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ABSTRACT

Towards Adaptive and Holistic
AR Task Guidance

by

Guande Wu

Advisor: Prof. Cláudio T. Silva, Ph.D.

Submitted in Partial Fulfillment of the Requirements for
the Degree of Doctor of Philosophy (Computer Science)

August 2025

Task guidance with augmented reality (AR) provides real-time, context-aware in-
structions, helping users complete complex tasks efficiently and accurately. How-
ever, existing AR task guidance often lacks adaptability and continuity, offering
generic instructions without considering user needs or providing meaningful post-
task insights. This research addresses these limitations by developing an adaptive
and holistic AR guidance framework that supports users during and after task ex-
ecution. To comprehensively enhance AR task guidance, this framework addresses
three key goals: improving task efficiency, adapting to dynamic scenarios, and
providing long-term insights for post-task analysis. First, to directly enhance task
performance, the framework introduces an adaptive text simplification method tai-
lored for AR scenarios, reducing cognitive load and optimizing text comprehension
to improve in-task efficiency. Second, to broaden the system’s adaptivity across



x
diverse contexts, the framework incorporates adaptive guidance using BDI-based
user modeling and LLM agents, enabling context-aware and proactive guidance.
Finally, to support the post-study review and complete a holistic framework, the
framework integrates a visual documentation system with interactive video sum-
marization, generating actionable insights from AR task recordings to support
long-term performance review and continuous improvement.
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Chapter 1

Introduction

Augmented reality (AR) task guidance delivers real-time, context-aware instruc-
tions by overlaying digital information onto the user’s physical environment [292].
These systems have been increasingly adopted in domains such as aviation training
(e.g., training pilot’s flight procedure) [145], healthcare (e.g., assisting surgeons
during operations) [216], and industrial assembly and maintenance (robot arm
maintenance) [69, 188, 387], where they assist users in completing complex, multi-
step tasks with improved efficiency and accuracy [212]. Despite these benefits,
many existing AR task guidance systems offer static, one-size-fits-all instructions,
with limited adaptability to user needs or situational changes. Furthermore, most
systems focus solely on in-task assistance [147], providing little support for post-
task review or learning.

In this dissertation, we aim to address these limitations by developing an adap-
tive and holistic AR task guidance framework. The proposed framework enhances
task performance through adaptive in-task support while extending its impact
beyond immediate task execution through post-task analysis. Our approach is
grounded in three key contributions:

1. Adaptive Text Simplification for AR Task Guidance. We introduce
a method for simplifying instructional text tailored to AR contexts. The ap-
proach reduces cognitive load by optimizing text presentation based on user
context and task complexity. This work builds on the ARTiST system [325],
demonstrating its effectiveness in improving real-time task performance.
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2. Adaptive User Modeling for Proactive Task Guidance. We develop

an adaptive user modeling framework based on the Belief-Desire-Intention
(BDI) model. This enables proactive, context-aware assistance that aligns
with the user’s goals and situational needs. The framework extends the
intent modeling and collaboration mechanisms explored in Your Co-Workers
Matter [326] and Satori [161].

3. Interactive Task Recording Summarization and Analysis Tool for
Post-Task Review. To support the user’s continuous improvement and
task documentation, we introduce a visual analytics approach that generates
interactive summaries from AR task recordings, facilitating post-task review
and performance analysis. This contribution comprises two complementary
components: IntentVizor [323], which introduces a general-purpose, query-
guided video summarization model and interactive interface; and InsightAR,
which extends this approach to AR task guidance by incorporating a domain-
specific summarization pipeline and visual analytics interface for identifying
user errors and generating improvement suggestions.

1.1 Motivation
AR task guidance has gained increasing attention as an effective tool for delivering
real-time, context-aware instructions in various domains [212, 292]. In industrial
manufacturing, AR systems assist workers in assembling complex products by
overlaying step-by-step instructions directly onto physical components [212, 283].
In healthcare, AR guidance supports medical professionals in performing proce-
dures with improved precision [190]. Similar applications extend to equipment
maintenance [387], education [109], and wayfinding [263, 295], where AR helps
users carry out tasks more efficiently and accurately. As AR task guidance be-
comes more widespread, ensuring its usability across different contexts and user
groups presents new challenges. Effective AR task guidance requires not only ac-
curate instructions but also adaptability to dynamic task environments and user
needs [212, 317]. Users may have varying levels of expertise, cognitive capacity,
and situational awareness, which impacts their interaction with AR systems. With-
out adaptive support, static or overly complex instructions can increase cognitive
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load, hinder task performance, and reduce overall user experience.

Challenges

Despite its potential, AR task guidance faces several key challenges that limit its
effectiveness in practical applications:

1. High Cognitive Load. AR task guidance often presents information di-
rectly in the user’s field of view. If not designed carefully, this can lead
to information overload, increasing the cognitive demands on the user [33].
Complex instructions, excessive visual elements, or poorly timed prompts
can distract users and hinder task performance. Reducing cognitive load is
critical to maintaining user focus and ensuring efficient task execution in AR
environments.

2. Adaptivity to Dynamic Task Contexts. Tasks performed in AR en-
vironments are often dynamic, requiring the guidance system to respond to
changing conditions, user actions, and individual differences [317, 322]. Many
existing systems offer static, one-size-fits-all instructions [212, 387], which do
not account for variations in user expertise, task complexity, or situational
factors. Adaptive guidance, tailored to the user’s current state and environ-
ment, is essential for providing relevant and effective support during task
execution.

3. Holistic Framework for Post-Task Analysis. Most AR task guidance
systems focus on in-task support [147] but offer limited support for struc-
tured post-task analysis or after-action review [125]. Without structured
post-task analysis, it is difficult for users or organizations to identify areas
for improvement, learn from past experiences, or support long-term skill de-
velopment. A holistic framework that integrates task guidance with visual
summarization and post-task analysis can provide actionable insights and
documentation to enhance future performance and learning.
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1.2 Contributions
In this dissertation, we describe three contributions that address the challenges
described in Section 1.1. The main contributions can be summarized as follows.

1. Adaptive Text Simplification for AR Task Guidance. We develop an
adaptive text simplification method designed specifically for AR task guid-
ance scenarios. The method dynamically adjusts instruction complexity and
presentation to reduce cognitive load and improve in-task efficiency. This ap-
proach is demonstrated in the ARTiST system [325], which optimizes textual
guidance for AR environments.

2. Adaptive User Modeling for Proactive Task Guidance. We introduce
an adaptive user modeling framework based on the Belief-Desire-Intention
(BDI) model. This enables us to build a proactive AR task guidance sys-
tem called Satorito proactively assist users by anticipating their needs and
responding to dynamic task contexts. The framework also builds on the
work in intent modeling and human-AI collaboration presented in Your Co-
Workers Matter [326]

3. Visual Documentation and Post-Task Analysis for AR Task Record-
ings. We propose a holistic framework that integrates visual documentation
with post-task analysis. Building on our interactive summarization work
IntentVizor [323], which combines visual analytics with user-controlled sum-
marization through graph convolutional networks, we now develop an AR-
recording-specific tool InsightAR for documenting egocentric task recordings.
This tool extends traditional video summarization by ensembling diverse in-
formation such as task errors and improvements while incorporating task
knowledge into the analysis process. The tool can generate interactive sum-
maries from AR task recordings, providing actionable insights for long-term
performance improvement and learning.
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1.3 Organization
The remainder of this dissertation is organized as follows. First, Chapter 2 reviews
related work on AR task guidance, adaptive user modeling, and task recording anal-
ysis. Next, Chapter 3 introduces our adaptive text simplification approach for AR
task guidance, which reduces cognitive load and improves in-task efficiency. Chap-
ter 4 presents the adaptive user modeling framework based on the Belief-Desire-
Intention (BDI) model, enabling proactive and context-aware guidance. Chapter 5
describes the work on the interactive summarization with the visual analytics sup-
port. Chapter 6 describes our visual documentation tool for post-task analysis,
which generates interactive summaries from AR task recordings to support long-
term performance improvement. Finally, Chapter 7 concludes the dissertation by
summarizing the contributions and outlining directions for future research.
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Chapter 2

Related Work

Augmented reality (AR) task guidance has gained increasing traction in various
domains, such as industrial assembly, healthcare, and education. While existing
systems have demonstrated the potential to improve task performance, several
challenges remain in enhancing adaptivity, reducing cognitive load, and supporting
post-task analysis. In this chapter, we review related work across three main areas
relevant to this research: (1) AR task guidance and text presentation, (2) adaptive
and proactive guidance through user modeling, and (3) visual documentation and
post-task analysis. We conclude with an overview of the specific challenges of
analyzing egocentric video data, which informs the design of our framework.

2.1 Foundations and Challenges in AR Task Guid-
ance

2.1.1 Existing Systems and Applications

Augmented Reality (AR) task guidance systems have been increasingly used to
support procedural tasks in domains such as cooking [43, 357], surgery [17], and in-
dustrial maintenance [212, 387]. By leveraging head-mounted displays (HMDs),
these systems present task-relevant instructions directly in the user’s physical
workspace [12, 171, 291]. This approach allows users to receive step-by-step guid-
ance without diverting attention away from the task environment. The concept of
task guidance systems was introduced by Ockerman et al. [209], who envisioned
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them as structured references for supporting procedural tasks such as inspection
and assembly. Early AR task guidance systems focused on digitizing traditional
manuals and displaying them through AR interfaces. In industrial maintenance
contexts, AR-based systems have been shown to reduce cognitive load and improve
task performance compared to conventional paper manuals [71, 301]. Similar ben-
efits have been observed in other domains, including military [99] and healthcare
applications [17], where AR task guidance has contributed to reducing error rates
and increasing user satisfaction [284, 375]. To enhance task understanding, AR
task guidance systems often include visual elements such as text annotations and
graphical highlights [128, 206, 255]. These features can help direct user attention to
critical information. However, many existing systems offer limited customization
for AR environments, frequently transferring content from paper-based manuals
without considering the constraints of AR devices, such as restricted field-of-view
(FoV) [71, 128]. This can lead to challenges in readability and comprehension,
particularly in dynamic or complex tasks. In addition to traditional task guidance
systems, some AR applications incorporate virtual agents to assist with procedural
tasks. These have been developed for domains including assembly and manufac-
turing [24, 133, 169, 298], surgery [63, 231], maintenance [23, 73, 134], and cook-
ing [50]. While these systems often demonstrate task-specific effectiveness, they are
generally limited in their ability to generalize across different contexts. Command-
based interactions are commonly employed to increase user control and system
responsiveness [128]; however, they typically require explicit user input, which can
interrupt workflow and limit usability in hands-busy scenarios. In this thesis, we
define AR task guidance as systems that deliver instructional support through AR
interfaces, including those that employ virtual agents or command-based interac-
tions. Our work builds on this foundation by addressing the limitations of static
and input-dependent systems, proposing adaptive AR task guidance methods that
can proactively respond to user needs without requiring explicit commands.

2.1.2 Challenges in Task Guidance

Many existing AR task guidance systems rely on rule-based approaches, where
actions or reminders are triggered by predefined conditions such as user inputs,
task progress, or environmental events. These systems are often simple to design
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and implement [146], and they provide users with readily available instructions
or support that can be accessed on demand or at predefined stages in the task
sequence.

However, rule-based task guidance has several limitations. First, these systems
typically require extensive manual configuration to define rules, triggers, and work-
flows for each task scenario. Second, they often depend on explicit user interactions
to confirm task progress or request further instructions, which can interrupt task
flow and reduce efficiency. For example, Sara et al. [250] demonstrated an AR
maintenance system in which technicians were required to manually confirm the
completion of each task step, using either touchpad controls or voice commands,
before receiving subsequent instructions. Such manual confirmation can increase
cognitive load, particularly in hands-busy or safety-critical environments.

Moreover, rule-based systems generally lack adaptivity. They are often limited
to predefined instructions that do not account for variations in user expertise,
changes in task conditions, or unforeseen events during task execution. As a result,
users may receive instructions that are irrelevant, redundant, or poorly timed,
leading to inefficiencies and potential errors. These limitations highlight the need
for adaptive task guidance systems that can dynamically adjust to users’ needs
and task contexts without requiring explicit input.

2.1.3 Text Presentation in AR

Text presentation is a fundamental feature of AR task guidance systems. It enables
the display of instructional content that aligns with and supplements the physical
environment, supporting users as they perform procedural tasks [12, 229]. Effective
text presentation in AR can improve user comprehension by providing contextual
information directly within the task space.

However, presenting text in AR poses several challenges. One primary issue
is the potential for occlusion, where overlaid text may block or interfere with the
user’s view of physical objects. Hardware limitations, such as the restricted field-
of-view (FoV) of head-mounted displays, further constrain the available display
area and require careful placement of text elements [38]. To mitigate occlusion,
prior work has proposed techniques that incorporate depth information [104, 321],
inter-frame motion analysis [156], and two-dimensional collision detection algo-
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rithms [29, 293]. Despite these efforts, occlusion and collision remain difficult to
avoid, especially in complex and dynamic environments.

In addition to occlusion, the legibility of text in AR depends on factors such
as font selection, text placement, and presentation style. Orlosky et al. [210]
proposed an automated text placement algorithm that adapts to both physical
and virtual backgrounds to improve readability. Rzayev et al. [248] conducted an
empirical study on text display types and positions during sitting and walking
tasks, concluding that top-right placement increases cognitive load and reduces
comprehension. Matsuura et al. [191] further investigated the readability of six
Japanese fonts displayed on HMDs while walking. They found that fonts with
thin horizontal and vertical lines decreased legibility due to the effects of motion
and vibration.

Furthermore, the coordinate system used for text display can impact user ex-
perience. Three main coordinate systems are commonly employed in AR: world-
locked, head-locked, and body-locked displays [18]. Body-locked displays, which
adjust text position relative to the user’s body, have been shown to be effective in
scenarios where users need to move while completing tasks.

While previous work has addressed font selection, layout design, and spatial
positioning, existing AR task guidance systems have largely overlooked the opti-
mization of text content itself. Instructions from traditional manuals are often
transferred directly into AR environments without consideration for the cogni-
tive load imposed by lengthy or complex text. Our contribution on the ARTiST
project [325] specifically addresses this gap by introducing an adaptive text sim-
plification approach for AR task guidance. This method dynamically simplifies
instructional text, reducing sentence complexity and length while preserving es-
sential information. By tailoring text presentation to the constraints of AR head-
mounted displays and the needs of users in task contexts, our work on ARTiST
aims to improve readability, reduce cognitive load, and enhance task performance
in AR environments.
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2.2 Adaptive Task Guidance in AR

2.2.1 Proactive Task Guidance

Proactive task guidance systems are designed to recognize contextual information
and infer user intentions, even when these intentions are not explicitly communi-
cated by the user [57, 232, 256]. Unlike reactive systems, which depend on direct
user input or predefined triggers, proactive approaches anticipate user needs and
provide assistance without requiring human intervention [140, 251, 354]. Proac-
tive task guidance has been explored across various domains, including health-
care [234, 257, 338], navigation [223], and laboratory education [259].

These systems have shown potential in improving usability [258], fostering user
trust [138], and enhancing task efficiency [351]. In AR task guidance, proactive sys-
tems can leverage environmental context to predict user goals and deliver timely,
context-aware recommendations [113, 195, 197, 269]. For instance, gaze-moderated
systems, such as iBall, demonstrate how gaze data can be integrated into visual-
izations to promote task engagement and attentiveness [45].

However, most existing proactive guidance systems rely on predefined rules
based on location, time, or task events to trigger interventions [197]. For example,
Ren et al. [245] proposed a proactive interaction design for smart product-service
systems that use sensor data—such as physical location, light intensity, and en-
vironmental temperature—to infer user states like attention levels. While these
methods advance proactive interaction, they often depend on explicit contextual
signals that may not accurately reflect the user’s actual needs. This reliance can
result in assistance that is ineffective or obtrusive [141, 331].

One key challenge in achieving truly proactive task guidance is the difficulty of
accurately interpreting user intentions. Understanding user goals typically requires
more than explicit cues (e.g., verbal commands); it often depends on implicit, non-
verbal signals, such as gaze direction, body posture, and physical interactions with
objects [128]. Successfully analyzing these implicit cues is essential for reliable
intention recognition and timely intervention.

Recent advances in vision-language models present new opportunities to im-
prove multimodal understanding of user behavior in AR task guidance. Our con-
tribution on the Satori project [161] leverages these advancements by introducing
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a multimodal input framework that integrates both voice and visual cues to better
infer user intentions. By dynamically modeling user goals and the task context,
our approach enables adaptive and proactive task guidance in AR environments,
reducing the reliance on predefined rules and explicit user input.

2.2.2 User Modeling for Task Guidance

2.2.2.1 Understanding User Intention

Understanding user intention is critical to providing adaptive AR task guidance,
as accurately inferring user intent ensures timely and relevant guidance. Early
work by Broder [31] classified web search intentions into navigational, informa-
tional, and transactional types, laying a foundation for intention modeling research.
Dearman et al. [56] further extended this by categorizing sharing intentions into
nine distinct types, broadening the taxonomy’s scope to collaborative interactions.
Similarly, Church et al. [48] examined how users’ intentions vary with context,
such as location or activity (e.g., commuting), influencing the design of context-
sensitive information retrieval systems like SocialSearchBrowser. Expanding on
this, Li et al. [166] defined a comprehensive design space of follow-up actions, cate-
gorized into 17 types, to better support proactive guidance on mobile AR platforms.
Collectively, these studies emphasize that accurately modeling user intention re-
quires consideration of both explicit user inputs (e.g., verbal requests) and implicit
context cues (e.g., body movements, environmental signals). However, prior ap-
proaches have primarily focused on explicit intention signals, providing limited
insights into implicit cues essential for adaptive AR task guidance. Our work
addresses this gap by proposing a multimodal approach to intention recognition,
leveraging visual and semantic cues to dynamically infer user intent.

2.2.2.2 Theory of Mind and the BDI Framework

To effectively support adaptive guidance, systems must accurately model users’ in-
ternal states, including their beliefs, desires, and intentions. The Theory of Mind
(ToM), originating from psychology, describes an individual’s ability to attribute
mental states—such as beliefs, desires, and intentions—to oneself and others, fa-
cilitating behavior interpretation and prediction [37, 74, 227]. Computational im-
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plementations of ToM have recently attracted attention for enhancing the realism
and adaptability of human-AI collaboration [328].

The Belief-Desire-Intention (BDI) framework [26, 49, 120, 158] operationalizes
key ToM concepts, offering a structured model of human decision-making widely
applied in cognitive modeling and multi-agent systems [130, 153, 221, 239]. Within
the BDI framework, beliefs represent the user’s knowledge about the environment;
desires reflect high-level goals or preferences; and intentions denote immediate
goals that direct the user’s actions [26]. The BDI model has been extensively
adopted in agent-oriented programming languages (e.g., AgentSpeak(L) [238], JADEX [27],
GOAL [100]), demonstrating its utility in designing interpretable and responsive
systems [22, 131, 240].

However, existing BDI-inspired systems typically focus on structured decision
environments, whereas AR tasks involve complex, multimodal interactions, includ-
ing egocentric visual inputs, gestures, and speech [20, 173]. Thus, directly applying
traditional BDI approaches to AR settings is challenging. Our contribution in the
Satori project [161] addresses this challenge by adapting BDI modeling principles
specifically for AR environments. Leveraging recent advances in Large Language
Models (LLMs) [22], our approach enables real-time inference of user states, bridg-
ing visual, semantic, and contextual information for adaptive task guidance.

2.2.2.3 Modeling User State in Human-AI Collaboration

Accurately modeling the user state is a long-standing challenge in Human-Computer
Interaction (HCI), essential for adaptive computing systems across various do-
mains [16, 194]. Past research has explored modeling user goals and intents [339],
user expertise levels [302], and memory states in AR/MR contexts [95, 267]. How-
ever, these studies often narrowly target specific aspects, with limited attention
given to comprehensive modeling of user states.

Particularly in AR task guidance, accurately capturing a user’s state requires
going beyond explicit task goals and incorporating implicit factors, such as user
beliefs and background knowledge. Existing research seldom addresses user beliefs,
despite their importance in accurately interpreting user actions and guiding deci-
sions [80, 151, 297, 323]. Moreover, current approaches frequently fail to clearly
differentiate between high-level goals (desires) and immediate action-oriented in-
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tents [135].

Our contribution explicitly addresses this gap by proposing a unified user mod-
eling approach based on the BDI framework. By integrating beliefs, desires, and
intentions into a cohesive representation of the user’s state, our model supports
adaptive AR task guidance systems capable of responding effectively to dynamic
user contexts and needs.

2.2.3 Leveraging LLMs for Adaptive Guidance

2.2.3.1 LLMs for Task Guidance

Recent advancements in Large Language Models (LLMs) have demonstrated signif-
icant promise in supporting diverse task guidance applications. Most prior research
on LLM agents has focused primarily on single-agent scenarios, such as web naviga-
tion and text-based games [75, 127, 330, 346, 380]. Techniques like chain-of-thought
prompting [127, 319, 361], self-consistency decoding [312], task decomposition [377],
and error reflection [347] have significantly improved the planning and reasoning
capabilities of these models.

Recent work has extended LLM-based systems into multi-agent collaborative
settings [88, 382], though most existing studies either involve homogeneous groups
of LLM agents or only evaluate overall task outcomes without thoroughly exam-
ining collaborative interactions [105, 290, 329]. Our contribution on the CoBlock
project [326] explicitly addresses this limitation by designing evaluations to directly
assess and highlight collaborative interactions among LLM-based agents within di-
verse task scenarios.

2.2.3.2 Theory of Mind for Human-LLM Collaboration

Adaptive AR task guidance requires accurate interpretation and prediction of user
intentions and actions. The Theory of Mind (ToM), initially defined by Premack
and Woodruff [227], provides a psychological framework for understanding mental
states such as beliefs, desires, and intentions, facilitating effective social interac-
tions and collaboration [37, 74]. Computational ToM frameworks, such as Wu et
al.’s cognitive knowledge graph COKE [328], formalize these mental states, demon-
strating their potential for AI systems to interpret and predict complex human
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behaviors.

The Belief-Desire-Intention (BDI) model, derived from ToM principles [26, 49,
120, 158], provides a structured approach to modeling human decision-making.
In the BDI model, beliefs represent users’ understanding of their environment,
desires correspond to their high-level goals, and intentions reflect immediate action
plans guiding behavior [130, 153, 221, 239]. Previous studies demonstrate that the
BDI framework enhances interpretability and responsiveness of agent behaviors in
interactive systems [22, 27, 100, 238, 240].

Integrating the principles of ToM and the BDI framework with LLMs presents
an opportunity to build adaptive AR systems capable of sophisticated human-AI
collaboration. Recent research has explored the extent to which ToM-like reason-
ing emerges naturally within LLMs [114, 136, 181]. Building on these insights, our
contribution on the Satori project [161] explicitly incorporates partner-state mod-
eling approaches derived from ToM and BDI into LLM-driven prompting strategies.
By embedding ToM principles directly within the prompting process, our method
enables the AR guidance system to dynamically infer user mental states and in-
tentions from implicit multimodal cues, including visual and gestural information.
This approach allows the adaptive guidance system to proactively provide context-
sensitive, personalized support to users, thus enhancing collaborative interaction
in AR environments.

2.3 Task Guidance Process Analysis
Analyzing task guidance performance through recorded AR interactions provides
essential insights for identifying task-related errors and improving long-term ef-
ficiency. Recorded task data, especially from egocentric videos, contains rich
multimodal information capturing user interactions, environmental context, and
procedural actions. Due to the complexity inherent in egocentric recordings, tra-
ditional video analysis techniques face challenges in accurately capturing context-
sensitive details. This section discusses existing approaches to analyzing task-
oriented videos, starting from general video summarization methods and multi-
modal analytical tools, followed by the unique challenges presented by egocentric
recordings. Throughout, we highlight specific gaps addressed by our contributions
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on the InsightAR project.

2.3.1 Tools for Video Summarization

Video summarization aims to create concise representations by capturing key
events, objects, actions, and salient moments from video content [93, 276, 323].
Summaries commonly take the form of visual keyframes or textual descriptions [205],
facilitating efficient skimming and reducing cognitive load during video reviewing
tasks [316].

However, single-modality approaches relying solely on visual content often fail
to capture essential semantic relationships among actions. For instance, keyframe-
based summaries cannot effectively convey action-based errors or procedural mis-
steps in videos such as those showing coffee preparation. Multimodal summa-
rization techniques address this limitation by combining visual content with cor-
responding textual descriptions, thus highlighting relationships between actions,
objects, and events [96, 163, 384]. Although multimodal summaries provide im-
proved semantic insights for various domains including surveillance and medical
training [115], current tools offer limited interactivity and user control over the
summarized content. Users have difficulty filtering information based on domain-
specific criteria or easily transitioning between summary and original footage for
detailed inspection. Our contribution in the InsightAR project directly addresses
this issue by integrating multimodal video summarization with interactive capabil-
ities specifically tailored for analyzing egocentric task recordings.

2.3.2 Tools for Multimodal Analysis of Task Performance

Multimodal analysis tools employ machine learning techniques to extract and in-
terpret information from task-oriented videos. Such tools can identify procedural
anomalies, including missed steps or incorrect sequences, task-specific errors like
improper tool usage, and key events critical for assessing performance. Recent re-
search has applied multimodal analysis to diverse tasks, ranging from everyday ac-
tivities such as cooking to specialized domains like surgical training and industrial
assembly [342, 343]. Advances in multimodal learning and computer vision have
significantly increased the sophistication of analyzing procedural activities [176].
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However, existing multimodal analysis methods typically focus on extracting

low-level features, such as actions or object interactions, and often fail to generate
actionable insights without integrating user domain knowledge [307]. To overcome
this limitation, visual analytics systems like Performance Lens [371] and interactive
task analysis frameworks [142] combine automated computational analyses with
human expertise, enabling richer and more contextually meaningful interpretations
of task performance data.

Despite these improvements, most current systems primarily analyze structured
data, such as key performance indicators (KPIs) and textual records [252], rather
than video data, even though video is the most intuitive medium for capturing task
execution. This limitation is particularly prominent for egocentric video analysis,
where subtle contextual details require expert interpretation and flexible analytical
interactions. Our contribution in the InsightAR project fills this gap by combining
advanced multimodal video analyses with interactive features, allowing domain
experts to better explore, interpret, and derive insights from egocentric task videos.

2.3.3 Challenges of Egocentric Video Analysis

The increasing availability of wearable cameras and AR headsets, such as HoloLens,
Meta Quest, and GoPro, has greatly facilitated the adoption of egocentric video
recording. This has resulted in extensive multimodal datasets, including Ego4D [90],
HowTo100M [199], and EPIC-KITCHENS-100 [52]. These datasets include rich
sensor data such as integrated measurement unit (IMU) readings, gaze tracking
data, and spatial mapping, enabling detailed insights into human-object interac-
tions, environmental context, and task performance [42].

However, analyzing egocentric videos poses unique challenges. First, wearable
cameras generate inherently unstable footage due to head movements, causing in-
consistent lighting, changing viewpoints, and frequent occlusion, complicating tra-
ditional vision-based analyses [90, 309]. Second, critical objects and events often
move in and out of the camera’s limited field of view, requiring advanced tech-
niques to maintain temporal continuity for accurate recognition and tracking [285].
Finally, egocentric perspectives yield visual patterns that significantly differ from
traditional third-person viewpoints, demanding specialized analytical methods and
models explicitly trained on egocentric datasets [87].
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Current methods remain largely limited to basic action recognition and rarely

provide sufficient contextual understanding for identifying procedural errors or
anomalies. Furthermore, existing egocentric analysis systems often lack interac-
tivity, preventing domain experts from incorporating their expertise during the
analytical process. Our contribution in the InsightAR project directly addresses
these limitations by offering interactive, multimodal analysis capabilities, specif-
ically designed to enhance the usability and interpretability of egocentric video
data in task guidance scenarios.
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Chapter 3

ARTiST: Automated Text
Simplification for Task Guidance
in Augmented Reality

3.1 Introduction
AR has evolved into a transformative technology with far-reaching applications
across multiple domains, including education [3, 110, 327], entertainment [179, 216,
225, 230], collaborative work [18, 19, 62], and professional training [12, 19, 288, 374].
Notably, AR superimposes digital content onto the physical world in real-time to
facilitate more efficient task execution [228, 334]. As a result, AR applications
have been increasingly employed for task guidance in manufacturing [212, 387],
education [11, 109], and surgery [216]. AR devices have been widely adopted in
the manufacturing industry, for example, to reduce reliance on guidance materials
or other devices outside of the immediate work environment [147].

A head-mounted display (HMD) is a type of AR device that allows for mul-
timodal interactions while the user maintains focus on the immediate work envi-
ronment [70, 147]. Given their hands-free nature, HMDs are frequently used for
text-based task guidance. However, compared to desktop displays, HMDs have a
relatively small field of view (FoV) limiting the amount of text they can display;
longer instructions may occlude a user’s view resulting in lower-productivity and
higher cognitive load [33], as well as safety risks [216]. As a result, AR text-based
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Trim the ends of the tortilla roll with
the butter knife, leaving 1⁄2 inch 
margin between the last toothpick
and the end of the roll. Discard ends.

Trim and discard the ends of tortilla ends
with knife (on your right)
leaving 1/2-inch margin gap

Syntactic simplification
Elaborative simplification

Content reduction
Lexical simplification

from between the last toothpick and end.

Trim and discard tortilla ends 

with knife (on your right)), 

leaving 1/2-inch gap from 

last toothpick

Spatial Object

Figure 3.1: ARTiST is a text simplification system that is designed for augmented
reality (AR) head-mounted display (HMD) environments. Our system combines
the findings from a formative study with a novel few-shot prompting to integrate
four established text simplification techniques for AR-specific contexts. The exam-
ple text shown in the bottom-right corner of the figure has been simplified using
our approach. The red text indicates removals whereas the green highlights the
addition of spatial information. The resulting simplified text is displayed directly
in the HMD.
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instructions require optimization for better utility.

Text simplification offers one potential solution. This process has historically
been used to reduce the complexity or length of text for users [274] in non-AR
settings, making it more readily understandable. To the best of our knowledge,
however, there are presently no established methods for adapting and simplifying
text for better utility in the specific context of AR. Furthermore, applying existing
methods to AR raises several concerns. Firstly, traditional text simplification
methods typically work to facilitate comprehension for individuals with limited
reading skills [41, 265], an audience that may not overlap with the AR userbase.
Secondly, these methods have not been designed or fine-tuned to accommodate AR-
specific constraints, such as the small FoV, a restricted display area, or the necessity
of users performing physical tasks concurrent with reading [216]. Finally, text
simplification presents an opportunity to use spatial information AR content by
describing a physical object’s color, location, or direction. Textually indicating the
location of a physical object can, for example, assist users in AR task execution [216,
387].

Accordingly, we aim to implement a text simplification system for AR by tai-
loring the existing methods to the AR context, with the goal of reducing cogni-
tive load on users and improving their task performance. To do so, we build on
insights from prior work [44, 265, 273, 274] and our own formative study to un-
derstand the specific challenges of AR text interfaces as well as their limitations
and potentials. The formative study contains three parts: a literature survey, an
open-ended exploration, and an expert interview. We found that both participants
and experts addressed issues related to long-text-induced reading challenges (e.g.,
cognitive load) and comprehension. Interviews with participants and experts fur-
ther elicited three design guidelines that helped build ARTiST, an automated text
simplification system with few-shot prompting. This system leverages the multi-
task capabilities of the large language model (LLM) GPT-3 in combination with
our newly formed simplification techniques, eliminating the need for extensively
annotated data [236]. We crafted prompts based on chain-of-thought principles,
considering text simplification in AR [318]. Specifically, ARTiST introduces two
novel simplification methods: the “plan-of-technique” prompt and “error-aware”
model calibration, enhancing the effectiveness and reliability of text simplification.
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A sample workflow for ARTiST is available in Figure 3.1

We tested ARTiST via two studies that entailed an empirical evaluation with
16 participants. The first study included task guidance to make pour-over cof-
fee and set up a meeting room according to specific criteria. The second study
asked participants to perform video editing on an iPad using AR instructions given
through HMD. These studies explore how our proposed system can better benefit
participants over the unmodified text and existing methods by assessing related
performance metrics, cognitive load, and subjective ratings. The results indicate
that ARTiST significantly improved task guidance performance by reducing the
number of errors participants made, increasing the number of steps they correctly
memorized, and reducing their cognitive load.

In summary, our work includes the following contributions:

1. The ARTiST, a novel system for text simplification in AR using few-shot
prompts and customized GPT-3. This system incorporates chain-of-thought,
plan-of-technique, and error-aware calibration to tailor text simplification for
AR.

2. Results and design guidelines from a formative study that includes a lit-
erature review, an open-ended exploration with seven participants, and an
expert interview with three field experts for text simplification in AR.

3. A 16-participant empirical evaluation of ARTiST against baseline and ex-
isting methods, which shows that ARTiST significantly reduces errors and
overall cognitive load with similarly higher subjective ratings on text read-
ability, memorability, guidance, and trust among users.

To further support the development of the field, we open-source our implemen-
tation1.

3.2 Formative Study
This study involves three parts: a literature review, an open-ended exploration,
and expert interviews to understand the needs around text simplification in AR.
We wish to explore the following aspects of text simplification:

1Code is available at https://github.com/VIDA-NYU/artist
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[RQ1] Which text simplification methods from the field of natural language pro-

cessing (NLP) can be effectively applied in an AR context?

[RQ2] Would text simplification improve comprehension, per its benefit for low-
literacy readers in traditional platforms?

[RQ3] Can text simplification lead to increased user satisfaction, and hence to a
more positive AR experience overall?

3.2.1 Part I: Survey of Text Simplification

To address RQ1, we initiated a comprehensive review of existing literature on tra-
ditional text simplification; our goal was to identify NLP techniques that might be
useful for AR applications. Our review commenced with an in-depth examination
of three seminal survey papers [4, 265, 273]. We extended our scope by travers-
ing both the references cited in these papers and consequent citations of them to
gain an encompassing understanding of current methodological approaches. Sub-
sequently, we identified four NLP techniques pertinent to our inquiry: content
reduction (A1), syntactic simplification (A2), lexical simplification (A3), and
elaborative simplification (A4). We describe the four techniques below.

3.2.1.1 A1: Content reduction

Content reduction in text simplification aims to achieve clarity and conciseness
by eliminating or restructuring non-essential elements without altering the core
message [207]. Strategies include removing non-essential information, shortening
sentences, and eliminating repetition. This technique is particularly beneficial
in constrained display environments like those of AR, where succinct, clear text
enhances user interaction and comprehension [25].

3.2.1.2 A2: Syntactic simplification

Syntactic simplification involves rephrasing complex grammatical structures into
simpler ones while still retaining the original meaning [254, 273]. Existing method-
ologies often target specific complex linguistic features such as coordination, sub-
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ordination, relative clauses, passive constructions, and extended sentence lengths
[4, 273].

3.2.1.3 A3: Lexical simplification

Lexical complexity often arises from the use of intricate words and phrases. To
mitigate this, one widely employed strategy is to replace complex lexical items
with simpler synonyms. This form of lexical simplification has seen extensive
application in the context of second-language learning, primarily because it aids
in comprehension and vocabulary acquisition for learners who may not be familiar
with advanced or specialized terminology [211].

3.2.1.4 A4: Elaborative simplification

Elaborative simplification entails providing explanations of complex concepts. This
technique is prevalent in professional textbooks, which frequently encompass spe-
cialized or technical subject matters [124]. In AR, spatial information becomes
increasingly critical for user comprehension and task performance. Consequently,
elaborative simplification can be especially beneficial for clarifying spatial metrics
and locations. Spatial metrics refer to numerical measurements, such as distances
or sizes denoted in units like inches or centimeters. These metrics often need to be
elaborated to provide context or improve comprehension. Similarly, spatial loca-
tions, which may involve GPS coordinates or relational positioning (e.g., ”next to,”
”above,” ”beneath”), can be clarified through elaborative simplification to facilitate
user orientation and task execution in AR environments [106].

3.2.1.5 Target application and users

Traditional text simplification techniques are normally targeted at non-native speak-
ers or people with cognitive or literacy limitations, e.g., autism [54, 65, 341], apha-
sia [35, 40, 208], dyslexia [78, 101, 112, 242, 243, 244], hearing impairment [5, 6, 7,
8, 303] and language learners [177]. The associated benefits are largely attributed
to simplified grammar structures and the use of common words, which can signifi-
cantly reduce information processing time.
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In a similar vein, AR users may encounter reduced reading capability due to

the challenges associated with the AR setting. Studies have demonstrated that AR
users experience reduced reading speed [241], lower comprehension [25, 76, 77], and
increased cognitive load [61]. For instance, Rau et al. report that readers’ response
time in AR is longer than that associated with desktop reading [241]. Hardware
limitations comprise a major contributing factor, impacting refresh rate, resolution,
and FoV, and ultimately impeding text display due to registration errors [103, 182],
extra latency, and visual artifacts. Moreover, users’ rapid movements and the sur-
rounding open environment can result in unstable text displays. Prolonged use of
AR devices may also lead to eye strain and fatigue due to constant accommodation
and vergence adjustments, making reading more challenging than on traditional
displays. Finally, AR displays often overlay digital information on real-world in-
formation, affecting reading comprehension and focus.

Yet, the main reason for the reduced legibility of AR text is the user’s elevated
cognitive load in the immersive environment; evidence shows that AR users can
experience high pressure and increased cognitive load [61].

Accordingly, drawing inspiration from the research elaborated above, we aim
to investigate whether text simplification techniques can benefit users in AR envi-
ronments and mitigate the challenges described.

3.2.2 Part II: Open-Ended Exploration

To explore the effectiveness of the four previously identified text simplification tech-
niques (A1-4) in AR and further investigate RQ2, we conducted an open-ended
exploration with seven participants. According to the literature, the simplification
techniques (A1-4) can improve comprehension in paper-based reading. However,
these techniques may need to be modified for AR-specific challenges and their ben-
efits in AR require further investigation. Therefore, the open-ended exploration
aimed to assess how text simplification techniques might be revised for this context.

3.2.2.1 Participants

Seven participants (four male and three female) were recruited from a school mail-
ing list to experience text simplification in AR. Three out of the seven are native
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English speakers. All participants have some prior experience with AR (2/7 are
frequent users, 4/7 are occasional users, 1/7 is VR-only).

3.2.2.2 Tasks

The open-ended exploration involves two tasks: cooking and gem-hunting. These
tasks were selected for being common and applicable to AR scenarios [143, 187, 357].
In the cooking task, participants used the AR system to make a pinwheel sandwich.
The AR interface showed step-by-step instructions for ingredient preparation, as-
sembly, and cooking [25]. These instructions are adapted from a wikiHow article
on how to make a pinwheel. 2 For the gem-hunting task, participants followed
clues displayed on the AR device to find a gem hidden in a room. Clues included
puzzles, patterns, and spatial information. The task manual is derived from a
party game website.

3.2.2.3 Method

Since each task contains multiple steps, the original and simplified text for each
step were displayed side-by-side to participants. . Text simplification was manually
performed based on the principles of the four existing techniques taken from the
literature (i.e., content reduction, syntactic simplification, lexical simplification,
and elaborative simplification), with each simplification technique being used an
equal number of times. Since this is an exploratory study, quantitative data is not
collected. Participants are asked to think aloud while performing their AR tasks.
A semi-structured interview collects participants’ thoughts on text simplification
in AR, its potential, and its challenges.

3.2.2.4 Procedure

Initially, participants completed both tasks using the original text instructions.
They shared any challenges they faced in understanding the AR interface. Next,
simplified versions of the text were presented. Participants compared and evaluated
readability and comprehension. On average, the exploration lasted about one hour.
We coded our interview notes and think-aloud notes and summarized participant

2https://www.wikihow.com/Make-a-Pinwheel
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feedback on the four text simplification techniques. The open-ended study was
supervised by the university-approved IRB, and participants were compensated at
an hourly rate of $20.

3.2.2.5 Results

During the study, we found text content and semantics affect the reading experience
in AR.

Text length in AR. Text in an AR environment introduces unique challenges
that are not present in traditional display mediums. Users can scroll or zoom to
manage lengthy texts in conventional formats; these interactions are more challeng-
ing to execute in the AR setting [34, 203]. Occlusion and visual clutter are some
of the issues pointed out by our participants (P2), who mentioned, “The displayed
text takes up too much space and occludes the table.” Lengthy text segments also
distract users’ attention away from physical tasks. P3 found it challenging to focus
on the task of sliding floss under the tortilla, perpendicular to the length of the roll,
due to the distracting nature of the extended text. These distractions sometimes
pose safety risks: P7 was at risk of cutting their finger while engrossed in reading.
Furthermore, text length negatively impacts how well information is retained as
processing time increases with longer text segments [83, 126]. This was evident in
the gem-finding task, where P4 and P5 forgot a crucial step that they had been
given earlier after reading a lengthy sentence. Text length thus requires careful
design in AR.

Feedback on AR text simplification techniques All participants agreed
that content reduction is beneficial in AR. For instance, they found the sentence,
Roll the tortilla into a log shape, more effective than the original text: Roll the
tortilla from one end to the other into a log shape. Most participants mentioned
that adding a clause to further explain text may not be necessary (preferring syn-
tactic simplification). When asked about replacing complex words with simpler
ones (lexical simplification), most participants (6/7) did not indicate word com-
plexity as an issue. For example, the word perpendicular was not found to be more
opaque than at the right angle too, and most of the participants (5/7) preferred
perpendicular because it was shorter (4/7) and more precise (3/7). In addition,
most participants (6/7) expressed that added details (elaborative simplification)
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were unnecessary. P6 said that “the ‘which’ clause is verbose and takes up too
much space” (referring to the instruction use the keys to unlock the first drawer
below the desk, which should be located to your right). For spatial elaboration,
most (6/7) found it helpful when the reference object was present in the scene.
P6 remarked that indicating, “‘finger size’ helps me make a quick estimate of the
size.” P3 commented that indicating a spatial location in the text is helpful, and
a majority of participants (4/7) said that spatial information can complement AR
spatial indicators such as bounding boxes or virtual arrows in the scene.

3.2.3 Part III: Expert Interview

To verify the initial insights gained from the literature review and the open-ended
exploration, we further conducted a semi-structured interview with three experts
from the industry. All interviewed experts possess extensive experience with AR
task guidance systems. Our objective in these interviews was to address RQ3 by
eliciting their insights on text simplification for AR and exploring potential usage
scenarios.

3.2.3.1 Expert background

Each of the three experts (E1-E3) interviewed has over three years of professional
experience in AR interface development.

• E1 is an AR interface designer at a research and development (R&D) com-
pany that is currently working on a HoloLens application to support field
surgery. E1’s users are primarily skilled professionals such as teachers and
emergency medical technicians (EMTs) who use AR devices to instruct them
as they identify and treat injuries such as gunshot wounds.

• E2 is an interface developer at a document solution corporation. E2 col-
laborated with engine mechanics to develop a HoloLens-based instructional
application for displaying engine maintenance documents.

• E3 is an AR/VR researcher with top-tier publications and extensive expe-
rience in HoloLens application development. E3 has developed AR applica-
tions for everyday tasks such as cooking for non-professional users.
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3.2.3.2 Method

The interview addressed the experts’ backgrounds and experiences, the challenges
of AR text interface design, their assessment of the need for text simplification, and
the potential benefits and drawbacks associated with it. Additionally, we presented
the four commonly used text simplification methods and solicited their opinions
on them.

3.2.3.3 Results

We describe the results in the following subsections.
Benefits of text simplification in AR All experts recognized the need to

simplify text in AR. They believed this would reduce user impatience and the
likelihood of mistakes. E2 said that mechanics, for instance, might be habituated
to how they perform a specific task and so rush through it without noticing updates
to the process. When the related instructional text is simplified, however, they are
more likely to read the instructions. E2 explained: “One of the things that happens
is the procedure changes. Users can easily go on a routine and assume they know
how to do it without actually reading the instructions.” E1 and E3 also mention
that the simplified text could reduce the cognitive load and mitigate user anxiety,
another set of benefits. For example, E3 indicated that: “Reading the long text
may make the users anxious,” but this may not be the case for shorter pieces of
text.

All experts indicated that simplified text reduces the chance of visual occlusion.
Object occlusion (virtual objects being blocked visually by physical objects [293])
is one such instance of this. This leads to users being unable or only partially
able to read the AR text, causing frustration and diminished performance. E2
mentioned that: “(Sometimes in engine maintenance) we’re gonna have a wall
full of the tools, (and sometimes) we are gonna have an engine in front of you,
and (so) finding someplace in the visual display is gonna be a challenge.” E3 also
mentioned that shortening and simplifying text could reduce occlusion.

Both E2 and E3 mentioned that shorter text facilitates the AR reading expe-
rience since zooming or scaling long sections of text while reading on an HMD is
challenging. E2 emphasized that: “None of the users liked pinching and zooming,”



29
highlighting the need for methods that do not require additional interactions.

Finally, the experts mentioned the tremendous opportunity to use text simpli-
fication as a way to help automate the conversion of text from traditional digital
media (e.g., PDF) to AR. All experts conveyed that the process of creating text
instructions for AR is still sub-optimal and requires extra labor. E2 stated: “All
the documents we work with start as PDF or Word documents. We basically output
them to AR (devices)”. In contrast, E1 and E3 mentioned the need to make modi-
fications to the text displayed in AR. For example, E1 attempts to shrink text or
split long sections of text into multiple steps to make them shorter, saying: “We
try to keep the words as quick, punchy, and actionable as possible.” E3 also men-
tioned adjusting font sizes and colors to improve legibility in the AR environment.
Although full-text automation involves fitting text to the AR scene with different
formats, styles, or colors, E2 pointed out that automated text simplification would
still be useful as the current manual approach requires expertise that novice work-
ers may not possess. In addition, it is not feasible to manually revise all text when
new sections are added regularly.

Challenges in text simplification in AR Current AR applications lack
automated solutions and established practices for text simplification (E1-3). All
experts concur that manual text revision is impractical due to the constant influx
of new text and the absence of a standard framework for AR text readability.
This drives home the need for automated methods to adapt existing documents
for presentation in AR. However, text simplification for AR poses the following
challenges, and current methods are not directly applicable (E1-3).

• All experts raised concern over avoiding accidental changes to meaning dur-
ing text simplification. This concern is unique to AR because users perform
physical actions live from textual instructions. E2 elaborated: “When work-
ing with mechanical systems in real-world scenarios, failure to follow instruc-
tions accurately could lead to catastrophic consequences,” highlighting the
importance of retaining the integrity of the original text’s meaning.

• Removing duplicated content is crucial in AR given that such redundan-
cies could increase cognitive load for AR users who are already tasked with
interpreting and acting upon visual overlays. All experts agreed that elab-
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orative simplification should weigh toward eliminating redundancies rather
than adding explanatory details, which is traditional in conventional text
simplification.

• Traditional text simplification techniques must be re-adapted for AR (E1-3)
as they are primarily geared toward enhancing readability for low-literacy
individuals and do not address the attention constraints, high cognitive load,
and FoV issues typical in AR. Therefore, the development of an AR-specific
text simplification tool presents a challenging yet vital task, as it must har-
monize these design goals to suit the unique demands of AR settings.

3.2.3.4 Feedback on existing text simplification techniques

ID Technique E1 E2 E3
A1 Content reduction ✓
A2 Syntactic simplification ✓ ✓ ✓
A3 Lexical simplification ✓
A4 Elaborative simplification ✓ ✓ ✓

Table 3.1: Expert (E1-3) feedback on simplification techniques (A1-4). A check
indicates that the expert assesses that the given technique would be useful for AR.

Table 3.1 summarizes the traditional simplification techniques our experts use
in their everyday work. All experts do manual content reduction when creating AR
instructions. E3 employs lexical simplification with the aim of retaining the text’s
original meaning. All experts agree that simplifying syntax, length, and grammar
is beneficial for AR interfaces. However, the use of elaborative simplification needs
more scrutiny in AR settings as “the subtle balance between the content and text
length must be considered”(E1, E2, E3). For example, E1 mentioned that engine
maintenance manuals often include explanations of different engine parts that may
be unfamiliar to users, and such explanations should not be removed. E2 brought
up that both object and numeric elaboration can be beneficial when users need to
quickly identify numerous targets in AR. Elaborating AR text to describe objects
in the scene is one potential application. E2 explained that using a reference object
that is similar in size to the dimensions given in the text (when the object is visible)
would facilitate spatial awareness. For example, E2 said that a phrase like Move
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the handle to seven inches to left can be elaborated as Move the gear to seven inches
left, or the length of a screwdriver. Again, as the experts mention, consideration
needs to be given to balancing text length against the need for additional content
in AR.

3.2.4 Design Guidelines and Updated Simplification Tech-
niques

3.2.4.1 Design guidelines

Through summarizing the literature survey, the open-ended exploration, and in-
sights shared by our AR experts, we derived design guidelines and updated the
four selected simplification techniques for AR task guidance.

[DG1] Meaning preservation is paramount in text simplification. Preserv-
ing the original text meaning [15, 274]) is the main objective when applying
text simplification techniques. This finding is in line with both our interview
sessions and observations. Since almost all simplification techniques may
compromise original meaning [207, 273], it is essential that any substituted
words convey the same meaning as their original counterparts [58].

[DG2] Text simplification must consider both AR-specific challenges, such
as issues with FoV and cognitive load, while exploring AR-specific
opportunities. Traditional text simplification techniques (e.g., syntactic
simplification, lexical simplification, etc.) do not address challenges asso-
ciated with AR devices, such as reading the overlayed text while doing a
physical task, the constraints of a small FoV, and users’ increased cognitive
load while completing a task. Minimizing the display space required to ren-
der text reduces the chance of visual occlusion while optimizing syntactic
structures reduces cognitive load.

[DG3] Text simplification in AR should give priority to text length over
grammatical correctness. Traditional text simplification techniques usu-
ally prioritize grammatical correctness [4, 273]. However, we find that prior-
ity should instead be given to text length and clarity in AR. This was gleaned
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from the open-ended exploration, where participants expressed the need to
minimize occlusion caused by text length and indicated that less strict gram-
mar did not notably affect their comprehension if meaning was preserved.
Further expert interviews supported the assessment that AR users tend to
skim lengthy texts, not paying strict attention to grammatical correctness.

3.2.4.2 Updated simplification techniques (A1-4)

Based on our findings, we update the four simplification techniques to fit users’
needs in the AR context. We discuss the benefits and address discrepancies within
the experts’ feedback below.
A1: Content reduction We found that content reduction is beneficial in AR,
as both the literature review and experts suggest. However, removed content
may contain important task instructions, and its absence may alter the original
meaning [DG1]. Furthermore, as suggested by [DG3] and observation of the
open-ended exploration, prepositions and pronouns can be cut for more concise.
A2: Syntactic simplification The results from the formative study support syn-
tactic simplification as beneficial in AR contexts, given that complex grammatical
structures can consume user attention. However, as with content reduction, syn-
tactic simplification may alter the original meaning [273], necessitating adherence
to [DG1]. Furthermore, simplified grammatical structure can result in overall
longer text, contradicting [DG3]. To mitigate this, syntactic simplification should
be applied only when it does not increase the number of lines of the displayed text,
as addressed by E3.
A3: Lexical simplification Lexically simplified phrases may deviate from origi-
nal meanings and lengthen the text, conflicting with [DG1] and [DG3]. To address
this, we propose two constraints for lexical simplification: Firstly, it should not
alter task-related terms, and, secondly, it should not increase the number of lines
of text.
A4: Elaborative simplification Elaborative simplification elicited nuanced opin-
ions from the experts. In the NLP literature, elaborative simplification is described
as benefiting second-language learners by elucidating abstract terms. However, as
noted by E1-3, explaining terms may not benefit AR users and will likely lead to
increased text length (contrary to [DG3]). Therefore, common-sense explanations
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and explanations of background knowledge should be excluded from elaborative
simplification to support concision. However, E1-3’s feedback indicates that elab-
oration of the spatial context and numerical measures offers greater utility within
the AR context. For instance, the user can benefit from spatial positional infor-
mation such as the cup on your left when multiple cups are present. Additionally,
when conveying numeric measures (e.g., seven inches), experts advised elaborat-
ing by referencing the size of objects already present within the scene, such as the
diameter of a plate. By incorporating spatial context and numerical measure, elab-
orative simplification can be adapted within AR to adhere to [DG2] and enhance
task performance.

3.3 ARTiST System

Grind the beans until the coffee grounds are the 
consistency of coarse sand, about 20 seconds

Error-Aware Calibration

Grind beans for 20 seconds, until 
coarse sand consistency
Grind beans until the sands are 
consistently coarse

Input Text

System Input

Plan-of-Technique (PoT)
A1 A2 A3 A4

# The input sentence has the coordination. Since 
the design guidelines require that the sentence 
should not have the complex structure. 

# Thus I need to apply A2 (syntactic).

Chain-of-thought (CoT)

Spatial Context

ARTiST

Figure 3.2: Method Overview: ARTiST uses OpenAI’s GPT-3 model, prompted
with chain-of-thought and technique-as-plan methods, to generate simplified text
candidates. The candidates are calibrated to reduce the likelihood of potential
errors. The resulting simplified text is then displayed within a HoloLens 2 appli-
cation. The spatial context is captured by detecting the objects in the scene to
support the elaborative simplification.

In this section, we describe the design of ARTiST, which has been developed us-
ing the updated simplification techniques (Table 3.1) and design guidelines derived
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from the formative study.

ARTiST employs three novel methods, shown in Figure 3.2, to customize the
GPT-3 model to stably output the desired simplification results. These include
utilizing the chain-of-thought method to enhance GPT-3’s reasoning capabilities
and the plan-of-technique method for selecting the most appropriate techniques
from A1-4 ([DG2] and [DG3]). Additionally, ARTiST implements error-aware
calibration to ensure the preservation of the original text’s meaning([DG1]).

3.3.1 Plan-of-Technique Prompting

Prepare the filter insert by folding the paper 
filter in half to create a semi-circle, and in half 
again to create a quarter-circle

Text Input

A1: Content Reduction A2: Syntactic Simpli�cation
adverbial clause

A3: Lexical Simpli�cation
N/A

A4: Elaborative Addition
paper �lter: left

       Prepare the filter insert by 
       folding the paper filter in half 
to create a semi-circle, and in 
half again to create a quarter-circle

       Prepare filter insert: Folding 
       paper filter in half two times to 
create quarter-circle

       Prepare filter insert: Fold 
 paper filter (on your right) 
two times to create quarter-circle

HoloLens2 HMD

Plan

[{object: “paper filter”, position: {x: -0.21, y: 0.08}},
{object: “mug cup”, position: {x: 1.21, y: -0.53}},
{object: “grinder”, position: {x: 1.43, y: 0.31}}]

Spatial Input

Execution

about thein half

N/A

Figure 3.3: Plan-of-technique: The input text and the spatial context are fed into
the LLM, which first generates a plan of the simplification techniques. The tech-
niques will be sequentially applied to the input text to generate the final simplified
text.

The plan-of-technique method is designed to structure the simplification pro-
cess through a plan of different simplification techniques (A1-4). These techniques
guide the GPT-3 model in executing the simplification as intended. This planning-
and-execution model has been widely adopted in code generation [363], open-world
agents [315], and robotics [275] for controllable and stable outputs. Figure 3.3
shows how input texts and the spatial context are fed into GPT-3 to generate the
simplification plan.

Step-by-step execution ensures that all necessary simplification techniques can
be applied. Our preliminary experiments reveal that GPT-3 sometimes forgets
the techniques and design guidelines. One explanation for this is that LLMs like
GPT-3 are typically trained on generic corpora without access to specialized design
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guidelines. Our plan-of-technique thus decomposes the simplification process into
different simplification steps, mitigating forgetfulness. Moreover, such a structured
pipeline can elicit the GPT-3’s multi-hop reasoning capability shown in other NLP
tasks [1, 270, 281].

In text simplification, multiple simplification techniques can sometimes conflict
with each other and require multi-hop reasoning to resolve. For example, elabora-
tive simplification (A4) may conflict with content reduction (A1). The plan-of-
technique guides GPT-3 to consider the different techniques before executing the
actual simplification actions, thereby reducing potential conflicts.

3.3.2 Chain-of-Thought Prompting

Chain-of-thought prompting is used to further enhance GPT-3’s multi-hop reason-
ing capabilities and resolve potential technique conflicts. In few-shot prompting, a
series of exemplars are created to instruct GPT-3 on how to generate the desired
output based on the input text. Chain-of-thought augments the exemplars with
intermediate reasoning steps, leading to the final output [318]. Drawing upon the
proven efficacy of chain-of-thought’s applications in diverse fields [129, 271, 306],
we incorporate chain-of-thought into both the planning and execution phases of
the plan-of-technique method. This decision aligns closely with [DG2] and [DG3],
which stress the importance of adaptively applying traditional text simplification
techniques (A1-4) to cater to AR-specific needs.

We use an example to show how the chain-of-thought method supports the plan
generation in the plan-of-technique method. To simplify the sentence, Grab a pair
of 10 to 12 lb (4.5 to 5.4 kg) dumbbells and lie on your back with your arms behind
you and your legs extended and raised to a 45-degree angle, we prompt GPT-3 to
generate the thoughts about the input text’s applicability to AR context. GPT-3
identifies the sentence as overly lengthy, containing more than three phrases, and
thus includes syntactic simplification in its simplification plan. The plan involves
three steps of syntactic simplification: 1. splitting the sentence at the first and
because the length of the two joined clauses is too long; 2. splitting the sentence
at the second and for the same reason. 3. Adjusting the passive voice in your legs
extended and raised for better readability. After generating the plan, we continue to
prompt GPT-3 to apply the simplification techniques outlined in the plan, yielding
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the result: Grab a pair of 10 to 12 lb (4.5 to 5.4 kg) dumbbells. Lie on your back
with your arms behind you. Extend your legs and raise them to a 45-degree angle.

3.3.3 Error-Aware Model Calibration

RoBERTA

Correct

Error: con�icting DG1

Error: con�icting DG2

Error: con�icting DG3
pe

p
softmax(W[p:pe]+b)

Correct

Error: con�icting DG1

Error: con�icting DG2

Error: con�icting DG3

q

Correct

Error: con�icting DG1

Error: con�icting DG2

Error: con�icting DG3

q

Correct

Error: con�icting DG1

Error: con�icting DG2

Error: con�icting DG3

q

Grind beans until the sands are
consistently coarse1

Grind beans for 20 seconds, until 
coarse sand consistency2

Grind the beans for 20 seconds to 
ensure the grounds are consistent
of rough sands. 

3

Generated by GPT-3 with PoT/CoT

Calibration

Figure 3.4: Error-aware model calibration: ARTiST prompts GPT-3 to generate
a set of candidate results, which are subsequently analyzed by a RoBERTa-based
error classification model (depicted in pink block) to detect any violations of design
guidelines. The predicted scores of errors are calibrated with the affine matrix.
Scores are adjusted using an affine matrix to ensure that the final selection is the
output with the highest probability of correctness.

To align with [DG1] and prioritize meaning preservation in text simplifica-
tion [15, 274], we propose an error-aware calibration method. Outputs from LLMs
are often unstable and exhibit a bias toward certain answers due to the intrinsic
bias of the LLMs and the influence of the prompt text, especially when applied
to new tasks. Text simplification in AR has requirements that differ significantly
from those of traditional NLP tasks, potentially exacerbating the impact of such
intrinsic bias on LLM inference. For instance, LLM outputs may disproportion-
ately reflect the influence of the last example in the prompt text, and within the
context of our text simplification, the simplification techniques chosen may also be
biased by the simplification techniques used in this last example [372]. To mitigate
these issues, our error-aware calibration mechanism adjusts the output probabil-
ities by applying an affine matrix [30], which is learned from a set of annotated
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datasets. This transformation does not directly rely on the prompt text and can
alleviate LLM bias [272, 348, 349, 364]. Moreover, to strengthen LLM against
common errors in AR, we enhance the annotated dataset with negative samples
that violate [DG1] and risk altering the original meaning.

Shown in Figure 3.4, we use model calibration to stabilize language models in
text generation [348, 349]. The affine transformation is defined as:

q = softmax(Wp+ b), (3.1)

where p refers to the probability of the generated simplified text, q is the calibrated
probability, and W and b are learned parameters. We simplify this computation
by treating W as a diagonal matrix following [91, 372]. The calibrated errors are
identified from our open-ended exploration and expert interview. We then use
the RoBERTA model to predict these errors by comparing the simplified text T ∗

and the original text T as, pe = pe
1,p

e
2, ...p

e
m = f(T,T ∗), where pe

i is the probability
of an error and m is the total number of errors. The errors include altering the
meaning [DG1], producing text that is syntactically complex [DG2] and or too
long [DG3]. Since access GPT-3’s weights are not publicly accessible, we use
RoBERTa instead to predict the error label pe [175]. Therefore, we modify
Equation 3.1 by incorporating pe,

q = softmax(W [p;pe]+ b), (3.2)

For each original text sample, we generate n = 5 simplified text samples and cal-
ibrate them. The final output is determined by the calibrated probability. The
parameter values of W and b are learned from a small set of manually crafted data
samples[349]. We first craft a set of gold-standard text simplification samples (64)
D = {(T1,Y1, q̂1),(T2,Y2, q̂2),
· · · ,(Tk,Yk, q̂k)} where (T,Y,∩e) refers to the input text T , the simplified result Y ,
and whether the erroneous indicator q̂. q̂ indicates whether Y is correctly simplified
from T and, if not, labels the error in Y . Since W and b have limited dimensions,
we can learn the values of W and b through the gradient descent with the logistic
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loss function |q∩ e|2.

L = −q̂log(q)− (1− q̂)log(1− q)

= −q̂log(softmax(Wp+ b))

− (1− q̂)log(1− softmax(Wp+ b)),

(3.3)

where L is the loss function used to learn W and b.

3.3.4 Elaborative Simplification with Spatial Information

Following [DG2] and implementing elaborative simplification, we enrich the AR
text by generating information on the spatial location of objects and object dimen-
sions if they are presented in the original text. The object is detected and located
with the Detic model, which runs on the backend server and provides the spatial
information to LLM [381]. As shown in the expert interview, many objects may
exist in the working environment, while only a subset of them can be useful. To
align with [DG2], we require LLMs to select the objects that are mentioned for the
first time in the text. Identified object locations are used to signify a spatial rela-
tionship to the user, adding a layer of contextual understanding that goes beyond
identification. For example, the text Then place the coffee mug with the dripper
can be elaborated with the coffee mug’s detected position on your right to form
the result Then place the coffee mug on your right with the dripper. The spatial
location is determined before the user clicks next step and the elaborated content
does not change during the execution of the step to avoid distracting the user. The
Detic model may incur prediction errors and mismatches in object location due to
user movement and latency. For instance, the user’s movement can alter the ob-
ject’s location relative to the user, and the Detic model’s results may continue to
indicate the location of the object before the user’s movement. We mitigate this
issue by predicting only the spatial relationships between the object and the user
(e.g., the object is to the right of the user). Therefore, the minor errors and latency
in the Detic model do not significantly impact the final result. Furthermore, in
our open-ended exploration, we observed that during the step transition, users
typically do not engage in significant movement, thereby reducing the likelihood
of potential mismatches. When displayed text includes a numerical measurement
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and an object with comparable dimensions is identified in the AR environment,
the system automatically substitutes the numerical value with a description of the
detected object.

3.3.5 System Implementation Details

We implement ARTiST’s functionality using OpenAI’s GPT-3 APIs and build
a text simplification server with Flask. We run the Detic model on the server
and incorporate its object detection result into the prompt text for GPT-3. The
interface is developed using the PTGCTL architecture [304], with the HoloLens 2
component implemented in Unity.

3.4 Evaluation

Task Step Original Simplified

Task 1.1 1 To create a coffee, first please
carefully place the pour-over
dripper over the coffee mug.

Place dripper (on your left) on
coffee mug.

7 Transfer the coffee grounds to
the filter cone. Then place the
coffee mug with the dripper on
a digital scale and set it to
zero.

Move grounds to filter cone.
Set coffee mug with dripper on
scale, zero it.

Task 1.2 2 Once the desk is clear, bring
the power strip on the desk
and connect the Charger to the
power strip so the meeting at-
tendants can use.

Put power strip on desk, con-
nect phone charger to it.

5 Next, place cups of water and
papers on each chair. Each per-
son should have one cup of wa-
ter and paper;

Place water, paper onto desk
in front of chairs.

Table 3.2: Four example system outputs in Study 1. The original, unmodified text
(baseline) is in the third column; the last column shows the simplified condition
with text output from ARTiST showing on the last column.

The formative study elicited that text-based AR guidance often creates a high
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cognitive load and that following AR guidance can be challenging due to the HMD’s
small display, low readability, and user error. Although our system attempted to
address these limitations by integrating text simplification into AR, the actual ef-
fects on users’ cognitive load, performance, and sense of usability required further
exploration. To better understand these effects, we conducted two empirical stud-
ies. The first (Study 1) focuses on the overall cognitive cost of our system and
its effect on performance over unmodified text, and the second (Study 2) focuses
on a comparison against other AR text simplification methods and what can be
learned from them. Tasks in both studies are everyday tasks that could benefit
from AR task guidance [233]. Both studies comprise within-subject designs. Al-
though subtasks in Study 1 have a between-subject component, our primary focus
and point of investigation is the text condition. We investigate the following user
study research questions:

[UQ1] In what ways does our proposed method impact cognitive load in AR?

[UQ2] In what ways does our proposed method affect task performance with
text in AR?

[UQ3] How does our proposed method compare to other text simplification
methods in AR?

While the first study focuses on UQ1 and UQ2, the second explores UQ3. We
pre-determined the study order so that half of the participants start with Study
1 and the other half with Study 2. Regardless of the order in which they engage
the studies, participants are asked to review the study procedures and can only
continue after giving their consent on the IRB-approved consent form.

3.4.1 Participants

Both studies involve 16 participants (average age 25, nine male and seven female).
Half have previous experience using head-mounted AR and were recruited through
electronic flyers and emails using snowball sampling.
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Step 2: Prepare the �lter Step 3: Rinse the �lter Step 5: Weight the co�ee bean Step 8: Pour the water

Figure 3.5: Task 1.1: Sample frames from user recording. The task requires partic-
ipants to make pour-over coffee based on a nine-step online tutorial. The frames
were sampled from steps 2, 3, 5, and 8.

3.4.2 Study 1: The Effect of Text Simplification on Guid-
ance Tasks

We conducted an empirical study to evaluate the effect of textual simplification
on users’ cognitive load, performance, and other subjective ratings. We select
two common physical tasks that benefit from AR guidance and collect data from
real users. To avoid the learning effect while keeping task difficulty levels similar,
both subtasks are physical activities that are performed in the same room (See
Figures 3.5 and 3.6), have instructions of similar lengths, and do not require prior
knowledge.

3.4.2.1 Experiment setup

We present the involved tasks and conditions in Study 1.
Task. The task contains two similar subtasks that have sequential instructions

to guide users. In both subtasks, we display the AR text in a dark grey box to
ensure visibility. We also adjust the font size to 9pt and have participants confirm
that all text is legible. No single instruction is long enough to be cut off by the
display. In terms of subtask assignment, we alternate the order of subtasks for
each participant to balance the order effect.

• Task 1.1: Pour-over Coffee. This subtask contains nine step-by-step instruc-
tions that guide participants to make a pour-over coffee (Figure 3.5). The
instructions are taken from an online tutorial on how to make pour-over
coffee. 3 Participants need to read the text to complete the task.

3https://www.wikihow.com/Make-Pour-Over-Coffee
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Step 3: Connect camera to strip Step 4: Arrange chairs Step 6: Place nameplates The user is controlling HoloLens

Figure 3.6: Task 1.2: Sample frames from user recording. The task requires the
participants to arrange objects in a meeting room based on a seven-step office
menu. The frames were sampled from steps 3, 4, and 6.

• Task 1.2: Meeting room preparation. This subtask requires that participants
follow AR instructions to arrange objects in a meeting room based on a
seven-step office menu (Figure 3.6). The instructions are digitized from an
online manual.

Conditions. This study has two conditions: a baseline condition that uses the
original imported text and a simplified condition using ARTiST. Each participant
will perform one subtask (either Task 1.1 or 1.2) with the baseline condition and
the other subtask with the simplified condition. We use a pre-generated table
to alternate the order of all trials so that each participant will perform tasks in
different orders under both conditions. In total, all conditions and subtasks are
evaluated an equal number of times. Samples from the simplified and baseline
condition can be found in Table 3.2.

Apparatus. Participants wear a Microsoft HoloLens 2 and use hand gestures
and voice commands to interact with the AR menu. These interactions are native
to HoloLens 2, and the AR interactions comprise standard button tapping, trans-
lating, and spatial movement. Video and audio recording devices are set up to
collect participants’ feedback and qualitative data.

3.4.2.2 Procedure

The experimenters welcome the participants in a physical room; the physical tools
necessary for task performance (e.g., coffee machine and ingredients) are present.
To maintain ethical standards and comply with the IRB guidelines, each partici-
pant is given an informed consent form before the evaluation. Upon signing, each
participant is paid an hourly rate of $20 and is fitted with the Microsoft HoloLens
2 headset. An ill-fitting HoloLens 2 can be detrimental to the AR experience, caus-
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Baseline

Simplification
The text is clearly presented and readable

Baseline

Simplification
The presented text is easy to comprehend

Baseline

Simplification
The text provides clear guidance for tasks

Baseline

Simplification
I trust my understanding of the shown text

Task 1.1 Task 1.2

0 2 4 6 8 0 2 4 6 8

Strongly disagree Disagree Neither agree or disagree Agree Strongly agree

Figure 3.7: Study 1 results on a five-point Likert scale. Ratings are collected on
a scale from “strongly disagree” to “strongly agree” in response to four questions
assessing the readability, ease of comprehension, guidance, and trust in both simpli-
fied and baseline text versions. The horizontal bar graphs above visually represent
the distribution of these ratings. The distribution reveals more positive responses
for the simplified text across all questions and tasks.

ing blurry text. A series of initial calibrations are performed to ensure interface
functionalities.

After all participants successfully interact with the AR interface, including
its menus and buttons, using hand gestures, and indicate they can see the AR
text clearly on the HMD, experimenters then explain the two subtasks and ask
participants to practice thinking aloud. Meanwhile, video and audio recordings
were set up before the trial began. Participants begin the study by air-tapping the
AR button marked Start at the center of the HMD’s screen.

Once the task starts, step-by-step text instructions are automatically displayed
in AR. Participants are not informed which condition they are using and are asked
to think aloud while we observe and record the trials. Any anomalies or poten-
tial safety issues are continuously monitored by the experimenter. At the end of
each subtask, we collect the participant’s subjective ratings on text readability,
comprehensibility, guidance performance, trust, and cognitive load using a NASA
TLX form. A semi-structured interview is conducted to better understand their
experience.
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Simplification

Mental

Baseline
Simplification

Physical

Baseline
Simplification
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Baseline
Simplification

Performance

Baseline
Simplification

Frustration

Task 1.1 Task 1.2

0 4 8 12 16 20
NASA TLX Value
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Figure 3.8: Study 1 results on NASA Task Load Index (TLX) values. The y-axis
represents the different aspects of the NASA TLX, while the x-axis shows the TLX
values. The simplified text significantly surpasses the baseline in reducing temporal
demands and in enhancing performance and reducing frustration, demonstrating
its advantages for overall task load.

3.4.2.3 Data collection

We collect quantitative data to measure performance. We specifically record the
number of errors and the number of steps participants recall (i.e., memorability);
in addition, we explore self-evaluated performance via subjective ratings. The
experimenter counts the number of errors during participants’ trials. Memorability
is measured because one major challenge in AR guidance is that users only recall
limited AR information during physical tasks; remembering steps reduces the need
to split attention between AR and the task. Subjective ratings are inspired by the
System Usability Scale (SUS), and we collect five-point Likert ratings on AR text
readability, comprehensibility, guidance, and trust. We explain that trust reflects
how confident the user is with their task performance.

Cognitive load is a primary user performance limitation in AR guidance tasks,
and we use a NASA TLX 8(a)(b) form to measure it. Raw TLX scores are used
and summative results are analyzed based on Hart’s recommendations [94].

Experimenters also collect qualitative data via video and audio recordings of
the study. Interview notes, think-aloud notes, and observations are also collected
for later analysis. The sampled frames for the study can be found in Figures 3.5
and 3.6.
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ticipants commit fewer errors when following the simplified text.

3.4.3 Study 1: Results and Discussion

3.4.3.1 Quantitative results

For Study 1, the subjective rating results are presented in Figure 3.7, and the
NASA-TLX results are presented in Figure 3.8. The results for the number of
recalled steps (memory) are shown in Figure 3.9, and the task error results are
provided in Figure 3.10.

Using Mann-Whitney’s U test, we assess differences among TLX scores, recall,
and error data and use the Friedman test to assess differences among subjective
ratings. These tests were chosen because the data are non-parametric. The TLX
analysis shows that the simplified condition significantly reduces the overall cog-
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Figure 3.11: (A) Adobe Premiere Rush Interface: The interface showcases a video
player positioned at the center of the screen, accompanied by a timeline below.
The top-right section (A1) features buttons for graphics, effects, color, speed, au-
dio, and transform functionalities. The bottom-left section (A2) contains buttons
for editing tools and the project panel. (B) User Record: This section captures
the user’s interactions and activities during the Study 2 session. (C) Example
Task Description: An illustration of a sample task description used in the study,
providing users with instructions for completing a specific editing task.

nitive load for both subtasks (U = 52, z = 2.84, p < 0.01). Further evaluation of
recall and error found no significant improvement in recall for the simplified con-
dition over the baseline (U = 85, z = 1.63, p = 0.10), but showed the simplified
condition significantly reduced the number of errors counted by users over the base-
line (U = 72.5, z= −2.09, p= 0.024), see Figure 3.10. Test on subjective ratings in-
dicated significant differences in all categories: readability (χ2 = 10.71, p= 0.013),
comprehensibility (χ2 = 15.00, p = 0.002), guide (χ2 = 10.71, p = 0.013), and
trust (χ2 = 18.00, p= 0.001).
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3.4.3.2 Qualitative results

We coded the transcribed video and audio data along with notes from thinking
aloud and observation. Codes sharing similarities were then grouped into themes
to summarize analogous findings.

Spatial information can assist users. Participants acknowledged the ben-
efits of spatial information in reducing cognitive load. Elaboration on objects’
spatial location eliminates the need to search for them, reducing user effort. P11
reported feeling nervous when presented with multiple objects and new mentions
of objects in the AR interface. P11 mentioned, “Sometimes it is overwhelming to
face many objects, and the location word (on your left) helps (you) find the object.”
The reduced effort and pressure were also confirmed by P1, who stated, “Even
though it won’t save much time, the elaboration on the object eases my (sense of)
pressure.”

Text length and structural complexity affect participants’ perfor-
mance. Most participants report that shorter text is beneficial. Some partici-
pants reported that shorter text takes less time to process (P2, P5, P7) and felt it
was “easier to understand” each step during a subtask when the text was shorter
(P6-7). This is reflected in the TLX scores, as simplified conditions yielded better
cognitive load scores than the original texts. Participants further report that
using shorter sentences leads to better comprehension and confidence (P2, P10-12,
P14). Multiple participants pointed out that they naturally “skim” text in AR,
and stated that complex sentence structures lead to skipping important informa-
tion and misunderstandings. More than half of the participants further stated that
the simplified text improved their trust. When asked to explain their reasons for
skimming text, screen resolution, screen size, and the urgency of completing physi-
cal tasks (impatience) while wearing a headset were identified. These observations
reflect what experts from the formative study indicate.

Simplified text improves task guidance. Participants respond posi-
tively to breaking longer sentences into shorter ones (syntactic simplification).
ARTiST divides long sentences into shorter ones by adding verbs (elaborative
simplification). P5 said “Shorter sentences with clear actionable directions make it
easy to know what to do,” while P6 said, “It is more convenient to follow smaller
step instructions.” The participants’ positive feedback reflects the benefits intro-
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duced by the design guidelines proposed earlier.

3.4.3.3 Discussion

Our results verify that ARTiST significantly improves cognitive load (RQ2) and
reduces task performance errors, generating significantly higher subjective ratings
(RQ1). Shortened sentences and syntactic simplification contributed to decreased
cognitive load, as participants indicate that the simplified text is easier to read.
Additionally, shorter sentences enable participants to quickly skim the text to
grasp core concepts, which may also play a part in reducing cognitive load. As we
mentioned earlier, reducing cognitive load could help to improve the usability of
AR guidance and have a positive effect on users’ safety.

ARTiST significantly improves subjective ratings on all four metrics. However,
the system yields no significant change in memorability. Both the baseline and
simplified conditions reached a fairly high recall count. A possible explanation
for this is the fact that all tasks are physical tasks, and participants may rely on
their performance more than the text for recall. Yet the simplified text resulted in
fewer user errors than the unmodified text, suggesting that the system successfully
retains critical information for tasks. Overall, participants felt better guided by the
simplified instructions and more confident (i.e., trust), signaling a positive effect
on their overall performances.

3.4.4 Study 2: Comparing Text Simplification Methods

In the previous study, we evaluated ARTiST against unmodified AR text. The
goal of this study is to further understand how ARTiST’s process compares with
other methods for text simplification. However, almost all currently used methods
are not tailored for AR. As such, we selectively integrated these methods into
the AR context while keeping their traditional functionalities. This study is a
within-subject study that includes five different methods with one task. The study
recruited the same set of participants (N = 16). In addition to the HoloLens 2
used in Study 1, this study makes use of an iPad as an additional apparatus for
task performance.
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Figure 3.12: All five conditions for Study 2. M1 is the original text. M2 is
the ARTiST condition. M3 is the state-of-the-art T-5 model applied to AR. M4
is ARTiST without engaging error-aware calibration (over-simplification). M5 is
ARTiST without engaging content reduction(under-simplification). The text in
the method’s grey box represents the text after simplification. A1, A2, A3, A4,
and error-aware calibration legends denote whether any of these components are
used for the condition.

3.4.4.1 Experiment setup

We present the tasks and conditions of Study 2 in this section.
Task. The task is designed to have participants wear a HoloLens 2 while also

using an iPad. AR instructions for video editing are displayed on the HoloLens
2. To minimize the learning effect and for repeated trials, we employ subtasks
with similar interactions and difficulty levels but different content. We adopt a
series of video editing jobs from Adobe Premiere Rush’s official tutorial to AR4 to
test each method. They involve interaction primitives such as selection, pan, and
translation. The task contains five subtasks, including video clipping (S1), speed
control (S2), graphics overlay (S3), video filter application (S4), and aspect ratio
adjustment (S5). These subtasks are chosen because they have similar interaction
difficulty but require diverse types of interactions (e.g., tap, drag, and pinch). Each

4Adobe Premiere Rush. https://helpx.adobe.com/premiere-rush/tutorials.html

https://helpx.adobe.com/premiere-rush/tutorials.html
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subtask has three steps and takes about three minutes to complete based on our
preliminary testing. Adobe Premiere is installed on the iPad participants use to
perform the video editing. An example can be found in Figure 3.11.

Conditions. To understand how our system differs from other simplification
methods and investigate the implications for user performance, we explore five
conditions, which are shown in Figure 3.12. Beyond making a comparison to the
unmodified text (i.e., baseline), we also compare against the state-of-the-art T-5
text simplification model [237]. Further, because our formative study revealed
that sentence complexity and grammar structure (text length) have a foremost
effect on text reading in AR (which was also indicated by experts in the formative
study), we also explore an over-simplification and an under-simplification condition
in this study. These two simplification methods represent different levels of length
modification relative to the original sentence. Over-simplification is achieved by
removing the error-aware calibration step for maximum simplification at the cost
of factual information. Under-simplification is achieved by removing the content
reduction technique in ARTiST. We describe the five different conditions below:

• M1: Original text

• M2: ARTiST’s approach;

• M3: Traditional state-of-the-art text simplification with T-5 [237] fine-tuned
on WikiAuto dataset [117]

• M4: Over-simplification without error correction (i.e., does not force factu-
ality, see 3.2.4 for details)

• M5: Under-simplification without content reduction (A1)

We use a pre-generated table to balance the learning and ordering effect for
the five conditions across the five subtasks. We assign one condition to one of
the subtasks to form pairs, and each pair includes three steps (i.e., three trials).
For example, the pair M2-S1 stands for the M2 condition used in subtask 1. The
pre-generated table ensures that each participant performs these pairs in a unique
order. Each participant performs five condition-subtask pairs or 15 trials, for a
total of 240 trials. Overall, all subtasks and conditions are evaluated an equal
number of times.
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3.4.4.2 Procedure

In the beginning of this study, participants are asked to wear the HoloLens while
sitting and holding an iPad. Experimenters explain that their task entails editing
videos that are displayed on the iPad. The videos are 30-second clips of stock
footage, and participants are told they will use the onboard video editing tool
on the iPad to seek, crop, change filter, and change the aspect ratio. After a
short warm-up period to familiarize participants with iPad functionality and fit
the HoloLens, we confirmed that participants can read the AR text clearly, similar
to what we did in Study 1. During task performance, condition-specific AR text
is displayed to the participants; they are asked to follow the text to perform the
editing task. Experimenters count the number of errors made during the trials,
and participants are asked to think aloud as they engage in their tasks. At the
end of each condition, the experimenter collects recall data, subjective ratings, and
TLX scores. A semi-structured interview is conducted at the end of the study to
understand the participants’ overall impression of each of the five conditions. We
collect both quantitative and qualitative data in a similar way to Study 1.

3.4.5 Study 2: Results and Discussion

3.4.5.1 Quantitative results

For Study 2, the subjective rating results are presented in Figure 3.13, and the
NASA-TLX results are presented in Figure 3.14. The results for the number of
recalled steps (memory) and task errors are shown in Figure 3.15.

For non-parametric data, we used the independent-sample Kruskal-Wallis’ test
with repeated measures for performance metrics (error, memory recall, and sub-
jective rating) and for cognitive load with Dunn’s Test as post-hoc analysis with
Bonferroni correction for multiple tests. For error analysis, we found an overall
significant effect (H(4) = 17.189,p = 0.001), with post-hoc analysis showing that
M2 (p= 0.014), M3 (p= 0.014), M4 (p= 0.014), and M5 (p= 0.014) reduced errors
significantly compared to the baseline. We found that there is an overall difference
across the conditions (H(4) = 12.572,p = 0.014) in terms of participants’ ability
to recall the instruction steps. Post-hoc analysis revealed a significant difference
between the original text M1 and ARTiST (p= 0.025). No differences are found be-
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Figure 3.13: Study 2 results on the subjective Likert scale. Ratings were collected
on a scale from “strongly disagree” to “strongly agree” in response to four ques-
tions assessing the readability, ease of comprehension, guidance, and trust in both
simplified and baseline text versions. The horizontal bar graphs represent the
distribution of these ratings, and the results for the four questions are laid out
horizontally.

tween the original text M1 and M3 (p= 0.179), M4 (p= 0.319), and M5 (p > 1.00).
No differences are found between the four simplified conditions (M1-4). As for TLX
scores, we found that M2 significantly reduced overall cognitive load compared to
M1 (p= 0.043): for a detailed breakdown refer to Figure 3.14. There are no signif-
icant differences among the five conditions in readability (H(4) = 0.934,p= 0.934),
comprehensibility (H(4) = 0.389,p= 0.983), guidance (H(4) = 2.444,p= 0.655) and
trust (H(4) = 1.530,p= 0.821); See Figure 3.13 for details.

3.4.5.2 Qualitative results

We identify a series of qualitative findings based on the quantitative metrics and
the coded recordings.

The level of simplification has a mixed effect on error rates and sub-
jective ratings. While participants reported that they could understand any of
the simplified texts (M2-5) better than the unmodified text (M1), we noticed that
there is no uniform effect on the level of simplification relative to task errors (P11-
12, P3, P5). While several participants experienced increased errors due to over-
simplified text omitting important information (P3), others made mistakes due to
verbose text that was not simplified enough (P11-12, P5), causing them to over-
look important information. This also aligns with the fact that the M1 condition
yielded the most user errors. One of the behaviors observed is that the longer the
sentences, the less patience a participant appears to have and the faster they skim.
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Figure 3.14: Study 2 results on NASA Task Load Index (TLX) values. The y-
axis represents the different aspects of the NASA TLX, while the x-axis shows
the TLX values. The results indicate that condition M2 significantly outperforms
other conditions in terms of the user’s effort.
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Figure 3.15: Study 2 results for error count and memorability evaluation. In panel
(a), the x-axis represents the number of errors made by participants, while the
y-axis shows the count of participants corresponding to each error count. The
results indicate that methods M2, M3, M4, and M5 are effective at reducing the
number of errors, underscoring the advantages of text simplification in enhancing
task success. In panel (b), the x-axis displays the number of task steps correctly
recalled after the task, and the y-axis shows the number of participants. This panel
demonstrates the impact of the simplification process on the participants’ abilities
to recall information, with conditions M2, M3, and M4 showing an improved num-
ber of steps recalled over M1.
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Often these behaviors lead to missing details while carrying out the task, such as
when P11 and P12 adjusted the wrong button during task performance. Similarly,
both over- and under-simplification methods affected participants’ sense of read-
ability and memorability in different ways. When asked about their experience
with the M5 condition, P6 reported that “the simplified one uses the more under-
standable words,” but P10 mentioned that the texts are “not simplified enough and
can be thrown away.” P7 also reported that M5 increased the number of previous
steps they could recall, as M5 presents “clear and memorable instructions.”

The effect of different text simplification methods on cognitive load.
Participants reported during the interview that simplified texts (M2-5) have a
lower cognitive load. While reading unmodified text became tedious during task
guidance (P2, P9-10, P14), the simplified text could be less so (P2). However,
participants reported that over-simplified text (M4) increases cognitive load, as
important information is often removed resulting in extra processing time needed
(P1, P10). (P1, P10). Moreover, participants indicate that they believe they per-
form better with the ARTiST condition: As P7 mentioned, “I am pretty sure I
successfully completed the steps,” while P11 said, “I feel it increased my perfor-
mance.”

3.4.5.3 Discussion

In exploring UQ3, we found ARTiST impacted TLX ratings as it was the only
condition that significantly reduced cognitive load for participants. Figure 3.14
shows that TLX variance is much lower for performance with ARTiST, which is
in line with our observation that most participants show stable performance with
the ARTiST condition.

All four simplified text conditions (M2-5) significantly reduce error rate, but do
not necessarily increase recall. This finding reflects our [DG3], which addresses
the importance of text length in AR. Regardless of the level of simplification,
all four conditions shortened the text in some way. The results indicate that only
ARTiST significantly improved recall while reducing error rate. This indicates that
ARTiST helps users to improve performance in short-span tasks like video editing.
In addition, the current state-of-the-art text simplification (M3) does not reduce
high cognitive load nor improve memory for AR readers, while ARTiST improved
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on both. This suggests that the direct application of text simplification to AR
might not be optimal and is in line with the results from the formative study.

ARTiST is also the only condition that significantly reduced the TLX scores
(UQ2). Sentence length and structure may play an important part in reduced
cognitive load as participants noted reduced processing time and more ready com-
prehension. This reduction addresses the concerns (high cognitive load) brought
up by experts during our formative study in Sec. 3.2.3.

Finally, both over- and under-simplification conditions received mixed feedback
from participants. This could be linked to their personal reading habits when wear-
ing an HMD. We observed that participants who comment positively on the over-
simplified condition are typically impatient readers when they have the HoloLens
2 on. Others, however, complained that the over-simplified condition does not
provide enough detail or is missing critical information, creating obstacles to task
completion. Our qualitative results showed that participants who took extra ef-
fort going after missing details scored higher in their TLX ratings. These findings
reflect the results from the formative study that both text length and meaning
preservation are important.

3.5 Final Considerations
In conclusion, this chapter presents ARTiST, an automated text simplification sys-
tem tailored for head-mounted AR devices. We first identify the challenges in AR
text presentation via a formative study that includes a survey of the literature,
an open-ended exploration with seven participants, and interviews with three ex-
perts. The findings lead to design guidelines that help form the ARTiST system.
The system leverages OpenAI’s GPT-3 models through few-shot learning for au-
tomated text simplification. Using chain-of-thought prompting, we present two
novel techniques tailored for AR text simplification: a plan-of-technique and error-
aware calibration to ensure meaning preservation. We validate our system via a
16-participant empirical study, resulting in significant improvements in users’ per-
formance, reduced cognitive load, and better subjective ratings when compared
to unmodified text, the state-of-the-art T-5 language model, and other methods.
These findings underscore the efficacy of our system in enhancing text readability
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and mitigating cognitive load during task guidance in AR environments.
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Chapter 4

Satori: Towards Proactive AR
Assistant with
Belief-Desire-Intention User
Modeling

4.1 Introduction
Satori, a ghost-like deity from Japan, is fabled to read human minds and respond
to thoughts before they unfold into action. While such supernatural power once be-
longed strictly to the realm of folklore, modern AI technologies are now beginning
to emulate a similar ability to predict human intent and actions and even provide
proactive assistance during task interactions [137]. Such proactive virtual or digi-
tal assistance, which determines optimal content and timing without explicit user
commands, is gaining traction for its ability to enhance productivity and stream-
line workflow by anticipating user needs from context and past interactions [200].
However, there is currently limited research on how to best design and implement
such systems.

Most current assistance in AR remains reactive, responding to user commands
or environmental triggers without the capacity for active engagement. These sys-
tems require that users initiate interactions, which is inefficient in AR where users
typically have limited attention to spare. In response to this, some AR assistance
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Figure 4.1: Satori is a mind-reading monkey-shaped creature in Japanese folklore.
Our system extends this concept to highlight the importance of incorporating the
user’s state (i.e., knowledge and intentions) while building proactive AR assistants.
The Satori system combines the tracked objects, the surrounding environment, task
goals, and user actions with a large-language model (LLM) model to provide AR
assistance to the user’s immediate needs. This kind of proactive AR assistance
is achieved by implementing the Belief-Desire-and-Intention (BDI) psychological
model with advice from two formative studies with a total of 12 experts. The belief
component reflects whether the users know where the task object is, and how to
perform certain tasks (e.g., task goals, high-level knowledge); the desire component
is the actionable goal; and the intention component is the immediate next step
needed to complete the actionable goal.
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incorporates proactive elements; for instance, they may provide maintenance guid-
ance based on recognized objects or components [144, 198, 298]. Yet, these systems
are often built on fixed rules and lack adaptability and reusability. They are lim-
ited in responding effectively to the user’s surrounding environment or interpreting
their actions over time. As a result, these systems struggle to guide users across
multiple, consecutive steps and instead tend to function as discrete task-only as-
sistance.

Designing proactive assistance for AR is particularly challenging due to the
necessity of understanding the user’s state, short-term goals, and surrounding en-
vironment. Further, timely assistance is crucial due to constraints on user atten-
tion. Providing assistance too early, too late, or simply too frequently can increase
cognitive load and negatively impact the user’s experience [14, 300].

This chapter addresses these gaps by first identifying the in-depth benefits,
and challenges of designing a proactive AR assistance by conducting two forma-
tive studies and then exploring the design of a system through Satori. The first
study with six professional AR designers revealed several design challenges such as:
1) limited generalizability and reusability of current non-proactive AR assistance,
2) difficulties in accurately detecting user intentions, and 3) the need to balance
general advice with task-specific solutions. The professionals recognized that us-
ing proactive AR assistance could potentially improve scalability and efficiency,
but also highlighted the technical challenges related to accurately tracking and
understanding users’ actions.

Building on the findings from the first study, the second formative study en-
gaged six experts—three human-computer interaction (HCI) researchers and three
psychology researchers—in dyadic interviews to explore design strategies for more
proactive AR assistance. The design sessions found four key design considerations:
1) understanding human actions; 2) recognizing surrounding objects and tools; 3)
assessing the current task; and 4) anticipating immediate next steps. Following
experts’ suggestions, these findings were later integrated with the well-established
belief-desire-intention (BDI) model [26, 49, 84, 158], resulting in an AR-specific
adaptation that guided the development of our system, Satori.

To adapt the BDI model for AR assistance, Satori needs to address the chal-
lenges brought up in the formative studies and account for the limitations of the
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AR headset. Inspired by the theory underpinning the BDI model, we build Satori
using an ensemble of egocentric vision models combined with a multimodal large
language model (LLM) to determine timing, content, and user action in everyday
AR assistance. The system is a multi-modal proactive assistance wherein the user’s
environment, nearby physical objects, action history, and task goals are input to
predictively determine the content and timing of the assistance. Our approach
ensures that the AR assistance delivers relevant information at appropriate mo-
ments, enabling a new and more seamless experience for AR users.An overview of
the workflow is presented in Figure 4.1.

We evaluated Satori over four everyday AR tasks and compared it to a Wizard-
of-Oz system (i.e., baseline) designed by six professional AR designers. We found
that Satori’s proactive guidance was as effective, useful, and comprehensible as the
AR assistance created by the designers. User ratings also indicated that Satori’s
timing prediction performs similarly to the baseline. Additionally, Satori’s guid-
ance allowed participants to switch between tasks without the need for pre-training
or scanning. Our findings suggest that our application of the BDI model not only
successfully understood users’ goals and actions but also captured the semantic
context of given tasks, reducing the need to craft AR assistance for every specific
scenario and improving its generalizability and reusability.

To summarize, the contributions include:

1. Identifying benefits, challenges, and design requirements for creating a proac-
tive AR assistance, derived from two formative studies with twelve experts
and applied using concepts from the BDI model in AR environments.

2. Design and implementation of Satori, a proactive AR assistance system ap-
plied with BDI’s concepts that combine LLM with a series of vision models
to infer users’ current tasks and actions, providing appropriately timed step-
by-step assistance with dynamically updated content.

3. A 16-user empirical study shows that Satori delivers performance compara-
ble to designer-created AR assistance in terms of timing, comprehensibility,
usefulness, and efficacy.
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4.2 Formative Study 1: Design with Professional

AR Designers
We first conduct a formative study to explore the problem space and potential ben-
efits of proactive AR assistance. The study begins with a semi-structured interview
on participants’ background knowledge, followed by designing four different com-
mon AR interaction scenarios. A final apparatus combining participants’ design
feedback is created for later study.

4.2.1 Participants

Using email and snowball sampling, we recruited six professional AR designers
(three female and three male, age: x̄= 30). As we wanted to collect insights from
experienced individuals, all participants selected were professionals with at least
three years of experience working on developing AR applications. Participants
were paid $30 per hour.

4.2.2 Tasks

The study was conducted in two sessions: a semi-structured interview and a design
session for four different everyday AR scenarios with assistance. Each participant
was asked to design two out of the four scenarios for a balanced scenario distribu-
tion. Each scenario was designed by three different AR designers.

In the first session, we collected participants’ prior working experience using
AR assistants, the challenges they faced in creating them, and their assessment
of the assistants’ potential benefits and applications. Additionally, we discussed
the concept of proactive AR assistance with participants and collected their in-
sights on potential benefits and use scenarios. In the second session, participants
were asked to design AR assistants for two everyday scenarios out of the four.
These two scenarios were assigned in a pre-determined order to balance the total
number of designs. We use WikiHow 1 to obtain detailed, step-by-step instruc-
tions as the task background information for participants. These instructions
(averagesteps : x̄ = 7) provide the framework to make guidance, and participants

1https://www.wikihow.com/
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can elaborate (e.g., adding additional steps) at their will. Aside from the text in-
structions, we recorded videos in first-person view using the original instructions to
provide a visual reference and interaction context for participants. Given instruc-
tions, images, and videos depicting the scenarios, participants were asked to design:
1) if a piece of guidance is needed for a particular step; 2) when the guidance should
appear and for how long; 3) the modality of the guidance; 4) the content of the
guidance. The above questions focus on the questions of “if”, “when”, “how”, and
“what” in AR assistance, which is a common architecture for guiding users in the
literature and current practice [173].

4.2.3 Procedure

Since the AR designers reside in different time zones, the experiment was con-
ducted remotely via Zoom after obtaining their informed consent. Participants
were asked to introduce their background, describe their daily work, and discuss
their projects related to AR assistance. We further inquired about their insights
into the advantages and disadvantages of AR assistance, including challenges faced
during development and challenges faced by end users. Finally, we presented the
concept of proactive AR assistance and solicited their opinions on potential chal-
lenges and applications, as well as feasibility.

After the semi-structured interviews, participants received digital forms con-
taining materials to design AR assistance for their assigned tasks, including textual
descriptions and contextual images and videos. During this phase, participants
were introduced to the interface and how to use its operations to, for example,
create interaction prompts for a step/sub-step or select what information the user
should be presented within what modality. The experimenters addressed any ques-
tions participants raised via Zoom.

On average, the study’s first session lasted approximately 28 minutes (x̄ =
28), while the second session took around 60 minutes (x̄ = 60), totaling around
90 minutes. All participants successfully completed the design task. Since every
scenario was designed twice by two participants, the final AR assistance design
was merged together by the experimenters based on common modalities and a
union of participant-generated instructions. Inconsistencies were resolved through
discussion.
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4.2.4 Results

4.2.4.1 Benefits in conventional AR assistance

AR assistance is beneficial in providing real-time, contextual informa-
tion that improves user awareness.. Such guidance has ability to reveal for-
gotten or overlooked information. For instance, P1 emphasized that “I find AR
assistance most useful when it helps the user realize something they might not
know... they might forget about an object, or not be aware that this object could be
used in this situation... then (with AR assistance) they have this eureka moment.”
AR assistance is also typically intuitive for users to follow, which reduces
interaction cost and supports decision-making. . P2 and P3 highlighted
that by overlaying visual cues such as arrows or animations directly onto the envi-
ronment, AR could help users quickly comprehend otherwise difficult tasks such as
examining electrical circuits. P3 stated that “in tasks with spatially sensitive move-
ments... AR is a proper medium because users intuitively understand what they
need to do.” P3 further explained that users who received spatially directed AR
guidance for operating a machine (e.g., turning knobs or pressing buttons) found
it more intuitive than 2D instruction books or manuals. Additionally, P4 brought
up that being able to provide spatial guidance reduces interaction costs for tasks
that require frequent operations, simplifying users’ decision-making process.

4.2.4.2 Challenges in conventional AR assistance

Pre-designed AR assistance is hard to scale to diverse contexts.. AR
designers often create designs based on their assumptions about the user’s envi-
ronment. However, users may interact with objects that fall outside these initial
assumptions. As P1 noted, “It’s hard to cover all the edge cases of what a person
might have... I assume they’re in an indoor space, but that might not be the case,”
highlighting the complexity of accommodating varied environments.
AR assistance lacked an interaction standard.. P5 noted that there is not a
standardized approach in the expansive interaction design space, especially when
compared to traditional 2D interaction. P3 expressed that creating 3D visual
assets from scratch was usually complicated.
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Predicting action timing and user intention remains challenging. . Both
P3 and P4 noted the difficulty in defining an accurate mapping between user
actions and AR responses. P4 emphasized that misinterpreting user behavior can
result in irrelevant or unhelpful guidance (e.g., recommending a taxi when the user
intends to walk). P3 also emphasized the difficulty faced by task experts who
do not have engineering expertise, stating, “Suppose I am a designer and I know
nothing about coding, but I still want to make AR assistance for users. How should
I do that?”

4.2.4.3 Benefits of Proactive AR Assistance

Proactive AR assistance is automatic without needing user input.. Dur-
ing the later part of the interview, participants envisioned the potential benefits of
applying for proactive AR assistance on common tasks, from both the AR devel-
opers’ and users’ points of view. Three participants described automatic AR assis-
tance as proactive assistance as P4 pointed out that such assistance anticipates
the user’s intentions and actively provides guidance based on the user’s surround-
ing environment. Reduces development time and increases efficiency.. Half
of the participants (P1, P2, and P6) agreed that proactive assistance could tremen-
dously reduce development time on similar AR assets, animations, and program-
ming logic (e.g., a panel shows up when a user touches an object). For instance,
P2 remarked, “We will definitely see a huge improvement in the efficiency of the
content creation through this auto-generation process.” P1 said that automatic as-
sist can simplify the repetitive design process in “adding labels, recognizing objects,
and generating guidance”. She continued to offer an example of a cooking app
where such automation would be particularly useful in identifying ingredients or
suggesting cooking steps.
Improve scalability.. Both P1 and P3 highlighted how automatic AR assistance
could generalize across different domains. According to P1, “If we have a pipeline...
using computer vision, it would save a lot of time... could have a universal pipeline
to create guidance.” Moreover, P3 pointed out that such assistance may be adapted
as authoring tools like spatial programming and program-by-demonstration, in-
creasing the accessibility for non-developer users.
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Reducing information overload.. Participants (P3, P5) pointed out that proac-
tive assistance could automatically detect the user’s intention during AR interac-
tion, presenting live-updated information in need, thus reducing information over-
load. It may also gain trust from users since the proactive assistance might make
users believe that the system understands their intentions well.

4.2.4.4 Challenges of Proactive AR Assistance

Cross-domain scalability is difficult.. P1 raised concern over the feasibility
of a universal system that could operate across different devices and domains.
P3 further added that scalability remains a primary hurdle even for the most
experienced AR designers because domain-specific knowledge is usually required
to provide effective guidance. “Scalability is the main issue... AR systems must
lie in a specific domain, and it’s hard to do this for every domain.” P6 brought
up the fact that proactive assistance must be able to adapt to even unforeseen
circumstances, which requires a deep understanding of the task at hand. Even
with the help of LLMs, further training and customization of the tasks have been
necessary, as LLMs are generally not domain-specific.
Detecting user intention is a primary challenge, as errors lead to con-
fusion.. Four participants (P2, P4, P5, and P6) emphasized the difficulty of
accurately detecting users’ intentions in AR. P5 brought up the limited field of
view (FoV) in AR headsets and the low accuracy of detection algorithms as two
main issues, although the former (limited FoV) might be among the causes of
the latter (low accuracy). P5 commented that “...sometimes, the system might
trigger guidance when the user doesn’t need it, which could lead to confusion...”
Similarly, P4 discussed how AR software in the industry has struggled to fully ap-
prehend complex user environments and actions, causing confusion. This view is
also shared by P2, who mentioned that proactive assistance might confuse users if
it lacks self-explanatory features. P2 stated that “if (the system is) fully automatic,
you need the system to have some type of feedback. Automation without feedback
may confuse the user.”
Adapting the AR instruction to users’ active duties is challenging.. P6
stressed that a proactive system should automatically adjust general advice to
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task- (and) environment-specific solutions. AR systems must remain relevant to
the user’s current goal, offering guidance that is actionable and appropriate.

4.2.4.5 Design results for four common scenarios

All participants used user-centered and object-centered strategies to determine
when assistance should appear. Participants using the user-centered strategy fo-
cused on actions by, for example, showing an instruction when the user got stuck
on a step or was about to get stuck. They also created instructions to indicate
the user’s completion of a step or unexpected situations. Participants who were
conversely focused on object-centered strategies designed AR assistance that ap-
peared in response to objects of interest. For example, one participant designed a
reminder to change the mop pad when the old pad is dirty.

Participants’ designs comprised multiple modalities, such as text, visuals, au-
dio, and sometimes even tools (e.g., a timer). Notably, they tended to combine
modality (“how”) with specific contents (“what”), see Table 4.1. While most par-
ticipants chose to use text-based assistance to provide an overview of step-by-step
instructions, information about the object, or reminders, they also designed three
types of visuals: overlays (e.g., arrows, progress indicator, checkpoint cue), im-
ages, and animations. In addition, audio was repeatedly used to sound a warning,
pronounce guidance, or indicate completion.

4.2.4.6 Wizard-of-Oz system

Each participant created two AR assistance designs for two distinct tasks, resulting
in a total of 12 designs for four tasks. These designs were later combined into a
Wizard-of-Oz (WoZ) system. The system contains in-situ image, voice, and text-
based AR assistance displays. We combined similar timing, modality, and content
to form one AR assistance per task. Images were sourced from task instructions on
WikiHow, and text and voice guidance were developed by combining participant
designs and WikiHow instructions. We then implemented the four AR assistance
architectures in Unity and employed WoZ to trigger the assistance on time and
accurately via a wireless keyboard controlled by a human experimenter. To visu-
alize instructions, we overlaid them directly on static images to indicate where the
interaction should happen, how many materials should be used, etc. Animations
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Modality Detailed Assistance Type Content
text text overview; instruction information; reminder
visuals animations instruction

image instruction
arrows location; interaction point
checkpoint cue step completion; warning

audio sound cue step completion; warning
voice instruction

tools timer count time

Table 4.1: Types of assistance provided across different modalities suggested by
expert AR designers. The overlays are used to indicate locations or to indicate how
to interact with apparatus in the scene; a progress indicator reflects how far the
user is into the task. The image and animation are designed to illustrate actions
and positions and show “how” to complete the current step. The checkpoint cues,
according to participants, are used to indicate step completion. The timer counts
time for time-sensitive steps, such as making pour-over coffee.

were achieved by looping multiple image sequences, similar to a GIF animation.
The resulting system was video-recorded over Microsoft HoloLens and sent back
to participants for recognition. All agreed with how each step was implemented
after discrepancies were resolved either through clarification or modification of the
apparatus.

4.3 Formative Study 2: Co-Design with Psycho-
logical and HCI Experts

Building on the previous formative study, the second formative study sought to
gain insights into the design of a proactive AR system by consulting experts. We
recruited six experts, three from computer science and three from psychology (E1-
6). The study focused on how to design the system and the probable methods
for executing said design by discussing critical factors, interaction flows, and system
architectures via two dyadic interviews. We paired experts with complementary
backgrounds to form three groups (Groups A, B, and C) as Table 4.2 shows. Their
ideas and designs motivated later system implementations.
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4.3.1 Dyadic Interviews

During the dyadic interviews, each pair of participants worked together to re-
spond to open-ended questions and goals [202]. The first interview incorporated
participatory design to explore potential solutions; the second interview focused
on designing detailed interaction flows and system architecture. During the first
interview, a set of goals and known challenges were presented to the groups to
establish context; we included common AR assistance scenarios such as kitchen
food preparation, classroom education tasks, and factory workflows.

4.3.2 Known Challenges

We presented participants with known challenges drawn from two sources, a lit-
erature survey and the results of the first formative study. The literature survey,
which was furnished by searching AR assistance, embodied assistant, and immer-
sive assistant on Google Scholar and ACM DL, is described in the following sub-
sections. Two authors separately reviewed these papers, coded the challenges, and
formed themes from the coding. In total, 25 common challenges were identified
and grouped using thematic analysis [28].

4.3.2.1 C1: Triggering assistance at right time is challenging.

AR assistance must be triggered at the appropriate time during AR interaction.
Poor timing strategy may confuse users and negatively impact user trust [139].
If a user is occupied or under stress, for example, frequently or inappropriately
displaying AR assistance may be distracting or compound stress. Existing practice
in AR assistance regulates the timing and display frequency using the user’s intent
and actions [251] or fixed intervals. However, these methods do not consider the
user’s goal and lead to sub-optimal performance.

4.3.2.2 C2: Reusability and scalability in AR assistance are a problem.

Most existing AR assistance systems are designed with ad hoc solutions, where the
assistance (e.g., image, text, or voice) is individually developed [197, 223, 234] and
later adapted for re-use because each interaction scenario is likely to be unique.
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This creates repetitive labor, a concern raised by professional AR designers in our
previous formative study.

4.3.2.3 C3: Task interruption and multi-task tracking pose challenges.

In everyday scenarios, users commonly handle multiple tasks at once and encounter
interruptions. This creates challenges for AR assistance because oftentimes the
system does not recognize that the user is goal switching and so responds incor-
rectly [21]. In these cases, efficacy will be affected, which can be detrimental to
the user’s trust in system [185, 385].

Expert Background Gender Group
E1 HCI M A
E2 Psychology F A
E3 Computer Vision & Psychology F B
E4 Psychology M B
E5 HCI M C
E6 Psychology M C

Table 4.2: The table shows the experts’ backgrounds in the co-design. We paired
one computer science expert with one psychology expert per group. In total, three
groups participated in the co-design.

(a) Initially presented diagram. (b) Sample result.

Figure 4.2: During the first session (participatory design), experts need to collabo-
rate on creating an ideal assistant framework based on the presented diagram and
modules. At the bottom of Figure (a), the experts can find the system compo-
nents for perception. Figure (b) is a result of the original diagram illustrated by
one expert group (Group B).
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4.3.3 Interview One: Participatory Design

To formalize how to design a proactive system capable of determining what to
show users for task completion, we presented the known challenges and background
knowledge to the experts as described in Section 4.3.2. During the presentation, we
described the interaction context, explained the capabilities of current AR technol-
ogy, and clarified any concerns the experts raised. Each group was then asked to
discuss: 1) the information necessary for the AR system to act proactively; 2) any
necessary system features, methods, or functions; 3) the perspective helpfulness of
user modeling; and 4) ways to mitigate known challenges.

Each group was then moved into their own private discussion room. After a
50-minute open-ended discussion, we provided each group with a list of commonly
used tracking, computer perception, contextual understanding, and display tech-
nologies and let them select which to use, see Figure 4.2 for reference. Experts were
invited to add “imaginary” categories or functions to this list if they considered it
theoretically useful. Their modified lists were illustrated using Miro 2.

4.3.4 Interview Two: Adaption of Design Models for AR

The second session involved reconvening the same groups of experts for dyadic
interviews. Initially, we presented the outcomes of the first session alongside our
synthesized framework, seeking confirmation that it accurately reflected their ini-
tial ideas. This was followed by an open discussion where the experts delved into
the framework’s details and made adjustments to further refine it. This session,
which lasted approximately one hour for each of the three groups of experts, was
essential for finalizing the design framework for the AR assistant.

4.3.5 Data Collection

Since the interviews were conducted over Zoom, we screen-recorded and tran-
scribed the interviews using Zoom’s auto-transcription feature. Two authors in-
dependently analyzed the video recordings and transcriptions, coding the findings
into insights. The insights were then combined into the following findings based

2https://miro.com
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on thematic analysis, and discrepancies were resolved through discussion.

4.3.6 Results

The BDI model may be a good candidate for supporting proactive guid-
ance. During the interviews, all three psychology experts (E2, E4, and E6) men-
tioned that considering What the user sees and understands in the sur-
roundings is important for predicting when guidance should appear (C1). For
instance, E4 emphasized, “... it is important to model the human’s mental space,
so we can adjust the AR (assistance’s) timing.” All the psychology experts intro-
duced belief-desire-intention, describing it as well-established and straightforward,
as well as a classic cognitive model for understanding human behavior, intention,
and goals.

When describing ideas to implement the BDI model within the AR context,
the expert groups outlined how belief supports the filtering of duplicated or un-
necessary assistance and acts as a screening step to narrow the assistance’s scope.
They further outlined that desire refers to the goals of a given task. In AR, this
means the system should model the user’s actions and goals (Groups B and C).
Finally, the expert groups indicated that intention comprises a small step toward
the goal and affects the timing and content of the AR assistance (Group A and C).
Together these adaptations of the BDI model help to construct a novel pipeline
toward proactive AR assistance.
Determining the user’s intention is essential to proactive guidance. .
Group A and Group C first brought up the importance of understanding user
intention, which they construed as the immediate step being undertaken in the
context of the guidance. The group claimed that knowing the intention of the
user is beneficial for effectively determining the content of the assistance and its
timing. Additionally, when discussing how to design “next-step prediction” in
practice, E6 suggested that computer vision models might be able to infer the
user’s intention. However, E5 thought otherwise and commented that the common
method of inferring intention using egocentric short-term memory cannot predict
intention reliably. All groups agreed that new methods are required to infer user
intention.
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Formative Study 1 Results

Benefits
Could be automatic.
Reduces development time and increases efficiency.
Improves scalability.
Reduces information overload.
Challenges
Cross-domain scalability is difficult.
Detecting user intention is a primary challenge, as errors
lead to confusion.
Adapting the AR instruction to users’ active duties is
challenging.

Formative Study 2 Results
The BDI model may be a good candidate for supporting
proactive guidance.
Determining the user’s intention is essential to proactive
guidance.
Understanding high-level goals improves transparency
and efficiency.
Using the potential of modern LLMs might offer a bet-
ter understanding of context, environment, objects, and
actions.

Table 4.3: The table summarizes the main results from the two formative
studies.

Understanding high-level goals improves transparency and efficiency in
task switching.. Groups B and C discussed transparency challenges in human-AI
collaboration. Interaction can be improved if the information on tasks, objects, and
goals is available to both the system and the user simultaneously. On the users’ end,
this is essential to support multi-tasking with task guidance as users are constantly
aware of “how the system interprets the current situation” (Group A, B). On the
system’s end, knowing the user’s high-level goals (e.g., task goals) can support
multi-tasking effectively and automatically (E1 and E2). Additionally, providing
the step-by-step reasoning that leads toward task completion is beneficial for users
in that it allows them to maintain trust while collaborating with AI (Groups A
and C).
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Using the potential of modern LLMs for understanding context, envi-
ronment, objects, and actions.. E5 has extensive experience in traditional
computer vision models and expressed concern that current computer vision mod-
els may not be sufficient due to the inaccuracy of action and intent prediction.
Even if users’ intentions (i.e., immediate goals) can be detected, the predicted in-
tention cannot be used to the fullest extent because these models often lack the
ability to understand the user’s environment or make accurate decisions based
on intent predictions. E1, who has significant experience in LLM development,
suggested that multimodal LLMs like GPT-4V could offer a solution because of
their advanced reasoning capabilities. Exploring prompting techniques may help
to detect context, environment, objects, and actions.

4.4 Design Requirements
Based on the findings of the two aforementioned formative studies, as summarized
in Table 4.3, we propose the following design requirements for consideration in
proactive AR assistance.

D1 Proactive AR assistance can be challenging to implement due to difficulty
in timing its appearance, updating assistance to fit the user’s environment,
and understanding the user’s goals and actions. The BDI model offers a new
opportunity to provide real-time, in situ, updated AR content.

D2 AR assistance should convey appropriate content via an appropriate modal-
ity at the right time. It should also support users switching tasks or actively
managing task life-cycle (i.e., beginning, pausing, and ending).

D3 Assistance should try to be transparent to gain users’ trust, feed back the
system’s reasoning and detection, and provide easily accessible information
about current and overall goals in the AR environment.

D4 LLMs could be used to improve scalability and re-usability. Using LLMs
might offer a viable way to analyze complex environments, model user actions
and goals, track progress, and update assistance content in situ. The result
would be a more adaptive, scalable system for various common tasks.
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4.5 Satori System Design
Guided by the design requirements, we present the implementation of our pro-
posed Satori system. The goal of the implementation is automatic multimodal AR
assistance (e.g., instructions, images, illustrations) with appropriate timing and
content that is adaptive to the user’s immediate surroundings. Through Satori,
we aim to automatically update content to match the context and environment of
the interaction, reducing the need for repetitive instructional information toward
task completion.

We first use the BDI model as a blueprint to design a workflow to achieve
proactive assistance. Next, we detail the implementations for timing prediction
and assistance prediction. Finally, we describe our interface and interaction design
while ensuring transparency and interpretability.

4.5.1 Implementing the BDI Model for AR Assistance

Architecture: We account for the unique characteristics of AR devices and tech-
nologies, such as small fields of view, the need for continual real-time environ-
mental mapping, and the blend of physical and digital information. We describe
how to apply the BDI model in terms of its components. This approach has been
used when applying the BDI model to other fields to support intention and goal
analysis [345, 367]. We follow a similar approach and implement the system archi-
tecture as in Figure 4.3. The results of the implementation are also summarized
in Table 4.4.

4.5.1.1 BDI-guided chain-of-thought

On a high level, the BDI model aligns with the concept of chain-of-thought (CoT) [318]
in LLM. CoT is a form of reasoning that allows the LLM to deliver assistance in
a structured manner by sequentially following logical steps. By conceptualizing
the BDI model as a series of thoughts, the model can systematically produce the
appropriate assistance. Each thought in the process is marked with a hashtag,
enabling the LLM to decompose complex tasks into manageable steps, thereby en-
abling reasoning functions (e.g., action prediction, task prediction, guidance, etc.)
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Task Planner LLM

Step-2Step-1 Step-4

Task Plan

Arranging �owers

Grab the scissor
Use the scissors to trim 
leaves at 45 degree angle

Step-3

Logger

...

Dialogue
I want to arrange �owers, 
I am a novice. Can you give 
me some assistance.

Sure!

Camera View

Scene: arrange flowers

Object:
[flower, red, center], [vase, glass, center]
[scissors, white, right] ...

Assistance History:

Belief

Desire

Desired Task: arrange flowers

Intention

Cut the flower stems

LLM BDI

Timing

Assemble the guidance

Timing Prediction

Content Prediction

DALLE-3 AR Widgets

BLIP Action Finish Detection

Grab the session

Use the scissors...

Test BLIP Prompt

Early ForecastScene Detection

Distraction

Task Scene

OWL-ViT

Filter out the noisy frames

Figure 4.3: The figure is a system overview of the BDI user model. The system
processes inputs from the camera’s view, dialogue (voice communication between
the user and the GPT model), and the historical logger (records of prior assistance).
These inputs are sent to different BDI components for analysis and inference us-
ing a combination of local models and LLMs to generate proactive guidance and
determine the appropriate modality and assistance timing. To ensure assistance
appears and disappears at the right time, a task planner LLM generates a step-by-
step task plan based on the inferred desire, with multiple checkpoints assigned to
each step. These checkpoints are monitored by the action finish detection module,
which determines task completion by verifying checkpoint progress. In addition,
the system employs an early forecasting module to minimize latency.
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in AR assistance. The following subsections describe how we conceptualize the
BDI model.

4.5.1.2 Belief

Human belief is a complex psycho-neural function integrally connected with mem-
ory and cognition [178, 226]. Precise modeling of human belief within the con-
straints of AR technology is not feasible without access to human neural signals.
To approximate the user’s belief state within AR constraints, we propose a two-
fold method via capturing scenes and objects from the AR’s visual input and via
user action history from task performance.

The scene provides information on the user’s surrounding physical setting, the
context of the ongoing task, and changes in their goals and actions. We represent
the scene via the label predicted by the image classification model. The label
prediction uses an OWL-ViT model [201], which is the zero-shot object detection
model. The scene detection is implemented with the zero-shot image recognition
model CLIP model [235].

Object information could be used to locate and filter task-relevant objects in
the scene from others. To achieve this, we used two different models for object
detection: Detr model to detect objects in the scene in zero-shot [36]; and LLaVA
model to detect objects that are being held/touched/moved by human hands [174].
We did not use fixed-label set models because they cannot cover the entire case.
We did not use the traditional object detection models in this case because these
models are trained to predict a fixed set of labels, limiting generalizability.

Action and assistant history is used to ensure the guidance does not repeat.
Due to the nature of linear task guidance, completed steps or instructions should
not reappear. In our earlier testing, we noticed that the model prediction may
give the same instructions that had appeared previously despite task progression.
As a result, we implemented a history log to reduce such repetitions. This history
contains user interaction logs, the AR assistance content, descriptions, progress,
modalities, and images.
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4.5.1.3 Desire

This component represents the user’s high-level goals, or task goals for the AR
system. From cleaning a room, to preparing food, to organizing a shelf, high-level
goals are short-term tasks users aim to accomplish. Inspired by recent work that
successfully used LLM to understand instructional tasks, we infer the user’s goals
using a GPT-4V, which takes the current camera frame as input to predict the
high-level goals. Image frames are downsampled to 1 fps and sent to the LLM with
a prompt specifying the need to understand “what the user is doing, at what place”.
The resulting label from the GPT-4V contains the task’s general description (e.g.,
moving a table, arranging a desk, etc.).

However, the current LLM does not always predict the goals correctly. Our ini-
tial testing revealed 85% accuracy in predicting the correct task goals in a common
household setting. As a result, instead of Satori immediately beginning to instruct
the user after detecting their goals, it first asks users to confirm the predicted
tasks or goals. This allows the users to begin AR guidance only if they accept
Satori’s suggestion of a given task, ensuring error-free task launching.

4.5.1.4 Intention

The results of the formative studies established that the concept of intention from
the BDI model could affect the content, timing, and upcoming actions required to
complete a task. To predict the user’s upcoming actions, we rely on perceptual
information (D1), including visual cues and user interactions with objects. We use
a combination of localized models with LLM to balance the time cost for timing
prediction. As for content prediction, we use customized prompts and CoT coupled
with GPT-4V’s semantic understanding to determine what type of assistance might
be needed.

4.5.2 Timing Prediction

To determine when assistance should appear the system must first detect a user’s
action and then the corresponding assistance follows. We begin with a step-by-
step pipeline to predict when an action will occur. The first naive implementation
performs action forecasting after the previous action is completed. This is achieved
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by concatenating the last four frames and sending them to GPT-4V model via
OpenAI’s API at 1 fps. However, since the model prediction from LLM is not
instant, the user must wait for the prediction to display after actions are finished,
resulting in their interaction experience being interrupted. To correct this, we
use a combination of action forecasting and early forecasting to reduce the
interaction latency and provide a seamless experience. When the system is running,
it continuously executes action forecasting using LLM; meanwhile, parallel early
forecasting focuses on detecting action completion. Once detected, cached actions
from the continuous action forecasting are immediately retrieved and the assistance
is displayed. This way the user no longer has to wait (what was typically about 3
extra seconds) after their action was finished to move forward.

4.5.2.1 Action forecasting

We propose a multimodal LLM to forecast upcoming user actions. This is chal-
lenging due to the vast range of potential future actions, the ambiguous nature of
user goals, and the misalignment with the label set. We start with constraining
the forecasting process by incorporating the user’s high-level goals, thus narrowing
down the range of possible actions. We then prompt these actions to the LLM
using a search-and-reflect framework consisting of three stages:

1. Analysis Stage: The LLM first analyzes the current task goals and cor-
responding task plan (see Section 4.5.5), breaking it down into actionable
steps.

2. Prediction Stage: After analyzing the goals and plans, the LLM deter-
mines the upcoming actions. This involves using contextual cues (e.g., phys-
ical objects, scenes, and the user’s action history) and the results from the
task planner to converge on several probable actions.

3. Reflection Stage: The LLM further narrows to the single predicted action
(or next step) by integrating the objects and tools in the scene. Actions that
require missing or unavailable objects are eliminated, ensuring that only
viable actions are suggested. This filtering helps refine the prediction further
by aligning it with the actual scene context, reducing irrelevant or impossible
options.
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4.5.2.2 Early forecasting with finished action detection

Early forecasting focuses on minimizing response time and serves as a flag to
retrieve cached action forecasting results. The action finish detection detects a
series of checkpoints (see Section 4.5.5), or mini-goals within each step. If all
checkpoints are reached, the action detection is complete. It is important to reduce
the detection noise, such as the user not looking at the task or another person
coming into view. Since there are no pre-trained models or large-scale datasets
for detecting when an action is finished, we use the zero-shot learning capabilities
of the vision-language model and propose an ensemble-based approach to balance
latency and effectiveness. We ensemble the local image captioning model BLIP-2
[164] with the online GPT-4V model. BLIP-2 model has lower accuracy, and this
pipeline double-checks its result with the GPT-4V model, which produces more
reliable action prediction results based on our initial tests. BLIP-2 model also
continuously outputs the prediction of where the user is looking, notifying the AR
assistant if the user is distracted and filtering out noise.

4.5.3 Dynamic Content Generation

The content of AR assistance comes in different forms and via different modalities;
inspired by the AR designers in the first formative study, we implemented text,
image, sound, and tools for Satori. Each has different functions and use cases
relative to scene context and user actions.

1. Text: We use white text on a black, transparent container to ensure read-
ability. The text primarily contains general instructions (task names, titles,
etc.), interface information, and step-by-step guidance. All text is dynami-
cally generated from either the LLM’s response or sub-steps from the task
planner module, see Figure 4.3 for details.

2. Image: Images are generated in situ using DALL-E 3 to depict actions and
objects, see examples in Figure 4.4. For more complex actions, we employ
multiple images. See the appendix for the implementation details.

3. Sound: We use the headset’s text-to-speech module for: 1) answering user’s
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spoken responses; 2) reading instructions aloud; and 3) confirming task com-
pletion.

4. Tools: We implemented three example tools as a demonstration. Additional
tools could be added to the pipeline if needed. A voice-assistant that is trig-
gered by the keyword “Hello Tori” will listen and respond to voice input and
can be used to command system actions with words such as “yes” or “can-
cel”. If the system thinks the task step requires time counting (e.g., boiling
water, microwaving, grinding powders), a timer automatically appears. This
is achieved by comparing the objects in the scene with objects needed for the
current step in the task using the LLM’s reasoning ability. Object indicator
locates the “objects of interest” in the current step. This is done through
the object detection methods described in the earlier Section 4.5.1.2.

4.5.4 Inferring Modality

We use a GPT-4V to determine the modality using a set of rules in a prompt. The
rules map a relationship between the intention and the current step to the corre-
sponding modality. Based on the suggestions from the second formative study, we
implemented four rules and their corresponding modality mapping: 1) for inten-
tion or steps involving a tool or interaction with materials the LLM returns an
image; and 2) if the action is time relevant, the LLM gives a sequence of images;
3) if time counting is needed, the LLM shows the timer tool; and 4) if the step
is challenging, the LLM asks for audio feedback. These rules are not mutually
exclusive and could generate a combination if multiple conditions are met.

4.5.5 Task Planner for Checkpoints

This component first retrieves the most compatible task from a task database once
the user’s goal is set (see Sections 4.5.1.2 and 4.4). It then provides detailed step-
by-step instructions and layout checkpoints or sub-steps for the AR assistance.
Each checkpoint is an actionable sub-step to reach the current step completion.
The benefit is twofold: 1) It increases system transparency and builds trust for
users as each checkpoint is explicitly listed on the AR interface, and 2) it decom-
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poses the step prediction into smaller milestones for the system, increasing overall
prediction validity.

(a) Satori (b) Naive (c) Satori (d) Naive

Figure 4.4: Comparison of the naively generated images from the GPT model
(i.e., Naive) with our proposed prompts (i.e., Satori). (a) “One hand presses a
white button on a white espresso machine. A large red arrow points to the button.
No background, in the style of flat, instructional illustrations. Accurate, concise,
comfortable color style.” (b) “One hand presses a white button on a white espresso
machine.” (c) “Cut stem of a red flower up from bottom, with white scissors at
45 degrees. One big red arrow pointing to bottom of the flower stem. In the style
of flat, instructional illustrations. No background. Accurate, concise, comfortable
color style.” (d) “Cut stem of a red flower up from bottom with white scissors at
45 degrees.”

4.5.6 Interface and Interaction Design

Figure 4.5 displays the interface with assistance, including active task (e.g., Making
Coffee in the example), text instructions, images, and tools such as the object
indicator (e.g., coffee grinder) or timer. Aligning with the design requirement to
remain transparent D3, Satori’s interface shows how the system tracks the user’s
task, their progress, and objects of interest. For example, the object indicator not
only shows the object that the user needs to interact with but also points to the
object’s physical location relative to the user.

The voice feature is also supported to let users communicate with Satori hands-
free. The Voice interface is activated if the user calls out the activation phrase or
during any confirming stage such as goals or step confirmation. This allows the
users to quickly express their intentions without interrupting the tasks on hand.
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(a) the user’s desire (b) the confirmation page.

Figure 4.5: (a) In this example, the user is grinding the coffee beans. The interface
shows the task goal as “Making Coffee” and the upcoming action or step as “Grind
coffee beans into powder.” The action checkpoints marked with green checks indi-
cate the number of sub-steps that are completed. The action checkpoints marked
with a blue circle indicate the number of sub-steps that are in progress. Once
all sub-steps are checked, the current step is considered complete; and (b) A task
assistance confirmation appears when the system detects step completion. The
confirmation prompts the user, asking if they are about to use a coffee filter and
whether they need assistance.

4.5.6.1 Human-AI interaction design

In the early testing, we found that users could become overwhelmed if the predicted
action changed abruptly. This is because no existing systems can perfectly predict
user action, and not every action is meaningful for the task (i.e., behavioral noise).
Moreover, due to the nature of step-by-step guidance, prediction errors tend to
accumulate across steps, and, without human correction, errors in earlier steps
may propagate to later steps. Therefore, we opted to use a confirmation panel
to determine whether the system’s task or action prediction matched the user’s
intention, as shown in Figure 4.5. For example, in the coffee-making task, if AR
assistance failed to detect that the coffee beans had been grounded, it might con-
tinuously prompt the user to grind the beans. With Satori, the system prompts
a confirmation page, waiting for the user to confirm action completion. No addi-
tional information will appear to the user before they confirm the step with either
the pinch button or voice. Similarly, when a new task or step is detected, the
confirmation page displays, and users decide whether it matches their needs or the
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current step, as shown in Figure 4.5(b).
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BDI Comp. Definition AR Guid.

Comp.
Inference
Method

Example
Usage

Belief Representation
of the world

Scene under-
standing

OWL-ViT
for zero-shot
scene classifi-
cation

Minimizing
distractions
caused by
head move-
ment

Task-relevant
object detec-
tion

DETR for ob-
ject detection,
verified by
LLM

Locating ob-
jects to im-
prove task ef-
ficiency

User action
history

Logged by an
in-memory
logger and
inferred by
LLM

Preventing
repeated
instructions
for completed
steps

Desire Goals or ob-
jectives

High-level
task goal

LLM-based
scene analysis
with user
confirmation

Assisting task
transitions
with accurate
goal identifi-
cation

Intention commitments
that are
actively
pursued to
achieve goals

Next in-
tended action

GPT-based
inference
with CoT
reasoning

Providing
step-by-step
guidance for
upcoming
actions

Timing of
next action

Checkpoint-
based early
forecasting

Reducing la-
tency in de-
livering next
guidance

Table 4.4: This table illustrates how three components— Belief, Desire, and
Intention– in the BDI model are adapted for AR task guidance. BDI Comp. refers
to the BDI components and AR Guid. Comp. refers to the AR system’s task
guidance components. Belief is represented through scene understanding, task-
relevant object detection, and user action history to minimize distractions, locate
objects, and avoid repeated instructions. Desire captures the user’s high-level
task goals, inferred through LLM-based scene analysis and confirmed by the user
to ensure accuracy. Intention includes predicting the following intended action
using GPT-based inference with chain-of-thought reasoning and determining the
timing of next actions with checkpoint-based early forecasting.
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4.6 Evaluation
We evaluated the Satori prototype through an open-ended exploratory study, fo-
cusing on the following research questions:

RQ1 Can Satori provide the correct assistant content at the right timing?

RQ2 Can Satori provide comprehensible and effective guidance?

RQ3 How does our system’s guidance compare to that of professional AR experts?

4.6.1 Study Setup

4.6.1.1 Tasks

For our main tasks, we chose four everyday tasks that are comparable in difficulty
but different in their goals and required skills, as shown in Figure 4.6. The four
tasks were initially sampled from WikiHow 3 and were subsequently rewritten to
ensure a consistent task load. Each task asked for specific sequencing and approach,
minimizing users’ ability to jump ahead of the instructions using prior knowledge.
The task orders were pre-determined and counter-balanced for all 16 participants
to avoid the ordering effect. The tasks were as follows:

1. Arranging Flowers: Participants arranged a variety of flowers in a vase, test-
ing the system’s ability to provide accurate and aesthetic guidance.

2. Connecting Nintendo Switch: This task involved setting up a Nintendo
Switch with a monitor, evaluating the system’s technical guidance, and trou-
bleshooting support.

3. Room Cleaning: Participants assembled a mop and a duster, and cleaned a
desk and the floor; the AR assistant suggested assembly instructions and a
cleaning strategy.

4. Making Coffee: This task required making coffee using the pour-over method,
with the AR assistant providing instructions on tool usage and pouring tech-
niques.

3https://www.wikihow.com/
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4.6.1.2 Conditions

Participants were presented with two conditions, Wizard-of-OZ (WoZ) and Satori.
The tasks (indexed as 1, 2, 3, and 4) and conditions were presented in a counter-
balanced order to mitigate the learning and other sequencing effects.

(a) Satori: clean room (b) Satori: connect Nintendo

(c) WoZ: make coffee (d) WoZ: arrange flowers

Figure 4.6: Evaluation tasks using either Satori or a Wizard-of-Oz baseline. (a)
The participant is assembling a mop during the room-cleaning task; and (b) The
participant is connecting an HDMI cable to a Nintendo Switch dock during the
connecting Nintendo Switch task; and (c) The participant is preparing a filter
during the coffee-making task; and (d) The participant is trimming flower stems
during the flower-arranging task.

4.6.1.3 Participants

A total of 16 participants (P01-P16, 11 male, 5 female) were recruited via a univer-
sity email group and flyer. The average age was 23.8, with a maximum age of 27
and a minimum age of 21. 10 of the 16 participants had AR experience prior to the
study. Each participant was compensated with a $30 gift card for their participa-
tion. Information on general wellness was collected from participants both before
and after the study, and no motion sickness was observed following the study.
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4.6.1.4 Apparatus

We used a Microsoft HoloLens 2 headset as the AR device for the study. Partic-
ipants used the Satori system or WoZ system described earlier while performing
the tasks. The headset connects to a server with an Nvidia 3090 graphics card to
fetch real-time results.

4.6.1.5 Procedure

The study began with a brief tutorial introducing participants to the interface of
the two AR systems. Afterward, participants were assigned four everyday tasks.
They started with either the WoZ system or the Satori system before alternating
to the other condition. After completion of each task, participants evaluated their
experience using a usability scale and assessed their cognitive load using the NASA
Task Load Index (NASA TLX). We also conducted a brief recorded interview,
asking participants about the advantages, disadvantages, usefulness, and timeliness
of the two systems. The experiments were supervised by the Institutional Review
Board (IRB), and all task sessions were video-recorded. These recordings were
securely stored on an internal server that is inaccessible from outside the university.
Participants provided consent, and their personal identity was strictly protected.
We collected data on participants’ well-being both before and after the experiment
and observed no significant adverse effects. The duration of the entire study was
two hours on average. All participants completed the four tasks using both systems.

4.6.2 Data Collection

We used the following metrics to measure the users’ perspective on how Satori’s
content and timing compared to the AR designer’s version. Since content is auto-
matically generated, we measured comprehensibility, helpfulness, and overall cog-
nitive load to assess whether our system is capable of generating similar content
utility without overwhelming the users.

4.6.2.1 User-rated scale

For RQ4.6 and RQ4.6, we opted to use a seven-point Likert scale (similar to Lewis
et al., [159]), ranging from “strongly disagree” to “strongly agree” to measure
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the timeliness, ease of use, effectiveness, comprehensibility, and helpfulness of the
AR assistance. Eleven questions were asked in total. For the complete set of 11
questions, see Table 4.11. We computed the mean and confidence intervals for each
question using the bootstrapping method. Specifically, 1,000 bootstrap samples
were generated from the original data set for computation with 95% confidence
intervals for the estimation of the uncertainty around the mean.

4.6.2.2 NASA Task Load Index

We used the raw 100-point NASA TLX [94] form to measure the cognitive load
with the six subcategories. Mean and confidence intervals were calculated for the
sum of all ratings and each of the subcategories using the bootstrapping technique.
1,000 bootstrap samples were drawn from the original dataset with 95% confidence
intervals to measure the uncertainty surrounding the mean.

4.6.2.3 One-Sided Wilcoxon Signed-Rank Test

A one-sided Wilcoxon signed-rank test was used to determine whether the user-
rated scale and the TLX ratings were significant. The goal was to test whether
Satori performed similarly to the AR assistance designed by professionals in AR;
however, simply verifying that there is no significant difference between them does
not ensure the two conditions are similar. Instead, we aimed to test whether Satori was
no worse than the WoZ by a predefined margin ∆ [85, 148, 157].

The test defines Di = XAi −XBi as the difference between the scores for each
participant i under Conditions S (Satori ) and W (WoZ), respectively. The ad-
justed difference accounting for the margin is given by D′

i =Di −∆ =XAi −XBi −
∆. The hypotheses for this non-inferiority test are:

H0 : median(D′)> 0 (A is worse than B by more than ∆),

H1 : median(D′) ≤ 0 (A is no worse than B by at most ∆).

Similar to the vanilla Wilcoxon signed-rank test, this procedure involves rank-
ing the absolute adjusted differences |D′

i|, calculating the sum of ranks for positive
(W+) and negative (W−) differences, and using the test statisticW = min(W+,W−)
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to compute a one-sided p-value. This p-value indicates whether we can reject H0

in favor of H1. We chose the margin value ∆T LX = 2.5 for NASA TLX and ∆us

for the usability scale as they represent half of the rating interval.

4.6.3 System Evaluation Preparation

We used the GTEA [168], EgoTaskQA [116], study recordings, and our dataset
to evaluate Satori. The GTEA dataset contains egocentric videos of participants
performing daily life tasks, and the EgoTaskQA dataset contains questions about
humans’ beliefs in the world and the model’s understanding of humans’ beliefs. We
used the GTEA dataset with 71 labels and leave-one-subject-out cross-validation.
Since the EgoTaskQA dataset has a large amount of data in the test set, we
sampled 200 data points for the evaluation. We use the indirect split, which has
a more complicated relationship between the actions and the questions. The user
study recordings consist of 14 participants who performed the four tasks described
in this section. Two participants’ recordings were lost due to data corruption. In
addition, we added 4 more sets of the four tasks (totaling 16 videos) as our dataset
for evaluation. GTEA, EgoTaskQA, and our dataset are used to evaluate the
BDI model output, and user study recordings are used to evaluate modality and
guidance timing.

4.7 Results

4.7.1 System Evaluation

We evaluated Satori’s module-level performance on the GTEA dataset and the
video dataset we recorded from the empirical study and testing. For desire task
prediction, Satori achieved a balanced accuracy of 100% on GTEA dataset and our
dataset (Table 4.5). Satori achieved 66.50% in belief inference, matching the state-
of-the-art HCRN model [149] on EgoTaskQA dataset 69.53% (Table 4.6). The
results on intention forecasting (timing and intention) revealed a 78.38% precision
to predict user actions (Table 4.7). For modality prediction, Satori reached an
average of 75.12% recall in deciding the modality that matches the WoZ designed
by AR experts (Table 4.8). We discuss the implications of these results in the
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discussion session.

Dataset GTEA Our Dataset
Satori 100.00 100.00

Table 4.5: Desire inference includes understanding high-level task goals. We eval-
uated this module using the GTEA dataset and our dataset, which is annotated
by three experimenters. Satori achieved a balanced accuracy of 100% on both
datasets

Dataset EgoTaskQA Our Dataset
Task Scene Understanding Object Understanding

HCRN 69.50 N/A
Satori 66.50 57.90

Table 4.6: Belief inference includes scene understanding and task-relevant object
understanding (object labels, locations) and their interaction history with the user.
As for the evaluation, the goal is to understand the reasoning capability for scene
understanding and object understanding. We evaluated this module using the
EgoTaskQA dataset and our dataset to compare with the HCRN model. The
EgoTaskQA dataset consists of questions about humans’ understanding of the
scene and the model’s understanding of humans’ beliefs. For our dataset, three
experimenters annotated the highlighted object labels, locations, and interaction
states separately. Satori reached a similar accuracy (66.50%) to that of the HCRN
model (69.50%).

4.7.2 Usability Scale

We present the participants’ raw scale data across all tasks in Figure 4.7 and
processed statistics in Table 4.11. The questions are listed in Table 4.9. We
found that there was no significant difference between most of the Satori and
the WoZ conditions, suggesting that Satori’s overall performance matched the
wizard-of-oz designed by AR experts (pnon_inferiority < 0.05). (e.g., Q1: p= 0.099,
Q2: p = 0.094, Q3: p = 0.090, Q6: p = 0.273). However, non-inferiority tests
demonstrated that Satori was not worse than the WoZ condition (e.g., Q1: p =
0.001, Q2: p= 0.000, Q6: p= 0.001) with a margin of δ = 0.5.
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L.A. Time GTEA Our Dataset
Recall Prec. F1 Recall Prec. F1

0s 63.04 78.38 69.88 65.61 62.52 58.89
1s 54.35 75.76 63.29 55.00 48.40 46.06
3s 39.95 65.73 49.43 52.31 44.44 45.24

Table 4.7: This table shows the module-level evaluation of intention (action) fore-
cast. L.A. Time refers to Look-Ahead Time, Prec. refers to Precision score. We
evaluated our methods on the GTEA dataset and our dataset. Three experimenters
annotated user action labels in our dataset. Aside from the settings Satori uses
(Look-Ahead Time = 0s), we also present results for two other hypothetical con-
ditions if we predict the action 1s or 3s earlier. For our settings, our methods
reached 78.38% on the GTEA dataset and 62.52% on our dataset.

4.7.2.1 Content.

Satori’s adaptive AR content provides similar comprehensibility (p = 0.099, non-
inferiority p = 0.001) and helpfulness (p = 0.094 and pnon_inferiority = 0.001) to
complete a guidance task compared to the baseline. Dynamic assistance almost
matches with pre-designed assistance (p= 0.357, non-inferiority p= 0.001). This is
in line with later interview results, where a majority (12/16) believed that Satori
was able to provide assistance that appropriately matched the context of their tasks.
Satori’s image content is well-received, for example, P1 said that “the picture [of
the second one] is very nice and it looks good.” Images in the WoZ are also useful,
as P8 remarked that “Guidance as a whole (text, images, and animations) was
very helpful. Whereas, text alone as shown in the image lacks information.”

4.7.2.2 Timing.

Satori provides timely guidance to users (Q3: p= 0.090 and pnon_inferiority = 0.001)
with appropriate frequency (Q10: p = 0.156 and pnon_inferiority = 0.002). In fact,
participants describe the experience as impressive (P16) and can display assistance
in need (P3). Although occasional network latency has been reported (P4, P6),
they comment that the overall experience was “not bad”(P6) and “...sometimes
delayed, but I think it’s like, it’s okay..” (P4).
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Task Guidance Timing Modality

Arranging Flowers 94.34 94.34
Connecting NS 79.49 74.15
Room Cleaning 80.49 73.17
Making Coffee 75.00 63.75

Average 81.69 75.12

Table 4.8: The table shows the modality prediction results using the user study
videos for the four tasks: arranging flowers, connecting Nintendo Switch (NS),
cleaning a room, and making coffee. Three experimenters labeled the assistance
appearances and compared them with the WoZ. Our methods reached an average of
75.12% when referring to the same assistance type as the designers’. The guidance
timing columns show the holistic evaluation on whether Satori generated the proper
assistance at the proper time without modality.

4.7.2.3 Effectiveness.

We found that Satori performs better than the baseline in inferring intention (Q4:
p < 0.05) and at appearing locations (Q5: p < 0.05). Most participants rated
between “agree” to “strongly agree” that AR assistance appears at proper locations
in space in both Satori (x̄= 6.48) and the WoZ(x̄= 5.95). In general, participants
felt positive regarding Satori’s assistance effectiveness. P3 stated, “I liked that it
combines the various modalities of text, audio, and image to generate guidance, I
believe that was helpful on multiple occasions where I might have been uncertain with
only a single modality.” P14 commented, “The guidance helps me a lot, especially
in coffee making. It provides me with very detailed instructions including time,
and amount of coffee beans I need. I would have to google it if I don’t have the
guidance.” P8 noted that “For task like arranging the flower vase, the intricate
details like trim the leaves, cutting the stem at 45 degrees, etc. are very necessary
details that I might not have performed on my own. ”

In terms of the system’s learnability questions (Q7: p= 0.179 and pnon_inferiority =
0.001) and engagement (Q8: p= 0.145 and pnon_inferiority = 0.002), Satori scored
similarly to that of the baseline. P3 remarked that “not a singular component by
itself, but all components together do make me more engaged.” P10 expressed a
sense of active involvement in the task, stating that “Yes. It may automatically
detect my progress to make me more engaged in the task.”
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4.7.2.4 Satori as a proactive AR assistant in everyday life.

Most participants agreed that Satori has the potential to be generalized to everyday
scenarios (Q11: p= 0.277 and pnon_inferiority = 0.005). P9 said that “maybe when
we need to assemble furniture, instead of going through the manual back and forth all
the time, we can just have this system to guide us.” Furthermore, most participants
acknowledged that they would not need additional training to use the system (Q7:
p = 0.179 and pnon_inferiority = 0.001), suggesting possible applications for more
general purposes. With some training, as P10 mentioned, “(The system can be
used for) learning to complete a difficult task.”

Table 4.9: Survey Questions

ID Question Content
Q1 I can easily comprehend content via text/audio/image guidance.
Q2 I can easily understand how to perform my tasks with the guidance.
Q6 I am able to complete my work quickly using this system.
Q7 It was easy to learn to use this system.
Q8 How engaged I am using the system?
Q9 The system’s guidance matches the context.
Q10 Overall, the system’s guidance frequency and timing are appropri-

ate.
Q11 Overall, I think the system helps my work.

Table 4.10: List of survey questions assessing user perceptions of system guidance,
evaluating factors such as ease of comprehension, effectiveness, timing, engagement,
contextual appropriateness, and overall satisfaction. The statistical analysis result
is presented in Table 4.11.

4.7.3 NASA TLX Result on cognitive load

We found no significant difference between Satori and WoZ on all TLX measures.
Detailed analysis within the six sub-categories of NASA TLX revealed no sig-
nificant difference among the six subcategories of NASA TLX between the two
conditions, see Table 4.12 and Figure 4.8 for details.
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Figure 4.7: Color-coded seven-point Likert scale ratings are shown in the figure
for the twelve-participant study. The figure compares the responses for Satori
and WoZ systems across four tasks: Arranging Flowers, Making Coffee, Cleaning
the Room, and Connecting a Console. Each bar represents the distribution of re-
sponses for a specific usability question, highlighting differences in user satisfaction,
comprehensibility, and task support provided by both systems.
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Question Condition Mean 95% CI Vanilla Non-Inferiority
W p-value W p-value

[Q1] Satori 6.25 [6.00, 6.75]
WoZ 5.94 [5.25, 6.50] 26.500 0.099 89.500 0.001

[Q2] Satori 6.22 [5.75, 6.75]
WoZ 5.80 [5.50, 6.50] 26.000 0.094 131.000 0.000

[Q3] Satori 5.97 [6.00, 6.50]
WoZ 5.53 [5.00, 6.25] 17.500 0.090 125.000 0.001

[Q4] Satori 6.48 [6.00, 7.00]
WoZ 5.95 [5.62, 6.50] 11.500 0.016 134.500 0.000

[Q5] Satori 6.23 [5.88, 6.75]
WoZ 5.66 [5.25, 6.25] 15.000 0.032 131.500 0.000

[Q6] Satori 6.08 [5.50, 6.62]
WoZ 5.75 [5.25, 6.50] 30.000 0.273 108.500 0.003

[Q7] Satori 6.48 [6.00, 7.00]
WoZ 6.06 [5.75, 7.00] 22.000 0.179 103.500 0.001

[Q8] Satori 6.16 [5.88, 6.50]
WoZ 5.75 [5.38, 6.50] 20.500 0.145 109.500 0.002

[Q9] Satori 6.27 [6.00, 6.75]
WoZ 6.05 [5.62, 7.00] 32.500 0.357 91.000 0.001

[Q10] Satori 6.30 [5.75, 6.75]
WoZ 5.92 [5.75, 6.50] 30.000 0.156 97.500 0.002

[Q11] Satori 5.94 [5.50, 6.50]
WoZ 5.58 [5.25, 6.25] 30.000 0.277 105.500 0.005

Table 4.11: The table summarizes the mean scores and 95% confidence intervals
(CI) for each system (our Satori system and WoZ designed by the AR designer)
across usability scale questions using non-inferiority tests. The “Vanilla” columns
provide the Wilcoxon signed-rank test results (W statistic and p-values) for signif-
icant differences between systems. The “Non-Inferiority” columns show W statis-
tics and p-values testing if Satori’s performance is non-inferior to WoZ within a
set margin. The highlighted cells indicate established non-inferiority, suggesting
that Satori performs comparably or better than WoZ over system performance and
usability. The question content is available in Table 4.9
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Metric Condition Mean 95% CI Vanilla Non-Inferiority
W p-value W p-value

M. D. Satori 34.06 [17.50, 43.81]
WoZ 33.12 [16.25, 50.00] 60.500 0.744 78.000 0.316

P. D. Satori 32.34 [11.25, 50.00]
WoZ 30.47 [10.00, 43.75] 55.000 0.776 80.000 0.281

T. D. Satori 28.52 [21.25, 37.50]
WoZ 26.41 [15.00, 32.50] 46.000 0.274 65.000 0.388

P. Satori 16.17 [7.50, 21.25]
WoZ 17.27 [7.50, 20.00] 44.000 0.593 95.500 0.022

E. Satori 28.20 [17.50, 37.50]
WoZ 26.02 [15.00, 36.25] 52.500 0.464 58.500 0.353

F. Satori 19.84 [10.00, 28.75]
WoZ 26.95 [11.25, 34.38] 41.500 0.175 126.000 0.001

Table 4.12: This table shows the results for NASA TLX questions and non-
inferiority tests using the mean scores and 95% confidence intervals (CI) for Satori
and WoZ systems across six dimensions: Mental Demand (M. D.), Physical De-
mand (P. D.), Temporal Demand (T. D.), Performance (P.), Effort (E.), and Frus-
tration (F.). The Vanilla Wilcoxon signed-rank test results and non-inferiority
tests (highlighted) indicate whether the Satori system performs comparably or
better than the WoZ system in terms of cognitive load.
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Figure 4.8: The box plot of NASA-TLX results illustrates the distribution of cogni-
tive load ratings across six dimensions: Mental Demand, Physical Demand, Tem-
poral Demand, Performance, Effort, and Frustration. Each box represents the
interquartile range (IQR) with the median marked by a horizontal line, showing
the variability and central tendency of participants’ workload ratings for both sys-
tems. The comparison highlights differences in perceived workload between the
WoZ and Satori conditions, providing insights into the effectiveness and usability
of each approach.
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4.8 Final Considerations
This chapter presents Satori, a proactive and adaptive AR task guidance system in-
tegrating the Belief-Desire-Intention (BDI) framework with Large Language Mod-
els (LLMs). Through multimodal input analysis, including implicit cues from
gestures and gaze patterns, Satori dynamically generates context-aware instruc-
tions tailored to users’ intentions. Our formative studies with 12 domain experts
highlighted essential design requirements, emphasizing precise user modeling and
adaptive guidance to maintain interaction fluency and reduce cognitive load.

An empirical evaluation involving 16 participants indicated that Satori success-
fully provided clear, efficient, and timely instructions, comparable in effectiveness
to manually designed AR task guidance but requiring significantly less manual
effort. Although interaction latency and limited field-of-view remain challenges
inherent to current AR hardware, users perceived the multimodal instructions
positively, suggesting high practicality. Moreover, the integration of interactive
confirmation mitigated potential errors without significantly disrupting user flow.
Overall, Satori demonstrates the potential of proactively modeling user intention
to improve the usability, adaptability, and scalability of AR guidance systems.
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Chapter 5

Intentvizor: Towards Generic
Query Guided Interactive Video
Summarization

5.1 Introduction
This chapter presents IntentVizor, an interactive video summarization method that
leverages graph convolutional networks and a visual analytics interface. This work
lays the foundation for our goal of providing interactive multimodal analysis of
AR task recordings and identifying task-related insights. The proposed summa-
rization model serves as the basis for our egocentric AR task recording summa-
rization method. Furthermore, this chapter introduces the concept of interactive
query-driven summarization, which involves users in the summarization process
by allowing them to control the summarization objectives (intentions). This ap-
proach directly informs our subsequent work on interactive documentation and
summarization of task recordings in Chapter 6.

Traditional video summarization methods usually generate concise/representa-
tive summary that contains the entities and events with high priority from the
video and with low repetition and redundancy using unsupervised [47, 119, 121,
183, 214, 340, 365], supervised [66, 215, 217, 362, 369, 370, 383] and reinforcement
learning ways[9, 378]. However, such a summary cannot satisfy the needs of users
and be of low practical value. As the elongated video, especially when captured in



100

Visual

#1

#2

#3

Textual

Summary
Module

"Table"

Interaction

Intent

Summary

a b

Intent
Module

Figure 5.1: Illustration of our IntentVizor framework. We take query “Table” as
an example. Generic queries, including text/video snippets related to “Table” are
inputs of the model. The intent module transforms these queries into a probability
distribution over the basis intents, followed by the summary module, which gen-
erates a video summary by combing the basis intents and their probability values.
As the user can find the underlying visual semantic meaning of each basis intents
(e.g., in the figure, basis intent #1: the dining table; #2: the working table), they
can adjust the distribution of these basis intents through our proposed interface
(Fig. 5.4) to satisfy their needs, and the final generated summaries can be updated
accordingly/iteratively.

the realistic scenario, may cover a wide range of topics, only fractional content of
specific topics will meet the user’s needs. Based on this observation, the user query-
driven summarization model, which considers the user’s preference, has gradually
attracted researchers’ attention.

The basic idea for query-driven summarization is to use the text query to guide
the generation of video summaries. A popular dataset for this query-driven sum-
marization was the textual query dataset, proposed by Sharghi et al. [266]. The
summarization model proposed in the chapter was trained to predict a subset of
the video shots (5 seconds per shot) closely related to the textual query. For the
follow-up works, the attention mechanism [196, 332, 333] and generative adversar-
ial networks[366] based summarization models are also introduced to achieve better
summarization performance. However, the performance of these models was still
not satisfying as the textual query is not enough to represent the users’ preferences.
To be more specific, first, the user cannot express their detailed needs with few
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fixed input textual queries at the very beginning of summarization. They may have
multiple needs and want to adjust the priority of different needs. Second, the tex-
tual query can be ambiguous. People can have different understandings of a word
in communication, let alone the model trained on a fixed word dictionary. There-
fore, the model should be interactive to loop users into the summarization, and
other query formats (e.g., visual query) should be considered to better represent
the user preference with lower ambiguity.

To propose a generic model for queries from different modalities and allow
users to interact during the summarization process, in this chapter, we propose a
novel framework named as IntentVizor. We borrow the concept Intent from the
Information Retrieval (IR) community to define the users’ need, independent of
the query modalities[31, 132, 360]. However, our intent differs from the traditional
definition in IR with different representation and extraction: (1) We represent
the intent by an adjustable distribution over the basis intents rather than the
pre-defined categories[31] , taxonomies[32, 350] or in a distributed representation
space[92, 353]; The basis intents are defined as the learned and basic components
of the user’s needs. Compared with the traditional definitions[31, 32, 92, 350, 353],
our method enables interactive manipulation, satisfying the user’s diverse and
subtle needs. (2) We extract a unified intent from the queries of different modalities
instead of only the textual query to avoid the ambiguity problem as mentioned
before.

The intentVizor framework consists of two modules, i.e., the intent module for
extracting the intent from the query and the summary module for summarizing the
video with the intent. To effectively correlate the video features with the generic
query/intent in the two modules, we design a flexible network structure named
Granularity-Scalable Ego-Graph Convolutional Network (GSE-GCN). This GSE-
GCN will work as a shared backbone for both the summary module and the intent
module. Besides this backbone, the two modules each have an intent head and a
summary head separately.

To sum up, we structure our contributions as follows:

• To the best of our knowledge, our IntentVizor framework is the first attempt
to introduce generic queries to better satisfy the user’s diverse needs. We
also propose a novel dataset for the visual-query-guided video summarization
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based on UTE videos.

• We formulate the video summarization as an interactive process, where the
user can fine-tune its intent iteratively with our proposed novel interface.
This idea is further explored in our proposed work in Chapter 6

• We propose a novel GSE-GCN structure to effectively correlate the generic
queries of multi-modalities with the input video.

5.2 IntentVizor Framework
The IntentVizor framework targets at (1) interactive control over the video summa-
rization process; (2) support of the generic multi-modality query. This section first
shows that the two requirements can be satisfied by modelling the multi-modality
queries as a unified and interactive user intent. Then, we will describe GSE-GCN,
which is designed to better deal with multi-modality queries.

5.2.1 Unified and Interactive User Intent

5.2.1.1 Problem Setting

We introduce a novel problem setting with our proposed unified and interactive
intent. The canonical setting for query-focused video summarization is to output
a representative and concise subset of video shots based on the inputting video v

of T shots and text query qt. We re-define the task by generalizing the text query
qt into the generic query q. Then, we propose to predict not only a final video
summary, but also a unified and interactive user intent ζ for the multi-modality
queries. ζ can be learned implicitly like a latent variable. We assume that there are
a set of basis intents as Z = {ζ1, ζ2, ..., ζk} and the user intent ζ is chosen from the
basis intents according to a categorical distribution conditioned on the query q as
ζ ∼ p(ζ|q,v). Given the user query q, the distribution p(ζ|q,v) is parameterized by
the probability vector of basis intents, p(ζ) = [p(ζ1|q,v),p(ζ2|q,v), ...,p(ζk|q,v)]T .

In practice, the query can be either textual, visual, or other formats. In this
work, we only implement the models for textual and visual queries. Following
the previous works[266], we represent the text query by two text concepts as qt =
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Figure 5.2: GSE-GCN exploits two notions i.e., GS-Pathway and Ego-Graph.
The input video will be processed by two convolutional networks to produce two
segment-level feature sequence of coarse and fine granularity. Then, each sequence
will be processed to generate a Ego-Graph, where the intent/query vertex is an ego-
vertex with all the video segments are connected. After feeding the graph into GCN,
the two pathways will be produce the corresponding segment-level features. Intent
Head pools the segment features into a distributed representation, which will be
processed by a MLP with softmax to produce the intent probability. Summary
Head exploits the local-GCN module to produce the shot-level features, which
will be used to predict the shot selection probability.

.

{c1, c2}, where c1, c2 are two concepts. By comparison, we represent the visual
query by a set of representative shots in the original video as qv = {u1,u2, ...,uP }
where P is a constant number.

Then, for each shot s, we denote ηs ∈ {True,False} as whether s should be
selected in the summarization. We assume that ηs is sampled from a Bernoulli
distribution conditioned on the intent as

p(ηs) = p(ηs|ζ,v). (5.1)

Finally, we can condition the shot selection probability p(ηs) on the user query as

p(ηs|q) = Σi≤k
i=1p(ζi|q,v)∗p(ηs|ζi,v). (5.2)

Instead of the deterministic intent ζ, we characterize the user’s needs by the distri-
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bution p(ζ|q,v), which weights different basis intents as Equation 5.2 shows. Such
a notion follows the perspective of Bayesianism as the latent variable (intent) is a
random variable instead of a deterministic value. The user can iteratively adjust
the probability vector p(ζ) to fine-tune its intent.

Since the shot selection probability is often viewed as a summarization score
when η = True, we use the shot score and selection probability interchangeably
in this chapter. To implement Equation 5.1, and 5.2, we design two modules
p(ζ|q) = g(q,v : θg) (intent module) and p(ηs|ζ) = h(ζ,v : θh) (summary module),
where θg and θh are the parameters of g and h

p(ηs|q,v) = Σi≤k
i=1gi(q,v : θg)∗h(ζi,v : θh). (5.3)

Given the ground truth labels, we can optimize the parameters θg, θh of our modules
by the BCE Loss as

LBCE(θg, θh) = Σt≤T
t=1 log(p(yt|q,v)), (5.4)

where yt is the ground truth label for the tth shot.

5.2.1.2 Non-Linear Activation

The Equation 5.3 strictly follows the selection probability’s theoretical definition
in Equation 5.2. However, it restricts the capacity of the intent module because
the resulting probability is simply the linear combination of h(ζi,v) ∗ gi(q,v). To
address the issue, we trade off the strictness for better performance by adding
a non-linearity layer on every basis intent score. Specifically, we employ shifted
ReLU[2] as the non-linearity activation.

p(ηs|q) = Σi≤k
i=1ReLU(gi(q,v)∗h(ζi,v)− δ), (5.5)

where δ refers to the threshold value for the shifted ReLU.
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5.2.2 GSE-GCN: Granularity-Scalable Ego-Graph Convo-

lutional Networks

As the shared backbone of intent module g and summary module h, the GSE-GCN
exploits two newly proposed components, i.e., Granularity-Scalable Pathways (GS-
Pathways) and Ego-Graph Convolutional Network (E-GCN), to better deal with
the temporal multi-granularity and sparsity of correlation respectively.

5.2.2.1 Granularity-Scalable Pathways (GS-Pathways)

(a) Coarse Pathway
Layer Kernel Stride Channel Output Size
Conv1 5 8 1024 [L//8, 1024]

MaxPool1 2 1 1024 [L//8, 1024]
Conv2 5 1 1024 [L//8, 1024]

MaxPool2 3 2 1024 [L//16, 1024]

(b) Fine Pathway
Layer Kernel Stride Channel Output Size
Conv1 5 1 256 [L//2, 256]

MaxPool1 2 2 256 [L//2, 256]
Conv2 5 1 256 [L//2, 256]

MaxPool2 2 2 256 [L//4, 256]

Table 5.1: Hyperparameter settings of the granularity-scalable pathways. L de-
notes the length of the original video.

Models with the constant temporal granularity may fall short in aligning the
video events/actions of multi-granularity with the user query/intent. We have
shown in Figure 5.3 that the actions of different temporal lengths and movement
speeds should be processed with the features of different temporal granularity. The
issue raises the necessity of a granularity-scalable model. To realize it, we propose
a flexible structure with two pathways of different granularity. The idea is similar
with [67] technically while being motivated by different concerns. For each pathway,
we aggregate shot-level features into segment-level features (a segment spans 4
and 16 shots with the fine and coarse pathways, respectively) by a convolutional
network. We list the hyper-parameters in Table 5.1. The produced segment-level



106

Clip B

Clip A
Fine Pathway

Coarse Pathway

Fine Pathway

Coarse Pathway

Figure 5.3: The eating action (Clip A) with a longer length should be processed
with the coarser-grained features by the coarse pathway. By comparison, the
jumping event (Clip B) with far faster movement should be processed with the
finer-grained features.

features are fed into our E-GCN described below to align with the query/intent.

5.2.2.2 Ego-Graph Convolutional Networks

The correlations between the different video segments and query/intent can be rel-
atively sparse given a long video. For example, if the user queries “walking”, there
can be only a fraction of video content correlated with walking people. Besides, the
query-related video content can also have a sparse relationship with other video
segments, especially those having a long temporal distance. Thus, correlating all
the video segments (e.g., transformer-based models) can be time-inefficient and
space-inefficient. We propose to exploit the notion of dynamic edge convolution
[314] and construct a graph G = (V ,E ) by connecting the video segments and
query/intent dynamically. The graph’s vertices V comprises of video segments ex-
tracted from the above GS-Pathways and the query/intent. To dynamically model
the correlations between the video segments and the user intent, we connect them
with the edge set E consisting of three types of edges, i.e., intent edge Ei, semantic
edge Es, and temporal edge Et.
Intent Edge connects the segment vertices with the centric intent vertex, which is
why we call the graph as Ego-Graph. We map the intent embedding and segment
feature into a mutual latent space dynamically by two MLPs. Then we can derive
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the intent-segment edge set Ez as,

Ez = {(w′,wt),wt ∈ VT }, (5.6)

where VT refers to the vertex set of the video segments and w′ refers to the mapped
query/intent vertex.
Semantic Edge connects the video segments with the correlated semantics. Mo-
tivated the sparsity of correlation, we follow [337] and connect the top-k related
vertices for each video segment vertex in VT .

Es = {(wt,wnt(k))|t= 1,2, ...,T ;k = 1,2, ...,K}, (5.7)

where wnt(k) is the kth nearest neighbor of the vertex wt in the feature space and
K is a constant number.
Temporal Edge connects the edges temporally adjacent. Each vertex has a for-
ward edge to the next vertex and a backward edge to the last vertex except the
two ends of the segment sequence. We represent the two sets of edges as:

E f
t = {(wt,wt+1|t= 1,2, ...,T −1}, (5.8)

E b
t = {(wt,wt−1|t= 2,3, ...,T}, (5.9)

where E f
t includes the forward temporal edges, E b

t includes the backward temporal
edges and Et = E b

t ∪E b
t .

Edge Convolution After obtaining the graph, We apply edge convolution as
our graph convolution operation[314]. Following Xu et al.[337], We employ the
convolution operation to perform the efficient edge convolution on the obtained
graph.

5.2.2.3 Local Graph for Shot-Level Features

The output features of edge convolution are at segment-level. To reconstruct the
shot feature sequence from the segment features, We build the local Ego-Graph for
each segment. The graph consists of one segment feature vertex connected with
the all spanned shot vertices. We also add the semantic and temporal edges to the
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graph. After applying edge convolution on the constructed graph, we can obtain
a shot-level feature sequence.

5.2.2.4 Implementation of the Modules

Both intent and summary modules are implemented based on GSE-GCN with
different inputs and outputs. The summary module performs element-wise multi-
plication on the intent embedding and the Local-GCN-processed shot features to
get a similarity vector. Then it exploits an MLP with Sigmoid activation to gener-
ate the selection probability of shots. By comparison, the intent module exploits
an MLP head with Softmax to generate the intent distribution. Since the intent
module is designed for the queries of different modalities, there is a slight difference
between the visual-query and textual-query. The intent module for textual query
strictly follows the GSE-GCN structure, while the intent module for the visual
query models the query shots as individual vertices instead of one merged vertex.

5.3 Experiments

Video-1 Video-2 Video-3 Video-4 Avg.Method Pre. Rec. F-1 Pre. Rec. F-1 Pre. Rec. F-1 Pre. Rec. F-1 Pre. Rec. F-1
QC-DPP [266] 49.86 53.38 48.68 33.71 62.09 41.66 55.16 29.24 36.51 21.39 63.12 29.96 40.03 60.25 44.19
CHAN [333] 54.73 46.57 49.14 45.92 50.26 46.53 59.75 64.53 58.65 25.23 51.16 33.42 46.40 53.13 46.94
HVN [118] 52.55 52.91 51.45 38.66 62.70 47.49 60.28 62.58 61.08 26.27 54.21 35.47 44.57 58.10 48.87
QSAN [332] 48.41 52.34 48.52 46.51 51.36 46.64 56.78 61.14 56.93 30.54 46.90 34.25 45.56 52.94 46.59
Nalla et al. [204] 54.58 52.51 50.96 48.12 52.15 48.28 58.48 61.66 58.41 37.40 43.90 39.18 49.64 52.55 49.20
Ours 62.19 45.23 51.27 50.43 57.81 53.48 73.45 53.56 61.58 28.24 56.47 37.25 53.58 53.27 50.90

Table 5.2: Textual Query Dataset: Comparison with the previous state-of-the-art
approaches.

Video-1 Video-2 Video-3 Video-4 Avg.Method Pre. Rec. F-1 Pre. Rec. F-1 Pre. Rec. F-1 Pre. Rec. F-1 Pre. Rec. F-1
Linear Baseline 59.24 45.33 49.75 21.49 26.71 23.62 56.09 44.42 49.22 14.44 33.1 19.77 37.82 37.39 35.59
Attention Baseline 45.01 33.96 37.71 38.86 48.01 41.09 57.7 48.75 50.66 18.00 41.5 24.75 39.89 43.06 38.55
Ours 58.17 44.91 49.43 42.52 52.69 46.64 65.45 51.92 57.49 21.15 49.23 29.19 46.82 49.69 45.69

Table 5.3: Visual Query Dataset: Comparison with the baselines.
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Figure 5.4: Prototype Overview. A: Summary View presents two temporal bar
charts, which shows the overall scores and the summarized shots. The bottom
bar chart shows the overview of all the shots, while the top bar chart zooms into
the detail decided by the brush in the bottom chart. B: Intent View list all the
basis intents with their probability, shot scores, and representative samples. The
samples are selected with the highest score. C: Preview View plays a GIF of
the user-hovering shot. In this case, the user hovers on the highlighted shot in
intent #12, which includes a room scenario. D: Query View allows the user to
change the query and makes the model rerun. E Evaluation View shows the
quantitative result of the summary.

5.3.1 Implementation Detail

We exploit PyTorch [219] to implement our model on an NVIDIA RTX 8000. We
have 20 basis intents, each represented by a 128-D embedding vector. For the
summary module, we employ a 3-layer GCN and a 3-layer MLP after the GCN
layers. We set the number of GCN layers and MLP layers as 2 and 3 for the intent
module. Models are trained by an Adam optimizer with a base learning rate of
1e-4. We employ a warm-up strategy [89] to linearly increase the learning rate
from 0 to the base learning rate in 10 epochs. After that, we reduce the learning
rate to one-tenth of the previous value every twenty epochs.
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5.3.2 Experiment Setting

5.3.2.1 Text Query Dataset

We conduct our text-query experiments on the query-driven video summariza-
tion dataset [266]. The dataset includes the four videos in UT Egocentric(UTE)
dataset[154]. Each of the videos (3-5 hours) is captured in daily life scenarios. Each
query in the dataset is represented by two concepts among the total 48 concepts.

5.3.2.2 Visual Query Dataset and Dataset Baselines

We build our visual-query dataset based on the text-query dataset. For each
annotated summarization, we employ the eigenvector centrality as the criteria to
pick the most representative shots as the query shots. Detailed examples and
descriptions can be found in the supplementary materials. As the visual query
dataset is newly introduced and no previous work exists, we compare our approach
with two baselines, i.e., linear prediction and attentional query model, which can
be founded in the supplementary.

5.3.2.3 Evaluation Protocol

To compare with the previous approaches fairly, we employ the semantic evaluation
protocol proposed by Sharghi et al.[266]. This protocol is based on the semantic
similarity between the machine-generated and the ground-truth video shots. The
similarity is generated through finding the maximum weight matching of the bi-
partite graph computed based on the semantic interception-over-union (IOU). The
summed weights of the matched shot pairs are used to compute precision, recall,
and F-1 measure. Note that for the visual query dataset, we mask out the query
shots in the evaluation stage. To evaluate the interactive intent, which involves the
human subjectivity, we develop a prototype and propose a case study in qualitative
analysis.

5.3.3 Comparative Analysis

The comparison among our method and SOTA methods for the Textual Query
Task can be found in Table 5.2. We observe that our method achieves the highest
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F-1 value of 50.90%. The result proves that our method can better identify the
correlation between the query and summary. We also present the experimental
result on the visual query task in Table 5.3. We find our method significantly
outperforms the baselines by 7%, although the general performance is inferior to
the performance on the text query task.

5.3.4 Ablation Analysis

We evaluate the effects of the proposed methods and find the optimum model
setting by an ablation study.

5.3.4.1 Ego-Graph Convolutional Networks

I.M. S.M. Pre. Rec. F-1
Transformer Transformer 44.82 44.52 42.68
Transformer Ego-GCN 49.00 47.89 46.15
Ego-GCN Transformer 47.09 47.26 44.75
Ego-GCN Ego-GCN 53.58 53.27 50.90

Table 5.4: Ablation study the proposed Ego-GCN. I.M. refers to the intent module
when S.M. refers to the summary module.

Our proposed Ego-GCN approach aligns the video segment features with the
query/intent. To validate the effectiveness, we replace Ego-GCN by the transformer-
based approach[279, 280, 379] in the intent and summary modules iteratively. The
experiment results can be found in Table 5.4. Our Ego-GCN can advance the model
performance when added to either intent or summary module.

5.3.4.2 Local GCN

Pathway Pre. Rec. F-1
Upsampling 38.04 37.48 35.88
Transpose Conv 47.53 47.41 45.18
Local GCN 53.58 53.27 50.90

Table 5.5: Ablation study for Local GCN.
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We employ Local GCN to recover the shot-level features from the segment-level

features. As shown in Figure 5.5, Local GCN’s performance is superior to bi-cubic
upsampling and transpose convolutional layer, which is used in [333].

5.3.4.3 GS-Pathway

Pathway Pre. Rec. F-1
Shot-Level Feature 47.45 45.38 44.40
Coarse-Granularity 47.40 47.66 45.15
Fine-Granularity 50.18 50.23 47.81
Full-Model 53.58 53.27 50.90

Table 5.6: Ablation study for the GS-Pathway. The pathway Shot-Level Feature
refers to the model that directly applies our Ego-GCN on the shot-level video
features.

To validate the effects of our GS-Pathway, we compare our model with three
variants with only one fixed pathway. We present the experiment results in Table
5.6. Our result shows our model surpasses the three variants, verifying the necessity
of attending the segment features of multi-granularity.

5.3.4.4 When to fusion the pathways?

Stage Pre. Rec. F-1
Early 53.58 53.27 50.90
Middle 49.53 48.66 46.66
Late 47.69 47.98 45.47

Table 5.7: Experiment result on the feature fusion stage.

The features of different pathways can fuse at different stages. To find the
optimum of the model, we compare the variants with different fusion strategies,
i.e, early, middle, late fusions. The early fusion strategy fusions the features before
the dot product shown in Fig. 5.2. The middle fusion and late fusion happen
before and after the MLP, respectively. As can be found in Table 5.7, fusion at
the early stage is the best choice.
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5.3.4.5 Do we need video as input of the intent modules?

Intent Module Pre. Rec. F-1
Video Agnostic 50.06 48.78 47.15
Query Attention 49.26 47.85 46.27
Full Model 53.58 53.27 50.90

Table 5.8: Experiments on the video inputs in the intent module.

Our intent module use both the query and video as input to predict the user
intent. However, the user intent can also solely rely on the user query, as some
users might not have time to browse the original videos. Thus, it is necessary to
learn if we can remove the video inputs from the intent module and let it infer only
based on the user query. To do so, we compare the full model with two variants
using a simpler intent module and a video-agnostic intent module. We present the
experiment result in Table 5.8. Though there is a marginal performance decrease,
the model with a video-agnostic intent module still outperforms most of the pre-
vious state-of-the-art approaches. The result shows it is reasonable to remove the
video input for the intent module to promote the model’s generalizability.

5.3.4.6 Can we transfer the summary module between different datasets?

Training Pre. Rec. F-1
Canonical 46.82 49.69 45.69
Transferring 47.15 51.08 46.40

Table 5.9: Experiment on visual query task with transfer learning.

To validate the generality of the summary module, we experiment on the visual-
query task in the transferring setting. We first train the summary module on
the text-query dataset. Then, we reuse this pre-trained summary module and
only train the intent module for the visual-query task. The results can be found
in Table 5.9. The experiment result shows that the transferred model surpasses
the model trained in the canonical setting, showing that the summary module is
interchangeable for the queries of multi-modality.
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5.3.5 Prototype and Qualitative Analysis

We demonstrate the interactivity of our framework with a prototype as shown in
Fig. 5.4. The prototype can also work as qualitative analysis, to prove that our
approach can generate the query-related summary with better interpretability. In
the figure, we show an example case. The snapshot is taken when the user queries
“Food” and “Room” for video-3. Note here we set that the user input is always
two queries in our design of the prototype, although the proposed framework can
deal with other numbers of queries. The user first brushes on the result view and
focuses on the clip where more shots are captured in the summary. Based on the
Intent View (B), we can identify intent #18, #8, #12, #2, and #11 in descending
order. From the samples of each intent, we find the #intent #18 and #8 are
closely related to the food cooking scenarios when #11 contains some food storage
scenarios. The #12 and #2 are more likely to focus on the room scenarios. We
also observe that there are some computer frames in #12 and #2. Previewing the
related shot, we notice that the computer is the foreground object of the room, as
Fig. 5.4. C shows. Thus, the snapshot shows that our model successfully captures
the food and room scenarios. We can find that there are two types of food scenarios
identified, i.e., food cooking and food storage. This finding also shows that our
approach can provide finer-grained user intent representation.

5.4 Final Considerations
In this chapter, we propose IntentVizor, an interactive video summarization frame-
work guided by the generic query. First, our framework introduces a novel concept
“intent”, which originally comes from the Information Retrieval (IR) community,
to represent the multi-modality queries. Second, we develop a prototype to make
the proposed framework interactive with the user. The user can control the intent
to generate summaries satisfying their needs. Third, for the model part, two novel
intent/summary modules are designed to better understand the generic queries and
generate summaries accordingly/adaptively. Both quantitative and qualitative ex-
periment results verify the superiority of our proposed approach. Four ablation
studies also verify more potential extensibility of the proposed framework. For fu-
ture work, we will solve the limitation above, and introduce more query modalities
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to better satisfy users’ video summarization needs. IntentVizor serves as the foun-
dation for the proposed work in Chapter 6, where the interactive summarization
process is further employed and expanded.
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Chapter 6

InsightAR: A Tool for
Multimodal Summarization and
Interactive Analysis of AR-based
Egocentric Task Videos

6.1 Introduction

GPT-Powered Summarizer

Step 1: measure the water ...
Measuring cupAction: Pour water 

<Step desc = “measure the water”>
 <Action type=”Pour water”/> 
 <Object type=”ingredient”/>...
</Step>

Step 2: prepare the �lter ...

Step 3: weight the co�ee bean...

Visual Summary

User
Step 3 Performer 

Skill

GPT-Powered
Summarizer

Analyzed Insights

Summary V1

Vague

Summary V2

Re�ned

Summary V3

Complete

Summary UI

Iterative Summary

PresentFeedback

Interact
Video Task Procedure

Measure 12 ounces of cold water and ...
While water boiling, assemble ...
Prepare the �lter insert by folding ...

C: Interactive Summarization and AnalysisB: Summarization Pipeline
A: AR Task Guidance

Figure 6.1: InsightAR, a visual analytics tool for AR-based egocentric task video
analysis. (A) The system captures real-world task guidance in AR, where users
follow step-by-step instructions during hands-on activities. (B) The summarization
pipeline integrates video understanding with language models to extract structured
procedures and generate visual and textual summaries of task steps. (C) The
interactive summarization and analysis interface enables users to iteratively refine
summaries, identify key insights (e.g., errors or skills), and compare performance
over multiple iterations.



117
The growing adoption of head-mounted devices such as wearable cameras [282],

smart glasses [359], and augmented reality (AR) headsets [218, 305], has made ego-
centric video recording an increasingly popular method for capturing task perfor-
mance. These recordings are used to document daily tasks, such as cooking [193]
and driving [102, 186], as well as domain-specific tasks, including surgical opera-
tions [150, 192, 253] and industrial assembly [261]. By offering a first-person per-
spective of users’ interactions with their environment and tools—such as surgical
instruments, or manufacturing equipment—egocentric videos can help users iden-
tify their performance errors and potential areas for improvement. For instance,
in auto repair, inspectors can use AR glasses to record machine inspections, which
are later analyzed to detect execution errors [64, 262].

Despite the surge in egocentric recordings across various domains, analyzing
them remains a labor-intensive and error-prone manual process due to the lack of
tools tailored for task-oriented egocentric videos. Most existing systems are de-
signed for third-person footage and fail to address challenges unique to egocentric
videos—such as constant camera motion, abrupt viewpoint shifts, and frequent
occlusions of manipulated objects. General-purpose visual analytics tools [260] are
also limited when adapting to vision calibration or shifting perspectives within
egocentric videos. While recent advances in computer vision have improved low-
level video understanding (such as saliency, optical flow, and action recognition) of
egocentric videos [152, 262], they remain insufficient for deeper contextual analysis
of complex tasks, such as deviations from standard procedures. Egocentric videos
uniquely capture fine-grained human-object interactions critical for training and
assessment, but current AI-based tools—often built on non-egocentric data—do
not capture the nuanced interaction richness of task execution [309]. Further-
more, these tools focus on broad analysis like user emotions or overall perfor-
mance [97, 355], rather than assessing procedural adherence and errors critical for
domain-specific insights. Moreover, existing video summarization and multimoda
analysis tools either lack interactivity or fail to preserve the semantic structure
of tasks [96, 115]. To our knowledge, there are no interactive visual analytics
tools to support summarization and multimodal analysis of egocentric videos in
task-oriented contexts, pointing to a critical gap in current research.

We bridge this gap through InsightAR, a visual tool for analyzing egocentric
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task videos using multimodal summarization and interactive analysis shown in Fig-
ure 6.1. To understand the design requirements for such a tool, we first conducted
a formative study with 4 domain experts, including cooking instructors, surgical
training supervisors, and industrial process analysts. Through semi-structured in-
terviews, we explored their workflows and identified their needs for analyzing task-
performance videos. Our findings revealed that users need tools that can: (a) au-
tomatically extract and summarize key events and highlights from task recordings,
(b) align video content with task-specific domain knowledge, and (c) support in-
teractive analysis of multimodal summaries to generate actionable insights.

Based on the findings from the formative study, we developed InsightAR, which
has two main components - multimodal summarization and interactive analysis. To
generate multimodal task video summaries, users record their tasks using AR or
smart glasses and upload the footage to InsightAR. The system processes the data
through three analytical pipelines, each operating at a different level of granularity.
First, an overview-level summary provides a visual synopsis with key shots and
a textual narrative, generated using a contrastive learning-based model (trained
on the SUMME and Epic-Kitchen datasets [98, 123]), enabling users to understand
the task flow without watching the entire video. Second, a step-level summary
is created using the same model at a higher frame rate to capture key moments in
greater detail, using a large language model (LLM) to generate captions for each
keyframe and highlight mistakes or provide suggestions for improvement. Third,
a timeline summary is generated that identifies key events, actions, errors, and
anomalies using an ensemble of vision models (including BLIP [165]), to assist
users to detect workflow inefficiencies and deviations from optimal performance.
These summaries are presented in a web-based interface with an interactive an-
alytical tool. Users can use this tool to study their performance through three
interconnected views: the summary view that enables quick navigation through
key segments by aligning visual highlights with textual descriptions and metadata;
the task knowledge graph that supports comparison of task execution against
standard procedures, automatically detecting discrepancies, errors, or missed steps;
and the annotation view lets users to document insights, create time-linked notes,
and compile observations for training or performance improvement.

To evaluate InsightAR’s effectiveness, we conducted two case studies in cooking
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and medical training domains, along with a user study involving 16 participants.
These evaluations demonstrate how users can identify procedural improvements
and performance gaps through our system. We also performed a technical eval-
uation to assess the accuracy of our generated summaries. An overview of our
approach and visual analytics components is illustrated in Figure 6.1.

In summary, our main contributions in this chapter are:

1. InsightAR, a tool for summarizing and analyzing egocentric task recordings.
InsightAR generates multimodal video summaries by combining computer
vision and multimodal LLM, and has an interactive interface for users to
study and refine these summaries with varied granularity of insights.

2. A formative study with domain experts. We conducted semi-structured inter-
views with experts in cooking, surgical training, and industrial workflows to
inform the design of InsightAR and identify key requirements for analyzing
egocentric task videos.

3. Two case studies in medical and aviation domains showing the generalizabil-
ity and application of our approach across distinct task-driven environments.

4. A user study with 16 participants. We evaluate the usability and effectiveness
of InsightAR in supporting task analysis, procedural review, and insight
generation

6.2 Formative Study
To guide the design of our egocentric task-video analysis tool, we conducted a
formative study involving interviews with four domain experts (E1–E4). The
study aimed to:

G1: Understand the current manual and automated workflows used by experts
to analyze task recordings.

G2: Explore how multimodal summaries can support task analysis, and identify
what information and strategies are needed to incorporate domain knowl-
edge.
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G3: Identify key features and capabilities that would make a task analysis system

more effective for domain experts.

Expert Participants. E1 has six years of experience in AR-based pilot training
and aerospace software development. E2 is an AR task guidance developer focused
on medical training, with expertise in task recording analysis. E3 and E4 are
AR/VR researchers with top-tier publications and extensive experience in AR user
behavior, task guidance, and recording analysis.
Study Protocol. Each interview lasted 75 minutes and was divided into three
phases: (1) a 15-minute familiarization phase to discuss their workflows and fre-
quency of task recording analysis, (2) a 45-minute interview to identify domain-
specific analysis needs, including preferred summaries and autogenerated insights,
and (3) a 10-minute brainstorming session where experts sketched their ideal in-
terface for video task analysis.

6.2.1 Analysis:

We synthesized expert feedback into the following key insights that shaped the
design requirements of our system:

6.2.1.1 Analyzing egocentric task videos is essential for designing task
guidance systems, yet existing workflows are often labor-intensive:

All experts, with prior experience in AR-based task guidance, recognized the value
of AR task recordings for post-hoc performance analysis and skill improvement.
E2 noted that “military personnel [can] practice medical skills [...] with HoloLens
and can watch their own recordings to improve the skills.” and further emphasized
that “looking into the made mistakes and unconscious actions, there are a lot of
lessons can be learned [by the users].” This aligns with prior research showing
task recordings help extract lessons and enhance performance [150, 186]. However,
the process remains labor-intensive, requiring manual review, segmentation, and
annotation, as E3 noted, “[currently], we have to manually watch the videos and
check every step [in the video].”
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6.2.1.2 Auto-summarization is useful for analysis and should provide

multi-modal and multi-granular analysis:

Experts emphasized the inefficiency of manually reviewing lengthy task record-
ings, underscoring the need for automated, structured summarization to support
analysis. E2 noted that “trainers may spend hours reviewing trainees’ recordings,
which is not sustainable (when the task scales up).” When we suggested video
summarization techniques as an option, experts confirmed that traditional sum-
marization methods, which extract keyframes based solely on representativeness,
are insufficient. Instead, they stressed the importance of a multimodal approach
that integrates key visual frames (i.e., key video frames showing critical actions)
with textual descriptions (explaining what is happening in the frames) to clarify
both what happened and why it matters. E4 stated that “seeing key moments
alongside explanations of what should be happening at each step helps quickly iden-
tify where trainees deviated from protocol.” Experts also noted that a single sum-
mary for the entire video is inadequate for structured task recordings divided into
sequential steps. E3 explained that “the [task] recording is naturally segmented
[in] different steps and the video-level summary may not be the best solution”,
pointing to the need for both overview and step-level summaries. Overview sum-
maries should cover the entire process, highlighting key or erroneous steps, while
step-level summaries should include detailed analysis of actions, objects, and hand
movements [323]. E4 reinforced this need for detailed step-level information, not-
ing that “there are a lot of features we can use for the step-level summary, such as
the actions and events.” Overall, expert feedback underscored that egocentric task
recordings required a specialized summarization approach that integrated visual
and textual content at multiple levels of granularity, a capability lacking in generic
video summarization systems.

6.2.1.3 Analyzing time performance and task adherence for skill eval-
uation and error identification:

Our interviews revealed that time performance evaluation is crucial for assessing
skill levels in egocentric task recordings, with experts regularly analyzing time
spent on actions, tool use, and procedural steps. They stressed the need for ef-
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fective visualization of time metrics, such as a dashboard, which E4 described as
“a common practice [...] to evaluate the person’s skill with the particular action”.
Task adherence is also key to evaluating task completion, with deviations signaling
potential mistakes. E1 emphasized that failure to comply with aviation checklists
“may cause catastrophic consequences.” While basic adherence analysis can identify
obvious errors, experts noted it is inadequate for complex tasks with flexible order-
ing, where “the steps for a task may be arranged in different orders” (E2). This
flexibility makes linear task representations inadequate for proper error detection.
In E2’s example of emergency medical training, proper tourniquet preparation is
a prerequisite for its application. This highlights the need for visualizations that
clearly represent prerequisite relationships between task steps to ensure accurate
task execution.

6.2.1.4 Seamless toggle between video content and procedural informa-
tion required for efficient analysis:

Experts struggled to assess task step adherence due to the disconnect between video
content and procedural documentation, often relying on manual cross-referencing—
a process described as “frequently switching between the procedural book and the
video player” (E3). To address this, they requested a system displaying video and
task procedures side-by-side with clear visual links between segments, steps, ac-
tions, and objects. They emphasized interactive navigation—selecting procedural
elements to jump to relevant video parts, and vice versa. E2 highlighted the need
to examine common error points by clicking on procedural steps: “there are some
places where users easily made mistakes and we need to quickly locate them [from
the task manual].” Likewise, E3 emphasized verifying preconditions via backtrack-
ing: “check if pre-conditions are fulfilled by clicking on the previous step of the
one currently being analyzed.” These insights point to the need for an interactive
system that tightly integrates procedural knowledge and video for efficient error
detection and task validation.

6.2.1.5 Notes-taking and comparing recordings:

When asked about additional features for analysis, E4 suggested a notebook or
annotation panel for recording insights, while E2 proposed a comparative view to
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Figure 6.2: Workflow of InsightAR, illustrating the integration of backend process-
ing and the user interface. The backend pipeline (left) performs procedural segmen-
tation of egocentric AR task videos using action recognition and object detection,
which are then structured by a summarizer developed on GPT4 into step-wise de-
scriptions with substeps and XML outputs. The processed data is visualized in
the user interface (right), which includes: an overview-level summary combining
textual and visual highlights; step-level summaries for detailed task breakdown;
a multi-modal summary that integrates visual and procedural information; and a
task procedure flow that traces step dependencies and object transitions across the
workflow. These linked views support efficient, interpretable analysis of complex
AR task performances.

analyze multiple recordings, such as comparing a user’s performance with expe-
rienced practitioners. E1 emphasized the importance of task recordings for op-
timizing procedures, noting that task steps may need reordering based on action
dependencies, like adding hot water before a tea bag. This feedback emphasizes the
need for tools that visualize task dependencies and enable inter-video comparisons
for procedural optimization.
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6.2.1.6 Human-AI collaborative summarization for accurate insights:

Machine-generated video summaries often focus on low-level information and can
be inaccurate, especially for egocentric task recordings that require domain exper-
tise for higher-level insights. Our interviews revealed a need for a process that
combines automated analysis with human input. E3 emphasized the importance
of allowing “users have control on the summarized result”, and both E2 and E3 em-
phasized integrating user-generated annotations with system-generated summaries
for a more comprehensive analysis. Experts agreed that a collaborative approach
between automated systems and human experts could produce more accurate and
actionable insights than either could provide independently.

6.2.2 Design Requirements

Based on the above insights, we inferred that our tool should:

DR1 Provide multi-modal and multi-granularity summaries. To allow users to
efficiently analyze lengthy task recordings, our system should generate vi-
sual summaries (keyframes) and textual descriptions at different levels: an
overview-level summary of the entire workflow and a step-level summary that
breaks down the video into specific actions and objects. This would let users
quickly identify key segments, spot procedural errors, and check detailed
steps if needed.

DR2 Synchronize video content with task procedures through bidirectional navi-
gation. To allow users to efficiently identify procedural errors, verify step
completion, and understand action sequences without manually correlating
video content with the task document, the system should synchronize video
content with task procedures through bidirectional navigation between video
segments to their corresponding steps. This feature could map video seg-
ments to their corresponding steps allowing users to click it to highlight the
related procedural step, and vice versa.

DR3 Support iterative summarization through the human-LLM collaboration. To
allow users to refine task analysis, the system should dynamically incorporate
user annotations into existing video summaries. The system should enable
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users to provide high-level insights, such as detecting errors and potential
task improvements, which are used to re-summarize the video content. If the
initial summary contains inaccuracies, user annotations on specific actions,
steps, and objects should update the summary. This interactive approach
could enhance the accuracy of the summaries by combining automated pro-
cessing with user-driven insights.

These design requirements guided the development of our tool, InsightAR,
which we detail in the following section.

6.3 InsightAR: A Visual Analytics Tool
We present InsightAR, a visual analytics tool for egocentric task recordings em-
bedded with two core functionalities - multi-modal summarization and interactive
analysis. This section outlines InsightAR’s core components, workflow, and key
UI features.

6.3.1 System Overview:

6.3.1.1 Multi-modal Summarization of Task Videos:

To generate multi-modal task video summaries, users record their tasks using AR
or smart glasses and upload the footage to InsightAR, which processes it through
three analytical pipelines, each offering summaries at different levels of granularity.
(a) An overview-level summary is generated as a visual synopsis with key shots
and a textual narrative, allowing users to grasp the task flow without watching
the full video. The workflow and UI overview are presented in Figure 6.2. For
this summary, we use a contrastive learning-based video summarization model
trained on the SUMME and Epic-Kitchen datasets [98, 123]. (b) A step-level
summary generated using the same model at a higher frame rate to extract key
moments with greater detail. An LLM then generates captions for each keyframe
and presents a breakdown of the task steps to highlight steps with mistakes and
identify areas for improvement. (c) A timeline summary is generated with details
about key events, actions, errors, or unforced anomalies throughout the video to
help users identify workflow inefficiencies and exact moments of deviations from
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optimal performance. This summary is generated using an ensemble of vision
models, including BLIP [165]. These multi-modal summaries are then presented
in a web-based portal along with the analysis module for users to review their
performance further (DR1)

6.3.1.2 Interactive Analysis of Summaries:

For further analysis and enabling the requirements from Section DR3, users can use
InsightAR’s web-based interactive module using three interconnected views. Using
the summary view, users can quickly identify important segments, understand their
context within the task, and efficiently navigate through specific moments without
watching the entire recording. The system facilitates this exploration by visually
aligning key moments with their textual descriptions and relevant metadata. Next,
using a task knowledge graph, users can compare their task execution against the
order of steps and actions of standard procedures to identify discrepancies, errors,
or missed steps (DR2). For example, when analyzing a coffee-making task, users
can immediately spot if they attempted to pour water without first placing a cup,
as the system highlights discrepancies between the expected and observed task
flow. Finally, using an annotation view, users can document their observations
and generate insights. As they identify areas for improvement, users create and
edit notes that the system automatically synchronizes with the video timeline.
Using this view, users can record observations to review later or share with others.

6.3.2 UI Walkthrough and Features:

To demonstrate how InsightAR supports egocentric video analysis, we present a
typical workflow using a pour-over coffee-making recording as our example.

6.3.2.1 Loading and Processing a Recording:

To start, users can upload their egocentric video recordings to InsightAR’s user
interface. For our coffee-making example, the user uploads a ∼10-minute record-
ing captured via HoloLens 2 showing the complete pour-over coffee preparation
process. InsightAR automatically processes the video through our multi-modal
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summarization pipeline, extracting actions, objects, and segmenting the recording
into distinct steps.

6.3.2.2 Exploring the Multi-Modal Summary:

After the processing is completed, InsightAR presents the user with the multi-
modal summary view shown in Figure 6.3. For our coffee example, this view
organizes the task into seven key steps, from measuring water to the final pour-over
coffee grounds. Each step provides an AI-generated illustration of the expected
action and the representative keyframes extracted from that step. The interface
also shows the object and action tags (such as “measuring cup” and “pour water”)
along with a textual description of the step that can be adjusted for detail level.
The user can toggle between overview and step-level summaries using the toggle
at the top of the interface, allowing them to either grasp the entire coffee-making
process quickly or examine each step in detail.

Figure 6.3: Step-level summary shows the step-based video summaries of both
textual and visual modalities. The user can switch between this and the overview-
level summary.
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6.3.2.3 Analyzing Task Flow:

To further understand step dependencies with the task, the user can switch to the
Task Flow View shown in Figure 6.4. This visualization reveals how objects like the
kettle, filter, and coffee grounds update states through different steps throughout
the task. The user can observe that our system updates the kettle’s state from
“unprepared” to “prepared” when filled with water, and finally to “used” during
the pouring action. The timeline view shows precise timestamps of the steps, for
example, revealing that heating water consumed the most time (45 seconds) in the
process. When the user clicks on a specific step node (e.g., “fold paper filter”),
the system highlights related components and automatically displays the video
player for playing the corresponding segment, allowing the user to further verify
the proper technique of that step.

Figure 6.4: Task Flow View illustrates the dependencies between procedural
steps as defined by the states of objects (unprepared, prepared, and used). Steps
are represented by illustrations generated by DALLE-2. Lines connecting the nodes
indicate dependencies between the steps. The diagram reflects the state of each
object at the corresponding step. The duration of each step is displayed on the
timeline above.

6.3.2.4 Reviewing Timeline Details:

For a chronological analysis of the steps, the user can explore the Video Timeline
View shown in Figure 6.5. This view breaks down the coffee-making process into
consecutive three-second segments with aligned events, actions, and objects. If
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the user makes an error, for example, pour water before checking the water tem-
perature, then they are shown an error marker in the segment of that erroneous
step. By clicking this segment, they’re taken directly to that point in the video to
observe their mistake. In this way, they can easily identify missteps, errors, and
opportunities for improvement.

Figure 6.5: Video event timelines for chronological analysis show the captions of
each video segment of ∼3 seconds and the associated events, objects, and errors.

6.3.2.5 Interactive Features Across Views

During analysis, the user can benefit from synchronized interactions across all
views. When they identify a potential issue in the timeline (for example, spending
too much time folding the filter), they can click on the corresponding segment
to view the video evidence, reference the knowledge graph to verify if this step
follows the correct sequence, compare their performance against reference record-
ings from expert baristas, and add annotations to document insights for future
improvement. This integrated approach allows the user to efficiently identify ar-
eas for improvement in their coffee-making technique without watching the entire
recording multiple times.
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Figure 6.6: Backend pipeline of InsightAR for multi-modal summarization. The
system begins with a frame sampler that extracts representative frames from the
input egocentric video. These are analyzed at multiple levels: full video clips for
summarization and captioning, segments for action recognition (e.g., Egoism-HOI),
and individual frames for object detection (e.g., YOLO). The extracted low-level
visual features are passed to a LLM-based summarizer, which performs: (1) output
validation to ensure context-appropriate recognition, (2) feature organization into
a timeline-aligned XML structure, (3) analytical reasoning to identify key steps,
errors, and improvements, and (4) generation of structured task documentation
combining textual, visual, and semantic insights.

6.4 InsightAR’s Backend Processing Pipeline
This section describes our machine learning-based pipeline for generating sum-
maries from egocentric videos: extracting low-level features (actions, objects, and
segments), using contrastive learning for visual summarization, and integrating
these with LLM-generated text into a unified, interactive multi-modal summary.

6.4.1 Extracting Low-level Visual Features

6.4.1.1 Event, Action and Object Detection:

Figure 6.6 gives the overview of our pipeline to support G1, where we extract the
action, object, event, and dense captions using computer vision. As the resulting
outputs can be noisy due to imperfect CV models, we use a GPT-4 to analyze and
correct predictions that contradict common sense.
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6.4.1.2 Action Recognition:

Egocentric tasks involve unique actions not well-covered by datasets like Kinetics-
400 [39, 122] and Activity-Net [358]. Instead, we leverage few-shot or zero-shot
action recognition with custom labels via vision-language models [79, 247]. We use
EgoVLP as our base model for action recognition, as it is pre-trained on egocentric
datasets and learns joint text-video representations via contrastive learning [172].
Our system are tuned on a GPT4 model to generate candidate actions based on
the task procedure book [294], cooking and assembling(Wikihow1).

6.4.1.3 Human Object Interaction:

The interaction between the task performer and object is important for the perfor-
mance evaluation [286]. To identify the object that the performer interacts with,
we incorporate Egoism-HOI, a model designed to discern and categorize objects
that users interact with [155]2. Egoism-HOI is trained to detect the objects in the
egocentric videos.

6.4.1.4 Procedural Segmentation:

Procedural segmentation involves partitioning videos into distinct segments cor-
responding to specific sub-tasks, to ensure that the summary reflects the logical
sequence of actions. We achieve this by using both rule-based step prediction and
pre-trained vision-language models (VLMs). While the rule-based method offers
robustness, it lacks generalizability. In contrast, VLMs, such as EILEV [352], pro-
vide better generalizability but are less robust. We combine rule-based approaches
with a state-of-the-art VLM EILEV [352] for better segmentation results. EILEV
takes input from the combinations of video snippets and textual queries to un-
derstand specific procedural steps. Using a sliding window approach, this model
processes queries like “Does the step [STEP_DESCRIPTION] finish in the video?”,
updating the placeholder with each task description. EILEV can accurately iden-
tify the boundaries between different steps of the procedure, ensureing alignment

1https://www.wikihow.com/Main-Page
2Egoism-HOI is the name of the proposed data in [155]. Since there is no explicit name for

the model proposed, we refer Egoism-HOI to the model.
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of each video segment task steps and improving the clarity and usability of the
video summary.

6.4.1.5 Textual Summary:

Taking the outputs from action recognition, human-object interaction detection,
and procedural segmentation, we then use the GPT-4 model to compile a struc-
tured document of the recording. As these outputs may contain noise or inac-
curacies, especially when the recording data deviates from the models’ training
domains, we first prompt GPT-4 to validate the results against common sense.
For example, if the action recognition model misidentifies pour water as pour beer
in a coffee-making task, GPT-4 corrects the error using its extensive knowledge
base. After validation, GPT-4 organizes the refined results into an XML-formatted
document, structuring the video into distinct procedural steps while cataloging rel-
evant actions and objects for each phase of the task (Figure 6.6).

6.4.2 Generating Multi-Granular Video Summaries

To support G2, users need video summaries to quickly skim recordings. Tradi-
tional video summarization selects representative frames from the full video using
a summarizer ϕ,

s := {f ∈ v} = ϕ(v),v = {f1,f2, · · · ,fT } (6.1)

However, to meet DR1, we require segment-specific summaries that highlight
contrastive aspects of a given step compared to the rest of the video. For a query
segment q = {fta , · · ·ftb

} defined by the segment range {ta, tb}, summarization is
reformulated as:

s= {ft|ft ∈ v, t≥ a,t≤ b,} = ϕ(v, ta, tb), (6.2)

Conventional methods lack this contextual focus, failing to emphasize what
makes a segment unique.

To ensure both the representativeness and contrastiveness of the generated
video summary, we introduce a novel self-supervised video summarization
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framework that utilizes adversarial reconstruction and contrastive learn-
ing. This framework employs an adversarial approach to train a summarizer that
can generate a summary capturing the information essential to reconstruct the orig-
inal video [184, 324]. Thus, the generated summary is ensured to be representative.
Contrastive learning aims to learn the representation by contrasting positive and
negative pairs of samples. Positive pairs are constructed using in-query frames
and the generated summary s, while negative pairs are formed by contrasting the
generated summaries with frames sampled from the remainder of the video.

6.4.2.1 Adversarial Learning:

We adopt an adversarial training approach for the video summarizer, following
prior work [184, 324]. Each video frame ft is encoded via ResNet-50 to obtain
embeddings rt. A query segment q is encoded using an LSTM encoder ψencoder to
get eq. The summarizer ϕ generates a summary s, which is then passed through
an LSTM-based reconstructor ψrecon to produce a reconstructed embedding er. A
discriminator ψdiscriminator, also an LSTM, distinguishes between real (encoded)
and reconstructed embeddings: yr = ψdiscriminator(er),yq = ψdiscriminator(uq), and
the GAN loss is:

LGAN = logyq − log(1−yr). (6.3)

We train the discriminator to distinguish encoded from reconstructed features
by minimizing −LGAN , and simultaneously train the encoder, reconstructor, and
summarizer to minimize LGAN , encouraging the summarizer to generate represen-
tative summaries whose reconstructions are indistinguishable from real features.

6.4.2.2 Contrastive Learning:

Our contrastive samples are generated by sampling the query segment q and the
rest of the video, which is not in q. We re-use the feature encoder ψencoder to
generate the features of sampled frames. We use a uniform random sample function
h(.) to select the frames randomly from a video segment.

• epos = ψencoder(h(q)) for an embedding of a positive sample (a sub-segment
within the query segment q).
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• eneg =ψencoder(h(v\q)) for an embedding of a negative sample (a sub-segment

from outside Q).

• eanchor = ψencoder(s) for an embedding of the anchor point, which is the
embedding of the generated summary in our problem.

The similarity measure between two embeddings ei and ej is defined as the
cosine similarity:

sim(ei, ej) = ei · ej

∥ei∥∥ej∥
(6.4)

The model aims to make the anchor closer to its positive samples than to any
negative sample, defining a contrastive learning scenario.

Lsim = − log exp(sim(eanchor, epos)/τ)
exp(sim(eanchor, epos)/τ)+ ∑N

n=1 exp(sim(eanchor, e
(n)
neg)/τ)

(6.5)

where τ represents a temperature parameter that scales the similarities, and N is
the number of negative samples.

We can optimize the summarizer by combining Lsim and LGAN. We implement
our models using PyTorch. The model is trained using the Adam optimizer with
a learning rate of 1 × 10−3 and a weight decay of 5 × 10−4. We set τ = 0.3 and
N = 8 in the contrastive learning setting.

6.4.3 Combining LLM-Based Summarization with User Feed-
back

InsightAR allows users to edit identified events, actions, and descriptions via a
visual interface. These modifications are sent back to the LLM, which regenerates
the summary incorporating user feedback, enabling domain experts to refine au-
tomated analyses. To improve reasoning capabilities, InsightAR integrates chain-
of-thought prompting techniques with the LLM [319] and implements tool-usage
functionality that allows GPT to call InsightAR’s backend APIs for extracting
actions from specific video ranges [167]. For example, if the summarizer detects a
potential discrepancy—such as a missing object in a required step—it can query
the object detection model to verify the observation. By combining the seman-
tic understanding of LLMs with the perceptual strengths of vision models, In-
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sightAR ensures increasingly accurate multi-modal summaries through iterative
human-AI collaboration.

6.4.4 Technical Implementation

InsightAR uses a containerized architecture with Docker for consistent deploy-
ment across environments. We built the backend with Flask to handle video
processing requests and API endpoints. MongoDB stores processed video data,
annotations, and user insights. We implemented this backend pipeline with Py-
Torch and Hugging Face Transformers to process human-object interactions by
downsampling videos to 2 frames per second (fps). For procedural segmentation
and action recognition, we used a sliding window approach with 4-second segments
and a 2-second stride to detect procedure completions. The system runs on dedi-
cated hardware with two NVIDIA RTX 8000 GPUs (48GB VRAM each), thus en-
abling parallel video analysis while maintaining real-time responsiveness. We used
CUDA acceleration for computer vision tasks, and OpenAI’s commercial API to ac-
cess multi-modal language models. The microservices-based architecture separates
video processing, knowledge extraction, and UI components, ensuring scalability
and maintainability. We enforced secure data access through RESTful APIs with
authentication. For the frontend, we used React.js for component-based UI ren-
dering and D3.js for interactive visualizations, including timelines and knowledge
graphs.
Summary: In summary, InsightAR has a machine learning-based backend that
integrates action recognition, human-object interaction detection, and procedural
segmentation to generate multi-modal video summaries. Our technical contribu-
tions include enhancing procedural segmentation by combining rule-based predic-
tion with vision-language models like EILEV for robustness and generalizability.
For action recognition, we leverage EgoVLP and fine-tune LLAMA-13B with task-
specific labels. The system supports human-AI collaboration by allowing experts
to refine summaries through annotations and resummarization.
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6.5 Case Study Evaluation with Domain Experts
We now demonstrate how InsightAR generalizes to specialized domains through
two case study applications: medical training and pilot training. We developed
these applications in collaboration with domain experts from our formative study.

6.5.1 Case I: Assessing Task Performance for Battlefield
Medical Training

Context: We collaborated with battlefield medical training experts to examine
how InsightAR could support the analysis of emergency medical procedures. For
these procedures, trainees typically practice skills such as tourniquet application
and emergency rescue while wearing head-mounted devices like HoloLens 2, which
provide task guidance and record the procedures for later review.
Data Collection: Our medical training expert provided a dataset containing
recordings of ten different medical tasks, including nasopharyngeal airway
(NPA) insertion, trauma assessment, tourniquet application, pressure dressing,
wound packing, X-Stat application, bag valve mask ventilation, chest seal applica-
tion, and needle chest decompression. Each task collection contained 10-20 videos
along with corresponding procedural documentation. We processed these record-
ings using InsightAR and organized them into collections based on task type.
Analysis using InsightAR: In the following evaluation process, we use Bob to
refer to the user. During evaluation, Bob analyzed tourniquet application and
trauma assessment tasks using InsightAR. For the tourniquet task, he confirmed
step completeness in the overview summary and identified a missed action, “hands
twist windlass,” through the step breakdown. Using annotations, he documented
the error, prompting the system to re-summarize the video with prioritized insights.
In the trauma assessment, Bob used the recording collection view to compare per-
formance metrics, identifying anomalies in step durations. He verified an incor-
rectly executed “Rake chest” step by reviewing linked footage and annotating the
error. This case study demonstrates how InsightAR efficient error detec-
tion, targeted feedback, and comparative analysis through multi-level
summarization for a training task in a specialized domain like battlefield
medical training. The case study interface is shown in Figure 6.7.
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A: Control Panel and VIdeo Player B: Analysis with the Caption View

C: Event Timeline D: Sample Frames

Before task Sweep leg Look Listen Feel Breathing

Rake chest Rake the back Check pulse

Figure 6.7: Case study on InsightAR for the medical task recording analysis. This
case study demonstrates how InsightAR assists in evaluating medical procedures
by analyzing egocentric video recordings from AR devices used during medical
training. (A) The user can use Control Panel to switch between the videos and
preview the video by Video Player. (B) The user can view the captions of the
medical procedure and identify the potential insights from the Analysis View. (C):
The user can use the Timeline to view the actions in the video. (D): The sample
frames from the medical training video are presented.

6.5.2 Case II: Optimizing Procedures for Pilot Training

Context: We conducted a second case study focusing on helicopter pilot training,
analyzing pre-flight and in-flight equipment check procedures in a high-fidelity
simulator.
Data Collection: We used a collection of helicopter pilot training recordings in
the simulator. The videos focus on the pre-flight phase.

We showcase how the pilot training expert user can use InsightAR to ana-
lyze recordings from pilots with varying experience levels (we use Amy to refer
the user). She begins by selecting the pre-flight phase collection and reviewing a
novice trainee’s overview-level summary to confirm all required procedural steps
were done, but a timeline visualization revealed an unusually long duration for
one step. Upon navigating to the step-level summary, Amy discovered the idle
time during which the trainee appeared inactive. She then confirmed via the syn-
chronized video player that the trainee hesitated due to unfamiliarity with the
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procedure, prompting her to annotate specific suggestions for improvement. For
comparative analysis, she then reviewed an experienced pilot’s recording, using the
Task Flow View to highlight and verify critical steps—confirming that common er-
rors were absent and that shorter durations indicated genuine efficiencies. Finally,
after documenting her assessment in the notes panel, InsightAR regenerated the
summary with her annotations. This case study shows how InsightAR sup-
ports comprehensive analysis of task recordings by enabling efficient
navigation between different levels of summary, facilitating comparison
across skill levels, and integrating expert comments into the analytical
process.

6.6 User Study Evaluation
To evaluate our system’s performance and user experience with the objective mea-
sures, we conducted a user study to evaluate the effectiveness by analyzing ego-
centric task recordings. This evaluation explores the benefit and efficacy of our
system in determining the errors and potentials of insight summation. We ask the
following research questions:

1. RQ1: Can our system facilitate users in identifying procedural errors and
support more efficient insight summarization?

2. RQ2: What are the user experiences, benefits, and limitations of using an
AI-assisted analysis system for multi-view, egocentric videos?

6.6.1 Experiment Design

The study is within-subjects with two conditions: (1) baseline: manual analy-
sis of egocentric videos using standard video players aided by a browser showing
the vision models’s output data and the summary generated by a state-of-the-art
video summarization model; and (2) InsightAR: using LLM-based automated
error identification and video insights summation. A Latin square is used to mit-
igate the order/learning effects. For task analysis, we deliberately selected two
egocentric coffee-making videos that had task performance errors. Each video con-
tained 5 predefined errors of varying types: procedural errors (e.g., incorrect step
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(a) NASA TLX Results (b) SUS experiment results

Figure 6.8: Comparison between baseline and InsightAR on (a) NASA TLX
metrics—mental demand, physical demand, temporal demand, effort, performance,
and frustration, and (b) System usability scales (SUS).

sequence), technique errors (e.g., improper tool handling), and time inefficiencies
(e.g., excessive dwelling between steps). Both videos were comparable in length
(approximately 3 minutes) and complexity (7-8 steps).

6.6.2 Participants

We recruited 16 participants (9 male, 7 female, 0 non-binary; ages 23-34) via
our institution’s mailing lists and professional networks. Among them, 13 had
experience in data visualization research and 16 in data analysis.

6.6.3 Tasks

Participants were asked to analyze two coffee-making videos using our InsightAR.
Specifically, they were instructed to: (1) identify any errors or inefficiencies in
the task performance, (2) document these issues with timestamps and write down
insights, and (3) suggest improvements based on their analysis. Each participant
completed two analysis sessions with a 5-minute break between conditions to pre-
vent fatigue.

6.6.4 Procedure

We conducted the study remotely. Each session lasted approximately 60 minutes
using the following procedure: First, participants completed an online consent
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form and a pre-study questionnaire about the demographic information and prior
experience with video analysis. Next, they familiarized themselves with the coffee-
making task and the reference instructions. They then viewed a visual tutorial
demonstrating InsightAR’s features to become acquainted with the interface. After
each condition, participants completed questionnaires measuring system usability
and task workload. The system usability was measured using the System Usability
Scale (SUS) with a 10-item questionnaire assessing perceived usability. The task
workload was measured using the NASA Task Load Index (NASA-TLX),assessing
the workload across six dimensions (mental demand, physical demand, temporal
demand, performance, effort, and frustration). Then, we also ask the questions on
their feedback on the system usage and experience.

6.6.5 Analysis and Results

We analyzed our quantitative data using Mann-Whitney test with a significance
level of α == 0.05, reporting effect sizes using Cohen’s d [86]. We analyzed the
numbers of errors and insights using Wilcoxon signed-rank tests, as count-based
data typically violates normality assumptions. The Likert-scale data from SUS and
NASA-TLX questionnaires were analyzed with non-parametric Wilcoxon signed-
rank tests. For error analysis, we use the procedure’s step guidance as ground truth;
actions or results of actions deviant from the guidance are considered errors. Each
error will only count once in a video. We ask the participant to note any factual
events, personal traits, and behavioral observations for insights. The experimenter
examined the insights to ensure they were relevant to the video.

6.6.5.1 Quantiative Results

NASA TLX results (Figure 6.8 (a)) reflect that InsightAR significantlyreduces
users’ temporal load and performance load compared to the baseline approach (p<
0.05, U = 184.50, z= 0.72). This reduction in cognitive load suggests that the multi-
modal summarization and interactive analysis components of InsightAR effectively
streamline the task video analysis process, allowing users to identify important
information more efficiently.

The SUS evaluation presented in Figure 6.8 (b) revealed that InsightAR achieved
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a better on the question on the user satisisfaction. This indicates that participants
found the system to be more effective. Notably, participants rated the higher
score on the system easy-to-use, suggesting that the interface design and interac-
tion methods of InsightAR were intuitive and accessible even for first-time users
with minimal training required.

Evaluation on error and insights identification showed that InsightAR iden-
tified significantly more insights ( p < 0.05, U = 76.00 and z = 0.36 ) than that of
the baseline. On average, InsightARhelped participants to identify (Ninsights =
2.19,STDinsights = 1.42) per video, which is about 17% more than that of the
baseline (Nerrors = 1.31, STDerrors = 0.77). For error analysis, we did not find
a significant effect on InsightAR(p = 0.093, U = 85.00, z = 0.33) than that of the
baseline. On average, InsightARfound (Nerrors = 2.12, STDerrors = 0.55) errors,
and the baseline (Nerrors = 1.00, STDerrors = 0.58).

6.6.5.2 Qualitative Results

The analysis of participant’s data revealed three key findings regarding improve-
ment on video summarization analysis, ability to retrieve insights, and multi-user
collaboration.
InsightAR enhanced multimodal video summarization and analysis Par-
ticipants reported that InsightAR enabled them to analyze egocentric recordings
more efficiently compared to manual methods. Rather than watching entire videos
sequentially, participants could use the multi-level summary views to quickly iden-
tify areas of interest. As P14 noted, “The step-level summary allows me to im-
mediately focus on interesting frames without watching the entire recording.” The
multimodal summaries provided complementary information through both visual
and textual formats, supporting different analytical approaches. Participants (P14,
P3, P10, P5) found these summary formats more engaging and useful for skimming
the video. P10 mentioned that “I can quickly understand the video by skimming
the textual and visual summaries together.” Additionally, participants highlighted
that the visual interface enables interaction with video summaries and connects
them with the original video content, transforming static summaries into engaging,
interactive presentation. For example, P10 added that “the dynamic presentation
(interaction on the summary view in the context) of the summaries is helpful”
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InsightAR supported deeper analytical insights through knowledge in-
tegration The integration of task domain knowledge with video content proved
particularly valuable for generating in-depth analytical insights. Participants ap-
preciated how the Task Flow View visualized dependencies between steps and ob-
ject states, helping them understand what errors occurred and why they occurred.
Comparing their performance with recordings from more experienced practition-
ers, participants were able to identify specific technique differences that would
have been difficult to notice through traditional video review. For example, in the
coffee-making case study, P11 identified that their excessive time on step 3 (fold-
ing paper filter) was due to an improper handling technique that became apparent
when compared with expert recordings. P11 added that “such timeline view clearly
shows the time patterns.” The system’s ability to align the recorded actions with
standard procedures through the knowledge graph allowed participants to detect
procedural deviations that might otherwise be overlooked in manual review. As P6
remarked, “That (Task Graph View) is an interesting way to inspire my memory
of the task workflow.”
InsightAR supported human-AI collaborative analysis The human-AI col-
laborative aspect of the analysis was useful as participants often used the system’s
automated findings as starting points, and then applied their domain knowledge
to interpret and expand upon these observations. The LLM summarizer would re-
summarize the video content based on the user’s annotated findings and insights.
This resulted in improved video summaries that were more helpful for enhanc-
ing task analysis results. For example, P6 mentioned that “The summary can be
refreshed (re-summarization) after I add the insights, which is cool.”

6.7 Discussion
We found that InsightAR significantly enhanced task analysis quality by enabling
users to identify more insights and errors (RQ1). The results showed that our
system helped uncover 21.20% more insights compared to manual analysis. This
improvement is driven by features such as multi-level summarization, the alignment
of visual content with task knowledge graphs, and an interactive timeline that facil-
itates efficient navigation between related steps, boosting confidence in analyzing
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complex tasks. Our user study feedback analysis confirms that InsightAR success-
fully addresses the design requirements identified in our formative study, providing
an effective tool for comprehensive task analysis from egocentric recordings. In the
following paragraphs, we discuss the user experience, benefits, limitations, and po-
tential of interacting with InsightAR (RQ2):
Expanding LLM’s capabilities. The effectiveness of InsightAR lies in its hybrid
architecture that combines low-level vision models with LLM-based summarization.
This structure oercomes the limitations of LLM-only approaches in identifying vi-
sual events and actions [313]. This design, similar to recent works that pair LLMs
with caption-based summaries [10], leverages specialized models (e.g., for action
recognition [39] and object detection [386]) to enrich video understanding. Such
paradigm can be expanded to other methods where video processing is required,
which is not an advantage of existing LLMs. This paradigm extends to applica-
tions like video-QA [356]—where LLMs require action and object data to answer
questions accurately. Similarly, in video-retrieval tasks [213], LLMs cannot di-
rectly parse a large set of video data efficiently, and vision models can produce the
necessary embeddings and feature representations for effective video retrieval and
comparison.
Automatically creating new task procedures. While InsightAR currently
works with predefined procedures, our backend pipeline could be extended to auto-
matically generate procedures from exemplar recordings. This capability would be
valuable in domains where formal documentation lags behind practiced expertise.
For example, in industrial settings, where expert technicians develop optimized
workflows before formalizing them [220], extracting procedural steps to draft docu-
mentation could capture tacit knowledge. This reverse workflow of deriving proce-
dures from practice, could accelerate knowledge transfer in rapidly evolving fields,
such as manufacturing, and preserve expertise that might otherwise be lost [46].
Human-in-the-Loop. InsightAR integrates human input into the analysis pro-
cess, enabling domain experts to augment system-generated summaries with crit-
ical contextual insights. In our cooking task case study, a participant noted that
excessive time on step 3 was due to unfamiliarity with equipment rather than pro-
cedural complexity—an insight that automated analysis alone missed. The insight
is also reflected in [373], where the authors noted that the LLM-based decision
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making may be not optimal and can be improved by the human participation.
This human-AI collaboration combines automated efficiency with expert’s contex-
tual understanding. The system’s annotation features allow users to document
these insights for future training and improvements. This approach overcomes the
limitations of fully automated systems that can fail to capture essential context.
Expanding to VR and stereo task guidance. For future, our approach can
be extended to other formats such as Virtual Reality (VR) [170, 278] and stereo
videos. For example, surgical training often employs stereo recordings to cap-
ture depth information crucial for procedural assessment, and while adapting In-
sightAR to these contexts requires specialized processing for 3D spatial data, the
core principles of procedural alignment and multi-modal summarization remain
applicable. As our medical training expert noted, “Having similar summary ca-
pabilities for our VR training simulations would significantly enhance debriefing
sessions,” enabling analysis of spatial interactions that that are difficult to capture
in traditional 2D recordings, potentially revealing insights about ergonomics and
efficiency in physical tasks that current approaches miss.
Potential for real-time analysis While InsightAR is currently designed for
post-task analysis, it can be expanded for real-time analysis to provide immedi-
ate feedback to users during task execution [264]. This brings new potentials
to training as instructors becomes more capable to intervene at critical moments
and enabling self-correction for trainees. Implementing real-time analysis presents
additional challenges in latency management, incomplete procedural information
handling, and balancing computational requirements under the limitations of AR
devices. By exploring edge computing solutions to analyze video streams locally
while offloading complex processing to cloud infrastructure, a hybrid system struc-
ture can be applied for both immediate feedback and comprehensive post-task
analysis.
Integrating reflection prompts to deepen understanding of performance.
Reflection is the process of critically thinking about one’s actions and decisions
to deepen understanding (for example, prompting users to consider not just what
happened, but why) and improve future performance [296, 299, 368]. Our sys-
tem lays the groundwork for embedding reflection prompts tied to performance
patterns (e.g., unusual time spent on particular steps) and allows users to docu-
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ment insights alongside objective data. These reflections can be added to video
summaries, enriching them with both behavioral and cognitive perspectives. This
could be valuable in training applications where mental processes matter as much
as physical task execution.

6.8 Limitations and Future Work
While we evaluated the effectiveness of InsightAR, several limitations exist. In-
sightAR currently assumes that task procedures are linear, limiting its ability
to analyze workflows that involve branching paths or emergency deviations, as
highlighted by E1 in the context of helicopter operations. Implementing graph-
structured task schemas could better represent complex procedural relationships
and improve flexibility in analysis. Another limitation is multimodal LLMs lack
domain-specific knowledge, and action recognition models struggle with special-
ized tasks that deviate from their training data. Future advancements in domain
adaptation could improve the accuracy of automated insights for specific use cases.
Finally, scaling InsightAR to handle large datasets, such as hundreds of YouTube
cooking videos suggested by E3, requires efficient video database management
and multi-source summarization techniques to extract meaningful insights from
vast video collections.

6.9 Final Considerations
This chapter presented InsightAR, a visual analytics tool for analyzing egocentric
task recordings, particularly from head-mounted AR devices. InsightAR supports
multi-modal summarization by generating visual keyframes and textual descrip-
tions at both overview and step levels, allowing users to review task performance
without watching full videos. Its interactive interface aligns task knowledge with
video content, helping identify procedural errors and performance gaps. Our case
studies in medical and pilot training, along with a user study of 16 participants, val-
idated InsightAR’s generalizability and effectiveness. By turning raw first-person
videos into structured, explorable insights—minimizing manual review effort, In-
sightAR thereby reduced the need for manual review processes currently followed.



146

Chapter 7

Conclusions and Future Work

This dissertation presents a framework composed of three major components for im-
plementing adaptive and holistic AR task guidance. The first component, ARTiST,
introduces an adaptive text simplification method for AR task guidance that ac-
counts for spatial context and AR-specific challenges. A formative study was con-
ducted to understand the unique requirements of text simplification in AR, which
differ from those in traditional NLP. We incorporate these findings into LLMs
by considering the user’s spatial context. A user study shows that our method
significantly reduces both cognitive load and task errors through simplified text in-
structions. The second component focuses on user modeling in AR task guidance.
Inspired by the belief-desire-intention (BDI) model from cognitive psychology, we
develop a framework that enables LLMs to deliver adaptive and proactive sup-
port. In our system, beliefs, desires, and intentions are mapped to the user’s
context, goals, and next actions. The integration of this model into an LLM-based
guidance system enables context-aware suggestions. Our evaluation shows that
the BDI-based system achieves comparable effectiveness and user experience to
a Wizard-of-Oz system operated by expert designers. The third component ad-
dresses post-guidance analysis, completing the holistic pipeline. This component
builds on two works: IntentVizor and InsightAR. IntentVizor proposes a novel
query-guided video summarization model that supports generic video summariza-
tion based on user queries and integrates user interaction via a visual analytics
interface. Experiments on benchmark datasets demonstrate state-of-the-art per-
formance, and a case study highlights the system’s utility. InsightAR extends
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this by offering AR-task-specific summarization and analysis, enabling deeper in-
sight into user performance and generating improvement suggestions using LLMs.
Our user study indicates that InsightAR helps users identify more task errors and
improves overall experience compared to the baseline.

Although AR task guidance has been studied since the early 1990s, its practical
deployment has long been limited by hardware and model capabilities. Recent
advances in multimodal LLMs and AR/MR devices have revitalized interest in this
area. While progress has been made in object recognition and guidance delivery,
understanding user behavior and context remains a significant challenge.

In recent years, we have observed a resurgence of AR task guidance, enabled
by the emergence of multimodal large language models (LLMs) and the growing
availability of advanced AR/MR devices such as HoloLens 2 and Apple Vision Pro.
These developments have made it possible to build more adaptive, perceptually
grounded, and context-aware guidance systems than were previously feasible.

Multimodal LLMs enable new capabilities in AR task guidance by offering
better transferability and perceptual grounding than traditional domain-specific
models. These advantages allow the creation of strong task guidance systems
through prompting strategies, as demonstrated in ARTiST and Satori. With the
increasing availability of egocentric multimodal models [13, 72, 108, 268, 344], task
guidance datasets [51, 53, 162, 222, 224, 311], and relevant surveys [246, 287],
the foundation for LLM-driven AR guidance continues to grow. Through the
development of our framework, we identify several open challenges associated with
LLM integration in AR:

Understanding Temporal Dependency with LLMs Understanding tem-
poral dependencies in task workflows is essential for generating appropriate next-
step suggestions and identifying user errors in AR task guidance. However, current
multimodal LLMs struggle with temporal reasoning across video sequences [59,
111], which impacts their ability to predict procedural errors or next actions in
AR tasks. Although techniques like plan-of-techniques [325] and chain-of-thought
prompting [318] partially address this, limitations remain. These issues may stem
from sensitivity to input order and hallucinations in temporal reasoning. Future
improvements in LLM training—especially with more temporally structured data—
could help. Additionally, incorporating symbolic reasoning [82, 335] or human
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feedback [180, 310] may help mitigate temporal errors.

Hallucination LLMs remain susceptible to hallucination, particularly in unfa-
miliar or domain-specific tasks such as aviation [107, 189, 277, 289]. While research
continues on mitigating hallucinations, effective strategies include incorporating
domain knowledge through prompt engineering [249] or retrieval-augmented gen-
eration [213].

Latency and Model Serving Edge devices (e.g., mobile phones) can typically
support models up to 7B parameters, which often lack the capacity for accurate
perception and recommendation [336, 376]. Consequently, large models (e.g., 70B)
are often hosted on remote servers, introducing latency issues. Because real-time
responsiveness is critical in AR, we propose a hybrid solution demonstrated in
Satori, where local models predict guidance timing and remote models handle
reasoning. This approach reduces latency while maintaining reasoning quality.

The challenges discussed above suggest several promising areas for future re-
search. In the following, we outline directions that aim to address limitations in
adaptivity, planning, and domain transfer in AR task guidance.

Improved Adaptivity While our current system adapts to user context and
task goals, further adaptivity based on user memory, long-term behavior, and col-
laboration remains to be explored. For example, in cooking tasks, knowing a user’s
taste preferences could guide ingredient recommendations. Emerging research has
begun addressing long-term adaptivity [344], but practical systems remain under-
developed. Our BDI user model provides a promising foundation, and future work
could enhance it with personalized preferences and collaborative contexts.

Flexible Task Planning Many AR task systems follow predefined sequences,
yet tasks such as industrial assembly require adaptive planning based on conditions
like tool availability or operator skill [55]. Effective planning involves optimizing
task sequences and enabling parallel execution where feasible. Proactive system-
user communication is essential for co-planning such flexible procedures.

Domain Applications of AR Task Guidance Though not the primary fo-
cus of this dissertation, our framework has been applied in aviation and medical
domains. To broaden its applicability, we open-sourced our code. However, do-
main adaptation requires addressing two challenges: the incorporation of domain
knowledge—which may be missing from pretrained models—and the specific skill
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requirements of each domain. For example, general tasks (e.g., pouring water) dif-
fer substantially from surgical tasks, which demand fine-grained motion control and
precision [60, 68, 320]. Integrating domain-specific knowledge via retrieval-based
or structured prompts [81, 160, 249, 308] is necessary to meet these requirements.
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