding of different visual behavior of the stock
time series.
Observing overall trends. To begin with, the portfolio manager runs the
algorithm on the whole 4,470 stock time series. The visual summary shows 23
trends that, in total, cover most of the time series data (Figure 4.10 A ). By
inspecting the shapes of the trends, he understands that most companies prices’
were decreasing throughout the period. However, he also discovers some increasing
trends as well as the ones with zig-zag shapes. He understands that the zig-zagging
stocks are the ones that are being actively bought and sold (i.e., a price war). As
his client is risk-averse (i.e., afraid of risks), he labels these stocks as the one not
recommended for purchases.
Focusing on selected trends. Next, the portfolio manager wants to know if
there are any more risky trends, so he filters the time series subsequence clusters
with these “v” shapes (Figure 4.10(b)). The visualization reveals that this pattern
happens in early 2016. Since the trend exists in many such companies, there must
be a global economy issue that affects the whole market. The portfolio manager is
aware that actively trading the stocks impose a higher risk in this situation.
Exploring industry sectors. The portfolio manager then tries to know if there
are any relationships between the trend and the sectors, so he further splits the
clusters by the sector. The result shows that the trends mainly happen in four
sectors represented by four thick lines: Industrial, Technology, Healthcare, and
mutual funds (non-sector) (Figure 4.10(c)). As a result, he decides to research
passive trading strategies for these four categories of companies. Overall, the
algorithm provides a visually compelling result for him to explore the stock trends
freely and leverage the system to perform multi-model data analysis.
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4.6 Conclusion

In this chapter, we propose a novel summarization technique to visualize large
scale time series and a comprehensive visual analytics approach to address the
challenges. First, we propose a sequential pattern mining approach that involves
transforming time series to discrete sequences and optimize the time series sub-
sequence patterns based on minimum support. Then, we present a sophisticated
visual analytics system with a efficient visualization interface to display large scale
time series data. We present experiments and two use cases with different real
world dataset to showcase its effectiveness.
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Chapter 5

Machine Learning Model
Summary

Using feature importance explanations to explain predictive models’ decisions
has been prevalent in Artificial Intelligence research and real-life usage scenarios.
For machine learning models, ranging from coefficients in simple linear functions
to gradients of complex deep learning models, these internal attributes guide the
models to make decisions by assigning the weights to different parts of the input in
affecting the prediction outcomes. Therefore, different kinds of feature importance
explanation methods have been developed to capture these weights to explain the
model behavior. For example, saliency maps are used to highlight the important
regions in the original images or texts to explain the relationships between the input
and the predictions of deep neural networks [144, 145, 146]. Besides, there are local
explanation models using linear weighted functions that fit the models in a close
region around an input to explain the models locally [147, 148, 149]. Furthermore,
instead of weights on the original inputs’ dimensions, one can use weights on a set
of analogies to explain an input’s similarity to ground-truth labels [150, 151, 152]
in the neural network.

As a result, together with decision trees and rules, feature importance expla-
nation is regarded as one of the most three popular interpretation methods to
understand machine learning logics [153, 154, 155]. To clarify, we define the inter-
pretability of a machine learning model as the capability of explaining reasons for
its prediction in ways humans can understand. This is of paramount importance
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Figure 5.1: An illustration of explanation summary by applying LIME to a Random
Forest classifier of Iris data. The summary can be perceived as a set of unordered
conjunctive (AND) logics. Each row cluster can be interpreted as a logic with
column clusters intersecting with the row cluster as conditions (FACTS). The
predictions of the rows inside the row cluster convey the consequent (RESULT)
of the logic as probability distributions of each possible class. The sizes of row
clusters provide the support of each logic.

since the end users are mostly domain experts who need to be responsible for the
deployment of models in real-life scenarios. In high stake decision making situations
such as health care [156], criminal justices [157], and financial risk assessment [158],
the models are required to provide these interpretations to satisfy the ethical
regulations of data [159].

Among these three explanation methods (i.e., decision trees, rules, and feature
importance), we observe much difference between the feature importance expla-
nation and the other two. Although feature importance explanations are more
prevalent in explaining accurate and complex models like deep neural networks,
they can only be used to explain the model locally for a single instance. This can
be described as a trade-off between accuracy and efficiency: while the explanation
is more accurate and faithful to the original model, it loses the ability to generalize
the whole dataset’s understanding. Seeing this limitation, in this paper, we propose
the idea of summarizing every feature importance explanation in the dataset and
provide a scalable visual analysis interface to understand these explanations at
scale. An illustration of the summarization outcome can be seen in Figure 5.1. The
ingredients for an explanation summary are an input dataset (e.g., iris dataset), a
classifier (e.g., a random forest classifier), and an explanation method (e.g., LIME).
Grouping the explanation feature vectors from the input dataset provide us an
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overview of the model as patterns of logic. We will explain each visual component
in detail in Section 5.2.3, but overall our goal is to enable feature importance
explanation to explain the classifier globally.

To generate the explanation summary, it consists of three steps. First, we
standardize the explanations among different major feature importance explanation
methods and across the whole dataset to a structured format. Then, we extract
the patterns among all explanations to discover logics in the model with optimal
granularity. Finally, we develop a visual interface to deliver interpretability by
the interactive exploration of the details in the model’s decision making logic. In
summary, the main contributions are as follows:

1. We propose a visual summarization technique for domain experts to un-
derstand classification models using feature importance explanations on the
whole dataset.

2. To enable scalable data analysis, we also introduce efficient algorithms and
data structures to summarize the explanation interactively.

3. We present three use cases using tabular, image, and text data and a user
study to demonstrate the proposed method’s effectiveness.

5.1 Related Work

To facilitate human understanding towards complex models through visual-
ization, research mainly focus on visualization on three aspects: model internals,
logics induced from the models, and instance level feature vectors that describe the
behavior of the model.

5.1.1 Visualization of Model Internals

Visualization has been applied readily to understand and interact with deep
learning neural networks. In fact, a survey about deep learning visual analytics by
Hohman et al. [160] has listed more that 40 representative works in this area in
the last 5 years. We encourage the readers to read the survey paper for a deeper
investigation to the subject.
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The simplest form of a neural network can be represented by a node-link

diagram in which each node represents a neuron and link presents a connection
weight between two neurons [161]. As nowadays the ways neurons are connected
become more sophisticated and opaque, various visual analytics approaches have
been developed to understand different properties of the networks. RNNVis [61]
and LSTMVis [162] address the understanding of recurrent neural network (RNN)
by visualizing the bipartite relationship between hidden memories and input data
and hidden memory dynamics with parallel coordinates respectively. Autoencoder
is addressed by Seq2SeqVis which proposes a bipartite graph visualization to
visualize the attention relationships between input and its possible translations
to enable model debugging [163]. Another type of popular models for image
classification is Convolutional Neural Networks (CNN). CNNVis [164], Blocks [165],
AEVis [166] and Summit [167] are graph visualizations that aggregate similar
neurons, connections, and similar activated image patches to convey learned visual
representations from the model.

Besides visualizing the structures of a neural network, there are visual analytics
systems that assist the model development processes in the industry. ActiVis [168]
is a visual analytics system used by Facebook to explore industrial deep learning
models. Google has developed TensorFlow Graph [169] and what-if tool [170] to
help developers understand and test the behavior of different ML models.

The work in these criteria mainly addresses the visual analysis for model
developers who have sufficient knowledge of the methodologies of their models.
However, a more general AI tool requires the assessment and involvement of end-
users, decision-makers, and domain experts. Addressing the needs of border XAI
user experience, our work focuses on providing general explanations of ML models
to users without requiring them to know the architectures.

5.1.2 Visualization of Logical Models

Logical models like decision trees [171] or rules [172, 173] can address the
interpretation of complex models by using them to infer an approximated model
from any ML models. Given a set of test data, the original model gives the
predictions and the logical models use them as labels to train another classifier.
The resulting classifier can be used to mimic the behavior of the original model
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while providing good interpretability to the users. Through visualizing logical
models, users gain knowledge of the model’s capability.

Rule Matrix [174] is proposed to build and visualize the surrogate rule list to
understand the model’s behavior by interacting with the rules. Gamut [175] uses
generalized additive models to construct a set of linear functions for each feature
in the dataset to understand models through line charts. TreePOD [176] and
Baobabview [177] visualizes the decision trees with different metrics incorporated
for model understanding. iForest [178] visualizes random forests with data flow
diagrams to interact with multiple decision paths.

For complex model, using logical models to explain the complex model is the
consideration of fidelity – the accuracy of the explanation on the original model. It
creates an additional layer of performance concerns. Therefore, feature importance
explanation methods are proposed to explore the possibility to provide accurate
explanations or even be embedded in the original model training process. Yet, they
only return results for an instance and do not consider a general explanation to the
whole dataset, our work addresses the challenges of visually constructing a global
view for local explanations.

5.1.3 Feature Vector Visualization

Local explanation models give feature scores for each instance. The features can
be the features from original data [147, 148, 145] or a set of external information
like concepts [179] or training data [150, 151, 152]. Visual analysis can be directly
applied to interact with the features [180] or the feature vectors can be visualized as a
matrix where rows represent the instances and columns represent the features [181].

Besides, the data comes out from a deep neural network can appear as embed-
dings such that the linear distances between vectors represent their similarities as
the model’s rationale. The main visualization technique to understand these feature
vectors is projection [182, 183, 184, 185, 186, 187]. Treating the embedding as high
dimensional data projection techniques such as tSNE, MDS, or PCA are applied
to discover semantic groups inside the dataset from the resulting scatterplot. Users
can assess the ML model and refine the original data from the brushing the filtering
interactions in the projection.

Our technique identifies the scalability and usability challenges in the existing
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visualization. The projection technique mainly suffers from cluttering and the lack
of feature information in the visualization which is crucial for a comprehensive
explanation. Melody aims at providing compact representations of both data
and features so that visual information is more precise. Also, we address the
needs of explanation exploration with different granularity by the visual encoding
illustrated by Melody Matrix, providing new ways to extend the powerful feature
importance explanations to scalable visual analytics.

5.2 Pipeline to Summarize ML Models

In this section, we introduce our pipeline for creating a feature importance
based visual interface to help domain experts understand, validate and inspect the
behavior of a machine learning model.

5.2.1 Goals and Target Users

As mentioned in the beginning, our goal is to allow feature importance ex-
plantions to interpret the logics behind a machine learning model on the whole
dataset. The interpretation should target on the end users, unlike model developers,
to fully understand the model behavior so that they can apply it to problems
from users’ domains. To investigate what questions needed to be answered from
domain experts, we can study the previous tasks addressed by interactive systems
that provide analysis of interpretable models to these users. To be specific, we
summarize the questions addressed by systems visualizing decision trees [177], rule
list [174], and generalized additive model (GAM) [175] for end users.
Q1 What kinds of logics has the model apply on the dataset? When

receiving inputs from a dataset, the trained machine learning model can be
seen as an extraction of logics from the dataset to make predictions. For
feature importance explanations, we present the logics as a set of facts (clauses)
that leads to an outcome. In this way, users can focus on understanding the
facts without the needs to study other representations.

Q2 What is the outcome of each piece of logic? For each piece of logic,
we can acquire three important information: (1) the outcome (probability



74
distribution of prediced classes inside a logic); (2) the accuracy (how well
the predicted distribution is consistent with true class distribution), and (3)
the support (the amount of data in the logic). Evenly distributed outcome
means the logic is general to many possible outcomes, low accuracy reveals
the error region of the machine learning model, and low support means a rare
logic in the dataset. These statistics provide a guidance for domain experts
to investigate on each logic.

Q3 What are the predictions / logics involved in a logic / prediction?
The question is concerned about customized starting points of the analysis.
For predictions, the question is like “what are the reasons for a particular
prediction?” And for logics, the question is like “how does the model use ¡a
logic¿ for prediction?” These considerations are concerned with the verifica-
tions of the models using experts’ expertise. There might exist some strict
regulations or expertise after years of development, thus it is important to
integrate these knowledge in the analysis.

Q4 When and where does the model fail? Checking the limitations of the
machine learning model is one of the most important activities in machine
learning tasks. There are many reasons for a model to fail (e.g. data quality,
architecture design, unseen observations), and it is crucial to provide guidance
to discover that.

5.2.2 Constructing an Explanation Matrix

To begin with, what is an explanation of a machine learning model? In current
literature, we often see examples like highlights of texts in a paragraph (i.e. saliency
maps [188]) or bar charts showing the important features that the model uses to
predict an input [148, 147]. These are the gradients of input [144], which is one
of the most popular methods to explain an input’s prediction based on a set of
salient features. Recently, there is an increasing trend of producing explanations
by analogy. For example, prototype learning [150] and TCAV [179] explain an
image’s classifications by similar instances (“this image (input) looks like that image
(ground truth data)”). However, these methods can only be used to explain a model
locally for a single instance.

Interestingly, although these methods can only be applied to a single input, when
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Figure 5.2: Examples of transforming the feature importance based explanations
to real-valued vectors from different (a) data types and (b) explanation methods.
The result of stacking the feature vectors from all inputs is a matrix containing the
rationale of a model’s predictions to a dataset.

we apply them to every instance in the dataset, it could result in a structured matrix
format that provides opportunities for scalable visual analysis. To illustrate, we
present outputs from LIME, AllenNLP, and ProtoPNet, which are libraries having
more than hundreds of stars in Github to explain predictions on tabular, text, and im-
age data respectively (Figure 5.2). The similarity among these explanation methods,
regardless of data types, is the mathematical output as a real-valued vector (Fig-
ure 5.2(b)). These vectors represent the important salient features that are used to
explain an input’s prediction. If we treat each instance’s explanation as a sparse vec-
tor and vertically stack all instances’ results from the dataset, we will create an expla-
nation matrix where rows represent instances and columns represent all the features
used in the explanation methods (Figure 5.2(c)). As a result, the patterns inside
the matrix will convey how the machine learning model works on the whole dataset.

5.2.3 Patterns in the Explanation Matrix

As mentioned above, an explanation matrix E consists of a set of rows R
as instances in the dataset and columns C as explanatory features used in the
explanation methods. The patterns obtained from mining the matrix are defined
as a set of rows and columns partitions (co-clusters) which can be interpreted as
textual logical expressions (Figure 5.1). The clusters can be arranged as a set of
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Figure 5.3: Different strategies improving the interpretability of the explanation
matrix under different scenarios. (a) Replacing the columns in the matrix with bins
(i.e. set of intervals) to sparsify the features. (b) Combining the sparse columns
based on their similarity in the original data. (c) Reducing the anomaly values
using knee finding algorithms and normalizing the values across the rows.
unordered conjunctive (AND) logics. Each row cluster (i.e. cluster of instances
in the dataset) represents a logic with the intersected column clusters (i.e. co-
clusters related to the row cluster with high feature importance) as the important
conditions (FACTS) describing the logics. As the row cluster contains instances
with prediction outcomes, the probability distributions of these outcomes construct
the consequent (RESULT) of the rule. Each probability outcome represents the
confidence of a prediction in the rule and the number of instances in the logic
represents the support. In the Iris dataset example in Figure 5.1, we can see
that each column, which represents a range of the values, combines based on the
feature vectors from LIME explanations to the dataset to explain the Random
Forest classification model as logical visual expressions (e.g. The FACT petal
width (cm) > 5.10 leads to the RESULT of P(virginica) = 1). Similarly,
if the features are some analogies (e.g. visual prototypes) or categorical variables
(e.g. texts), then the clauses inside the logical expression can be interpreted as
similarity (e.g. The FACT similarity( dog prototype ) > 0.8 leads to the
RESULT of P(dog) = 0.9 ) or existence (e.g. The FACTS exist(‘‘delicious’’)
AND exist(‘‘great’’) lead to the RESULT of P(good) = 0.8).
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5.2.4 Feature Engineering

In practice, the feature vectors generated by the explanation methods might not
convey much insight when combined as a whole into an explanation matrix. This
often happens when the features in the explanation are directly mapped from the
original dimensions in the dataset. First, we describe two potential issues, when
the explanation matrix is either overly dense or overly sparse. We provide example
implementations for both scenarios in the Appendix. Then, we describe a way to
smooth and normalize the matrix to further address some typical data issues in
the matrix.

5.2.4.1 Sparsify the Explanation Matrix

In this situation, the features from the explanation method are homogenous
across different instances. For example, it might output explanations like {pedal length :
0.12,pedal width : 0.11,sepal width : 0.001}, which states that the values of “pedal
length” and “pedal width” in an input are important to its prediction outcome.
However, this does not tell us what are the exact values of that input, which
prevents a more in-depth understanding (e.g. how do different values inside a
column affect the model behavior) when the inputs are clustered together in the
matrix.

To address this problem, the usual way is to apply binning strategies to the
explanation matrix with regards to the original values of the inputs (Figure 5.3(a)).
For each feature in the explanation of input, instead of assigning the importance
value to the original feature, the value is assigned to one of the bins of the feature
that the input’s original value belongs to. These bins represent the ranges of values
that explain the model’s behavior with a finer granularity. The binning function
could be different kinds of discretizers (e.g. quartile, decile, or entropy), depending
on the characteristics of the data. Such strategy is used in LIME’s implementation
as well [148].

5.2.4.2 Densify the Explanation Matrix

In the opposite situation compared with the above, the features from the
explanation method are too specific related to a small set of instances. For example,
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explanations of document classification might output the important vocabularies
that only exist in few documents (e.g., One document uses “great” to describe the
food while another document uses “delicious” to express the same sentiment). In
this case, the features are similar regarding the prediction outcomes they lead to.
Thus, we can combine these sparse features into denser topics so that rows with
the same topics can be clustered more easily.

To achieve the combination of features leading to similar outcomes, we can
extract the importance of each feature to different classes by summing up the
feature importances in the matrix by each class. This results in a low dimension
matrix that encodes the influences of features on each prediction. The more similar
in influence the features are, the more likely they convey the same meaning from the
machine learning model. Then, we can apply straightforward clustering methods
(e.g., K Means, DBScan, or Hierarchical Clustering) to group similar features.
Finally, we group the values in the explanation matrix by summing them according
to the cluster’s features. As a result, the densified explanation matrix will be
more likely to form patterns for visual analysis. Such strategy is inspired by topic
modeling approaches like LDA [189], but with a supervised set of labels.

5.2.4.3 Smoothing and Normalizing the Explanation Matrix.

Last but not least, we observe that sometimes the values of feature importance
in the explanation matrix can be extremely high. This happens when the values
of the input are located in the turning points of the machine learning model (i.e.
gradient equals infinity). To ensure similar and important explanations can be
clustered together, we can set the maximum values of the matrix to the knee point
of the overall value distributions in the matrix using a knee finding algorithm [190].
Also, we normalize the matrix by the sum of each row to unify the understanding
of input’s explanation as a percentage contribution to the prediction outcome
(Figure 5.3(c)).
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5.2.5 Information Theoretic Approach to Co-cluster the

Explanation Matrix

We now present our information theoretic approach to co-cluster the explanation
matrix such that it reveals the patterns like the visual analysis process illustrated
in Figure 5.1. The approach provides the foundations to address two challenges: (1)
unsupervised clustering, where the number of clusters does not need to be manually
defined, and (2) interactive clustering, where the clustering results can be refined
by visual analytics approaches.

5.2.5.1 Problem Definition

Let R and C be the set of row (instance) and column (feature) vectors in the
explanation matrix E respectively such that E is equivalent to a joint distribution
between R and C (i.e. p(R,C)). Our goal is to find the optimal row and column
clusters R̂ and Ĉ so that they represent the logics in the explanation matrix like
Figure 5.1.

The main idea of information theoretic approach is the use of measurement of
data compression to find the best model selection [191]. The best model selection
should satisfy the Minimum Description Length (MDL) principle: the best model
should minimize its total description length L, which is made up of a model
description length and description length of the original data with the help of the
model:

L= L(M) +L(D|M) (5.1)

In our problem setting, L(M) is proportional to the number of row and column
clusters and L(D|M) is proportional to the compression loss by using clusters to
represent the aggregated explanation matrix. By minimizing the total description
length, we group similar instances and explanatory features simultaneously so as
to balance compactness and information loss. For example, if we do not cluster
any rows and columns at all, L(D|M) will be equal to zero but L(M) will be huge
(i.e. many clusters to explore), whereas if we only have one cluster, the loss will be
huge (i.e. the clusters poorly represent the information in the explanation matrix).
Thus, we can translate it to a cost function T to find the best rows and columns
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partition by minimizing it:

T (R̂; Ĉ) = βR
∥∥∥R̂∥∥∥+βC

∥∥∥Ĉ∥∥∥+D(R̂, Ĉ) (5.2)

Here, the size of model can be represented by the number of rows and columns
clusters

∥∥∥R̂∥∥∥ and
∥∥∥Ĉ∥∥∥ and the compression loss is defined as D(R̂, Ĉ), which is

derived from the clustering result. βR and βC are user defined parameters to
penalize large number of clusters so that users can increase the values to produce
fewer clusters.

The next question is, how we should measure the compression loss? For example,
consider the following synthetic explanation matrix below:

E = P (R,C) =


.1 .1 0 0
.1 .1 0 0
0 0 .2 .2
0 0 0 .2


It is obvious to group the rows into two clusters: r̂1 = {r1, r2}, r̂2 = {r3, r4} and the
columns into two clusters: ĉ1 = {c1, c2}, ĉ2 = {c3, c4}. The information theoretic
definition of the resulting compression P (R̂, Ĉ) and the approximation matrix
recovered from the compression Q(R̂, Ĉ) are as follows [192]:

P (R̂, Ĉ) =
.4 0

0 .6

 , Q(R̂, Ĉ) =


.1 .1 0 0
.1 .1 0 0
0 0 .133 .267
0 0 .067 .133


Each entry in the approximation matrix Q(R̂, Ĉ) is calculated as follows:

Q(r,c) = P (r̂, ĉ)× pR(r)
pR̂(r̂) ×

pC(c)
pĈ(ĉ) (5.3)

where pR,pR̂,pC ,pĈ are the marginal probabilities of R,R̂,C,Ĉ respectively. For
example, Q(3,4) = .6× (.4)/(.6)× (.4)/(.6) = 0.267. Thus, the compression loss
D(R̂, Ĉ) can be expressed by the difference D(R̂, Ĉ) = ‖E(R,C)−Q(R,C)‖ for
some matrix norm ‖ ‖. In our implementation we use Frobenius norm as the matrix
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norm.

5.2.6 The Melody Algorithm

We now present our Melody (MachinE Learning MODel SummarY) algo-
rithm. In the previous section we have created our goal to find the row and column
clusters that minimize the cost function in Equation 5.2 among all possible number
of clusters and all possible rows and columns combinations. Yet, the equation
itself does not tell us how to reach the solution efficiently. Since the matrix can
be considered as a graph where each entry is a weighted edge between a row node
and a column node, we can use graph summarization [62] approach to provide a
baseline solution (Algorithm 7). The overall idea is as follows:

1. Each row and column starts in its own cluster. Then, we put the row and
column clusters into two separate lists (line 1-2).

2. We first fix the column cluster assignment. For the row clusters in the list,
we randomly select one from the list (line 5).

3. We compare the selected row cluster with the remaining row clusters in the
list as merge candidates (line 7-12): we try merging the selected cluster with
each remained cluster and calculate the cost reduction by Equation 5.2 (line
8). We choose the candidate that produces the least cost.

4. If merging the selected cluster and its best candidate reduces the total cost,
then we merge two clusters in the list (line 14-15). Otherwise, we remove the
selected cluster in the list (line 17). Either way, the list will have one fewer
item.

5. We repeat steps 2-4, but we fix the row clusters and merge the column clusters
instead. The whole algorithm stops until there are no clusters remained in
both lists.

Overall, in every iteration, a row (column) needs to measure the cost reductions
with the remaining candidates in the list, which has the maximum size of ||R||
(||C||). Therefore, the time complexity of the basic algorithm is O(||R||2 + ||C||2).
As a quadratic algorithm is infeasible for any moderately sized data for exploratory
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ALGORITHM 7: Melody (MachinE Learning MODel SummarY)
Input :R,C– instances and explanatory features

βR, βC– regularization terms
Output : R̂, Ĉ– row and column clusters

1 R← [{r1},{r2}, ...,{rm}], R̂← {} /* intialize rows */

2 C← [{c1},{c2}, ...,{cn}], Ĉ← {} /* intialize columns */
3 loss← D(R,C) /* initialize loss function */
4 while size(R)> 0 and size(C)> 0 do
5 r0← random pop(R) /* randomly extract a cluster */
6 ∆Lmax ← 0, rmax ← undefined
7 for r ← R do
8 ∆L← βR−D({r∪ r0},C∪ Ĉ)
9 if ∆L >∆Lmax then

10 ∆Lmax ← ∆L, rmax ← r
11 end
12 end
13 if ∆Lmax > 0 then
14 rmax ← {rmax∪ r0} /* merge two clusters */
15 else
16 R̂ .push(r0) /* push the cluster to final result */
17 end

/* same procedure as for C... */
18 end
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ALGORITHM 8: Top-k Nearest Neighbor Query

/* Initialize TR← build lsh table(R) and TC← build lsh table(C) after line 2 in Algo. 7 */
/* Replace R with query(r,R,TR,k) in line 7 of Algo. 7 */
Input : v – query cluster

V, Tv – remaining clusters and LSH table
k – number of neighbors

Output : knn– top k nearest neighbors
1 counter ← Counter() /* initialize counter */
2 neighbors ← query lsh table(v,Tv) /* get collided entries */
3 for n ← neighbors do
4 for v̄ in V do
5 if n in v̄ then /* collision between the clusters */
6 counter[v̄] + = 1/|v̄|
7 break
8 end
9 end

10 end
11 knn ← counter.most common(k)

visual analysis, we now propose a speed-up strategy to make our algorithm suitable
for interactive performance.

5.2.6.1 Speed Up Strategies With Data Sketches

While a randomized bottom-up algorithm scales linearly, Algorithm 7 is time-
consuming as it needs an extra loop to compare all possible row or column clusters
(line 7) in every iteration. However, if we look at the example matrix in Section 5.2.5,
it is obvious that the first two rows (columns) are completely different from the last
two rows (columns). Comparing candidates that are different indeed is of no use
since they are unlikely to reduce the total cost. Thus, to speed up the algorithm,
we propose a k-nearest neighbor query strategy with a novel use of locality sensitive
hashing (LSH) [193] scheme to encode a row of column clusters. LSH defines a
family of hash functions (i.e., sketches) [h1(vi),h2(vi), ...,hn(vi)] for a vector vi so
that the probability of hash collisions between two vectors is proportional to their
euclidean distances (i.e., sim(vi,vj)∼ Pr[hk(vi) = hk(vj)]). Vectors with similar
values thus can be stored in the same buckets in an LSH table. Furthermore,
we can extend this proportional to retrieve similar row (column) clusters. If two
clusters have many similar vectors, then the number of hash collisions will be high.
Therefore, the top-k clusters from the query will likely be similar neighbors.

The query algorithm is illustrated in Algorithm 8. First, an LSH table needs
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to be built for rows and columns, respectively. Then, when a neighbor query is
performed, we can use the hash keys from the query’s vectors to perform a table
look-up to retrieve all the collided entries with the entries in the cluster ( subroutine
query lsh table in line 2). We count the average number of collisions between the
entries from the query cluster and the ones from the candidate clusters (line 5)
and return the top k clusters with the highest number. This can drastically reduce
the number of comparisons and the running time when the matrices are large
(Section 5.4).

5.2.6.2 Strategies Addressing Sparsity

Given a sparse explanation matrix, the bottom-up approach might face difficul-
ties in cluster entries when the cost function is stuck a local minimum. Also, as the
matrix is sparse, it is hard for the algorithm to know whether there are cluster struc-
tures at the beginning. These adversely affect the formation of significant clusters.
To address this cold start problem, we reference from spectral graph partitioning
[60] to create relatively smaller partitions of rows and columns using their singular
vectors from SVD decomposition. Then, we can use our information-theoretic
objective function to compress the matrix further.

5.2.6.3 Interactive Clustering For Visual Analytics

Since the clustering result is based on the best outcome from the raw explanation
matrix, the compactness and quality might be affected by the size and noise in
the matrix. The noise here refers to corner cases of inputs where the model needs
to use rare logics to make decisions on these inputs. Typically, to increase the
visibility and reduce the visual complexity of a matrix, users are allowed to filter
the sparse regions by removing the values by some thresholds like sizes of clusters
or the densities of the clusters. In our case of understanding the decision logics
of a machine learning model, the objective of visual analytics is to identify more
general patterns of decision logics by removing complex decision paths. Therefore,
we can run Algorithm 7 again on top of the current co-clustering result to further
merge the clusters. The result of such interactive clustering can be illustrated
in a real dataset in Figure 5.4. It is clear that without re-runing the algorithm
(Figure 5.4(a)), the similar patterns are not grouped together to convey an accurate
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Figure 5.4: The result obtained by interactively clustering (purple lines showing
only the row clusters for visual clarity) the explanation matrix upon visual analytics
operations such as filtering on a real dataset. (a) Without interactive clustering,
the similar patterns do not group together to provide the accurate sizes of each
logical expressions. (b) By interactively clustering, the visual result conveys a much
clearer and accurate information of the knowledge inside the model comparing with
(a) with same information after filtering.
support of instances that belong to the same logic (Figure 5.4(b)), which defies the
purpose of filtering the result.

5.3 Visual Analytics System:Melody Matrix

We now present the visual design to visualize the explanation matrix summary
to help users understand the feature importance explanations from the machine
learning models on the whole dataset. In the following discussion, we mainly describe
the matrix visualization, Melody Matrix, and the interactions supported to
facilitate analysis.

5.3.1 Visualization Design

Melody Matrix mainly consists of three visual components: the logics view,
the facts view, and the instances view. The logics view displays all the logics from
the machine learning model that have been applied to the input dataset. The
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Figure 5.5: Main visualization of Melody Matrix. It consists of three visual
components: (1) The Logics View displaying the row clusters obtained from the
explanation matrix as rows with facts (i.e., explanatory features) as highlighted
blocks and consequent statistics showing the right-hand side of each row. (2) The
Facts View showing facts used among the logics as columns with feature description
visualization. (3) The Instances View showing the original data information
intersecting with the selected fact when clicked.
facts view describes what facts do the logics contain. The instances view provides
the details of each fact in the logics. We provide slightly customized designs that
convey similar meanings for tabular, image, and text data.

5.3.1.1 The Logics View

As illustrated in Figure 5.1, each row cluster is a logic applied to the input dataset
from the machine learning model. The logics are obtained from the row partition
results from the explanation matrix summarization discussed in Section 5.2.5. Thus,
each logic is encoded as a row in the visualization (Figure 5.5(1)). Each row’s
height represents the support (i.e., the number of inputs from the dataset that falls
into this logic). Their supports also sort the rows. In each row, the highlighted
positions represent the facts (i.e., columns) that exist in the logic. The facts are
sorted according to the column partition results from summarization. The highlight
of each fact in logic is a distribution of feature importance values across all logic
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inputs. The values are sorted in increasing order and color-coded with a sequential
scale. Overall, users can treat the combination of strongly highlighted blocks in
the rows as a set of conjunctive (AND) conditions in the logic.

On the other hand, the consequent (RESULT) of the logics is displayed on
the rows’ right-hand side. First, the predicted outcomes and actual outcome of
the inputs inside a logic can be perceived as probability distributions (i.e., P (y|x)
where y is the outcome, and x is the logic). Then, we can display the following
properties:
1. The most probable prediction, which is the Maximum a posteriori estimation

(MAP) of the logic. It is shown as a colored number where the color represents
the output label and number showing the label’s probability. When the number
of output labels increases, this allows users to quickly identify the result of each
logic (Q2).

2. The probability distributions of predictions and actual outcomes. They are
shown as two individual vertical bar charts with color representing the labels
and height representing the inputs’ frequencies having the predicted and actual
labels, respectively. It allows users to understand whether logic in general to
different classes, or it directly targets a specific outcome. It lets users understand
whether there is a similar behavior between different classes as well (Q1).

3. The accuracy of the inputs’ predictions inside the logic as a vertical bar chart
showing the frequencies of correct predictions. With these numbers, the user can
quickly identify the output labels by the colors and learn the model’s accuracy
within the similarly predicted inputs. It helps users identify the error regions of
the model quickly (Q4).

Design Considerations. We consider different strategies to encode the facts
inside the logics. Each fact in logic is a list of important values of each input
regarding a fact (i.e., a column) in the logic (i.e., row cluster). The most important
insight users should obtain from this list of values is that is this fact important in
the logic so that I can treat it as part of the rationale in the model? (Q1) Therefore,
we consider four encoding strategies: (1) sort and render each importance value in
the list as pixel lines; (2) similarly render the values without sorting, (3) using an
area chart to encode the values with sorting and (4) using an area chart without
sorting. A pixel line represents each feature importance value as a line, or a small
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Figure 5.6: Different visual encoding strategies to encode the facts (i.e. co-clusters)
inside the logics of the matrix visualization. Our choice is the pixel line encoding
with sorting the values inside the facts.
rectangle, with a sequential color encoding the value. To dive deeper into the
possible visual outcomes, we can observe the outcomes under the combinations of
two situations where the feature importance values inside a fact are skewed or not,
and the support of the logic is small or large. Under these combinations, the visual
representation of facts with different strategies can be seen in Figure 5.6. First, we
discover that sorting is important to detect the sparsity of the chart. The sparsity
of a fact lets the user indicate their certainty when formulating a logic within a row.
Whether the user thinks the fact is important or not correlates with the accurate
judgment of sparsity (Q1). Secondly, we find a pixel line chart more stimulating
when the size of the logic is small. It is because the pixel line always occupies the
full length in the chart. Therefore, it highlights the important features more easily
in niche logic, which might be interesting special cases in the dataset.

5.3.1.2 The Facts View

As the columns of the explanation matrix are a set of facts that explain the
model’s decision rationale to the users, these facts can be described visually or
textually as well. Therefore, since they are displayed in fixed horizontal positions,
the descriptions can be displayed on the columns of the matrix visualization
(Figure 5.5(2)). Here, we describe different strategies to show this information on
tabular, image, and text data. We can show the facts as a range that covers a
data distribution of the range’s represented feature for tabular data. For example,
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a fact 0 < x < 5 can be visualized as a gray box covering the interval between
zero and five on the histogram of feature x. We can show the image patches that
described the important (i.e. highly activated) visual representation learned from
the model with a bounding box for image data. For text, we can show the top
most important words in each topic. As a result, users can quickly understand each
fact’s properties in logic, such as tightness of the interval, the color of the patches,
and representative words (Q1).

5.3.1.3 The Instances View

When users click on a colored block (i.e., fact) in logic, the data that corresponds
to the fact and logic are displayed inside the block (Figure 5.5(3)). For tabular
data, we display the distribution of values across each output label with a stream
plot with colors showing the distribution of data with different accuracies. For
image data, we show the images of the logic sorted by the feature importance of the
fact selected. For text data, we display the word weighted by feature importances
as a word cloud with color indicating the output labels. While there are many ways
to describe the original data, the key objective of the instances view is to keep
the information displayed in the matrix visualization so that users can keep track
of the matrix’s visual exploration. Within the same layout, users can inspect the
data, logics, outcomes, and accuracies with the same alignment, which leverages
the connections provided by matrix visualization when visualizing a large number
of facts and logics [194].

5.3.2 Interactions

Melody Matrix supports four types of interactions: (1) interactive clustering
to further increase the compactness of logics with user inputs; (2) filtering the
matrix to reduce the cognitive burdens when visually exploring the large matrix;
(3) querying the data to focus on specific goals after acquiring the overview of the
logics, and; (4) details on demand.
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5.3.2.1 Interactive Clustering

Summarizing the original explanation matrix might result in small pieces of logics
illustrated in Figure 5.4. If the logic is too specific, users realize that the outcomes
are similar for logics that share similar facts. They can remove the unimportant
features from each input to consolidate the logic. In our implementation, we provide
two types of filter: filter by feature importance and filter by class. Users can remove
the input by class or remove the values inside the input by a minimum value
threshold. Both results will lead to a reduction of values inside the explanation
matrix. When Algorithm 7 is rerun, the co-clustering result will become more
compact and provides better clarity of the matrix visualization. Also, it allows
the user to focus on one output label only to investigate prediction logics for a
particular output (Q3)

5.3.2.2 Filtering the Logics

Filtering the logics (i.e., rows) is useful when scalability issues exist when the
number of logics is too high. For a complex model, it will easily happen. We
provide two types of filter for this situation: filter by support and filter by accuracy.
The first is to remove niche logics that only apply to a few inputs, and the second
is to focus on error regions of the model by focusing on logics with low accuracies
(Q4).

5.3.2.3 Querying the Data

Given a summarization result, users might want to focus on logics that are
related to specific labels or facts. Thus, we provide two types of queries: query by
classes or query by facts. The query will return logics that contain the selections,
and the selected facts will be highlighted. These allow users to verify logics that
are consistent with their domain knowledge (Q3).

5.3.2.4 Details on Demand

To provide a clear and effective visualization, we provide the details of each
visual component only on the user’s demand. The textual information of the logics,
facts, labels, and accuracy can be obtained by hovering over the respective visual
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Figure 5.7: A matrix visualization summarizing the feature importance explanations
obtained from a deep neural network that classifies birds’ images into 200 species.
Each row represents a logic of a classification rationale and each column is a
fact that explains the classification. (1) Users can understand the predictions by
checking the facts in a logic. For example, when checking the highlighted facts,
users understand the “reddishness” features that are used by the model for making
predictions. (2) Through different interactions, users can focus on a part of the
matrix to understand the model. For example, by filtering the logics to find logics
with low accuracies, the matrix shows that the logics that are related to dark color
patches are likely to produce wrong predictions.

elements. Also, the instances view (Figure 5.5(3)) are available only when the users
click on the facts from the columns or the highlighted blocks.

5.4 Case Study

To evaluate the usefulness of Melody and visualization, we perform three use
case scenarios on various datasets.

5.4.1 Datasets and Models

The implementations are written in NumPy, and the experiments are run in a
MacBook Pro with 2.4 GHz 8-Core Intel Core i9 CPUs and 32GB RAM. We use
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Algorithm Tabular Image Text

Baseline 33 mins 21 mins > 7 hours
Baseline + LSH 5s 13s 9s

Table 5.1: Run time on datasets used in the case studies.
the following real-world datasets and ML models to conduct our experiments and
use cases:
Caltech-UCSD Birds-200-2011 Images. The dataset includes 11,788 images
with 200 species of birds. We use a Convolutional Neural Network (CNN) with
a prototype layer [150] and achieves the highest test accuracy of 73.63%. The
explanation matrix is extracted from the prototype layer, which has 1330 facts
related to visual patches.
Home Equity Line of Credit (HELOC). It contains binary classifications of
risk performance (i.e., good or bad) on 10,459 samples with even class distributions.
We train a random forest classifier and achieves the highest test accuracy of 72.85%.
We extract 167 facts and use SHAP [147] to construct our explanation matrix.
US Consumer Finance Complaints. The dataset contains 22,200 documents
with ten classes (e.g., debt, credit card, and mortgage). We train an LSTM
neural network model and achieve the highest test accuracy of 84.54%. We use
IntGrad [146] to generate explanations for words in each document. We further
combine the words by clustering their embeddings to generate 100 topics as facts.
Run time performance. We report the effect of the run time on the three
use cases with the speedup strategies (Algorithm 8) in Table 5.1. The result
clearly shows that by replacing the quadratic computation in the baseline approach
(Algorithm 7), it becomes possible to produce results in interactive time. We also
observe that the calculation of information loss is not linear in runtime since there
are lots of data slicing operations to compute the approximation matrix (q(R̂, Ĉ)).
It highlights the importance of limiting the number of candidate comparisons in
the bottom-up process.

5.4.1.1 Usage Scenario: Understanding an Image Classifier

We first describe a hypothetical walkthrough of understanding what a deep
learning model has learned from a set of images (Figure 5.7). We use images as
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examples because the visual presentations are intuitive to understand. Imagine
Chris, an ornithologist, wants to study how birds’ appearances distinguish their
species. He downloads the data and runs the ML model to know how the machine
learns the visual features.
Understand the logics. Chris uses Melody and simplifies the matrix using the
interactive clustering filter. After some iterations, he generates an explanation
summary consisted of 37 logics covering around 70% of inputs in the dataset. Chris
then inspects the facts in the column of the matrix. The visual patches are sorted
by the clustering result and convey important visual features learned by the model.
He realizes that the neural network learns to group birds with similar colors by
dragging along the column. For example, the reddish birds fall into the same
logic that is described by facts describing the reddish features among the birds
(Figure 5.7(1)) (Q1).
Understanding the limitation of the logic. Chris checks the logics that have
low accuracies to understand the limits of the model. He achieves this by filtering
the logics with high accuracies. As a result, there exist two logics that have lower
accuracy than 50%. By checking the facts and the instances within the logics,
he realizes that the birds’ dark color patches are the culprit of such a prediction
outcome. Thus, Chris learns that the classification logics that rely on the color
channel are not that effective when the birds are dark (Q4).

5.4.1.2 Tabular Use Case: Understanding the Data Capability

We now present a use case about approaching the limit of predictability in
training a dataset. Understanding how the learned knowledge helps to make
predictions allows the financial worker to make improvements to the current credit
system.
Understand the summary. The analyst obtains a matrix summary (Fig-
ure 5.8(1)). It shows four rows that both have decent support and facts with
great feature importances (Q2). By inspecting the facts that appeared among
these rows and the predicted outcomes. The analyst finds out the first three are
concerned about the ranges within the feature “external risk estimate” (Q1). By
inspecting the ranges in the column, it is clear that for many inputs in the dataset,
the model can correctly classify them by the values of external risk estimates. If
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Figure 5.8: Use case of understanding a random forest classifier of credit risk
classification trained on tabular data. (1) The most popular logics are displayed
on the top left-hand side. The facts are mostly about the different ranges of a
numeric feature (i.e., External Risks Estimates). (2) Filtering by accuracy allows
the wrong logics to be emphasized. (3) By inspecting the facts from the inaccurate
logics, it could be concluded that data quality issues are the main culprit of the
misclassification.
the value is high, then the prediction would be “good” (i.e., yellow bar). Else, it
would be “bad” (i.e., blue bar).
Discovering the data quality issue. By adjusting the matrix to screen out
logics with high prediction accuracies (Figure 5.8(2)), the analyst discovers several
logics that produce wrong predictions. When he inspects the facts among these
logics, he finds extreme ranges among these facts (Figure 5.8(3)). The analyst
remembers that he fills in the null values inside the data with a large number, so it
means the null values play an essential role in the misclassification (Q4). To verify,
he queries these ranges and discovers that these are the only logics that have such
ranges in the model (Q3). Therefore, he concludes that the instances with null
values do not contain an adequate rationale for the model to make predictions, in
which he should discard them instead of filling in null values.

5.4.1.3 Text Use Case: Predicting Customer Complaints
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Figure 5.9: Explanation Summary of a
text classifier.

We present a use case of exploring
a text classification model to under-
stand different types of customer com-
plaints. Understanding how customers
complain can improve the call center’s
services. Our financial analyst first uses
Melody to acquire five logics and six
facts. Then, he explores the logics and
inspects the texts inside each fact in
the logics. Overall, he sees that the
words “card” and “money” dominates
the facts learned from the model. It is
understandable since customers usually
enquire about their money on the bank
services hotline and ask about the bank card for credit card issues. Interestingly,
by inspecting the word frequencies in fact, the analyst observes some deviation of
the use of words in the same logic. For example, there is the word “rush card” in
the “card” topic for prepaid card services. Therefore, even though “card” is the
keyword, it would add a “rush” beforehand if it is related to prepaid card services.
The analyst concludes such a keyword predicts the prepaid card service inquiries
when customers dial-in (Q1).

5.5 User Study

We conduct a quantitative experiment to evaluate the effectiveness of Melody
Matrix in helping users understand the behavior of the machine learning model.
We aim at achieving two goals in the experiment:

1. We want to verify whether users can utilize matrix visualization and answer
general machine learning tasks questions.

2. By observing how users use our tool to answer the questions, we distill a set
of design lessons and limitations to suggest guidance in designing machine
learning model explanation tools.
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Question Task Result

T1 Q2 Which of the following logic(e.g. highlights on image 418 and image 315 ) has the highest support? 34/36
T2 Q1 Which of the following logics exists in the matrix? 35/36
T3 Q4 Which feature is likely to produce wrong predictions? 34/36
T4 Q3 With the following logic, what will likely to be the model’s prediction? 33/36
T5 Q3 Which of the following features will produce prediction result of the following class label? 32/36

Table 5.2: Score of each task in the user study.
5.5.1 Participants

Melody and Melody Matrix are designed for domain experts to understand
machine learning models in an understandable human way. We recruited 18
participants (13 Male, 5 Female), aged between 21 to 42 (mean 28.1 with std. 5.09).
All of them are graduate researchers from a large univeristy with basic machine
learning concepts (e.g., knowing classification problems). The experiments were
conducted through a 30-minute virtual interview session with screen sharing. We
provided 20 USD amazon cards as gratitude upon completion.

5.5.2 Tasks

The study was divided into three steps. First, the interviewer went through a 10
minute tutorial with the participant while allowing them to explore the system freely.
Then, they were asked to complete a list of tasks using Melody Matrix. During
the tasks, they were encouraged to think and speak aloud their impressions. Last
but not least, the participants were asked to complete seven questions regarding
the system’s usability in 7-point Likert-scale. We used the HELOC dataset in
Section 5.4.1 as a demonstration during the tutorial. Then we use the Birds image
neural network classifier in the formal study. The tasks are designed similar to
understand a rule list model [174] which consist of answering five tasks regarding
the design questions in the goals (Q1-4) (Table 5.2). Each question is a multiple
choice of four with one correct answer, and two questions with the same formats
were asked for each task (i.e., 36 responses per task).
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Figure 5.10: Average ratings from 18 participants regarding the usability of Melody
Matrix.
5.5.3 Results and Design Lessons

The accuracies of the performed tasks are reported in Table 5.2. We did
not record the exact task completion time.Table 5.2 shows that all participants
performed the tasks correctly most of the time. For usability, the results are shown
in Figure 5.10. All average Likert ratings were above six except “easy to understand”.
Based on the feedback and participants’ observations when completing the tasks,
we now describe the design lessons we learned when designing machine learning
model explanation visualization.
Visual complexity increases user interactions. We observed a strong need
for user querying and filtering to finish the task when the displayed matrix had
many logics. For example, when asking users to answer which logic has the highest
support, even though the logics were sorted in increasing support, almost all
participants queried the logic listed in the multiple choices using the filter panel
instead of inspecting the matrix directly. One participant explained this behavior,

“even though I can scroll to the top left corner and obtain the answer, I feel like I
will get wrong by scrolling to the wrong region”. Another responded, “It is a neural
network model. I know everything will be complex, so I plan to filter on anything I
can before answering the questions.’ We believed that the observation suggested
a strong need for visual analytics actions when solving tasks concerning complex
logics. This observation also corroborated the fact that the filtering and querying
panels received the highest usability score in Figure 5.10.
Interpretable model explanations improve users’ confidence on visual
results. Interestingly, when asking participants to make predictions based on a set
of facts, we observed an increased sophistication of rationale when answering the
question. For example, many participants would take the color intensity of blocks
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in the matrix as consideration and the prediction distribution of the logic at the
same time. “Because it directly shows what a neural network thinks, I’d think more
deeply before giving any answer,” one participant pointed out. Another participant
gave an interesting opinion, “Since everything displayed is truly what the neural
network does and the matrix looks like having patterns inside, I am eager to look
for directions to understand the model instead of just giving up and relying on
tuning the parameters.” Although the logics are inevitably complex, if it faithfully
shows the model’s behavior, users are more likely to spend time using interactive
visualization like Melody Matrix on model interpretation tasks.

Figure 5.11: Evaluating feature impor-
tance by uniqueness.

Counterfactuals of facts when eval-
uating the feature importance on
a prediction. We observed an interest-
ing rationale for evaluating whether a
fact is important to the logics that leads
to a prediction result. The observation
happened when we asked the participant
to answer which logic is more likely to
predict an outcome (T6). Some partici-
pants based their answers by the uniqueness of facts to the outcome like Figure 5.11.
This suggested a further need to visually summarize feature importance explana-
tions like Melody before using them to derive a logic that is only based on one
input. To confirm whether a fact or a feature is the main rationale of an outcome,
users may prefer inspecting whether the fact appears in other outcomes first.
Intuitive meaning of explanations improves the rationale of answering
further questions. We observed that participants answered T4 very quickly (i.e.,
what will be the outcome of a logic). Some suggested that they started to get
familiar with the birds’ images after answering the first three questions. Some of
them responded, “I know the model sort of depends on the color to make predictions,
so I don’t need to look at the blackbirds’ logics for a prediction of the red bird.” The
ability to develop meaning on the explanatory feature could help to improve the
judgment and efficiency of machine learning model interpretation, which highlights
the importance of feature engineering on the explanation matrix in Section 5.2.4.
Visual alignment improves searching in complex logic. Some participants
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recall the convenience of having the facts inside the logics aligned side by side
inside the rows, which ease the burden of navigation. The alignment is the result
of column partition from Melody. We believe that when a logical model becomes
more complex, clustering all the information that will be displayed (e.g., clustering
inputs and important features in our case) is essential for scalable visual analysis.
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Chapter 6

Topological Summary of
Heterogeneous Model
Explanations

Explainable Artificial Intelligence (XAI) is becoming increasingly popular, as
more and more complex Machine Learning (ML) models are proposed in numerous
industries such as healthcare, cybersecurity, and banking. While industries treasure
the boost of performance provided by these predictive models, they also require
these methods to provide clear explanations for the resulted predictions to cope with
regulations such as GDPR [159]. There are many recent techniques providing local
explanations to explain predictive models [148]. Given an input x and predictive
model P , a local explanation method usually generates a real-valued feature vector
e that represents the attributions of the input features to the predicted outcome.
Since there are many local explanation methods available, it raises an important
question – how to assess and compare these techniques? One popular method is
Ablation Tests [195], which assesses the accuracy drops of an input by removing the
important features identified by the explanation methods. However, this leads to a
follow-up question—how to conduct the same assessments on the whole dataset?

In this paper, we consider a simple but useful global assessment of the local
explanation techniques that take into account the entire dataset. We accomplish
this through the analysis of the topological properties of the explanation space.
Specifically, in this paper, we focus on explanation methods for binary classification.
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Figure 6.1: Five trials of LIME-generated explanations [148] with exactly the same
parameters and inputs on sklearn’s 20 newsgroups dataset. The red bars indicate
the words that contribute to the prediction of “Christian” news, and green bars
indicate the words that contribute to the prediction of “theism” news. The lengths
of the bars represent the feature importances.

We model a given explanation method as a scalar function to capture the relationship
between the explanation space and the class prediction and compute a topological
skeleton of this function. This skeleton is then used to compute a topological
signature which is then used for comparing the explanation methods. Our technique
is simple and easy to use and aims to address the following challenges arising from
explanation technique assessments.
Motivation 1: Explanation’s Stability.. Prior to comparing multiple local
explanation methods, it is important to first understand a given explanation
method, in particular, how it performs on any given dataset. Even using just a
single explanation technique, it is common to observe different outcomes based on
different parameters or simply different trials. For example, Figure 6.1 illustrates a
scenario where an input’s explanation is different after simply executing the same
commands multiple times. While it is easy to observe the differences between
multiple local explanations through the bar charts, such analysis is only useful
for analyzing the method for a single input. Such a visual approach becomes
cumbersome when applied to the entire dataset. Moreover, it will be almost
impossible to understand how stable the explanation method is for that data.
Accomplishing this would necessitate generating a global measure or signature that
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Figure 6.2: (a) A synthetic dataset with two features and two classes with its
corresponding explanations generated by (b) LIME and (c) SHAP. For simplicity,
both explanations are set with two features, which result in two different point
clouds in two dimensions. The colors indicate the prediction scores of each point.

can capture the structure of the explanation space with respect to the given data.
Our aim is to compute a topological signature corresponding to a given explanation
method to accomplish this goal.
Motivation 2: Comparisons Among Heterogeneous Explanations.. While
comparing outcomes within the same explanation method can at least be done by
measuring their distances (e.g., Euclidean distance) directly, explanations generated
from different methods cannot be directly compared since they have different value
ranges and dimensions. For example, in Figure 6.2, the LIME explanations and
SHAP explanations have different ranges of values. Also, their values have different
intrinsic meanings. To compare two different explanation methods as a whole, a
straightforward way is to cluster the local explanations and compare the cluster
similarities (e.g., Rand index) between them. However, there are two drawbacks
to this approach. First, the values of explanations may not provide clear cluster
structures (e.g., the points in Figure 6.2(b) appear together as a “blob”), making
comparisons difficult to be effectively accomplished based only on the explanation
values. Second, since explanations are inferred using the predictions of the ML
model, the comparisons between different explanation methods are more faithfully
measured by the relationships between the model predictions and the explanation
values. For example, although the explanations in Figure 6.2(b) and Figure 6.2(c)
have different value distributions, we can observe similar relationships between
the values and the prediction scores (i.e., class 0 and 1 are roughly partitioned by
points having prediction scores close to 0.5). As we show later, such properties are
naturally captured by the shape, or more formally, the topological properties of the
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Figure 6.3: Pipeline of transforming the local explanations of a dataset in Fig-
ure 6.2(c) into a topological representation and signature for comparisons with
other heterogeneous explanation methods.

explanation manifold. A crucial advantage of using topology for such an analysis is
that it is agnostic to the geometric extent of the explanation space and thus allows
direct comparison across different explanation methods.
Approach and Contributions.. Our approach is illustrated in Figure 6.3. Given
a dataset X ⊂ Rn, a binary classification model P : X→ [0,1] (P (x) denotes the
probability that x∈X belongs to class “1”), and an explanation method E :X→Rd,
our approach first models the relationship between the explanation approach and
the classification model as a scalar function f : E(X)→ [0,1]. It then computes
the topological skeleton of this function, in particular, an approximation of a
Reeb graph [196], which is then used to compute a topological signature called
the persistence diagram [197]. Analysis and comparison between the explanation
methods are then accomplished by exploring the topological features as defined by
the persistence diagrams and computing the distance between these topological
signatures, respectively. To the best of our knowledge, our approach is the first to
use computational topology for XAI.

The contributions of this work can be summarized as follows:

1. We propose a topology-based approach for assessing and comparing local expla-
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nation techniques globally. By providing a domain-agnostic signature for the
explanation techniques, our approach allows comparison across heterogeneous
explanation approaches which is otherwise not possible.

2. We demonstrate the effectiveness of our approach through an extensive evaluation
using synthetic as well as real datasets.

6.1 Related Work

To assess and compare the attributions from the local explanation methods,
a straightforward way is to ablate the top K features ranked by the attributions
and observe the decrease of the predicted output score. Varying the values of
K and recording the output scores results in an ideally downslope curve. The
lower the curve, the better the local explanation method since it shows that
the explanation succeeds in identifying the important features. To avoid simply
removing the top K features without considering the correlations among features,
we can ablate the center of mass of the input instead [198]. Also, to avoid the issues
of model extrapolation on the ablated inputs, we can retrain the models on the
ablated data and measure the performance downgrade [195]. Furthermore, the local
explanation methods can also be assessed by comparing their behavior between
a randomly parameterized model and a trained model [199]. Besides ablation,
we can measure the quality of explanations with metrics such as (in)fidelity and
sensitivity under perturbations [200], or impact score that measures the feature
importance on decision marking process [201]. If the apriori of feature importance
of the dataset [202] is known, the feature importance of input across different
models can also be assessed. In general, these techniques examine the classifiers’
rationale on a single input, which motivates our work to propose a framework to
examine the classifiers’ behavior globally.

6.2 Topology Background

In this section, we briefly introduce the topological concepts on which our
approach is built.
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Figure 6.4: Approximate Reeb graph of a point cloud. (a) Height function defined
on a torus. Level sets at two different heights are illustrated. (b) Reeb graph
computed on the height function defined on the torus. (c) A point cloud sampled
from the torus. (d) The approximate Reeb graph computed using the Mapper
algorithm when the height function is divided into 5 intervals as shown in (c).

Reeb graphs and the Mapper algorithm. Consider a scalar function f : M→
R, that maps points from a manifold M to a real value. The level set f−1(a) at a
given scalar value a is the set of all points that have the function value a. The Reeb
graph [196] of f is computed by contracting to a single point each of the connected
components of the level sets of f , resulting in a skeleton-like representation of the
input. Figure 6.4(b) shows an example of the Reeb graph of the height function
defined on a torus (Figure 6.4(a)).

A lot of real-world datasets are, however, available as sets of functions defined on
a set of discrete high-dimensional points rather than as a continuous function. The
Mapper algorithm [203] computes an approximation of Reeb graph of some user-
defined function (often called lens or filter function) of such data. It basically divides
the function range into a set of overlapping intervals and approximates the level
sets to be the set of points that fall within each of these intervals. The connected
components of these approximate level sets are then computed by clustering the
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points that are part of a given interval. Each cluster then forms a node of the
approximate Reeb graph, and an edge is present between two nodes if they share
one or more input points. For example, consider the set of points in Figure 6.4(c)
that are sampled from the torus in Figure 6.4(a). Assuming the height function,
this is divided into a set of 5 intervals as shown in Figure 6.4(c). The connected
components of the points that fall into these intervals are then used to generate
the graph as shown in Figure 6.4(d).

In this work, we will be using the Mapper algorithm to compute the topological
graph to understand and compare the space defined by the different explanation
methods.
Topological Persistence. We now give an intuitive and informal description of
the concepts about topological persistence. We refer the interested reader to the
book by Edelsbrunner and Harer [197] for the formal definitions.

Given a scalar value a, the sublevel set f−1((−∞,a]) is defined as the set of all
points on the domain that have function value less than or equal to a. Consider
a filtration of the input that sweeps the input scalar function f with increasing
function values. As the function value increases, the topology of the sublevel sets
changes at the critical points of the function (where its gradient is zero), and
remains constant at other points. In particular, at a critical point, either a new
topology is created, or some topology is destroyed. Here, topology is quantified by
a class of k-dimensional cycles (or k-cycles). For example, a 0-dimensional cycle
represents a connected component, a 1-dimensional cycle is a loop that represents
a tunnel, and a 2-dimensional cycle bounds a void. A critical point is a creator if
a new topology appears and a destroyer otherwise. Given a set of critical points
c1, c2, . . . , cm, one can pair up each creator ci uniquely with a destroyer cj which
destroys the topology created at ci. We say that a topological feature is born at cj
and it dies at cj . The topological persistence [204] of this topological feature that is
created at ci is defined as f(cj)−f(ci), which intuitively indicates the lifetime of
this feature in this sweep.

The above notion of persistence allows features to have an “infinite” persistence,
that is, there exist creators that are not paired with any destroyer. The notion
of extended persistence [197, 205] extends the filtration to include a sweep over
superlevel sets (f−1([a,∞)), thus allowing pairing of the above mentioned creators.
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Without loss of generality, for the remainder of this paper, we use the term
persistence to mean extended persistence.

Since we are working with functions defined over discrete points, we use the
graph computed by the Mapper algorithm to compute the topological persistence
of the features of the input. Here, the filtration is defined on the nodes and edges
of the graph as follows. Each node is assigned a function value equal to the mean
of the function values of the clustered points represented by that node. The order
of the nodes added during the filtration (or sweep) is defined by the function value
of the nodes. An edge is added during the step of the filtration as soon as both
its endpoint nodes are added. Note that the topological features, in this case,
correspond to 0- and 1-cycles only.
Persistence Diagram. A persistence diagram plots the topological features
as a 2-dimensional scatter plot. Each point in the plot corresponds to a single
feature and has x and y coordinates equal to its birth and death values respectively
obtained from the extended filtration. The persistence value of each figure is then
the height of the corresponding point above (or below) the line x= y. Figure 6.4(e)
shows the persistence diagram computed using the Mapper graph. Note that we
plot all the features in the same plot, thus resulting in a single persistence diagram.

Persistence diagrams provide a useful mechanism to assess the structure of
scalar functions. Moreover, it has also been shown that persistence diagrams are
robust to noise [206]. In other words, persistence diagrams are stable under small
irregular perturbations in the data, and the distance between two such diagrams is
bounded. Hausdorff distance and bottleneck distance are two common measures
used to compare two persistence diagrams. In this work, we use the bottleneck
distance [206] for this comparison.

6.3 Topological Representation and Assessment
of Local Explanation

Let X⊂ Rn be a dataset and P : X→ [0,1] a binary classification model, where
P (x) ∈ [0,1] is the probability of x ∈X to belong to the “1” class. Given X and the
model P , a local explanation method can be seen as a mapping from the dataset
to the explanation space E : X→ Rd, where E(x) provides the “importance” of the
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different attributes for the classification of x ∈X. While d= n for most approaches,
d can be greater than n if the explanation method outputs more than a scalar value
for each attribute of the input.

The mapping X′=E(X) gives rise to a point set in Rd (the explanation manifold).
We can define a function f : X′→ [0,1] as f(x′) = P (x), where x′ = E(x),x ∈ X. In
this work, we use the function f as the lens function from which Mapper builds
a summary representation for a given dataset and to compute the corresponding
persistence diagram. Intuitively, this function captures the relationship between the
explanations and the classification probabilities. Recall that our goal is to analyze
and compare explanation methods. Since the explanation manifold (and space) can
drastically vary across different methods and parameters, a direct comparison of
the geometry of these manifolds is not possible. However, studying the topology of
such functions allows us to analyze how different explanation methods are from
a topological point of view, that is, we can make geometry agnostic comparisons.
Furthermore, each topological feature (a point in the persistence diagram) can be
easily mapped back to a set of input data points in X, thus allowing us to also
compare how the explanation space is spread across the input data.
Mapper Parameters.. The Mapper algorithm used in this work requires two
parameters: 1) the resolution r of the lens function that defines the number
of intervals into which the scalar function range is divided; and 2) the gain g,
which defines the percentage overlap between successive intervals. The value of
these parameters determines the structure of the resultant graph, and hence the
persistence diagram. In an ideal scenario (e.g., in a dense point set input), increasing
the resolution and decreasing the overlap would result in the graph computed using
the Mapper algorithm converging to the Reeb graph. However, in real-world data,
such as the ones we are working with, having too high a resolution or too low a
gain can result in the graph being just a set of disconnected nodes. Also, depending
on the point distribution, small changes in the parameters could drastically change
the resultant graph, and hence the persistence diagram (a trivial option would
be to use a resolution of one, which however would simply be equal to clustering
the points). We are therefore interested in identifying a set of parameters that
results in a “stable” computation of these graphs but also having a relatively high
resolution and low overlap.
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To evaluate this stability, we use bootstrapping [207] to compute the confidence

intervals for the generated graph in terms of the bottleneck distances. Consider
a set of input explanation values E = {e1, e2, ..., en} and the persistence diagram
generated by its Mapper Graph D. For each iteration, we sample with replacement
from E to construct E∗ = {e∗1, e∗2, ..., e∗n} and compute the persistence diagram D∗

for this input using the Mapper algorithm with random parameters. Then, we
define the stability s as the bottleneck distance db(D,D∗). The confidence region
for s, sα, can be computed as the quantity ŝα defined by:

P (db(D,D∗)> ŝα|E) = α (6.1)

where α corresponds to the confidence interval. ŝα can be estimated using Monte
Carlo simulations. We compute this stability for varying resolution and gain values
and choose an appropriate setting for the analysis. The Appendix illustrates this
process for the experiments used in this paper.

In the following section, we show how our topological framework can be used to
assess and compare different explanation methods.

6.4 Design Process For Visualization

In this section, we describe an iterative and user-centered design process with
domain experts that results in the visualization shown in Figure 6.3. To be specific,
we worked with a team of machine learning researchers in a financial institution
for a year to study their needs and discuss various approaches with regards to
model interpretability. To conceptualize the user needs, design rationale, and
alternatives, we describe the whole journey of creating our topological summary
visualization as a series of sequential considerations of the design factors in realizing
a summary visualization [208]. The discussions we had with the domain experts
can be categorized into four main areas: task, data, method, and purpose. First, we
understand the tasks our experts want to achieve. These tasks are the needs for ML
model interpretability from our experts and are not affected by the visualization
and techniques. Then, we go through the available data types generated from the
whole ML modeling pipeline and select the ones that are most suitable to the tasks.
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Afterward, given the data and tasks, we can choose the data abstraction technique
(method) that suits the domain tasks and problem characterization. Finally, once
we have the data abstraction and tasks, we can identify and compare various visual
encodings (purpose) to address the needs.

6.4.1 Step 1: Tasks

To begin with, the ML experts require two clear motivations describe in Section 6,
which are to compare the local explanations with different parameters and from
different methods. The local explanations present the rationale of a classifier, and
the experts would like to observe the differences among the rationale from different
explanation outcomes. Therefore, in terms of data exploration, we can formulate
the user needs as the following tasks:

T.1 Compare different explanation results through the variations of the local
explanations in the dataset.

T.2 Unify the representations of different explanation techniques.

T.3 Identify similar and dissimilar explanation results.

Although these tasks are derived from the domain-specific scenario, we can
already develop several expectations for visualization. For high-level tasks, the tasks
related to visual summarization can be categorized as high-level presentation intents,
and visual discourses such as associate, cluster, compare, distinguish, and rank [209].
For model interpretations, the visual summary should provide the functionality
for users to compare (T.1-2) and distinguish (T.3) different explanation outcomes.
These directions help us to decide the preferred data, data abstractions, and visual
encodings in the next steps.

6.4.2 Step 2: Data Types

After we identify the tasks, the next step is to identify the useful data types
from the ML modeling pipeline. The ingredients from the pipeline are as follows:

1. Original Data Distribution: raw tabular data providing all information of the
input.
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Figure 6.5: Synthetic data to determine the data inputs for visualization. For
original data, there are chances that the variations of data variation of some
dimensions are not used for predictions (i.e., feature 1). Showing these variations
might hinder the users’ ability to understand the model’s rationale. For local
explanations, the variations of not so useful features are significantly reduced.

2. Model Predictions: [0,1] binary prediction score for each input indicating the
likelihood of the predicted class.

3. Local Explanation: real-value feature vector indicating the attributions of
each feature to result in the prediction from the classifier.

The core questions for determining the data for visualization is — Should we
incorporate all information in the visualization? Which pieces of information are
most applicable to the experts’ tasks? In order to answer these questions, we
generate some simple synthetic data and present the outcomes for discussions
(Figure 6.5). The synthetic data has two dimensions, and only one dimension is
useful for the classification. If we compute the local explanations (i.e., SHAP) for
the inputs in this dataset, we can see that there are no variations for the useless
dimension (i.e., zero attributions for feature 1). Thus, for comparing explanation
results (T.1), experts prefer the explanation space to original data space since the
data variation reflects the model’s rationale (i.e., prediction probabilities), while
the original data space might hinder the presentation of the model’s behavior when
the number of dimensionality increases. At this stage, not only do we identify the
domain-specific tasks but also the inputs for data abstractions and visualization.

For topological data summarization, the Mapper algorithm needs the user’s
inputs on both the manifold and filter function, of which the choice will significantly
affect the outcomes of the results. Thus, the argument above on the choice of data
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Figure 6.6: Demonstration of the choice of Mapper input with the synthetic data
in Figure 6.5. Using explanation values or original data as the manifold will affect
the variation on the final graph representation.

input will affect the Mapper result significantly as well. During our discussion
with domain experts, we reflect the importance of the choice of data input with a
demonstration of Mapper pipeline on the synthetic data (Figure ??). The filter
function acts as a binning operation on the data, and clustering is applied to the
binned data to reveal the nodes. Therefore, the variation of the manifold will
significantly affect on the number of nodes in the final result due to the clustering
algorithm. After understanding the usage of Mapper through the illustration, our
experts comment that as it is important for the visualization to reflect the variation
of the explanations (T.1), the choice of using explanation values as the manifold
will suit better to the challenges.

6.4.3 Step 3: Data Abstraction

While this chapter is to present a topology-based framework to abstract the
explanations from different explanation techniques, we also need to identify other
possible alternatives to aggregate the explanations so as to justify the use of
topology and consequently understand how to visually encode the topological
representations to the users. Possible aggregation techniques include clustering and
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Figure 6.7: Design considerations for aggregating local explanations in the data
abstraction level. The topological summary provides an additional partition con-
straint based on the prediction probability, which prevents the over aggregation of
model’s classification results from clustering.

projections [210]. Apart from computation advantages that the topological method
is consistent with explanation values with different ranges (T.2), the advantage of
a topological representation also comes from its graph structure, which reveals the
clear geometric structure that is based on the variety of the data. Clustering and
projections are often combined together to generate summary visualization [211],
but they in general favor similar instances over outliers. Also, the computations
could not incorporate additional information (i.e., prediction probability), which is
crucial to the model interpretation. To illustrate the challenges, we can visualize
the topological representation result and clustering results with projections in the
example LIME explanation in Figure 6.2. The main advantage of using the topology-
based technique is the consideration of prediction probability in the aggregation
process. Since clustering does not obtain the information of prediction probability
in the process, inputs with different model’s decisions (i.e., classification results)
are easily aggregated together, which results in the aggregation of prediction scores
with high variances. If we use color hue to encode the model’s prediction as its
rationale in the visualization, it will hinder much variety of the model’s behavior
(T.1,3). Thus, topology-based summarization provides a more distinguishable
model’s behavior due to its partition on the prediction values as well.

6.4.4 Step 4: Visual Encodings

Once the topological summarization (method) is applied to the explanation
outputs and prediction probabilities (data types) based on the tasks for explanation
comparisons (tasks), the last step is to identify the presentation (purpose) of the
topological graphs for the experts. We begin the usage of node-link diagrams
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Figure 6.8: Design Alternatives for Topological Summary Visualization. (a) node-
link diagram with layout determined by inputs’ values and nodes encoded with
sizes of clusters. (b) node-link diagram with layout determined by inputs’ values
and no encoding on nodes’ sizes. (c) node-link diagram with layout determined by
graph topology and nodes encoded with sizes of clusters. (d) node-link diagram
with layout determined by graph topology and no encoding on nodes’ sizes.
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to encode the topological graphs since the experts are most familiar with such a
visual representation. Also, the numbers of nodes and edges are limited due to the
aggregation nature of the method. Thus, we do not discuss the usage of alternative
graph visualization methods such as adjacency matrices. In node-link diagrams, we
now discuss the layout for the nodes and also the encodings for the nodes.

For the layout algorithm, we can consider the layouts that are base on either
the nodes’ properties or the graphs’ properties. For layout considering the nodes’
properties (Figure 6.8(a)(b)), recall a node can be seen as a cluster of inputs, we can
position the nodes based on the inputs’ projections’ coordinates. The advantage is
that the explanations’ proximities can be reflected, but such an advantage quickly
diminishes when the dimensionality of the explanation increases. Also, as we can see
in Figure 6.8(a)(b), by using the 2D values of the explanations (i.e., no projection
technique is applied), the edges are already cluttered since topological graphs track
the changes of prediction probabilities alongside the variations of the explanation
spaces together. Thus, the edges that track the change of the model’s rationale do
not necessarily align with the variations of the explanation inputs. As a result, we
use a graph-related layout algorithm ( force-directed layout), which takes the graph
topology into considerations, and is more faithful to the topological representations.

Apart from the graph layout, the nodes in the node-link diagram can take
different encodings (i.e., sizes and colors) into considerations. For color, we use the
prediction probability to determine the color since it reflects the model’s rationale
and is the main consideration throughout our design process, from tasks to abstrac-
tions. The remaining encoding consideration is the size of nodes (Figure 6.8(c)(d)).
Our rationale for the node’s size is based on both the topological summary and
tasks. For the topological representation, the nodes represent the critical points of
tracking the prediction probabilities. Also, the Mapper computation also computes
the set of nodes as overlapping clusters. Recall that the experts’ tasks are to
compare the model’s rationale based on the variation of explanations in the dataset.
Thus, we do not encode the nodes based on the clusters’ sizes since the nodes are
not disjoint (i.e., large nodes representing similar inputs can happen), and the
experts are not interested in the redundancies in the dataset. Therefore, after the
considerations of node sizes and layouts, we finalize with the visualization shown in
Figure 6.8(d).
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Figure 6.9: The topological representations and distance measurements of LIME
explanations on a synthetic dataset with 4 useful features and 2 redundant features.
(a) The graph representations of LIME explanations with different maximum
number of features allowed in the regression. (b) The pairwise distance matrix
among the topological representations. (c) The row wise sum of the distance matrix
as the disagreement values among the explanation results.
6.5 Evaluation

In this section, we demonstrate the effectiveness of our approach to address
the two challenges introduced in Section 6 (Motivations 1 and 2). For each of the
challenges, our goal is to:

1. Demonstrate that our topological-based method captures the expected behavior
of the explanation method under different settings. This is accomplished using
synthetic datasets.

2. Provide usage scenarios demonstrating how our approach helps identify reason-
able explanation methods and settings. This is accomplished using real-world
datasets.

6.5.1 Experiment 1: Choosing Parameters in an Explana-
tion Method

Synthetic example. In this experiment, we use synthetic data as ground truth
to evaluate whether our approach correctly reflects the outcomes that is to be
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expected from an explanation method’s parameter settings. We use LIME [148]
as the example explanation technique for this purpose. One of the parameters in
LIME is the number of features, which controls the maximum number of features
allowed (i.e., sparsity) to train a linear classifier as the explanations. In theory, the
ideal sparsity is the number of useful features that the classifier will use to predict
the outcome. To test the effect of this parameter, we generate a synthetic dataset
that contains 4 columns that are useful for predicting the outcome and 2 columns
that are redundant [212]. We compute the LIME explanations on a Random Forest
Classifier trained on these data, with varying number of features (varied from 2
to 6). This results in five different sets of explanation values. We first generate
the topological skeleton using the Mapper algorithm as described earlier for each
of these explanations (Figure 6.9(a)) and the corresponding persistence diagrams
(topological signature). The pairwise distances between these persistence diagrams
are then computed, which provides a way for quantifying the differences between
the explanations (Figure 6.9(b)). It can be seen that these distances, when the
number of features is smaller than 4, are different from when the number of features
is greater than or equal to 4. Note that such an observation is consistent with
the expected behavior of LIME—the regression needs 4 features to train a linear
classifier. Once the maximum number of features becomes greater than or equal to
4, LIME’s behavior becomes consistent (i.e., resulting in small pairwise distances
among the explanation outcomes under this parameter setting).

Additionally, we can further quantify the agreement and disagreement among
different explanations as follows. We compute the disagreement between a given
explanation with other explanations by summing up the pairwise bottleneck dis-
tances between that explanation and the others. This is essentially summing the
row corresponding to the given explanation as shown in Figure 6.9(b). A low
sum means that the pairwise distances are small, thus implying that the other
explanations are similar to the given explanation. Similarly, a larger sum indicates
disagreement with one or more explanations. Plotting these values as a line chart
(Figure 6.9(c)) shows the trend that an increasing number of features leads to
consistent explanation outcomes.
Diabetes dataset.. We now demonstrate, using a real dataset, how our approach
helps determine important parameter settings, such as the sampling rate, for SHAP
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Figure 6.10: Using the bottleneck distances to measure the stability of SHAP
explanation method under different sampling rates. We acquire the stability of
each sampling rate by first running the explanation methods with a fixed sampling
rate under 5 trials. Then we compute the pairwise distance matrix among the
topological representations from the trials (i.e., 5×5 matrix). The stability can be
reflected by summing up the whole matrix, with higher values meaning unstable
outcomes. Plotting the values under different sampling rates reflects that SHAP
explanations become consistent after having a sample size greater or equal to 300
(approx. half of the size of the dataset).
explanations [213]. Like other perturbation-based explanation methods, SHAP
requires users to input the sampling rate for acquiring samples to train a local linear
classifier. A poor sampling rate may lead to inconsistent explanation results like
the example shown in Figure 6.1. However, having too large a sampling rate will be
computationally expensive. We use the Pima Indian Diabetes dataset (PIDD) [214]
for this experiment, which contains 614 inputs and 8 features, as an example. We
train a Random Forest Classifier to predict the outcome and use perturbation
based SHAP explanation method to acquire the explanation values. To understand
the stability of explanation results at a dataset level, we perform multiple trials
having a fixed sampling rate. We then compute the pairwise distances between the
persistence diagrams corresponding to the explanations obtained from these trials
(Figure 6.10).

A large sum of these pairwise distances implies that the explanation outcomes



119

Figure 6.11: (a) Synthetic dataset with zero values being the decisive factor
for predictions. (b) Pairwise distance matrix showing the significant bottleneck
differences among explanation methods with zero baselines. (c) Highlighting the
difference of the explanations among the zero baseline results with the disagreement
measure (i.e. row wise sum of pairwise distances).
differ among multiple trials even when the parameter value is fixed. Figure 6.10
shows that the explanations become more consistent when the sampling rate
increases to 300, which illustrates that stability are achieved with a higher sampling
rate. While in this example, we obtain high stability (sum = 0) fairly quickly, this
might not be the case when working on larger datasets. In such instances, one
could trade-off the stability for other properties (e.g., limit on the sample size) and
thus use the above approach to choose a parameter value that has as high stability
as possible within the accepted limits.

6.5.2 Experiment 2: Comparing Different Explanation Meth-
ods

We now illustrate how our approach can be used to understand and compare
different explanation methods. In particular, we aim to address a popular challenge
in using local explanation techniques—what should the choice of baselines be for
gradient based explanation methods. Baselines act as references to compare the
relative importance of features in an input so that attributions can be calculated.
We provide examples with both synthetic and real datasets to compare the behavior
between different baselines. To be specific, we apply three explanation methods—
Integrated Gradients [146], DeepLIFT [145], and SHAP [205] with five different
baselines: (1) zero baseline (an input with all values being zeros), (2) maximum
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distance baseline [215], (3) Gaussian baseline [216], (4) uniform baseline [215], and
(5) a trained baseline [217], resulting in 15 explanation outputs for each experiment.
Synthetic example. Our goal in this experiment is to illustrate how our approach
can be used to identify explanation methods that are expected to behave differently.
To do so, we generate a synthetic dataset with 5 columns and determine the labels
with an extremely simple logic—the input will be labeled as “1” if any of the columns
contain a “zero” as value. Otherwise, they are labeled as “0” (Figure 6.11(a)). Under
this setting, only zero values are important to the classification. Thus we expect
the zero baseline is the only reference that is not a neutral input to the classifier.
We train a neural network with three layers and achieve 100% test accuracy. We
generate 15 topological representations for each of the explanation outputs. Note
that we use the sigmoid function output as the prediction score for the lens function
of the Mapper algorithm and hence to compute the persistence diagram. The
pairwise distance matrix computed between the 15 persistence diagrams is shown
in Figure 6.11(b). We can see that there are three rows and columns having much
brighter colors (i.e. greater distances) than the others, meaning that these three
explanation outcomes differ greatly as compared to the other explanations that
result in quite similar signatures.

The three explanation outcomes are generated using all of the three methods
used in the experiment applying the the zero baseline. Such observation is consistent
with the fact that zero baselines produce different feature attributions by treating the
important values as neutral references. Similar to Figure 6.10(b), we can compute
the sum of pairwise distances between a given method and others to highlight the
disagreement among the zero baseline results with the others (Figure 6.11(c)).
Bank Marketing dataset. We now repeat the above experiment using the Bank
Marketing dataset [218] to compare the behavior of the different explanation meth-
ods. This dataset contains 45211 inputs with 20 columns (default, employment,
occupations, etc., to name a few). Some columns have many zero values (Fig-
ure 6.12(a)), and it thus becomes important to understand whether these values
affect the choices of baselines. We train a neural network with three hidden layers
(87% test accuracy), and apply the 15 combinations of explanation methods and
baselines to compare the explanation outcomes. We can observe results similar to
the synthetic dataset scenario (Figure D.4 in Appendix), which shows that the zero
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Figure 6.12: Identifying the influence of zero baselines in Bank Marketing dataset by
comparing the topological representations of different combinations of explanation
methods and baselines. (a) The dataset contains many zero values. Thus it is
important to verify whether a zero baseline is appropriate. (b) Apart from using
the distance matrix (similar to Figure 6.11), we can also visualize the topological
skeleton of the explanation function to identify the differences.
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baselines behave differently from the others. This behavior can also be visually seen
from the topological skeletons corresponding to the explanations. As seen in Fig-
ure 6.12(b), the graphs corresponding to zero baselines have a topological structure
significantly different from the others. When working in a real dataset scenario, it
is normal for tabular datasets to contain zero values that provide important infor-
mation. We demonstrate that with our topological representations, such influence
can be revealed with the help of distance measures and visual comparisons.

6.6 Conclusion

In this chapter, we introduce a topology-based framework to summarize local
explanations corresponding to an entire dataset. This is accomplished by first
computing the topological skeleton of a scalar function that captures the relationship
between the explanation space and the predictions. This is then used to compute a
signature for each explanation in the form of a persistence diagram. This approach
has the advantage that it is homogeneous and comparable even when used on
explanation methods with heterogeneous formats. We demonstrate the validity and
effectiveness of our approach through a set of experiments using both synthetic and
real-world datasets.

While this chapter focused on binary classification, extending the approach to
handle multi-class classifiers poses an important challenge—modeling a function
similar to what is being done results in a multi-variate function, for which defining
the appropriate filtration to compute the persistence diagrams becomes non-trivial.
One possibility is to transform multi-class probabilities into scalar values, and we
plan to investigate approaches for the same.
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Chapter 7

Conclusions and Future Work

This dissertation presents four main contributions to data summaries for scal-
able visual analysis. The first contribution is data summaries for bipartite graphs,
which summarize large-scale bipartite graphs with the Minimum Description Length
Principles for interactive data analysis. The second contribution is data summaries
for time series, which extract time series subsequence clusters as the summaries
for exploring patterns in large-scale time series. The third contribution is the
ML model summary, which summaries feature-importance explanations to under-
stand the model’s rationale to an input dataset. The fourth contribution is data
summaries for comparing heterogeneous local ML model explanations, which sum-
marize local explanations with heterogeneous dimensions into simplified topological
representations.

While the contributions allow the interactive visual analysis of different large-
scale datasets, there are still challenges that need to be addressed in future research.
We now present some of these challenges and highlight interesting directions of
research in the area of visual analytics.
Scalability beyond Online Computations. The contributions of this disser-
tation mainly focus on data summary generations by online computations. We
assume the data fit into the main memory of a single laptop. However, real-world
datasets are often stored in industrial DBMS, and billions of records are reasonable
sizes for interactive data explorations as well. While being out of scope for this
thesis, we have explored the options for interactive data summarization with the
use of distributed systems [219]. If we assume precomputations are available, we
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can generate data summaries using the parallelized platforms like MapReduce or
Spark before users conduct the interactive analysis.

An interesting direction is the investigation of indexing for computing data sum-
maries, where the indexes accommodate different users’ parameters and return data
structures that balance between online computations and offline data preparations.
Actionable Computations Insights. The contributions of this dissertation
mainly focus on exploratory data analysis. Data summaries are also useful for
automated predictions and classifications. Besides the contributions of the thesis, we
have explored the use of data summaries for conducting predictive tasks after users’
data explorations [220]. We are interested in deeper explorations of consequential
tasks after the visual analysis with data summaries.
Usability by Domain Experts. The contributions of this dissertation provide
interfaces for general explorations of common datasets. Yet, domain experts, who
are common end-users for interactive data analysis, usually prefer their own pipeline
for data analysis. For domain-specific data exploration, we have worked with more
human-center design process [221] on datasets besides the introduction of data
summarization, but it is of much importance to apply our data summaries on more
applications and usages in the future.
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Appendix A

Graph Summary

A.1 Subroutines in BM-MDL Algorithm

ALGORITHM 9: cost reduction for bundling((p,q),(p′, q),R,S)
Input: R⊆ U ×V , S⊆ P ×Q, p,p′ ∈ P and q ∈Q
Output: Cost reduction ∆ for bundling (p,q), (p′, q)

1 ∆ = 0
/* Calculate description length for (p,q) */

2 if (p,q) ∈ S then
3 ∆+ = 1
4 ∆+ = α · (‖p× q‖−‖(p× q)∩R‖) /* Corrections: remove non-existing edges */

5 else
6 ∆+ = α · ‖(p× q)∩R‖ /* Corrections: add existing edges */

7 end
/* Calculate description length for (p′, q) */

8 if (p′, q) ∈ S then
9 ∆+ = 1

10 ∆+ = α · (‖p′× q‖−‖(p′× q)∩R‖)
11 else
12 ∆+ = α · ‖(p′× q)∩R‖
13 end

/* Calculate max description length reduction by bundling (p,q) and (p,q′) */

14 ∆−=min(1 +α · (‖(p∪p′)× q‖−‖((p∪p′)× q)∩R‖),α · ‖((p∪p′)× q)∩R‖)
/* Output results */

15 return ∆
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ALGORITHM 10: merge(p,p′,R,S)
Input: R⊆ U ×V , S⊆ P ×Q and p,p′ ∈ P
Output: Updated P , Q, S⊆ P ×Q

1 remove p, p′ from P , S
2 remove all edges adjacent to p or p′ from S
3 add pnew = p∪p′ to P , S
4 for q ∈Q do
5 if 1 +α · (‖pnew× q‖−‖(pnew× q)∩R‖)< α · ‖(pnew× q)∩R‖)‖ then
6 add edge (pnew, q) to S
7 end
8 end
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Appendix B

Time Summary

B.1 Illustration of Synthetic Dataset Creation

Figure B.1: Illustration of how the synthetic dataset used in Figure 4.5 is generated.
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B.2 Parameters Setting In Evaluation

For the result in Figure 4.5, we run our algorithm on three datasets with different
combinations of durations of time series patterns. For each unique pattern and
combination, there exists 100 time series. We fix the clustering strength to 1,
minimum support to 50, and select the best results with recall greater than 0.95
among time window sizes of {25, 50, 100, 200} for three datasets.

For the results in Figure 4.7 and Figure 4.10, we set the time window size to
10% of the datasets’ durations, strength to 10, and minimum support to 50.
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Appendix C

Model Summary

C.1 Feature Engineering Implementation on Ex-
planation Matrix

ALGORITHM 11: Sparsify Features in the Explanation Matrix
Input :X,E,S– training data, explanation data, feature set
Output : Ê – a sparsified explanation matrix

1 Initialize a dictionary of binning functions Bins
2 Initialize a new sparse matrix Ê : êi 7→ {}
3 for s in S do
4 Bins[s] ← BinningFunction(X[: , s]) /* construct a binning function for each

feature from its values in the training data */

5 end
6 for xi,ei in X,E do
7 for s in S do
8 êi[Bins[s](xi)]← ei /* rename the original feature as binned feature in the

explanation matrix */

9 end
10 end
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ALGORITHM 12: Densify Features in the Explanation Matrix
Input :E,pred,S– explanation data, predictions, feature set
Output : Ê – a densified explanation matrix

1 Initialize a (number of features) × (number of prediction class) matrix F
2 Initialize a new sparse matrix Ê : êi 7→ {}
3 Partition E to Epred according to pred
4 for ei in Epred do
5 F [:, i]← sum(ei,axis=“column”) /* get the sum of values for each feature according

to class i */
6 end
7 cluster labels←cluster(F) /* cluster the features */
8 for ei in E do
9 for label, members in cluster labels do

10 êi[label] ← sum(ei[members]) /* combine the values of features belonging to
the same cluster */

11 end
12 end
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Appendix D

Topological Explanation
Summary

D.1 Tuning Parameters in the Mapper Algorithm

In this section we provide an overview of parameter tuning we performed for
the Mapper algorithm. For the experiments in Section 6.5, we arrive at the values
of resolutions and gains using the following processes (Figures D.1–D.4). First, we
conduct the bootstrap method with varying resolutions and gains to acquire the
confidence regions of the bottleneck distances. We return the 95% confidence region
of each topological representation results so that for each combination of resolution
and gain values, we have a value indicating difference between a representation
and its similar copy under small perturbations. This results in a matrix heat map
showing the confidence regions of resolutions and gains at which the topological
representation is stable (i.e. the dark colored regions). After narrowing down the
inspection, we explore the graph representations and explore the ones that are not
too disconnected while at the same time is stable with a relatively high resolution
and low overlap, as mentioned in Section ??. The graphs shown in the figures are
the topological skeletons visualized using a force-directed layout, and the color
encodes the average of the prediction probabilities of the inputs within the nodes.
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Figure D.1: Choosing the parameters for Mapper outputs in Figure 6.9. Left: Heat
maps showing the confidence regions of different resolutions and gains for different
explanation outputs. Right: graph representations for our choices of resolutions
and gains (red rectangles in the heat maps).

Figure D.2: Choosing the parameters for Mapper outputs in Figure 6.10. Left: Heat
maps showing the confidence regions of different resolutions and gains for different
explanation outputs. Right: graph representations for our choices of resolutions
and gains (red rectangles in the heat maps).
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Figure D.3: Choosing the parameters for Mapper outputs in Figure 6.11. Left: Heat
maps showing the confidence regions of different resolutions and gains for different
explanation outputs. Right: graph representations for our choices of resolutions
and gains (red rectangles in the heat maps).

Figure D.4: Choosing the parameters for Mapper outputs in Figure 6.12 and
the output of comparisons similar to Figure 6.11. Left: Heat maps showing the
confidence regions of different resolutions and gains for different explanation outputs.
Right: Pairwise distance matrix showing the significant bottleneck differences among
explanation methods with zero baselines, and bar charts highlighting the difference
of the explanations among the zero baseline results with the disagreement measure
(i.e. row wise sum of pairwise distances).
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