SIMPLIFICATION OF POLYGONAL
SURFACE MODELS

A Dissertation Presented

by

Tsung-Chin Ho

TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DoCTOR OF PHILOSOPHY
IN

APPLIED MATHEMATICS AND STATISTICS

State University of New York at Stony Brook

August 1999

© Copyright 1999
by
Tsung-Chin Ho

State University of New York at Stony Brook
The Graduate School

Tsung-Chin Ho

We, the dissertation committee for the above candidate for the Doctor of

Philosophy degree, hereby recommend acceptance of this dissertation.

Joseph S. B. Mitchell, Dissertation Advisor
Professor, Applied Mathematics and Statistics

Alan Tucker, Committee Chair
Professor, Applied Mathematics and Statistics

Claudio T. Silva
IBM T. J. Watson Research Center

Amitabh Varshney
Assistant Professor, Computer Science

Approved for the University Committee on Graduate Studies:

Dean of Graduate Studies & Research

i

Abstract

In this dissertation, I present the following surface simplification algorithms.

o Greedy-Cuts Algorithm: a surface simplification algorithm satisfying
global error bounds, based on the “greedy” heuristic, growing a polyg-
onal surface according to a scheme that attempts to add the largest
possible triangle at each stage, subject to the given error bounds (which

may vary over the surface of the input model).

e Simplified Patch Boundary Merging (SPBM) Algorithm: a simple, fast,
and memory-efficient surface simplification scheme based on a three-
step process: (1) patchification (partitioning of the surface into patches
corresponding to similar normal vectors), (2) simplifying patch bound-
ary curves, according to a global error bound, and (3) retriangulating
the resulting patches, according to a simple ear-clipping algorithm, with
heuristics designed to produce good quality triangulations. SPBM is
found to be especially fast and memory-efficient, while producing sim-
plifications that generally have high visual fidelity. Extensive exper-
imentation shows that the algorithm compares favorable to the prior

state-of-the-art.

e Topology Simplification Algorithm: a fast and memory-efficient genus re-
duction technique that allows simplification of topology and removal of
small “features” while simplifying geometry. In contrast with many pre-

vious approaches, our method accurately preserves surface profile curves.

Contents

1 Introduction

2 An Overview of Surface Simplification

2.1 Tteration Methodso
2.2 Surface-Partition Methods
2.3 Progressive Construction
2.4 'Topology Simplification. 0L

3 Greedy-Cuts Algorithm

3.1 Motivationo
3.2 Assumptions and Definitions
3.3 Feasibility Testo 0oL
331 Phasell
332 Phase2
3.4 Greedy-Cuts Approach
3.4.1 Patchification o000
3.4.2 Patch Triangulation.
343 Front Repair. 0oL,

i

13
16
18

3.5 Results and Conclusion

SPBM Algorithm

4.1 Motivation oL
4.1.1 Related Work 0.
4.2 The Algorithm
4.2.1 Patchification 0oL,
4.2.2 Patch “Growth” Algorithm
4.2.3 Triangle Feasibility Criteria
4.2.4 Level-of-Detail Generation
4.2.5 Boundary Simplification
4.2.6 Patch Merging
4.2.7 Boundary Preservation
4.2.8 Patch Triangulation.
4.3 Experimental Results

4.4 Conclusion

Topology Simplification Algorithm

5.1 Motivationo Lo
5.2 Previous Work o000
5.3 The Algorithm,
5.3.1 Finding Sharp Loops
5.3.2 Finding Partner Loops

5.3.3 Removing Holes, Bumps, and Cavities

5.3.4 Repairing Cracks

5.4 Results and Discussion

il

6 Conclusions and Future Directions
6.1 Patch Boundary Merging Simplification
6.2 Topology Simplification.

v

List of Figures

—_

© o0 N O Ot s W N

10

11

Three feasible regions. oL L. 24
Three inner points.o 26
Two feasible regions overlap and a list of faces is found. 28
Four overlap cases., 30
Edge swap in action. o000 44
Face split in action. 45
Front repair in action.o L. 47
Front repair in action (continued). 48

The Cup patches generated by two different patchification s-
trategies: the upper image from Part 1 and the lower image
fromPart 2. 49
The Mushroom patches generated by two different patchifica-
tion strategies: the upper image from Part 1 and the lower
image from Part 2. L o000 20
The greedy-cuts actions: (a) the initial polygon, (b) the first
wave front, (c) greedy biting (d) ear clipping, (e) front faces, (f)
front repair, (g) front faces, (h) ear clipping, (i) front close. . 51

12

13

14

15

16

17

18

19

The simplified Mushroom image with 106 triangles and the sim-
plified Cup image with 88 triangles.

Low resolution approximation of the Stanford Bunny (69K faces).

SPBM yields an approximation having 525 faces, based on a
patchification into 185 patches. On an SGI R10K, SPBM takes
3.09 seconds (2.41 of which is reading data from disk). In com-
parison, QSlim 2.0 requires 8.70 seconds (5.69 of which is the
simplification algorithm itself).
Triangle T has just one free neighbor, T". Left: T' shares only
one edge with the patch P; Right: T’ shares two edges with P.
Triangle T has two free neighbors, 7" and T". Potentially, T is
removed from the patch P.
The neighbor, 7", of T € P is not added to the patch P, since
it would cause P to fail to be simple, creating a “pinch”.

Depicted are (a) the simplified boundary curves, and (b) the
final patches after merging.
Depicted are (a) a patch P; with both vertices v; and vy on its
boundary, and (b) a patch P, anchored at v; after collapsing
the chain Etovy.
Depicted are (a) a chain collapsed to a boundary vertex, and
(b) how the boundary is destroyed when the collapse goes the

other way.

vi

02

o6

39

61

63

64

68

69

20

21

22

23

24

Sphere dataset. (a) shows a typical patchification of the sphere.
(b)—(d) shows the 52-, 100-, and 500-face approximation of the
sphere with SPBM. (e)—(g) shows the results obtained with QS-
lim 2.0.. . . . Lo
Femur dataset. (a) shows a typical patchification of the femur.
(b)—(d) shows the 270-, 545-, and 997-face approximation of
the femur with SPBM. (e)—(g) shows the results obtained with
QSHM 2.0. .« o o
Bunny dataset. (a) shows a typical patchification of the bunny.
This is similar to Fig. 13, but looking from the back. (b)—(d)
shows the 525-, 1000-, and 1504-face approximation of the bun-
ny with SPBM. (e)—(g) shows the results obtained with QSlim
2.0. © e
Fandisk dataset. (a)—(c) shows the 150-, 266-, and 460-face
approximation of the fandisk with SPBM. (d)—(f) shows the
results obtained with QSlim 2.0. (g) and (h) show the other
side of the fandisk, (g) was computed with SPBM, and (h) was
computed with QSlim 2.0. Note that (h) has a severe artifact.
Buddha dataset. (a) shows a typical patchification of the bud-
dha. (b)-(d) shows the 35000-, 7400-, and 12700-face approx-
imation of the buddha with SPBM. (e)—(g) shows the results
obtained with QSlim 2.0.

vii

78

79

80

81

82

25

26

27

28

29

30

31

The results of simplifying the Disk model from Qslim-1.0: (a) o-
riginal with 752 triangles, 11 holes; (b) and (c) are the simplified
images with 150, 72 triangles, respectively.
The results of simplifying the Fixture model from Qslim-1.0:
(a) original with 18,796 triangles, 100 holes; (b), and (c) are
the simplified images with 250, 150 triangles, respectively.

Depicted are (a) the result of patchification of a hole model. (b)
the boundary chains from (a).
The orientations of sharp loops with respect to the flat sides.
(a) the orientations of hole loops: L; and L, are clockwise.
(b) the orientations of bump loops: L; is clockwise and L, is
counterclockwise Lo L oo
The results of simplifying the Disk model: (a) original with
752 triangles, 11 holes; (b) first level topology simplification,
removing 10 small holes; (c) further SPBM simplification with
64 triangles, or (d) second level topology simplification with 72
triangles.
The results of simplifying the Battery model: (a)original with
616 triangles; (b), and (c) are the simplified images from Qslim-
1.0 with 100, 12 triangles, respectively; (d), (e), and (f) are our
results with 162, 132, and 12 triangles respectively.
The results from vtk: (a) the simplified Battery image with 154
triangles; (b) the simplified Disk image with 220 triangles; (c)
the simplified Fixture image with 81 triangles; (d) the simplified
Block image with 154 triangles.

viii

86

38

92

94

101

102

32

Other our results: (a) the original Box image with 1,612 tri-
angles; (b) the simplified Box image with 12 triangles; (c) the
original Gear image with 2,478 triangles; (d) the simplified Gear
image with 232 triangles.o L.

X

List of Tables

Simplification results of running SPBM, QSlim 1.0, and QSlim
2.0 on four different datasets. All times are in seconds. Here,
f is the number of faces in the simplified model. T}, is the
total time (in seconds) required to simplify the models. For
SPBM, T}, is divided into set-up time (loading the dataset from
disk), Patchification (“Patch”), and level-of-detail generation
time (“SPBM”).

Results of our approach on several datasets. Here, h is the
number of holes detected, ¢ is the number of cavities, and b
is the number of bumps. For “Battery” we give results for
a = 4000, = 6500, and a = 12000; for “Disk” we give results
for « = 4 and a = 121; for “Gear” we give results for o = 3 and
a = 4; for “Cylinder” we give results for « = 20 and o = 400.
Timings are in seconds, and are total times, including reading
the data, performing orientation tests and normal computations

for triangles.o o

73

Chapter 1

Introduction

In computer graphics and geometric modeling, polygonal meshes remain a
popular rendering primitive for solid objects in a wide variety of application-
s. Besides the major benefit of the simplicity of this representation, they are
widely supported by commercial graphics hardware and software tools. In
recent years, very detailed and complex surface models, with millions of tri-
angles, can be easily produced with either hardware or software in various
graphics applications. For example, the CAD models in computer-aided geo-
metric design, the range data obtained from automatic acquisition devices in
computer vision, the isosurfaces extracted from volume datasets through the
marching cubes algorithm in scientific visualization. Unfortunately, this rapid
growth in the complexity of surface models has overwhelmed the performance
of current high-end computer graphics hardware. There is however hope since
a highly detailed object representation is not always required for graphics ap-
plications. Many of the datasets generated from the above applications, such

as from the marching cubes algorithm, maintain redundant primitives while

CHAPTER 1. INTRODUCTION 2

accurately describing highly complex geometry. Surface simplification is the
replacement of a complex surface model, having many triangles, by a mesh
having substantially fewer triangles that “approximates” the original model.

In the last few years, virtual reality walkthroughs and flythroughs of ex-
tremely complex environments have become of increasing importance in com-
puter graphics. Virtual scenes contain meshes having many millions of tri-
angles. With the limitation of rendering capacities of graphics engines, the
reduction of geometric primitives rendered in each frame is crucial for efficient
performance. It is common to define several versions of a model at various
levels of detail (LOD) for accelerated rendering. The idea is to construct a
hierarchy of approximations of a model and then select the appropriate level of
representation from within the hierarchy, depending upon its perceptual im-
portance in the virtual scene. For instance, a detailed mesh should be present-
ed as the object moves closer to the viewer, and coarser representations should
be used when it moved further away from the viewer. As model complexities
grow at a rate beyond the phenomenal advances in graphics hardware, it be-
comes essential for software developers to discover better methods of utilizing
multi-resolution hierarchies in order to speed up rendering. This explains the
wealth of recent research in the areas of model simplification, level-of-detail
control, visibility culling, and image-based rendering.

In addition to the advantage for increased rendering performance, surface
simplification provides other benefits. When a large surface model cannot
fit in the local memory, the level-of-detail generations can help speed up the
transmission of this large model over networks. To enhance visualization per-

formance, only the parts of an object close to the viewer need to be detailed.

CHAPTER 1. INTRODUCTION 3

The view-independent levels of detail producing uniform approximations are
also not appropriate for these practical applications. Adaptive approrima-
tions or selective-refinement-based algorithms offer an elegant solution to the
problem of handling varying of resolutions of the representation of an object.
However, for the visualization and transmission of a highly detailed object,
such as the surface of a molecule or a human head, one would like to display
progressively better approximations as the object moves close to the viewer.
A discrete level-of-detail representation cannot easily achieve this goal with-
out producing cracks or artifacts. Progressive-based simplification algorithms,
constructing a continuous level of detail for an object, provide a method to
appropriately display those highly detailed objects. Simplification can also
improve the efficiency of computationally intensive problems in collision de-
tection, ray tracing, and radiosity calculation.

There is an abundance of recent work on polygonal model simplification.
These prior methods are based on various approaches, including energy func-
tion optimization, controlled vertex/edge/face decimation, vertex clustering,
refinement, greedy facets, and wavelets. Some of the most recent have intro-
duced appearance-preserving simplification [11], progressive forest split com-
pression [66], memory-efficient edge collapses [42], and methods that attempt
to preserve other important surface attributes (e.g., texture, color, shape de-
tail) during simplification; see, e.g., [9, 24]. These prior simplification algo-
rithms have attempted to optimize various criteria, including feature preser-
vation, visual fidelity, global error bounds, algorithmic speed, and memory
consumption.

The goal of our research is to investigate many aspects of the simplification

CHAPTER 1. INTRODUCTION 4

of polygonal surface models, with emphasis on the tradeoffs between algorith-
mic speed, memory consumption, and visual fidelity. In this dissertation, we
first focused on a simplification technique with bounded error by extending
the “greedy cuts” approach used by Silva et al. [61, 62] to approximate dense
terrain grids with Triangular Irregular Networks (TINs). After decomposing
a 3D surface into several terrain-like patches, we then adopt a novel trian-
gle feasibility test and a modified greedy-cuts algorithm to triangulate every
terrain-like patch.

To accelerate further the triangulation process and preserve the sharp fea-
tures of the original surface, we also propose a simple, fast, and memory-
efficient surface simplification technique, the “Simplified Patch Boundary Merg-
ing” (SPBM) method. Our algorithm can be decomposed into two main phas-
es. The first phase consists of a “patchification” algorithm, which partitions
a given polygonal surface into multiple “patches”, based on a user-defined pa-
rameter (which bounds the allowable variation in the surface normal over each
patch). In contrast with the prior “SuperFaces” approach [39] each patch
is represented only by its boundary curve. Actual level-of-detail generation
is then performed in three phases: (1) simplification of the polygonal curves
bounding the patches, (2) selective patch merging, and (3) patch triangula-
tion. We show through experimentation that SPBM results in a substantial
speed-up, averaging a factor of two and a half times over a leading publicly
available code (QSlim2.0), while consuming less memory and still producing
very good visual fidelity (in some cases better, in some cases slightly worse).

Most simplification algorithms are designed to preserve the topology of the

CHAPTER 1. INTRODUCTION)

original models. While preservation of genus is important in some applica-
tions such as molecular modeling, it is not required in many applications that
demand only a visually close approximation of the original model; preserving
topology may impose undue restraints on the degree of simplification. For
example, during an interactive flythrough of CAD models that have a large
number of small holes or tunnels, most or all topology-preserving simplification
schemes are incapable of achieving desired reduction levels.

As an extension of our SPBM algorithm, we propose a simple, fast, and
memory-efficient method for identifying holes, bumps, and cavities, followed
by a controlled patch simplification scheme. Our method is able to remove
“small” holes, bumps and cavities, subject to a user-specified error tolerance,
while maintaining a high level of visual fidelity. Our method is based on a
“patchification” process that partitions a given polygonal surface into multiple
sets of contiguous polygons, again with bounded error, in conjunction with a
set, of simple heuristics designed to facilitate the production of “well-shaped”
patches, with boundaries that respect surface discontinuities. Afterwards, we
search the set of “sharp” edges that bound patches to identify a set of candidate
loops that might bound holes, bumps, or cavities. By investigating the local
geometry and the global topology, we are able to identify holes, bumps, and
cavities that are candidates for removal (subject to a size condition, determined
by an error tolerance). After removing loops that bound holes, bumps, and
cavities, we merge the resulting patches, and output a new model based on a
triangulation of the final set of patches.

The main benefits of our new method include speed, low memory con-

sumption, one-step simplification, and visual fidelity. In contrast with many

CHAPTER 1. INTRODUCTION 6

previous approaches, our method is able to maintain accurately the profiles
that contribute most strongly to surface discontinuities, while eliminating s-
mall features.

This dissertation is organized as follows: In Chapter 2 we introduce the
terminologies used in later chapter and overview the previous simplification
works. In Chapter 3 we introduce our novel Greedy-Cuts algorithm for bound-
ed error surface simplification. The SPBM scheme is then presented in Chapter
4. Our preliminary results on the topology simplification technique are dis-
cussed in Chapter 5. Finally, we summarize our work and indicate a path for

some future research in Chapter 6.

Chapter 2

An Overview of Surface

Simplification

In the previous chapter we have introduced the importance of surface simpli-
fication for several different graphics applications. In this chapter we intend
to overview the techniques that have been explored on the topic of surface
simplification. In the last few years, there has been extensive research on sim-
plification of general 3D objects. However, no single algorithm can satisfy all
kinds of models under all conditions. Although each simplification algorithm
has its own specialty, we classify, based upon the procedure of generating re-
duced meshes, these algorithms into roughly two categories: iteration methods
and surface-partition methods. The iteration methods locally reduce primitive
elements, such as vertices, edges, and faces, one by one. The basic steps are

specified as follows:

e Evaluate each primitive element by some decimation criteria and build a

CHAPTER 2. AN OVERVIEW OF SURFACE SIMPLIFICATION 8

candidate list. The various decimation criteria include a global or a local

error evaluation and the preservation of geometric or attribute features.

e If the candidate list is empty, then exit; no further simplification is pos-
sible. Otherwise, remove from the surface the first element in the candi-

date list; this leaves a hole.
e Retriangulate the hole.

e Reevaluate those primitive elements that have been affected by this

change, and update the candidate list.

Surface-partition methods deal with the whole surface at one time. These

methods perform, roughly, the following elementary steps:

e Partition the whole surface into several regions by satisfying some deci-

mation criteria.
e Simplify or refine the borders of each region.

e Retriangulate each region.

2.1 TIteration Methods

Based on different primitives, we further classify the iteration techniques.

Vertex decimation

Schroeder et al. [58] use vertices as the primitive elements. The decimation cri-

terion for each interior vertex is the distance to the average plane determined

CHAPTER 2. AN OVERVIEW OF SURFACE SIMPLIFICATION 9

by its adjacent faces. A vertex is removed only if this operation preserves local
topology and the value at this vertex is smaller than a specified threshold. The
hole created by vertex removal is retriangulated by a recursive loop-splitting
procedure, which splits the border polygon by a split plane and produces tri-
angles with good aspect ratios. The border vertices are reevaluated. If this
splitting procedure fails, this vertex is not removed. The resulting vertices of
the simplified mesh are a subset of the original mesh. Furthermore, by set-
ting different thresholds, levels of detail are created and the vertices of the
simplified model are also a subset of the previous simplified model. Unfortu-
nately, this algorithm estimates the error between the current iteration and
the previous iteration, not the original mesh. With this concern, Sourcy and
Laurendeau [64] [65] developed a vertex decimation algorithm with strict er-
ror bounds. This method evaluates the error of a simplified approximation
with the original mesh by storing a set of deleted vertices with each triangle,
and adopts a constrained Delaunay triangulation to retriangulate the resulting
hole. Klein et al. [40] described a similar approach to this method.
“Simplification envelopes” were introduced by Mitchell and Suri [49] for the
purposes of simplifying surfaces to within an error bound e, based on fitting
the approximating surface within the e-offset of the input surface, obtained by
convolution with a disk of radius e. In special cases (e.g., convex surfaces),
Mitchell and Suri were able to prove approximation bounds for a “greedy”
method by modeling the problem as a set cover problem. Cohen et al. [13]
also used inside and outside envelopes, constructed using vertex normals, and
have applied them to general surfaces using heuristic methods. The envelopes

provide an accurate error estimation of the simplified mesh to guarantee that

CHAPTER 2. AN OVERVIEW OF SURFACE SIMPLIFICATION 10

all vertices of the reduced mesh are within a user-specified distance from the
original mesh and that all original vertices are within the same distance from
the reduced mesh. They design two algorithms, one local and one global, to
generate reduced meshes. In their local algorithm, vertices are removed one
by one. A vertex is removed if the hole created can be filled by some feasible
triangles, which reside between these two envelopes. By setting various error
values on vertices based, e.g., on a function of distance from the viewer, this
method can perform an adaptive approximation of the original model. In their
global algorithm, they were able to produce a list of ordered candidate triangles
by comparing the number of vertices each feasible triangle covered, and then
reconstructing the model by a greedy hole-filling process. Triangle overlapping
can be avoided by explicit testing. This greedy approach can generate very

good approximations, but, unfortunately, is time-consuming.

Edge decimation

Hoppe et al. [37] use edges as primitive elements. They create an energy
function through the whole surface of the model and define three edge-based
moves: edge collapse, edge split, and edge swap. An embedding function,
used to simulate the moves, is established from the topological realization
of the simplicial complex to the geometric realization of the initial model.
Based upon legal moves, the algorithm produces a reduced mesh to optimize
the energy function by iterative execution of two nested loops. The energy
function includes three terms: a distance term, a vertex term, and a spring
term. The distance term and spring term measure the geometric error between

the simplified mesh and the original. The vertex term is to penalize a mesh

CHAPTER 2. AN OVERVIEW OF SURFACE SIMPLIFICATION 11

containing too many vertices. This idealized algorithm is theoretically elegant;
however, for practical reasons, their implementation is based on a heuristic
local approach, which randomly removes edges one by one and optimizes the
local topology. A heuristic test, based on an angular check, is applied to the
new triangulation to help to avoid mesh self-intersections.

André Guziec [25] develops a novel error approximation called “error vol-
ume,” based upon the edge collapse operation. The error volume, computed
from the union of spheres of varying radii, is constructed dynamically as the
border vertices are reevaluated. An iteration of this algorithm collapses the
shortest edge in the current mesh. Collapsing an edge creates a hole and then
an internal vertex close to this removed edge is found by solving a linear pro-
gram, for volume preservation. This algorithm uses a compactness value of a
triangle defined as the following formula:

o 4\/§a
O B+BR+1E

where a is the area of the triangle and (ly, 1, l2) are the lengths of the three
sides. An edge is collapsed only if the compactness values of all triangles,
formed by the border edges of the hole and the inner vertex, are larger than
a user-specified threshold. Error volume is updated locally by accumulating
distance errors among border vertices, and is minimized using linear program-
ming. When the error volume is reduced below a user-specified tolerance
volume, the simplification process stops. Mesh self-intersection has yet to be
addressed in this approach.

By defining the zone of a vertex as the planes of the adjoining faces of this

vertex, Ronfard and Rossignac [55] described another error estimation metric

CHAPTER 2. AN OVERVIEW OF SURFACE SIMPLIFICATION 12

for a collapsed edge, based on computing the maximum distance between
the resulting vertex and its zone (the union of the zones of the edge’s two
endpoints). A similar approach introduced by Garland and Heckbert [23]
approximates the set of planes using a quadric error metric. Although this
method does not provide strict error bounds, it has been shown experimentally
to be very fast while still producing approximated representations with high
quality.

Instead of collapsing edges one by one, Algorri and Schmitt [4] adopted a
mesh smoothing process by swapping edges based on a G'-continuity criterion
to identify edges in the mostly planar regions. All such edges are then collapsed

simultaneously.

Triangle decimation

Hamann [27] proposes a data reduction scheme to generate reduced approxi-
mations for 3D objects. Their algorithm uses triangles as primitive elements.
A candidate triangle 7" has to pass some local constraints: The vertices ad-
jacent to T are projected onto the plane P containing the triangle 7T'; then,
the centroid of 7" must lie in the region formed by those projected vertices on
the plane P. The candidate triangles are put in a priority queue, ordered by
a weight that is based on the local curvatures at their three vertices and their
interior angles. At each iteration of the algorithm, the candidate triangle with
lowest weight at the current list is removed from the queue of candidates, and
it is replaced by a single point, which lies at the center of the approximate
surface. (The approximate surface is estimated by the distances of the adja-

cent vertices to the plane P.) The triangles adjacent to the deleted triangle

CHAPTER 2. AN OVERVIEW OF SURFACE SIMPLIFICATION 13

are removed and the resulting hole is retriangulated using the single point as
the center vertex. Edge swapping is used to try to optimize the aspect ratios
of the triangles after the retriangulation. The algorithm terminates when
a specified percentage of reduction is reached or no more candidate triangles

exist. Error estimation is not provided in this algorithm.

2.2 Surface-Partition Methods

Patch decimation

The algorithm of Hinker et al. [31] partitions the whole surface into group-
s of nearly coplanar polygons. Each group has an adjustable representative
normal. A polygon is added into an adjacent group only if the normal of the
polygon and the representative normal are within a user-specified tolerance.
After the polygon is grouped, the average of these two normals is the new
representative normal of this group. The boundary polygon of each group
is found by sorting all edges in a group and then removing duplicate edges.
The boundary polygons inside another boundary polygon must be carefully
resolved. The boundary polygons are straightened by removing the co-linear
vertices on the basis of the rate of change in their gradient. Finally, this algo-
rithm triangulates each boundary polygon by a heuristic greedy triangulation
procedure, which traverses the vertices of a boundary polygon in order. Al-
though triangles with poor aspect ratios and self-intersected edges could occur,
this heuristic method is very efficient.

Kalvin et al. [39] decompose the surface into the union of superfaces. They

CHAPTER 2. AN OVERVIEW OF SURFACE SIMPLIFICATION 14

attempt to group faces which can be projected onto an approximating plane
without self-intersection. The grouping process starts from a seed face and
adds adjacent faces, satisfying topology and error bound criteria, into this
surface. If there exist ungrouped faces, then one such face is selected as a
new seed face and the grouping process is repeated until all faces are assigned
to a superface. Then, the border shared by any two superfaces is replaced
by one line which connects two end points of this border. If this violates the
error bound criteria, this line is recursively subdivided at the most deviant
point. Since all faces in a surface can be projected onto an approximating
plane, superfaces are retriangulated by searching a “star point” surrounded
by a star polygon on this plane. If a star point does not exist, the superface
is decomposed repeatedly to guarantee the existence of star points. This algo-
rithm uses a distance error bound to measure the degree of simplification. A

superface with holes is still a problem to be resolved.

Subdivision refinement

Lounsbery et al. [47] proposed a technique using wavelets to create multireso-
lution representations of arbitrary topological surfaces. This method requires
that the input mesh have subdivision connectivity. Building on this work, Eck
et al. [17] removed this constraint and developed an adaptive subdivision al-
gorithm for smooth parameterizations of the original surface over a base mesh
consisting of a small number of triangles. Their algorithm begins by parti-
tioning the original surface into Voronoi-like patches and then generating a
variant of Delaunay triangulation as the base mesh. Then, the algorithm cre-

ates a parameterization of the local surface for each base triangle. Finally, the

CHAPTER 2. AN OVERVIEW OF SURFACE SIMPLIFICATION 15

level-of-detail generations are achieved by recursively subdividing these base
triangles subject to a user-specified error tolerance. This approach can spend
a long time for the generation of the Voronoi-like patches and may also need
to create many extra levels of the global subdivision in order to resolve small
local features, because of the uniformity of the mesh subdivision.

To overcome the drawbacks of this previous approach, Lee et al. [41] de-
signed a fast coarsification strategy to build the base mesh and allow for user
intervention in the form of fixing vertices or edge paths in the original surface.
Their algorithm adopted a hierarchical simplification based on vertex removal
to create a parameterization of the original surface over the base mesh. This
initial parameterization was further improved by a parameter space smoothing

procedure based on a “loop subdivision” scheme.

Re-tiling

Turk [68] presents a surface sampling technique that is different from the
procedures of the surface-partition method. The sampling algorithm randomly
places new points over the whole surface. The regions of high curvature, which
are estimated by heuristic radii of curvature, contain a high density of vertices.
Next, those randomly placed points are refined by a relaxation procedure which
moves each point away from all other nearby points by a heuristic curvature-
adjusted radius of point-repulsion. To maintain the topology of the original
surface, a method called mutual tessellation is applied to triangulate each
polygon of the original surface along with those new points that lie on this
polygon. Afterwards, the original vertices are removed one by one. This

re-tiling method performs better on models representing curved surfaces than

CHAPTER 2. AN OVERVIEW OF SURFACE SIMPLIFICATION 16

on models containing sharp discontinuities.

2.3 Progressive Construction

Based upon the work of Hoppe et al. [37], Hoppe [35] improves the energy
function by adding two terms, a scalar term and a discontinuity term, which
preserve the scalar field and discontinuity curves while simplification progress-
es. Furthermore, Hoppe introduces a novel idea to generate a continuous
level-of-detail representation and provide progressive transmission through a
geomorphing technique. This algorithm generates a sequence of edge collapses
by the priority of their estimated energy costs. A detailed mesh M™ is reduced
to successively coarser meshes M* by applying this sequence of transformation-
s:

ecollapsen—1 — ecollapse ecollapse
M SR s COTERe it SOTERE0 £ O, (1)

By the invertibility property of the edge collapse transformation, the detailed
mesh M™ can be retrieved from the base mesh M° by applying the dual oper-
ation of edge collapse, the vertex split transformation:

vsplity, 2ty —

MO ppt t MRS M (2)

where (M°, {vsplit, ..., vsplit,_1}) is called a progressive mesh (PM) repre-

sentation.

View-dependent construction

Instead of displaying the image with a series of sequential edge collapses, Xia

et al. [70] construct a merge tree in a bottom-up fashion over the vertices of

CHAPTER 2. AN OVERVIEW OF SURFACE SIMPLIFICATION 17

the original object. This tree encodes two actions, edge collapse and vertex
split, for each vertex with the perceptual distance metric. The tree structure
is created from the totally ordered sequence of edge collapses based on edges’
length. Care has been taken to prevent mesh fold over during the construction
of the merge tree. Their algorithm incrementally produces view-dependent
approximations in real time from one frame to the next by traveling through
the merge tree. A similar approach by Hoppe [36], based on PM, develops a
vertex hierarchy in a top-down fashion.

De Floriani et al. [15] introduce the multi-triangulation (MT) which uses
a directed acyclic graph (DAG) encoding a partial order from the sequence of
edge collapses as a guide to display the change of the resolution in a mutually

independent way. The display of an approximation mesh corresponds to a cut

in the DAG.

Progressive transmission

Guéziec et al. [26] also adopt a DAG to develop a surface partition scheme
for the progressive transmission of large datasets. They propose to partition
a surface in levels of detail (LODs) with a partial order given by the original
sequence of edge collapses. In contrast with the view-dependent approach, the
display of LLODs is still in the same precedence as the original order of edge

collapses.

CHAPTER 2. AN OVERVIEW OF SURFACE SIMPLIFICATION 18

2.4 Topology Simplification

Marching cubes

He et al.[32][33] create a topology simplifying algorithm which does not guar-
antee the preservation of local or global topology of a model but eliminates
high frequency details in a controlled fashion. They establish levels of detail
by converting an object into multi-resolution voxel representations using con-
trolled low-pass filtering and sampling techniques. This algorithm assumes
that the input model is a closed volume and then voxels can be determined
to be in the interior or exterior of the object. In [32], the Marching Cubes
algorithm [43] is adopted to generate triangles and a topology preserving al-
gorithm is used as a post-process to remove redundant triangles. In [33], based
upon the Splitting-Box algorithm [50], they introduce the AMC box for an
adaptive Marching Cubes algorithm that recursively bisects the space until ei-
ther an AMC box is found or a 2x2x2 box is reached. If an AMC box satisfies
the quality criteria, triangles are produced accordingly. Finally, a stitching
process is imposed to eliminate cracks generated amongst different levels of
boxes. This algorithm also provides an error-controlled simplification, but it
needs a great deal of memory and is time-consuming. Conversely, Shekhar et
al. [60] establish an octree by traveling Marching cubes intersected with the
surface of a model to delete redundant triangles. Then the octree is traversed
level by level from bottom to top. At any level of the octree, if eight child cells
meet the topology criteria, they are merged and replaced with a single parent

cell.

CHAPTER 2. AN OVERVIEW OF SURFACE SIMPLIFICATION 19
Vertex clustering

Rossignac and Borrel [56] provide a general topology simplification scheme for
general 3D models. Their algorithm uses a regular grid specified by the user
to guide the subdivision of the object. All vertices falling within the same cell
are merged together into a single vertex. A new triangulation is, therefore,
created among these resulting vertices according to the topology of the original
mesh. This method can achieve any level of reduction but can produce poor
quality approximations. To improve the quality of approximations, Low and
Tan [44] developed a modified grid partition technique based on a weighting
of the vertices. They further enhance the visual appearance of the simplified
images by rendering erratic edges using a thick-line primitive with varying

pixel-width.

Vertex splitting

Popovi¢ and Hoppe [53] extend the Progressive Mesh (PM) representation
to allow topological changes. They adopt the generalized vertex split and
the vertex unification actions to form a progressive simplicial complez (PSC)
representation. The base mesh generated by this approach consists of a single
vertex.

Schroeder [59] gives a decimation algorithm based on edge collapse opera-
tions, while allowing “vertex splits” when a valid edge collapse is not available.
This vertex split operation is poorly controlled since it does not localize its ac-
tions to individual holes, cavities, and bumps but performs them at all places

in the model.

CHAPTER 2. AN OVERVIEW OF SURFACE SIMPLIFICATION 20
Edge collapsing

Garland and Heckbert [23] design their edge-collapse operation to allow the
merging of pairs of unconnected vertices within a distance threshold. Push-
ing these ideas forward, Erikson et al. [21] propose a novel algorithm that
automatically generates virtual edges based on an adaptive distance parame-
ter. The merging of the unconnected regions is also controlled by preserving
surface area. A view-dependent approach developed by El-Sana [20] creates
a Delaunay triangulation among all the vertices and then generates a subset
of the Delaunay edges as wirtual edges. Their algorithm uses a spline-based
distance metric combining the vertex positions and normals to synthesize the
geometric and topology simplifications. To avoid mesh fold-overs at run-time,
they propose an implicit dependency test based on the enumeration of vertices

generated after each edge collapse.

Chapter 3

Greedy-Cuts Algorithm

3.1 Motivation

Silva et al. [61] introduced the greedy cuts method to simplify an input TIN
surface into a new TIN with far fewer triangles. They defined both weak
and strong feasibility tests for triangles in order to guarantee that the sim-
plified mesh be within a specified error bound. Their method starts with a
large polygon, enclosing the whole terrain to be triangulated, and then applies
greedy cuts, which is a combination of ear cutting, greedy biting, and edge
splitting, to triangulate the polygon inward within a specified error bound of
the original surface. On each pass, the algorithm cuts from the perimeter the
feasible triangle of largest area that fits the original data within a specified

error tolerance. The main steps of their algorithm are as follows:

e Generate an initial polygon P. This a simplified version of the standard

min-link path method of Suri.

21

CHAPTER 3. GREEDY-CUTS ALGORITHM 22

e Execute ear cutting on P. An “ear”’of a simple polygon P is a triangle
that contains two adjacent edges on the polygon P, and one diagonal
edge internal to P. This operation searches and cuts all possible ears of

a simple polygon P.

e Execute greedy biting on P. This operation looks for a feasible triangle
formed by an edge on the polygon P and one internal point of P. Their
algorithm uses a binary search on the grid points at the midpoint of the

edge along the vector perpendicular to the edge.

e Execute edge splitting on P if both ear cutting and greedy biting fail to

find a feasible triangle.

In general, the algorithm alternately performs ear cutting and greedy biting;
ear cutting reduces the number of edges of polygon by one, while greedy biting
increases it by one edge, and therefore, ear cutting will always be the final step
of any run of the algorithm.

Our task was to extend this method to generate levels of detail for general
3D models. As addressed in [63], we can first decompose a 3D surface into
several terrain-like patches, and then apply the greedy-cuts algorithm on each
terrain-like patch. However, the greedy-cuts terrain simplification algorithm
cannot be directly adopted to general 3D objects. Since the grid base is no
longer available, the definition of a feasible triangle in their algorithm is not
appropriate for general 3D cases. We shall propose a new definition of a fea-
sible triangle for an arbitrary 3D surface. Moreover, an efficient and robust
strategy is required to guarantee the termination of the greedy-cuts algorithm

and to avoid skinny triangles. In the following sections, we begin by presenting

CHAPTER 3. GREEDY-CUTS ALGORITHM 23

an efficient feasibility test for a general 3D surface based on two-sided Haus-
droff metrics. We then implement several surface decomposition strategies and

finally describe a new greedy-cuts algorithm for general 3D models.

3.2 Assumptions and Definitions

We assume a three-dimensional compact and orientable object whose triangu-
lar representation 7 has been provided to us. 7 is a well-behaved triangula-
tion, which implies that every edge is either a boundary edge or shared by two
adjacent triangles, no two triangles interpenetrate, and there are no “cracks”
or T-junctions in 7.

In order to speak about a guaranteed error of approximation, it is neces-
sary to have a precise notion of “distance” between the original surface and
its approximation. In our work, we use the Hausdroff distance as an error
measure.

Definition The Euclidean distance between a point x and a set S C R"
is defined by

d(z,S) = ;Ielg d(z,s),

where d(z, s) is the Euclidean distance between points z and s in R". The
one-sided Hausdorff distance from the set S to the set 7' is defined by
d(S,T) =supd(s,T).
s€S
This definition is not symmetric and in general d(S,T) is not equal to d(7, S).
We say that S is e-close to 7 with respect to the Hausdorff metric if

VteT, 3dse€S suchthat d(ts) <e (3)

CHAPTER 3.

and

GREEDY-CUTS ALGORITHM 24

Tk svrrv
R A = T
L — T 0
S ;- e B
e e e, oot
R e N S)
bt o N
e s F R T el

St R T e

o ot ¥, P
e e
B S

ket

Figure 1: Three feasible regions.

Vse€S, 3JteT suchthat d(s,t)<e. (4)

Note that with this definition the simplified mesh is also within a distance ¢

(“e-close”) to the original mesh. Given this triangular representation 7 and

an approximation error bound €, our goal is to generate, as quickly as possible,

a topology-preserving approximation S which is e-close to 7T, using as few of

the original vertices as possible.

CHAPTER 3. GREEDY-CUTS ALGORITHM 25

3.3 Feasibility Test

In this section, based on the Hausdroff distance, we give a novel definition of
feasibility for triangles in the simplified mesh.

Definition of triangle feasibility: A triangle P in the original mesh 7T is
feasible with respect to a triangle @ in the simplified mesh S if d(P, Q) < e.
A triangle @) in § is feasible if it can be completely covered by a connective
patch of triangles T" € T that are feasible with respect to Q.

We design two phases of the feasibility test to investigate the candidate
triangles which might be included in the simplified mesh. In Phase 1 we
check the three edges of a candidate triangle and then the interior of @), if
necessary, is further examined in Phase 2.

Phase 1: Test the three edges of the tested triangle. This step runs three
separate times, once for each of the three edges: E4 g, Epc, and E¢ 4. For
each edge E, we first determine a region A on the original surface such that
the Hausdroff distance from A to an tested edge E is smaller than e, i.e.
d(A, E) < €, which is equivalent to condition (1). We say that the edge E
passes the test if the region A covers this edge F within a distance e, i.e.
d(E, A) < e. We mark these three regions E4 p, Ep ¢, and E¢ 4 by mark 1,
mark 2, and mark 4 respectively. (See Figure 1.)

Phase 2: If the three regions fail to cover the entire tested triangle, there exists
an area bounded by these three regions. This uncovered area is tested in this
phase. By identifying the three borders with different feasibility marks formed
in Phase 1, several border lists are created for each region. The uncovered

area is investigated and tested by searching inner points with the help of those

CHAPTER 3. GREEDY-CUTS ALGORITHM 26

Figure 2: Three inner points.

border lists. For example, in Figure 2, points X, Y, and Z are the three inner
points required. Each border path is composed of edges of border faces, and

is guaranteed not to have holes.

3.3.1 Phase 1l

For each of these three tested edges, E4 p, Epc, and E¢ 4, we attempt to
determine a region on the surface so that for each face inside the region, the
distance to the corresponding edge is less than e. The first step of this phase
is performed on edge E4 5. We pick vertex A as the starting point and choose
a feasible face F' containing vertex A to be the starting face. We then perform

a Breadth-First Search (BFS) of all faces on the surface starting with F. For

CHAPTER 3. GREEDY-CUTS ALGORITHM 27

each face discovered in the search, we calculate the distance to the tested edge
E4p. If the face is within a distance € from the tested edge, we mark the
face mark 1 and add it to the queue; if not, we ignore it. Inside the loop of
the BFS, we dequeue one face from the BFS queue. Each of the face’s three
neighbors is examined, again calculating its distance from the tested edge and
enqueuing it if it is close enough. The BF'S continues this loop until the queue
is completely empty. When the BFS is done, we need to determine whether
or not the region we have grown extends from vertex A to vertex B. To check
this, we only need to inspect the mark of vertex B. The mark of a vertex is
defined by the mark of its adjacent faces. If any one neighboring face has the
appropriate mark, then we define the vertex to have this mark as well. If the
feasible region is extended to include vertex B, vertex B would have mark 1. If
this first test succeeds, Ep ¢ is the next to be tested and this region is marked
2. If Ep ¢ succeeds, then F, ¢ is tested and this region is marked 4.

As the BF'S proceeds during each of these tests, the border is recorded and
grouped into different lists. Each list has the same feasibility mark. When a
face is found to be infeasible during the BFS process, this face and its edge
adjacent to a feasible face are assigned to the list that has the same mark as
the infeasible face. If the infeasible face has not been marked any mark, then
we created a list with feasibility mark 0. Those border lists will be further
checked in Phase 2. As an example in Figure 3, a mark 1 border list on the
boundary of the mark 4 region is created during the growth of the mark 4

region.

CHAPTER 3. GREEDY-CUTS ALGORITHM 28

Figure 3: Two feasible regions overlap and a list of faces is found.

3.3.2 Phase 2

Although we have succeeded in covering the three edges of the tested triangle,
we still need to identify the uncovered interior regions. These interior regions
are bounded by two or three borders of the regions generated in Phase 1. In
this phase, we begin by finding the so-called “inner points” which are the
vertices at the intersection of the borders bounding the interior regions. In
Figure 2, we have illustrated three inner points X, Y, and Z.

To search for these inner points we will need to examine all nonzero marked

border lists built in Phase 1. Without loss of generality, we will use the regions

CHAPTER 3. GREEDY-CUTS ALGORITHM 29

marked 1 and 4 to describe the detailed searching process. Figure 4 illustrates
several possible types of overlap. We then impose three tests on the point X
for each case.

Test 1: Check to see whether the point X belongs to the mark 0 border list
of the mark 4 region. If it does, find another end point of this mark 0 border,
called point R, and then go to Test 2. Otherwise, point X is not an inner
point.

Test 2: Check to see whether point R belongs to the mark 1 border list of the
mark 4 region. If it does, go to Test 3. Otherwise, point X is an inner point.
Test 3: Check the mark 0 border list of the mark 1 region to see if there exists
a path from point R to point X. If there exists such a path then point X is
an inner point; otherwise, it is not.

Figure 4 illustrates four basic cases corresponding to these three tests. In
Figure 4(a), point X is not an inner point since the third (mark 2) region
covers point X and hence Test 1 fails. Figure 4(b) demonstrates a successful
case in Test 2 where the point R belong to a mark 0 border list of the third
(mark 2) region. A situation may arise where the inner area is formed by
only two regions as in Figure 4(d). This inner area is bounded by two mark
0 borders of mark 1 and 4 regions. Test 3 is to distinguish this case from the
case in Figure 4(c). There is no mark 0 border of mark 1 region which links
point R and point X, and hence point X is not an inner point.

When an uncovered inner area is discovered, we fill this area by beginning
with these inner points. For each inner point, a zero-marked face adjacent to
this inner point is chosen as the starting face. Then BFS is applied to search

this uncovered area from this starting face. If the discovered zero-marked face

CHAPTER 3. GREEDY-CUTS ALGORITHM 30

X))

© (d)

Figure 4: Four overlap cases.

is within a distance € from the tested triangle, the face is marked with mark
8. Otherwise, the tested triangle is infeasible and the test process stops. The
BFS process continues at other inner points until no zero-marked face is found.

If all uncovered areas are marked, this tested triangle is feasible.

3.4 Greedy-Cuts Approach

Unlike terrain models, there is no base grid available for general 3D models.
A possible way to extend the greedy-cuts algorithm to general 3D models, as
addressed by Silva in his dissertation [63], is to decompose a 3D surface into

several terrain-like patches. The boundary of each patch is a simple polygon.

CHAPTER 3. GREEDY-CUTS ALGORITHM 31

The simplification can be achieved possibly by executing the terrain greedy-
cuts algorithm to every patch. Each patch has an outward normal to guide
the greedy-cuts process.

In order to explore the extension of the greedy-cuts algorithm, we first set
up three main procedures, patch generation, ear clipping, and greedy biting, in
a way similar to the operations implemented for terrain models, and used these
as our guides for our search for more efficient algorithms. We use the feasibility
test defined in the previous section for a triangle to define a feasible triangle
within a specified error bound. Our purpose at this stage is to experience how
the greedy cuts algorithm work for 3D objects, how the algorithm terminates or
gets stuck, and how fast it could be. Now, we describe these three procedures

as follows:
e Patch generation:

— The surface of an object is divided into several connected patches.
No patch is enclosed inside another patch. The boundary of a patch
is a set of chains, which are lists of original edges. Ideally, each
boundary chain is shared by exactly two patches, except in the
open boundary case, in which a boundary chain belongs to only
one patch. At this stage, we basically generate all boundary chains,

and specify to which patches they belong.

— Simplify all boundary chains according to the specified error pa-

rameter. This involves a two-dimensional curve simplification.

— For each patch, link its simplified boundary chains to produce a

simple polygon as a border.

CHAPTER 3. GREEDY-CUTS ALGORITHM 32
e Ear clipping

— For each polygon, this operation searches feasible “ears” to clip by
traversing the boundary of the polygon. A feasible ear, containing
two adjacent edges of the polygon, is confirmed by the feasibility
test provided in the previous section. When an ear is clipped off,
the polygon is shrunk and the corresponding patch is adjusted. For
a terrain model, the investigation of an internal diagonal edge can
easily be done in linear time by a simple traversal of the boundary
of the polygon. Unfortunately, this property is not available for 3D
models, and instead, we cut from the patch an area according to the
test of the “feasible ear”. The Breadth-First-Search process during
the feasibility test is performed only on the faces belonging to the

corresponding patch.
e Greedy biting

— As the algorithm proceeds, if no more feasible ears exist and the
simple polygon has yet to be closed, greedy biting is executed on
the current polygon. Since there is no grid base for general 3D
models, the search for the inner point requires special attention. At
this moment, for a polygon P and each edge FE of P, we simply
search from among the endpoints of E for an inner point for which
the resulting triangle has aspect ratio close to 1. We can impose an
minimal (or maximal) threshold for the aspect ratio of the candidate
triangles. If the triangle formed by the edge E and an inner point

v is feasible, then we keep searching for inner points with better

CHAPTER 3. GREEDY-CUTS ALGORITHM 33

aspect ratios for the resulting triangles. Otherwise, the other edges

in P are investigated by the previously described procedure.

3.4.1 Patchification

Our first task is to decompose the surface of the original model into numerous
terrain-like patches. We call this process as patchification. Here we assume
the faces on the surface are all orientable triangles, although our approach
can be directly applied to polygons. Our first approach in patchification is
to generate big patches while maintaining the rough features of the surface.
We would like to explore several different ways to investigate the shapes of
the resulting patches. Generally, starting with a random face in the surface
as the initial face, we use Breadth-First Search (BFS) as the order for picking
faces from the surface, and then impose some collecting criteria to select faces
into terrain-like patches. We choose BFS instead of Depth-First Search(DFS)
since BFS collects adjacent faces first; and this way helps make round patches.
Another approach will also be discussed later in chapter 4. If no more faces
can be assigned to the current patch, we start from a face which has yet to be
assigned in order to build a new patch. In the meantime, we also calculate the
“patch normal” for each newly created patch in several different ways, one for
each distinct criteria of patch construction. The patch normals are important

when determining whether or not a triangle is feasible.

CHAPTER 3. GREEDY-CUTS ALGORITHM 34

Part 1

A naive way to generate patches is to use the normal of the initial face as the
patch normal. An adjacent face under BFS is collected if the inner product
of its normal and patch normal is positive. The advantages of this method
are the speed and simplicity. However, it could build numerous small patches
if the models have high curvature. It won’t be able to create only one patch
for terrain models. We would like to generate as few terrain-like patches as
possible. According to this consideration, we adopt an “angle range” approach.
Instead of calculating the inner product of the patch normal and a face normal,
we compute the “normal angles” of the three components, z, y, and z, of
each face normal, setting the three “normal angles” of the initial face as the
standard directions. Each time a new face is to be considered for addition into
the patch, we calculate its three “normal angles” and enlarge the three “angle
ranges” to include these three “normal angles”. Although the “angle ranges”
should not be wider than 180 degrees, we still allow two of the three ranges to
be free. Given a new face, we verify that the newly enlarged “angle ranges”
for those ranges that have not been freed, is not wider than 180 degrees. If
an enlarged, and restricted, “angle range” failed this test, then we can free it
as long as the number of free ranges is smaller or equal to 2. At the end of
this procedure, at least one of the “angle ranges” will not be wider than 180
degrees.

A patch is done when no more adjacent faces from BFS can be added
subject to these “angle ranges” constraints. We then start growing a new
patch if there exists an unassigned face. This process repeats until all faces are

marked. Every patch is assigned a number as well as the faces participating in

CHAPTER 3. GREEDY-CUTS ALGORITHM 35

the same patch (i.e. the faces in different patches have different numbers). The
boundary chains of a patch P are generated during the steps of building the
adjacent patches P; to patch P by collecting boundary edges shared by patches
P and P,. Each boundary chain is marked with the two “patch numbers”
of patches P and P,. We can therefore generate the borders of all patches
immediately after the patchification process. The output of the patchification
process is the set of boundary chains. To generate the patch normal for each
patch, we simply compute the average of all the face normals in the same
patch as the normal of the patch. Since our greedy-cuts algorithm is executed
only on simple polygons, patches containing inner patches and/or holes are not
allowed. Care has been taken to avoid this problem while building patches.
The three vertices of faces previously added to a patch have been marked.
Before we test the normal of a potential new face, we examine the marks of its
three vertices. If these three vertices have been marked and it has more than
one of its adjacent faces not belonging to the patch, then the face is rejected.

(further details will be presented in chapter 4).

Part 2

After implementing the procedures described in Part 1, we found that the
greedy collecting restriction might not allow the number of generated patches
to reach the minimum number of patches into which the surface could be
decomposed. Furthermore, it is likely to generate some “narrow” patches in
conjunction with some “big” patches. It is not necessary to demand for the
“smallest” decomposition of the surface, however, considering the difficulty

of triangulating narrow patches, such patches should be avoided. It would

CHAPTER 3. GREEDY-CUTS ALGORITHM 36

seem desirable to somehow enlarge the “small” patches while shrinking the
adjacent “big” patches. This observation led us to a revision based on the
“angle ranges” method.

Our strategy is to restrict the growth of the three angle ranges to some
intervals determined by the assigned patch normal. We identify 26 types of
patch normals, which are vectors (i,j,k) # (0,0,0), i,j,k € {0, 1, -1}. This means
the original surface will be divided into 26 types of patches. When growing
a patch, a patch normal N is not assigned to this patch in advance but is
actually determined by the tendency of the growing patch. The addition of a
new face to the patch makes the “angle ranges” increase in the same manner
as in the previous algorithm. This new algorithm proceeds to build the patch
proceeded as the previous one except that faces will only be accepted into the
patch if the signs of their normal angles are “compatible” with the sign of the
“angle ranges“.

At first, new faces are added without restriction to the patch as long as the
new “angle ranges” are not wider than 90 degrees. When the width of one of
these “angle ranges” first exceeds 90 degrees but stays below 180 degrees, then
a sign is given to that “angle range”, i.e. that component of the patch normal.
If the cosines of one “angle range” are positive then a +1 sign is given to that
component of the patch normal. A similar condition gives a -1 sign but a 0 is
assigned when the cosines of the “angle ranges” involve both signs. Checking
now only those components where the patch normal has a +1/-1 sign, a new
face is accepted if the sign of the cosine of its normal angle is the same as
the sign of the patch normal. For these components, the width of the “angle

ranges” must still be less than 180 degrees.

CHAPTER 3. GREEDY-CUTS ALGORITHM 37

We have carefully implemented this dynamic algorithm, and found out that
it might create many patches having normals (i,j,k) i =0, or j =0, or k = 0.
We then introduced a “patch merging” procedure to further combine them into
larger patches. The more advanced patch merging procedures are discussed in
chapter 4. While merging patches, care has also been taken to avoid generating
non-simple polygons. A simple constraint is imposed on the boundary chains
shared by two patches; two patches are considered to be merged if they share
only one boundary chain. Moreover, some boundary chains represent parts of
the surface’s sharp features, and these sharp features should be maintained.
Two patches are therefore not merged if their shared boundary chain is sharp.

Figure 9 and Figure 10 shows two results from the implementation of these
two algorithms. The “cup” model only generates four patches with normal-
s: (0,0,1), (-1,0,0), (0,0,1), and (0,0,-1); the “mushroom” model generates 6
patches with normals: (0,-1,0), (0,1,0), (-1,-1,0), (0,1,0), (0,1,0), and (1,0,0)
(The color patches are the initially generated patches and the patch borders in-
dicate the result of merging small patches). They are the minimum terrain-like
patches which can be used to cover these surfaces.

Before linking boundary chains to generate simple polygons for all patch-
es, our algorithm adopted a method, depending on a user-specified parameter,
to simplify all boundary chains. We used a greedy decimation procedure for
curve simplification. Specifically, for a given boundary chain with n vertices
(v1, Vo, V3, ..., Uy), we dropped vertex v, if it was within distance € of the seg-
ment vyv3; we then renumbered the vertices (v; became v;_1, for ¢ > 3) and
repeated. This procedure was applied successively on all boundary chains. To

get a simplified boundary for a patch P, we linked boundary chains having

CHAPTER 3. GREEDY-CUTS ALGORITHM 38

the “patch number” of the patch P, and the resulting simple polygon was ori-
ented counterclockwise. A boundary chain is used twice in order to generate
two simple polygons except when the surface has boundaries (or cracks), and

in this last case the boundary chain is used once.

3.4.2 Patch Triangulation

We are now prepared to triangulate those simple polygons created by the
patchification process. The main operators we adopted were ear clip and
greedy bite. One ear clip reduces one edge of the polygon, while one greedy bite
adds one edge to the polygon. Obviously, this implies the ear clip will be the
last operation of the triangulation process.

Given a simple polygon P, we first execute ear clip sequentially on the
edges of this polygon P. An ear (a triangle with two boundary edges) is
clipped off from P if the ear is feasible according to the feasibility test. This
ear clip action is repeated until all feasible ears are clipped. The polygon P
was reduced by one edge for each successful clipping. If the polygon P hasn’t
been closed, we apply a greedy bite on the edges of the shrunk polygon P,
which an inner vertex was found together with one boundary edge to form
an feasible triangle. We then return to the polygon to perform as many ear
clipping as possible. Those ear clip and greedy bite actions are repeated until
the polygon is closed or no more feasible triangles are found.

What’s the probability of failing to close a simple polygon? According to
our experiments, it is likely to happen. In particular, We observed a situation
where the edges of the shrunk polygon P were getting longer and increasingly

thinner triangles were being generated by the successive ear clippings. It seems

CHAPTER 3. GREEDY-CUTS ALGORITHM 39

that those long edges have to be split similar to the “edge split” action used in
[61]. The question the is when and how to split an edge, and how many edges
have to be split in order to finish the triangulation of a simple polygon. Can
we always guarantee the closure of simple polygons? In the following section

we present a “repair” process to overcome this problem.

3.4.3 Front Repair

In this section we explore another approach, referred to as the “wave front”
method, to triangulate the simple polygons and overcome the difficulties of the
simpler greedy-cuts approach. In the previous section we introduced a method
where the cooperation of ear clip and greedy bite was used to triangulate a
simple polygon, within a specified error bound. Whenever ear clip actions got
stuck, we executed a single greedy bite action to rescue the process, and then
returned to ear clip again.

The idea behind the “wave front” method is to imagine the triangulation
of a simple polygon like the movement of a wave of water starting from the
initial border and moving toward the center of the patch until it is closed. To
implement this approach, still based on ear clip and greedy bite, we created a
succession of wave fronts. These wave fronts then serve to control the opera-
tions of ear clip and greedy bite, and to repair bad choices made during those
operations.

Given a simple polygon P, we define the initial wave front as P itself.
To generate the “first wave front”we perform ear clip actions on P until no
more feasible ears exist. At this point, the first wave front is the shrunk

simple polygon P. If the polygon P has not been closed, we must generate

CHAPTER 3. GREEDY-CUTS ALGORITHM 40

the next wave front. The first front move only consisted of ear clip actions
while further movements of the front we will include greedy bite actions. In
particular, the movement of the current wave front will include a sequence of
greedy cut actions eventually followed by ear clip actions. We now take all
possible greedy bite actions on the edges of the current wave front, not just a
single greedy bite. With this arrangement, the termination of the wave front
is not guaranteed since the edges of the new wave front could get longer with
future ear clip actions and thus end the process in the greedy-bite stage with
a stuck wave front. We therefore need a rescue method to reactivate the wave
front. The direct way is to split long edges. The edge split action introduced
by Silva et al. [61] split a stuck edge roughly in half or at a grid point close
to the stuck edge, resulting in the division of one face into two smaller faces.
However, since the locations of vertices in the general 3D surface are irregular
and we did not introduce any Steiner points, splitting an edge may not possible
due to a lack of vertices. This implies that we may need to delete more than
one face to finish splitting an edge. There is another question, when should we
split a stuck edge? If a stuck edge is not split right away, the future front moves
could create many small faces, however, a stuck edge may be released (by a
ear cutor an greedy bite) with future front movements. We have found that the
appropriate time to repair a stuck edge is when it appears on a “sharp” turn
of the wave front. These concerns have been incorporated into the following

front repair process for each movement on the wave front.

CHAPTER 3. GREEDY-CUTS ALGORITHM 41
Repair Process

According to our experiments, the wave fronts generated with ear clip and
greedy bite might fail to advance because of the “sharp angles” of the front.
Specifically, the problems occur when the following three conditions hold si-
multaneously (i) a sharp angle is formed one short edge and one long edge,
(ii) the ear including these two edges is infeasible, and (iii) no feasible bites
are available on these two edges. The idea of the repair process is to resolve
the sharp angles of the wave fronts in advance, thus preventing the wave front
from generating too many skinny triangles. The specification of a sharp angle
depends on the requirement of a minimal aspect ratio of a triangle. In our
approach we gradually released the constraint on sharp angles as the repair
process proceeded.

The repair process was implemented immediately after the greedy cut and
ear clip actions. Summarizing, we list the entire triangulation process for a

simple polygon P.
e Initial wave front: the simple polygon P.

e First wave front move: clip the polygon until no more feasible ears exist.

e Further wave front moves: if the polygon P has not been closed after
the first wave front move then continue to move the wave front W step
by step until the polygon is closed. One step of the complete wave front

move includes

— Implement greedy bite actions on every edge of the wave front W.

CHAPTER 3. GREEDY-CUTS ALGORITHM 42

— Implement ear clip actions on the current wave front W, until no

feasible ears exist.

— Repair the sharp angles on the current wave front W.

The repair process includes
e Edge swap: an action to split an edge (see Figure 5).

e Refine faces adjacent to a vertex by performing a sequence of face split

(see Figure 6).
e Delete vertices: the extreme result of a sequence of face split actions.

The algorithm repairs the sharp angle gradually from the angles with high
sharp degree. A minimal aspect ratio bound can also be imposed to avoid
extremely skinny triangles. If there are no more possible bites and clips, or no
further possible repair under the current definition of a sharp angle, then the
degree of the sharp angle is reduced, and we repeat these three procedures. We
define the front faces as the recently generated faces connected to the vertices
in the current front, the repair process is designed to only affect the front faces.
A more comprehensive description of the repair actions is necessary.

When a sharp angle is detected, we try to repair this sharp angle from the
longer edge E of the two edges which form this angle. First, we try “edge
swap” as shown in Figure 5. The face (triangle) containing F' is deleted from
the list of faces which have been generated, and two triangles, acd and bed
are created if they are feasible. If this first attempt fails, then we refine the
adjacent faces connected to vertex a. This refinement procedure executes a

sequence of face split actions. A face split action does one greedy bite and one

CHAPTER 3. GREEDY-CUTS ALGORITHM 43

(or two) ear clip as shown in Figure 6. First, the face abd is deleted from the
front faces. Face split will then try to generate two feasible faces by executing
one greedy bite followed by an ear clip on the edges ad and bd. If this procedure
succeeds, we make another ear clip at gcb to finish repairing the sharp angle,
i.e. to close the sharp angle. If the first face split fails, when for example no
vertices are inside the face abd, we recursively split the next adjacent faces of
vertex a. For instance, in Figure 6 the next deleted face would be adh. If this
procedure fails on all adjacent faces of vertex a, then the vertex a is deleted.
This is would be the extreme result of a sequence of face split.

If the wave front is stuck after the ear clip and greedy bite actions, we can
repair the front and guarantee the closure of the polygon. Suppose the current
wave front F' is stuck. For every edge which is not original edge in the stuck
front, we claim that it is possible to assume that there exists a path inside
the front faces (see Figure 8(c)), which contains original edges connected to
the two vertices of this edge. Even if this is not strictly true, it is nonetheless
possible to reduce to this case. If some of the vertices in the path are out of the
scope of the current front faces, then our repair process will move the current
front back to enclose those vertices. As a special case, the adjacent faces to
one of the vertices of such a bad edge will be deleted by our third repair step
because these faces cannot cover any vertices of the original triangulation.
A common example of this last case occurs when an edge on the wave front
created by a greedy bite action and the generated triangle do not cover any
vertices and therefore will be deleted.

Hence, we suppose this path is enclosed in the front faces. By linking those

paths, there exists a loop L of original edges containing all vertices of F'. If we

CHAPTER 3. GREEDY-CUTS ALGORITHM 44

a a
K\ S
AN AN
N \\
AN
¢ N Swap c - \\
E N —_— T=<N
N ~ d
_»d ~ >
-~ -~
-~ -~
-~ -~
b

Figure 5: Edge swap in action.

can repair the current front F' and move F' back to L, then there exists at least
one feasible triangulation of L, the obvious one formed by original triangles, to
close the wave front, and which could be found by searching over all possible
bites. The question is now can our repair process transform the current wave
front F' into the loop of original edges L? Those vertices belonging to L, but
not in F', can be added by swapping edges or by refining the adjacent faces
of vertices in F' as shown in Figure 7 and Figure 8 . The stuck front F' can
therefore be transformed to L. Figure 11 demonstrates the entire greedy-cuts

process on a single patch from the Fandisk model.

CHAPTER 3. GREEDY-CUTS ALGORITHM 45

1 Face Split
—
h
a - - ’1
< |
S~ |
~
‘ y L
E y —
7
/7
/7
7
Ve
2 Face Split

Figure 6: Face split in action.
3.5 Results and Conclusion

We have successfully implemented the greedy-cuts algorithm to general 3D
models. The simplified mesh generated by our algorithm is e-close to the o-
riginal surface, as measured by a two-sided Hausdroff metric. Figure 12 shows
the results of our experiments on the Cup, and Mushroom models. Unfortu-
nately, we found that the greedy-cuts algorithm we implemented was not as
fast as we had expected. In particular, when we increase the aspect ratio of a
triangle to prevent it from generating skinny triangles, the front repair process

took much longer to complete its task. Another reason for its low speed is that

CHAPTER 3. GREEDY-CUTS ALGORITHM 46

the terrain-like patches were too big, i.e. the border (a simple polygon P) of
a patch contained too many edges. To find a feasible ear and make a feasible
bite, we had to avoid the newly generated triangle from intersecting other edges
of the simple polygon P. This operation depends on the number of edges of
the polygon P. Furthermore, although our algorithm gave a guaranteed error
bounded simplification, the visual quality of the simplified mesh was not com-
parable to those of other leading simplification approaches when the number of
simplified triangles was held fixed. In order to guarantee the simplified mesh
within the error bound, our greedy-cuts algorithm generated many triangles
to meet this requirement. The error bound had to be increased in order to
reduce the number of triangles in the simplified mesh, hence resulting in poor
visual quality. This is a common drawback of simplification algorithms based
on refinement approaches with guaranteed error bounds, as can be seen in the
currently existing algorithms mentioned in chapter 2. We also noted that the
ability of maintaining the features of the original surface was a crucial factor
for a high visual quality simplification. If we generated ‘big’ patches, some
feature edges in the original surface might not be retained. With these obser-
vations in mind, in the next chapter, we explore a new approach and present

an advanced algorithm for fast and memory efficient surface simplification.

47

CHAPTER 3. GREEDY-CUTS ALGORITHM

(b) The Front Faces

(@) The stuck Front

(d) 2 Face Split

(¢) 1 Face Split

Figure 7: Front repair in action.

48

CHAPTER 3. GREEDY-CUTS ALGORITHM

Edge Swap

(b)

(@) 1 Face Split

(d) New Front

(c) The front loop

(continued).

Figure 8: Front repair in action

CHAPTER 3. GREEDY-CUTS ALGORITHM 49

Figure 9: The Cup patches generated by two different patchification strategies:
the upper image from Part 1 and the lower image from Part 2.

CHAPTER 3. GREEDY-CUTS ALGORITHM 50

Figure 10: The Mushroom patches generated by two different patchification
strategies: the upper image from Part 1 and the lower image from Part 2.

CHAPTER 3. GREEDY-CUTS ALGORITHM ol

(&) (h) (1)

Figure 11: The greedy-cuts actions: (a) the initial polygon, (b) the first wave
front, (c) greedy biting (d) ear clipping, (e) front faces, (f) front repair, (g)
front faces, (h) ear clipping, (i) front close.

CHAPTER 3. GREEDY-CUTS ALGORITHM 52

Figure 12: The simplified Mushroom image with 106 triangles and the simpli-
fied Cup image with 88 triangles.

Chapter 4

SPBM Algorithm

4.1 Motivation

We continue in this chapter our study of a problem that has received a great
deal of attention over the last several years — that of simplifying a polygonal
surface, in order to be able to render an approximation of it very quickly. This
problem is at the heart of geometric compression and the construction of levels
of details. Among the plethora of features a given technique should have, its
speed and memory usage stand out since a major incentive for the development
of simplification techniques is the need to generate simplified versions of tru-
ly large models, possibly composed of millions of geometric primitives. When
dealing with large models, efficiency is very important, and is quite possibly the
main reason the vertex-clustering technique of Rossignac and Borrel has been
so popular in commercial applications, in spite of its potentially low simplifi-
cation quality. Before the recent work of Garland and Heckberk, edge-collapse

algorithms were seen as slow, and very memory intensive, and despite their

93

CHAPTER 4. SPBM ALGORITHM 04

favorable characteristics, were impractical. With their elegant quadric-error
metric, as implemented in QSlim, Garland and Heckbert eliminated several
of the shortcomings of edge-collapse algorithms for the simplification of large
models.

Our motivation for this work is to improve on the speed and memory usage
of mesh simplification algorithms. Our main insight is the fact that any given
curve defined over a surface provides useful information about the surface in a
neighborhood of the curve. For many surfaces, a set of “profile curves” seems
to capture most of the shape information contained in the surface, but at a
much lower cost. Indeed, the importance of identifying profile curves for 3D
models has been addressed for a long time in computer graphics [5] [16]
(38] [48] [52] [57] [67]. Dooley and Cohen [16] described the perceptual
significance of silhouette, discontinuity, and contour in clarifying geometrical
structure for complex models. Ma and Interrante [48] demonstrated that a
display of profile curves can be used in conjunction with surface or volume
rendering to lead to a shaded rendering. Those ideas lead us to develop a
new method, which uses a patchification technique for computing the profile
curves. The computation of the patches is the only time that the actual surface
is used in our algorithm. Subsequent phases of our algorithm only consider
curves. As will be seen later, this makes it possible for our algorithm to be
both very fast and memory efficient.

Our new method, the “Simplified Patch Boundary Merging” (SPBM) method,
is based on clustering facets of S into “patches”, simplifying the patch bound-

aries (“profile curves”), merging appropriate pairs of adjacent patches, and

CHAPTER 4. SPBM ALGORITHM 95

retriangulating the resulting patch boundaries in order to obtain a new sim-
plified surface. A key feature of our SPBM method is that it does not store and
maintain the geometry of the surface patches themselves; rather, the method
gains much of its speed and simplicity from the fact that it works on the one-
dimensional boundary curves for patches. These profile curves capture much
of the appearance of a surface when it is rendered, as they tend to define the
most prominent silhouettes and visual features of the model.

The main contributions of our new SPBM method are (1) its speed, and (2)
its low memory consumption, while producing simplifications with very good
visual fidelity. While the SPBM method does not guarantee that every point
of the approximate surface lies close to a point of the original surface, it does
guarantee that the profile curves (patch boundaries) lie within a user-specified
tolerance of the original surface. Since the profile curves are chosen in a manner
that tends to capture the visual features of the original model, having these
curves approximated in the output model leads to very good visual fidelity,
particularly for the efficiency of the new method. The remarkable fact that
we demonstrate is that a fairly simple and fast algorithm suffices to obtain a

reasonably high degree of visual fidelity in approximating polygonal surfaces.

4.1.1 Related Work

The work of Kalvin and Taylor [39] on “SuperFaces”, and Hinker and Hansen [31]
on their geometric optimization paper are closely related to ours. Kalvin and
Taylor [39] devised “SuperFaces”, which is perhaps the prior method most

closely related to our own. The main distinction between our method and the

CHAPTER 4. SPBM ALGORITHM o6

Figure 13: Low resolution approximation of the Stanford Bunny (69K faces).
SPBM yields an approximation having 525 faces, based on a patchification
into 185 patches. On an SGI R10K, SPBM takes 3.09 seconds (2.41 of which
is reading data from disk). In comparison, QSlim 2.0 requires 8.70 seconds
(5.69 of which is the simplification algorithm itself).

Superfaces algorithm is that we abandon the provable bound on the approx-
imation error in terms of the Hausdorff distance between surfaces, replacing
it with a guaranteed error bound on the profile curves that form boundaries
between patches. This allows our method to be faster and more memory effi-
cient. The region growing strategy of Hinker and Hansen [31] is different, since
in ours, the region is guaranteed to remain homeomorphic to a disk. Also, our
technique allows for multiple level-of-detail approximations to be generated
from a single patchification process. In other related work on surface decom-
position, Chazelle et al. [8] investigated the problem of decomposing polygonal
surfaces into convex patches, showing that the optimization problem is NP-

hard, while providing an experimental study of various heuristics. While their

CHAPTER 4. SPBM ALGORITHM o7

problem is significantly different from our version of “patchification”, as they
require convexity, their “lood” method partially motivated our own patchifi-

cation scheme.

4.2 The Algorithm

We assume that the input is given by a triangular mesh, S, which is a set of
n triangles such that any one edge of a triangle is common to at most two
triangles. We do permit an edge to be a border edge, belonging to only one
triangle, but we do not consider here the non-manifold case in which an edge
belongs to three or more triangles. (Our technique applies to non-manifold
surfaces, but our experiments are all on manifold data, so we omit discussion
here of the extension to the non-manifold case.) Of course, a vertex may
belong to multiple triangles. We allow quite general, “real-world” data, in
which the surface may self-intersect. If the faces of the input model are not
yet triangulated, we use the robust triangulation package “FIST” (]29, 30]) to
preprocess the model into a triangular mesh.

The output of our algorithm is a new triangular mesh, with vertices among
the original input vertices. We do not allow Steiner points; thus, we do not
attempt to preserve volume, per se, as this will not be possible at very low
resolutions.

Our algorithm can be decomposed into two main phases. The first phase
consists of a “patchification” algorithm, which partitions a given polygonal
surface into multiple “patches” (sets of contiguous triangles), based on a user-

defined parameter (controlling allowed angles between surface normals, which

CHAPTER 4. SPBM ALGORITHM o8

in essence controls the mazimum surface sampling), in conjunction with a set
of simple heuristics designed to facilitate “well-shaped” patches, with bound-
aries that respect surface discontinuities. Each patch is represented only by
its boundary curve (in contrast with the prior “SuperFaces” approach, which
requires a full representation of the triangulation within each patch). Level-
of-detail generation is then performed in three phases: (1) simplification of
the polygonal curves bounding the patches, (2) selective patch merging, and
(3) patch triangulation. Merging involves deleting the boundary between t-
wo patches, if their common boundary consists of a single segment and their
associated normals are nearly parallel (according to the user-specified param-
eter). At the conclusion of the merge phase, patches are retriangulated using
a prioritized version of ear clipping.

We now describe each of these steps in further detail.

4.2.1 Patchification

The first step in our algorithm is partitioning the surface model into multiple
patches, each of which is a simply connected set of triangles. This step strongly
influences later steps of the algorithm, since the “structure” of the simplified
object is determined by this patchification of the original surface.

Ma and Interrante [48] stressed the benefit of averaging the normal direc-
tions of neighboring triangles for clarifying the “profile curves“ in a complex
model, but did not discuss how many such triangles should be included. Their
approach only intended to find the “profile curves”, not to generate a subdivi-
sion of a surface. In designing our patchification algorithm, we had a few goals

in mind. First, and foremost, we attempted to have the patches capture the

CHAPTER 4. SPBM ALGORITHM 99

“smooth” regions of the model, while having their boundaries respect the dis-
continuity curves (“profiles”) that give the model its key visual features. We
do not require patches to be convex, but we do wish them to be terrains (i.e.,
height fields) with respect to some “patch normal” vector 1 (meaning that any
line parallel to i should intersect a patch in a connected set, usually a single
point). Second, we wanted a very simple and efficient algorithm for creating
patches: any super-linear complexity in patchification would automatically
make our overall algorithm too slow to be used in practice.

With these goals in mind, we designed a very simple “growth” procedure for
creating (and defining) our patches. Our procedure bears some resemblance
to the “flooding” heuristic of Chazelle et al. [8]. Basically, starting from a
random face (triangle) of S, we start to grow a patch, P, and grow it one face

at a time using a constrained breath-first search (BFS).

Figure 14: Triangle T has just one free neighbor, T”. Left: T" shares only one
edge with the patch P; Right: 7" shares two edges with P.

CHAPTER 4. SPBM ALGORITHM 60

4.2.2 Patch “Growth” Algorithm

The triangles that are contained in the patch P are stored in a queue, Q).
Each patch P has an associated patch normal vector, np. Each triangle of S
is marked too with the patch (if any) to which it belongs. A triangle that
does not yet belong to any patch is said to be free; a vertex or a triangle that
already belongs to some patch is said to be marked. An invariant of the patch
growing procedure is that we maintain the simplicity of the boundary of P;
i.e., the patch is a simply connected subset of the surface S, homeomorphic to
a 2-disk, with no “pinch off” points or “holes”.

Let T" € @ be the triangle of the patch P whose neighbors are now being
expanded in the BFS. There are four cases, depending on how many neighbors

of T are free:

0 free neighbors Then any edge of T that corresponds to a neighbor in a
patch distinct from P is marked as a patch boundary edge; no neighbors

of T" are added to P.

1 free neighbor Let 7" be the free neighbor. If Feasible (T, 7", P) (see below
for definition), then 7" is added to the patch P (1" is enqueued in Q).
Refer to Figure 14.

2 free neighbors Let 7" and 7" denote the free neighbors. If Feasible (T, 7", P)
and Feasible (T, T", P), then 7" and T" are both added to the patch P
(enqueued in @); otherwise, neither are added to the patch P, and T is
removed from P. Refer to Figure 15. (The rationale for removing 7" in
this case is to make the patch “fat”, in the sense of not having long and

skinny tentacles.)

CHAPTER 4. SPBM ALGORITHM 61

3 free neighbors This can be the case only when 7' is the first triangle of
the first patch P. In this case, we add to P those neighbors 7" for which
Feasible (T',7", P) is true.

Figure 15: Triangle T has two free neighbors, 7" and T". Potentially, T is
removed from the patch P.

With each triangle that we add to P, we update the patch normal, np,
which maintains the average normal among the triangles of P (optionally
weighted by the area of the triangles).

When one patch P is done being extended (no more adjacent free neighbors
can be added, subject to our feasibility constraints), then the algorithm selects
a triangle that is neighboring to P and uses it as the “source” to start growing a
new (neighboring) patch. This process continues until all triangles are marked,
indicating that the surface has been completely covered by non-overlapping

patches.

CHAPTER 4. SPBM ALGORITHM 62

Two neighboring patches, P and P’, share part of their boundaries; the
connected components of the common boundary are polygonal chains, which
we refer to simply as chains. Each chain is stored in an edgelist; it links two
vertices (the first and last along the chain), which are called chain endpoints
(or endpoints, for short). We define the patch graph to be the dual graph of
the decomposition induced on S by the patches; specifically, the patch graph
has nodes corresponding to patches and edges corresponding to chains that

form the common boundary components between neighboring patches.

4.2.3 Triangle Feasibility Criteria

We now specify precisely what we mean by a free triangle 7", neighboring

T € P, being feasible: Feasible (T,T', P) performs the following steps:

(a) If all three vertices of 7" are already marked as members of P, and if the
other two neighbors of 7" are both unmarked or marked as members of
patches other than P, then we return, with “INFEASIBLE”. (Adding
T’ to the patch would cause the boundary of P to “pinch off”, violating
the simplicity of P.) See Figure 16.

(b) We test if the normal, 7y, to 7" makes a “small” angle with both the
normal ny and the patch normal np. Specifically, if ny - np > oy and

N - Nr > g, then we return with “FEASIBLE”.

Here, a; and ay are user-specified parameters that control the extent to
which triangles of a patch are nearly coplanar. Actually, we allow up to
four parameters, as «; and a, are allowed to have different values in each

of two cases: If 7" shares two of its edges with triangles in P (triangle T’

CHAPTER 4. SPBM ALGORITHM 63

plus another triangle 7" € P), then «; and a9 are taken to be smaller
(by default, taken to be 0, corresponding to an angle of 90 degrees); if 7"
shares just one edge with P (namely, the edge in common with 7T'), then
a1 and ay are typically assigned larger values, to reflect the requirement
that the angle with 7y should be smaller in this case. (By default, we
use values corresponding to angles of roughly 25 degrees and 20 degrees,

respectively.)

Figure 16: The neighbor, 7", of T' € P is not added to the patch P, since it
would cause P to fail to be simple, creating a “pinch”.

Examples. The result of our patchification on a finely tessellated sphere
is a set of nearly circular patches having approximately the same size. The
size of the patches goes down as the parameters o; and a increase (i.e., as
the angular tolerance goes down), and the patches are the original triangles

themselves if the angular tolerance is zero. Similarly, a cylinder is patchified

CHAPTER 4. SPBM ALGORITHM 64

(a) (b)

Figure 17: Depicted are (a) the simplified boundary curves, and (b) the final
patches after merging.

into a set of bands along the length of the cylinder. In Figure 13 we illustrate
the result of patchification on the Bunny model, by coloring patches distinctly.
See also Figs. 17b, 20a, 21a, 22a, and 24a.

4.2.4 Level-of-Detail Generation

While the patchification process has, in fact, already resulted in a simplification
of the surface (since vertices interior to patches have been dropped), we often
think of it as a form of preprocessing, before doing a more refined level-of-
detail generation, as is done in the next phase of the SPBM algorithm. In
fact, for a fixed patchification, we can generate multiple levels of detail based
on varying the parameters that control the next two steps of the algorithm:

boundary simplification and patch merging.

CHAPTER 4. SPBM ALGORITHM 65
4.2.5 Boundary Simplification

Once the patches have been computed, we move to the second phase of our sim-
plification algorithm, which simplifies the chains that form the patch bound-
aries. Each chain is represented by a list (v1, v, ..., vx) of vertices in 3-space.
For a given user-specified error tolerance ¢ > 0, we use a simple divide-
and-conquer refinement technique to simplify the subchain linking v; to v,
(1 <i<j<k). (Initially, s = 1, j = k.) If the subchain lies within € of
the line segment v;v;, then we are done — the subchain is approximated by
the single segment. Otherwise, we include vertex v,,, with m = (i 4+ j)/2, in
the approximation and recursively simplify the subchains from v; to v,, and
from v, to v;. We have experimented with other methods of approximating
chains, but we have found that this simple method works well in practice (see
Fig. 17a); it also readily permits a hierarchy of chains to be computed, at mul-
tiple levels of detail. This previous feature of chain simplifications allows our
SPBM algorithm to be generalized from the computation of a single simplified
surface, the case on which we concentrate above, to a multi-resolution hierar-
chy. While our chain approximation technique is not guaranteed to produce a
minimum-vertex e-approximation, it can be shown to be within a small factor
of optimum in the worst case. For recent theoretical results from computa-
tional geometry on simplifying chains in three dimensions, see [6]. Consider-
ing the applification of progressive generation and view-dependent approach
as our future works, the ability to store the hierarchy approximated boundary
cures is very important for our future work on an amplification of the SPBM
algorithm implementing progressive generation and view-dependent simplifi-

cation. That multi-resolution hierarchy can be stored in merely one run of

CHAPTER 4. SPBM ALGORITHM 66

simplification from the initial mesh to the base (coarsest) mesh. With this
requirement, we reverse the boundary simplification procedure from bottom
to top. We recursively considers pairs of vertices v; and v; and the segment

(e}

57, is included in our simplified curve if and only if it is

(v, U), where m =
within e-tolerance but the segment (v;, v;) is not within the tolerance. While
a base mesh is generated, all of the boundary curves are straightened. This
bottom-up approach has recovered the hierarchy of approximated boundary

curves.

4.2.6 Patch Merging

In the patch merging phase, we attempt to merge pairs of adjacent patches,
P and P’ in order to further decrease the complexity of the surface. This is
a recursive process that begins with the original patches and simplified chains
and through the merging of patches and collapsing of chains, generates a suc-
cessor of larger and larger patches until no further merging is possible within
the parameters that specify the level of approximation (see Fig. 17b).
Specifically, we merge P and P’, if they satisfy both of the following con-

ditions:

(1) P and P’ each have all of their boundary chains being singleton edges,
and their common boundary consists of a single (one-edge) boundary

chain, and

(2) np - npr > aq; so that the patch normals are “nearly” parallel, according

to the parameter a; specifying the angular tolerance.

CHAPTER 4. SPBM ALGORITHM 67

When we merge P and P’, we delete the edge (u,v) that is their common
boundary. If this results in the endpoint u (resp. v) having degree two (being
the endpoint of exactly two other one-edge chains) then we delete u (resp.
v), and replace the two corresponding one-edge chains with a single one-edge
chain. We also update the patch normals when we merge P and P’, computing
the new (possibly weighted) patch normal for the combined patch.

Every time that a patch P is considered for merging, we attempt to further
“straighten” its boundary by collapsing one or more of its links. We only col-
lapse a chain (u, v), bordering patches P and P’, when the following conditions

are met:
(a) No other patch P"” has both v and v on its boundary (see Fig. 18),
(b) np-mp > a1, and

(c) The length of (u,v) is a constant factor smaller than the length of the

longest chain. (Good results are obtained by using a factor of 1.)

If these conditions are met, then we perform a chain-collapse, replacing (u,v)
with the endpoint (u or v) that corresponds to the larger variation in surface

normals.

4.2.7 Boundary Preservation

The boundary of a mesh is given by the set of all edges belonging to exactly
one triangle. It is essential to preserve this boundary as much as possible. A
careless collapse action could seriously destroy the boundary as illustrated in

Fig. 19b. Special care has been taken with those chains linked to the boundary.

CHAPTER 4. SPBM ALGORITHM 68

(a) (b)

Figure 18: Depicted are (a) a patch P; with both vertices v; and vy on its
boundary, and (b) a patch P, anchored at v; after collapsing the chain F to
V1.

Those chains are only allowed to collapse to the vertex not on the boundary,

however we allow boundary chains to collapse into either side.

4.2.8 Patch Triangulation

At the conclusion of patch merging, we are ready to retriangulate the simplified
patches that remain. This is done with a simple “ear clipping” procedure; we
use a somewhat simplified version of the more sophisticated ear clipping of
FIST [29, 30]; see also O’Rourke [51].

It is important to realize that, even though the patches are generated in

CHAPTER 4. SPBM ALGORITHM 69

(D)

P1 € Pl V1
U1

P,

(a) (b)

Figure 19: Depicted are (a) a chain collapsed to a boundary vertex, and (b)
how the boundary is destroyed when the collapse goes the other way.

such a manner that the normal vectors fall within some small cone, it is pos-
sible that the boundary of a patch P does not project as a simple polygon
onto the plane that is orthogonal to np. (Consider, for example, a “spiraling
ramp,” as one may see in a parking garage.) While these cases may be very
rare in practice (indeed, in our experiments we had to generate such cases
specially, for testing purposes), our goal is to handle all cases robustly, and
not to restrict the type of input surfaces we can handle. One approach we
have used to this end is to apply the FIST triangulation system directly to

triangulate all patches; since FIST is guaranteed to produce a triangulation of

CHAPTER 4. SPBM ALGORITHM 70

any closed polygonal chain (even if its projection is not a simple polygon, and
even if it has arbitrarily bad artifacts), this approach guarantees that our sys-
tem never fails to produce some triangulation that is at least combinatorially
a valid triangulation. (Recall that the problem of determining if an unknotted
polygonal loop in 3-space can be triangulated (without Steiner points) to yield
a surface homeomorphic to a 2-disk is NP-complete [7]. Thus, FIST does not
claim to “solve” this hard problem, but instead has a set of highly effective
heuristics designed to try to avoid triangulations that self-intersect.) How-
ever, the triangulations produced by FIST for “spiraling ramps” and similar
situations in which the projection of the patch boundary self-intersects were
found not always to be the best for purposes of visual fidelity (often producing
triangles whose normals were not close to the patch normal). Thus, we have
opted to provide three options to the user: (1) to use FIST; (2) to use our
simplified version of the FIST heuristics (which are guaranteed to give valid
triangulations as long as the projected patch boundaries do not self-intersect);
and (3) a modification of our patch growth and merging methods, in which we
explicitly forbid a patch from having a self-intersecting boundary projection.
(Method (3) currently uses a relatively naive method of testing, checking for
each change in a patch boundary if the resulting segments in the projection
create a self-intersection. Realizing that this is inefficient, in general, we are
implementing a fast and simple grid-based hashing technique to prune most
of the segment intersection tests.) The experiments reported here are based
on the default method, method (2), which we have found to work very well in
practice, while being able to handle all of the large test suite of models in our

experiments.

CHAPTER 4. SPBM ALGORITHM 71

Using np, we can readily define what it means for an ear (corresponding
to three consecutive vertices (v;—1,v;, v;+1) about the boundary of P) to be
feasible: the corresponding segment v;_1v; 1 must project to a valid diagonal of
the simple polygon obtained when projecting the boundary of P onto the plane
orthogonal to np. This is readily checked with a few simple cross products
([51]).

In order to obtain good quality triangulations, i.e. with good aspect ratios,
we have found it advantageous to prioritize the ear clipping: we clip ears
according to increasing angle (interior, convex angle).

We remark that there can arise a case in which a triple (v; 1,v;, vi41)
defines an ear for both patches, on each side of the chain that contains the
triple. In this case, we do not want to include both triangles that would result
from clipping (they would have oppositely oriented normals and cause a visual
artifact); instead, we choose to keep that triangle whose normal vector is most

nearly parallel to the corresponding patch normal.

4.3 Experimental Results

Our algorithms have been fully implemented and tested. One of the strengths
of our method is the simplicity of the algorithms, as we have described them.
All the steps are very simple and intuitive, and the implementation follows
their description very closely. Our implementation is in “C” and is readily
portable, running on PCs and workstations. We report our results based on
an R10000 SGI Indigo2 workstation (195 MHz CPU, 256 MB RAM, 32 KB
data/instruction cache, and 1 MB secondary cache, IRIX 6.5). Compilation

CHAPTER 4. SPBM ALGORITHM 72

was with “cc -O2”. (For comparison, on a Pentium Pro PC (180 MHz, 128MB)
the running times go up by 33% on average.)

In order to evaluate the simplification rate and the quality of the levels of
the reductions, we ran a battery of tests on several public domain datasets. For
these tests, we compare our prototype SPBM implementation, with QSlim 1.0
and QSlim 2.0. (Originally, all our comparisons were performed with respect
to QSlim 1.0, but on March 17th, 1999, Michael Garland released QSlim 2.0, a
new and improved version of his state-of-the-art simplification code.) For each
of our five datasets, we computed three different level-of-detail approximations,
each of these were computed with all three codes. For the larger dataset
consisting of over one million triangles — the Buddha — we were unable to run
QSlim 1.0, since our test machine ran out of memory.

In Table 1, we summarize the running times obtained with each code, for
each one of the level-of-detail generations. In Figs. 20 to 24, we show side-
by-side comparisons of the approximations generated with SPBM and QSlim
2.0.

Here is a summary of our comparisons for each dataset.

(1) The Sphere dataset is a very small dataset, consisting of 1026 vertices and
2048 triangles. This dataset is included in our experiments primarily for
visual quality assessment of the approximations. Both techniques seem

to provide comparable approximations (see Fig. 20).

(2) The Femur dataset consists of 76,794 vertices and 153,322 triangles. This
mesh was extracted from volumetric data [43]. SPBM is almost five

times faster than QSlim 1.0; and three times faster than QSlim 2.0,

73

CHAPTER 4. SPBM ALGORITHM

(NG dS,) ouy uoreIsLS [1R)op-Jo-[Ad] Pue ‘([PYed,,) UOHRIYIYIRJ ‘(NSIp WOy
jasejep o1} Surpeo|) aurl} dn-1es ojur peplalp St *f ‘INGJS 10 ‘s[epout a3 Ajijduils 0} paambai (Spuodes
ur) owil) [e)0} |} SI **7 ‘[epouwr payl[duils 8} Ul SedR] JO IdqWUNU oY} SI [‘DI0F "SPU0ILS Ul dIR Soull)

[V 'S}9SejRp JUSISHIP INOJ U0 ()'g WISH) pur ‘0 1 WISy ‘NddS Suruunt jo synsax uorjeoyrduig T 9[qr],

L709 8r'sc | 8668 | LS50 090 [990 [60e Joze [e6ee [cc9 09 [899 i
099 e8¥F [819 |00 800 [¥ro |sro [9zo |ero | Lr0 810 | 920 wdds
€01 786 | ¥86 | 800 800 [800 |ggo [eco [wgo | w1 ST'T | 91T yored
08°€Y e8'er | 96y | ¥F0 o | ¥v0 |1 | 1ve | ove | veS LTS | 81¢ dnies
0Ll [czeor [rewir [ceor [ceor[ceor[org [128 [0L8 [2661 | 66L | 886L i
0'9%1 Lgel | oo0gr | 61T 61T | 60T | 69¢ |ore |69¢ [o00ovT [0071 | 96€r || 0'z-wmsd
78°TT 082 | 8.%¢ | 2g0 zz0 |zzo | 891 |91 |891 |@6¢ 26T | 26T yug
c9'1¢ c,1z | ev'1e | seeo | cgzo | czzo|eer [wer [ee1 |ooe 00¢ | 00¢ dnses
- - - 62°¢ see |Llze Joewt [sewr|wewr | LL08 | wLo0g | 9908 i,

- - - e e |eve | 798 | 298 |8es | 2961 | ¥96r | 9961 || 0 T-wunsd
- - - 6820 | 6820 | 0620 | 8.1z | L.Lug | 8.1z | 088€ | 6.8€ | 188°¢€ yuy

— - - 6v50 | 8pe0 | occo | zsve | esve | 28v€ | cerl | weel | eeel | dnies
| oogg | oov. | ooL‘zr | 0T |99z [o9v [gee |ooot |wost [oL B / _

| (s113 912°280°T) eyppng | (s113 9v6°Z1) AsIpueq

(s113 1S¥‘69) Auung | (113 ggg‘egT) Inwdy |

o[qe], uostredwo) swiLy, NdD

CHAPTER 4. SPBM ALGORITHM 74

for computing level-of-detail approximations of this dataset. The visual
quality of the approximations can be seen in Fig. 21. For all we could see,
both SBPM and QSlim 2.0 seem to produce comparable “visual-quality”

approximations of the Femur.

(3) The Stanford Bunny dataset consists of 34,834 vertices and 69,451 tri-
angles. This mesh was generated by merging several range scans at
Stanford University [69]. SPBM is over four times faster than QSlim
1.0; and two and a half times faster than QSlim 2.0. The visual quality
of the approximations can be seen in Fig. 22. Although it is difficult
to see from the picture, in close examination, we found out that SBP-
M seems to generate better approximations than QSlim 2.0, especially

around the neck, ears, and back areas.

(4) The Fandisk dataset consists of 6,475 vertices and 12,946 triangles. This
is a CAD dataset. SPBM is about five times faster than QSlim 1.0; and
two and a half times faster than QSlim 2.0. The visual quality of the
approximations can be seen in Fig. 23. Even though from this angle
it seems that both SPBM and QSlim 2.0 produce comparable approxi-
mations, under closer inspection, we found that QSlim (both versions)

produce a triangulation artifact (this is shown in Fig. 23 (g) and (h)).

(5) The Stanford Buddha dataset consists of 543644 vertices and 1,087,716
triangles. This is the largest and most complex dataset we used in our
experiments. This mesh was generated by merging a large number of
range scans consisting of millions of points at Stanford University [14].

We were not able to run QSlim 1.0 on this dataset due to the limited

CHAPTER 4. SPBM ALGORITHM 75

amount of memory on our test machine. SPBM is almost five times
faster than QSlim 2.0. Several different resolution models are shown in
Fig. 24. For the Buddha, after extensive examination, we believe QSlim

2.0 has better visual quality than SPBM.

In summary, SBPM was able to generate high-quality approximations of all
of these models. There are three main classes of data represented: meshes from
an automatic range scanner (Bunny, Buddha), meshes from a commercial CAD
system (Fandisk), and meshes extracted from volumetric datasets (Femur);
and include meshes of up to one million of triangles.

With respect to speed, our current implementation is about five times faster
than QSlim 1.0, and 2.5-3 times faster than QSlim 2.0. We believe that for
the Buddha dataset, the reason SPBM was five times faster than QSlim 2.0
(instead of the average 2.5-3 time), is due to QSlim 2.0 using more than 256
MB of memory.

We estimate that our memory usage is close to 100 bytes per vertex in
comparison to the 270 bytes per vertex of QSlim 2.0 [22]. Our method has a
very small overhead for extra storage since, other than the face-adjacency in-
formation contained in the input model, the only data structure utilized by the
algorithm is the edge list that stores the profile curves (patch boundary chain-
s) and their simplifications. Furthermore, most of the memory requirements
are only needed during the patchification process. For actual level-of-detail

generation, the memory requirements are very low.

CHAPTER 4. SPBM ALGORITHM 76

4.4 Conclusion

We have proposed a simple, fast, and memory-efficient surface simplification
technique. It works by first partitioning a given polygonal surface into multi-
ple patches. Simplification is then performed in two phases: simplification of
the polygonal curves bounding the patches followed by patch merging. Final-
ly, the resulting simplified patch boundaries are triangulated to yield a final
approximate surface model.

Our method has been implemented in a system, SPBM, which has been
extensively tested. In comparisons with a leading method, implemented in the
newly released QSlim 2.0, we have seen an average speedup of a factor of two
and a half times, while using less memory and producing good visual fidelity.
In some instances (particularly CAD models), the approximations we obtain
have better visual fidelity; in other instances, our approximations have less
visual fidelity than QSlim.

Some final remarks:

e The patches generated by our patchification process respect the sharp
curves of the original models. See the example of the multi-colored patch-

es for the Fandisk in the color plates.

e Our merging procedures are steady and smooth. In particular, the merg-
ing process of the three levels of detail of femur model are very smooth,

even at the extremely high simplification ratio of 0.1%.

e Our triangulations tend to be very good, composed of well-shaped trian-

gles. This is achieved without performing costly “edge swap” operations,

CHAPTER 4. SPBM ALGORITHM 7
as many other approaches require.

e Our technique is very memory-efficient, since it only operates on a set of
simplified patch boundary curves, deferring the retriangulation step to

the very end.

We expect to make the code publicly available, as it will serve as a tool for
other graphics researchers. This will also permit more extensive testing and

comparison with other methods under development.

CHAPTER 4. SPBM ALGORITHM 78

Figure 20: Sphere dataset. (a) shows a typical patchification of the sphere.
(b)-(d) shows the 52-, 100-, and 500-face approximation of the sphere with
SPBM. (e)—(g) shows the results obtained with QSlim 2.0.

79

CHAPTER 4. SPBM ALGORITHM

o
..
RS T
Ty i
R A S
=R = m
TR N

I~ L
[T e
TS . Aa‘%"
—ahaee l/%bv{.,’lr‘.’(
e o TSR SN
4
el
W
VAY
w i

R

-
S

W
s
Mwﬂ,

A«WW

A

= o

(a) shows a typical patchification of the femur.

(b)-(d) shows the 270-, 545-, and 997-face approximation of the femur with

SPBM. (e)—(g) shows the results obtained with QSlim 2.0.

Figure 21: Femur dataset.

CHAPTER 4. SPBM ALGORITHM 80

-

P Vé,}’-

Y = /
a5 ‘e,

Figure 22: Bunny dataset. (a) shows a typical patchification of the bunny.
This is similar to Fig. 13, but looking from the back. (b)-(d) shows the 525-,
1000-, and 1504-face approximation of the bunny with SPBM. (e)—(g) shows
the results obtained with QSlim 2.0.

81

CHAPTER 4. SPBM ALGORITHM

émﬁﬁ% T

e

A‘Y‘\Aﬂhv ﬁ/ : N
%ﬁ%@ i

S
/fﬂﬂ e @a umﬂazﬁ.

N
==

o L

=
i

b
L7

Figure 23: Fandisk dataset.

(a)—(c) shows the 150-, 266-, and 460-face ap-

proximation of the fandisk with SPBM. (d)—(f)
(

was Com-

)

)

?

shows the results obtained
(

show the other side of the fandisk

and (h)

)

g

(

puted with SPBM, and (h) was computed with QSlim 2.0. Note that (h) has

a severe artifact.

with QSlim 2.0.

CHAPTER 4. SPBM ALGORITHM 82

() (f) (8)

Figure 24: Buddha dataset. (a) shows a typical patchification of the buddha.
(b)—(d) shows the 35000-, 7400-, and 12700-face approximation of the buddha
with SPBM. (e)—(g) shows the results obtained with QSlim 2.0.

Chapter 5

Topology Simplification
Algorithm

5.1 Motivation

Most methods for computing simplifications of models are designed to pre-
serve the topology of the input, keeping holes and tunnels that appear in the
full-resolution model. While preservation of genus is important in some appli-
cations (e.g., molecular modeling), it is not required in many applications that
demand only a visually close approximation to the original model. Indeed,
preservation of topology may be highly undesirable in cases involving virtual
flythroughs of CAD models and structures that have a large number of small
holes or tunnels. Demanding that the simplified models in the hierarchy pre-
serve topology in these cases can lead to drastically more complex polygonal
approximations than would be required to maintain adequate visual fidelity,

especially in models having numerous small holes. (Consider, for example, a

83

CHAPTER 5. TOPOLOGY SIMPLIFICATION ALGORITHM &4

simple “plate” having a large grid of small holes; see the “Fixture” model in
the color plates.) In short, topology preservation may prevent simplification.

We address the problem of computing simplifications of polygonal models
without constraints on the preservation of the initial topology. Some of the
simplification algorithms based on edge-collapse [24] and [59] have the ca-
pability of collapsing a hole, resulting in a single point; however, this single
point is hard to remove in the following collapses since the accumulated error
imposed after collapsing a hole is very high. These shortcomings are demon-
strated in Figure 25 and Figure 26 created by QSlim, a state-of-the-art, very
elegant edge-collapse based simplification tool. Figure 25(b) shows the ten
points after collapsing ten small holes in the Disk model. The boundary has
been collapsed, while these ten coplanar points have not been removed, even
further collapses are taken and the shape has been drastically destroyed as
showed in Figure 25(c). Similar results are presented from the Fixture model,
Figure 26, and the Battery model with small bumps on the top, Figure 30(b)
and (c). This led us to explore the extension of our SPBM algorithm to sup-
port topology simplification. In this chapter, we give a method of simplification
that removes “small” holes (those having size below a user-specified thresh-
old), while also removing other small features (such as “bumps”, “cavities”,
and “cracks”).

Our method is based on a “patchification” of the surface into connected sets
of faces having similar normal vectors followed by a carefully-designed set of
heuristics, based on a combination of local geometry and more global topology,
intended to identify features such as holes, bumps, cavities, and cracks. The

method works the extension of our work on the SPBM algorithm.

CHAPTER 5. TOPOLOGY SIMPLIFICATION ALGORITHM 85

The primary advantages of our new method over prior algorithms include:
(1) speed — nearly an order of magnitude;
(2) very low memory consumption;

(3) a one-step simplification, which allows just the undesirable features (holes,
bumps, cavities, cracks) to be removed, without requiring further geo-

metric simplifications (as in [18, 19]); and,

(4) visual fidelity — our approach is designed to maintain visual fidelity, through
the most prominent silhouette and profile features, while removing small
features that are below the specified tolerance. In contrast, for example,
the genus-reducing decimation approach [59] does not remove holes un-
til no further simplification is possible without changing the genus; this

results in several visual artifacts, as we will show in Section 5.4.

5.2 Previous Work

Most directly related to our work is the prior research on topology-simplifying
methods. He et al. [32, 33] devise a topology simplifying algorithm which does
not guarantee the preservation of local or global topology of a model but e-
liminates high frequency details in a controlled fashion. They establish levels
of detail by converting an object into multi-resolution voxel representations
using controlled low-pass filtering and sampling techniques. This algorithm
assumes that the input model is a closed volume and therefore that voxel-

s can be determined to be in the interior or exterior of the object. In He

CHAPTER 5. TOPOLOGY SIMPLIFICATION ALGORITHM 86

(a) (b) ()

Figure 25: The results of simplifying the Disk model from Qslim-1.0: (a)
original with 752 triangles, 11 holes; (b) and (c) are the simplified images with
150, 72 triangles, respectively.

et al. [32], the marching cubes algorithm [43] is adopted to generate trian-
gles and the a topology preserving algorithm is used, as a post-process, to
remove redundant triangles. In [33], based upon the Splitting-Box algorithm
[50], they introduce an AMC box for an Adaptive Marching Cubes algorith-
m which recursively bisects the space until either an AMC box is found or
a 2-by-2-by-2 box is reached. If an AMC box satisfies the quality criteria,
triangles are produced accordingly. Finally, a stitching process is imposed to
eliminate cracks generated amongst different levels of boxes. This algorithm
also provides an error-controlled simplification but it needs a great deal of

memory and is time-consuming. Conversely, Shekhar et al. [60] establish an

CHAPTER 5. TOPOLOGY SIMPLIFICATION ALGORITHM 87

octree by traveling marching cubes intersected with the surface of a model to
delete redundant triangles. Then the octree is traversed level by level from
bottom to top. At any level of the octree, if eight child cells meet the topology
criteria, they are merged and replaced with a single parent cell. Schroeder [59]
gives a decimation algorithm based on edge collapse operations, while allowing
“vertex splits” when a valid edge collapse is not available. This vertex split
operation is poorly controlled since it does not localize its actions to individual
holes, cavities, and bumps but performs them at all places in the model (see
Figure 31 and Figure 32).

One of the most recent research efforts on topology/geometry simplification
is that of El-Sana and Varshney [18, 19] who devised a very clever method of
extending the concept of a-shapes to polygonal models in the L., metric. They
are able to reduce genus, remove bumps (“protuberances”), and repair some
cracks, while performing error-bounded surface simplification. Here, we build

upon their efforts, while addressing some of the limitations of their method.

5.3 The Algorithm

We utilize a variant of the SPBM approach in order to detect holes, cavities,
and bumps in a polygonal model. First, we use the patchification process of
the SPBM approach, resulting in a decomposition of the surface into patches of
polygons. During the patchification procedure, we classify edges that appear
in patch boundaries according to whether or not they are “sharp”: An edge
is sharp if the angle between the outward normal vectors of the two incident

triangles is greater than a specified threshold, f;. The implementation uses an

CHAPTER 5. TOPOLOGY SIMPLIFICATION ALGORITHM 88

(a) (b) (c)

Figure 26: The results of simplifying the Fixture model from Qslim-1.0: (a)
original with 18,796 triangles, 100 holes; (b), and (c) are the simplified images
with 250, 150 triangles, respectively.

interval of values for the dot product of the unit normal vectors; the default
is currently the interval (-0.3,0.7), corresponding roughly to angles between
normal vectors that are greater than 45 degrees (i.e., dihedral angles that are
less than 135 degrees).

Our heuristic is based upon a search for appropriate sharp loops (closed
sharp chains) of sharp edges that bound potential holes, bumps and cavities.
As each sharp loop is discovered, we further classify these sharp loops according
to their orientations; the orientations will help us to distinguish between holes
(which will be bounded by a pair of sharp loops with the same (clockwise)
orientation) and bumps/cavities (which will be bounded by a single sharp

loop or by a pair of sharp loops oppositely oriented). The orientation of a

CHAPTER 5. TOPOLOGY SIMPLIFICATION ALGORITHM 89

loop also identifies which adjoining patches are considered to be the “walls” of
the hole/bump/cavity, versus the (locally) “flat” plane. If we find a clockwise
sharp loop L, we search each adjoining “wall” patch for an incident sharp chain
that can be completed into a sharp loop L', which will serve as the “partner”
for loop L. If no such sharp loop L’ is found, then L defines a bump/cavity
that we potentially fill. If we do find a partner sharp loop L', then we examine
its orientation. If L' is also clockwise, then this pair of sharp loops defines a
hole that we potentially “fill,” by declaring L and L’ to define new patches,
and discarding the wall patches that are trapped inside the filled hole. If L' is
counterclockwise, then (L, L) defines a bump or a cavity (we will not bother to
distinguish); potentially, we remove the bump/cavity by filling the clockwise
loop L.

Above we mentioned “potentially” filling a (clockwise) sharp loops that
bound a hole/bump/cavity. Whether or not a sharp loop is filled depends
on its “size”. The size is defined in terms of an estimated diameter of the
loop. If the loop meets the size criterion (its estimated diameter is less than
the threshold «), then the loop is now declared to be the boundary of a new
patch, while the “wall” patches incident to it are discarded.

We then perform a clean-up phase in which we merge adjacent patches
that are nearly coplanar, i.e., whose (average) normals are nearly the same
(within a user-specified angle, 7). This is in fact a stream-lined version of the
patch-merging phase of SPBM, since we exploit the fact that the patches being
merged are assumed all to have normals that are similar. (This means we can
avoid computing new average normals, as would be the case if we merged in

patches one by one in SPBM.) We avoid creating islands within the merged

CHAPTER 5. TOPOLOGY SIMPLIFICATION ALGORITHM 90

patch by requiring that each patch being merged into the larger patch shares
just one connected component of its boundary with the larger patch.

Finally, we give the user two options for completing the processing:

(1) We can process the resulting patchified model with the remaining phases
of the SPBM simplification method; specifically, we do boundary simpli-

fication, patch merging, and triangulation.

(2) We can perform just the final triangulation phase of SPBM, without
further simplification. This may be desirable for some CAD model-
s, if the goal is to keep the profiles exactly as they were input, only
with holes/bumps/cavities removed. We remark that this is one of the
strengths of our approach, to be able to preserve full silhouette details,
when compared, e.g., with the method of El-Sana and Varshney [18, 19],
which requires use of a polygonal simplification algorithm to be used in

conjunction with the topology simplification.

In Figure 29, we used the Disk model to demonstrate these two choices.
First, ten small holes of the Disk model were removed without further SBPM
simplification (Figure 29(b)), in order to maintain the profile. we then can
further executed SPBM simplification to obtain a coarse approximation (Fig-
ure 29(c)). In (Figure 29(d)), we also show the result of the second method
of approximation which removed all the holes without destroying the outer

profile.

CHAPTER 5. TOPOLOGY SIMPLIFICATION ALGORITHM 91
5.3.1 Finding Sharp Loops

In order to find sharp loops, we look at the sharp chains, one by one. We
classify the patches incident on the sharp chain C' as being on the “flat” side

or the “wall” side of the chain, as follows. We distinguish two cases:

(1) The first three vertices, vy, ve, and vs, of the chain are (substantially)
non-collinear. We consider the plane 7 determined by the first three
vertices, v, U9, and w3, of the chain and compare the normal of 7 with
the average normal of the two triangles that are left of edges v;v, and
vous, as well as with the average normal of the two triangles that are
right of edges v;v, and wvevs; the side whose average normal is closest
to the normal of 7 is declared the flat side, while the other side is the
wall side. (If the average normals on both sides are not very close to the
normal of 7, we instead consider the last three vertices of the chain as
defining 7.) Figure 27(a) demonstrates the flat side as the flat planes,

and wall side as patches inside the hole.

(2) The chain C has only two vertices (one edge vivy), or the first three ver-
tices of the chain are collinear (or nearly so). We look for other sharp
chains (if any) incident on the end of C, and consider them one by one
(until success) in combination with chain C, creating, in effect, a longer
initial sharp chain. We use this as our starting point, as in case (1), to

define a plane 7 and to define the flat and wall sides of the initial chain.

In fact, we have a preference in our search for chains of type (1): we

continue searching the set of sharp chains, processing only those of type (1).

CHAPTER 5. TOPOLOGY SIMPLIFICATION ALGORITHM 92

(a) (b)

Figure 27: Depicted are (a) the result of patchification of a hole model. (b)
the boundary chains from (a).

After we have completed our investigation of all sharp chains of type (1), only
then do we consider chains of type (2).

Our search for sharp loops is designed also to have a preference for starting
the search with a sharp chain that is a “convex hole chain” (meaning that the
chain appears locally to be a border of a convex hole in the flat plane). This is
a heuristic designed to speed the search process, since most holes, in practice,
have at least part of their boundary being convex. (In fact, if a hole is not
smooth and has all of its bounding sharp chains reflex, then our method will
not identify it as a hole.)

The actual search for a sharp loop proceeds by extending a sequence of

sharp chains, C,Cy,...,Cy, using any one of the sharp chains incident on

CHAPTER 5. TOPOLOGY SIMPLIFICATION ALGORITHM 93

the end of Cy (in practice, there are usually very few options — 0, 1, or 2)
to extend the sequence. If the sequence closes, creating a loop L, we call a
procedure Find_Partner_Loop(L), described below. If we get stuck, without
another sharp chain to extend the sequence, we mark all of the chains in the
sequence so far as “DONE”, and proceed to begin a new search with some
other sharp chain. The meaning of the notation “DONE” is that such a chain
is not considered again for being the initial chain in the search for a sharp
loop. (It may in fact be used again within some other candidate sequence of
sharp chains, just not as the initial chain of such a sequence.)

The search process terminates when there are no candidate sharp chains

left, meaning that all have been incorporated into loops or marked “DONE.”

5.3.2 Finding Partner Loops

The search procedure, Find_Partner_Loop(L), is designed to find another sharp
loop, if one exists, whose wall side shares at least one patch with the wall side of
L. The procedure begins by checking the orientation of L, to determine if the
flat side lies inside the loop (as in the case of the bottom/top of a cavity /bump)
or outside the loop (as in the case of a hole). The procedure proceeds only if the
orientation is clockwise. Figure 28(a) shows the orientations of two sharp loops
of a hole. Loop L; and loop Ly have the same clockwise orientation. During
the hole detection process, one of them will be the leading loop in the search for
the other. In contrast, the sharp loops, L; and Ly of a bump in Figure 28(b)
have opposite orientations. Only the sharp loop L; oriented clockwise will be
the leading loop. Lo is the sharp loop for which L, is searching.

We examine each patch on the wall side of L, and use each of its sharp

CHAPTER 5. TOPOLOGY SIMPLIFICATION ALGORITHM 94

Ct Lt Db

G A< — >L17
, e DIA (‘V

(a) (b)

Figure 28: The orientations of sharp loops with respect to the flat sides. (a)
the orientations of hole loops: L; and Lo are clockwise. (b) the orientations
of bump loops: L; is clockwise and Lo is counterclockwise

boundary chains as the seed of a search for a sharp loop, proceeding in the
search as we described in Section 5.3.1 above. If we find such a sharp loop,
L', we output this loop, and the pair of loops (L, L') is considered to define a

feature for possible removal.

5.3.3 Removing Holes, Bumps, and Cavities

We begin by checking the “sizes” of the pair of sharp loops, L and L'. On-
ly if both loops are deemed to be “small” do we consider the feature to be
removable. Note that if we were to remove (close) one loop that is small,

while leaving the other loop unchanged (meaning that the wall patches are

CHAPTER 5. TOPOLOGY SIMPLIFICATION ALGORITHM 95

left intact), we could create a non-manifold surface. (In contrast, creation of
a non-manifold surface can in fact happen in the earlier method of [18, 19].)

Our test for the “size” of a loop is based on comparing the diameter of
the set of loop vertices to the user-specified tolerance o. The diameter can be
computed in time O(nlogn), for a loop with n vertices, using a convex hull
algorithm. Alternatively, it can be estimated by using a bounding box, in time
O(n). However, we have found it to be adequate, in practice, to approximate
the exact diameter using a simple O(1)-time sampling method that selects
either a pair of points (in the convex loop case) or a triple of points (in the
general case; we then estimate the diameter using that of the circle through
the three points). The sampling is based on selecting points that are spaced
evenly (in index) along the list of loop vertices.

Once we have deemed both sharp loops to be “small,” the removal of the
corresponding feature is very simple: each clockwise loop (at least one of L
and L' is clockwise, by the nature of our algorithm) is declared to be a patch

boundary, while the adjoining wall patches are discarded. Figure 30

5.3.4 Repairing Cracks

Our approach can also cope with models that have “cracks” and can repair
them, allowing it to perform some amount of model cleanup of potential glitch-
es in the input data. (A similar feature is provided in the method of [18, 19].)
In particular, we consider the set E; of edges that have only one incident tri-
angle to be potential crack edges. Each such edge is considered to be oriented
in the direction such that the one triangle is to the left (when viewed from

the outside of the model). These directed edges F; form a network which we

CHAPTER 5. TOPOLOGY SIMPLIFICATION ALGORITHM 96

search for directed loops. (For the present, we will omit a discussion of this
search procedure.) The resulting loops of crack edges are “closed” by declaring
them to be new patches. (A size criterion of a different type can be applied to
filter out those crack loops that may be features of the model that one wants
to preserve; e.g., we can apply a threshold to the radius of a largest inscribed

disk within the candidate patch.)

5.4 Results and Discussion

In order to evaluate the performance of our implementation (in C) of the
algorithm described in the previous section, we applied it to several datasets,
including those reported in [18, 19], allowing us to do direct performance
comparisons with this prior work. (We thank Jihad El-Sana for providing us
with these datasets.) Images of some of the models are given in the color plates.
We report our performance based on an R10000 SGI Indigo2 workstation (195
MHz CPU, 256 MB RAM, 32 KB data/instruction cache, and 1 MB secondary
cache, IRIX 6.5). Compilation was with “cc -O2”. Table 2 summarizes the
results of our experiments on these datasets.

Images of many of the models, and of some simplifications, are shown in
the color plates. Figure 31 also show typical results of applying the “Topol-
ogy Modifying Progressive Decimation” algorithm of Schroeder [59] (as im-
plemented and available in vtk) to two models (“Battery” and “Disk”). It is
seen that decimation may generate fairly erratic simplifications, resulting in
low visual fidelity. This is because it is performing simplification that attempts

to preserve topology, and only removes a hole (changing the genus) when no

CHAPTER 5. TOPOLOGY SIMPLIFICATION ALGORITHM 97

genus-preserving decimation step is available. Also, for example, vtk is unable
to simplify the “Fixture” dataset below 81 triangles(see Figure 31(c)); its final
output contains several “singleton edges” floating in the middle of the model,
where the holes used to be.

In generating the data for our Table 2, each level of detail of a model is
generated directly from the original model. For some models we show results
for various values of the threshold «. In these cases, the model changes in
different stages according to «; e.g., for a small value of «, the small holes in
the “Disk” model get removed, while for a larger value of «, even the large
central hole is removed.

Our whole simplification approach is orders of magnitude faster than the
“Genus-Reducing Simplification” method for those datasets reported in [18, 19]
(using a single R10000 processor of an SGI Challenge machine). In particular,
for the “Disk” (while removing the small holes) they used 0.3 seconds for genus
reducing, and another 8.4 seconds for the remaining (genus-preserving) simpli-
fication; in contrast, we obtained our result in a total of 0.06 seconds (including
reading the data, performing orientation tests and normal computations for
triangles). For the “Box” they worked for 0.3 seconds, plus 2.0 seconds, while
we clocked 0.08 seconds. We also remark that their final “Box” simplification
results in 14 triangles, as opposed to the 12 triangles in our simplification,
which gives the cleanest possible “box.” For the “Block” model, they used
5.6 seconds, plus 20 seconds, while we needed 0.36 seconds. Finally, for the
“Fixture” model, they computed for 129 seconds, plus 42 seconds, while our
algorithm needed 1.03 seconds in total (and also have a final simplification of

12 triangles, versus 62). (We remark that there appears to be an inconsistency

CHAPTER 5. TOPOLOGY SIMPLIFICATION ALGORITHM 98

reported in the table of [18, 19], where they report the number of triangles in
“Block” to be 17644, instead of the 7084 that are in the accompanying figure.
Similarly, the timings shown for “Fixture” seem to be for the model having
18796 triangles, not the 74396 that is reported. The authors of [18, 19] are in
the process of addressing this possible inconsistency.)

The reductions of most datasets reach the minimum number of triangles
required for maintaining the original shape of the models; e.g., the “Battery”,
“Box”, and “Fixture” each get reduced to just 12 triangles. This demonstrates
that our merging process does a good job of cleaning redundant patches on
the flat planes.

While our method has some similarities in how it detects holes, when com-

pared with [18, 19], our approach is substantially faster for several reasons:

o fast determination of sharp edges: Based on our patchification ap-
proach, we do not need to investigate all original edges since all sharp
edges are located on the borders of patches. Instead, we only need to
check all lists of edges during the patchification process (the first phase
of the SPBM approach).

e fast determination of loops of sharp chains: In the approach of [18,
19], they adopted a linear-time depth-first scanning strategy to search
“tessellation chains.” Their approach depends on the number of sharp
edges. However, the running time of our search depends only on the

number of sharp chains, which are the lists of sharp edges.

e fast removal of holes, bumps, and cavities: When our method

cleans holes, bumps, and cavities, we first search all patches composing

CHAPTER 5. TOPOLOGY SIMPLIFICATION ALGORITHM 99

them, and then remove the relevant patches; in contrast, the method of

[18, 19] searches the set of all triangles to be deleted.

e fast simplification: After the completion of our feature detection pro-
cess, the simplification is almost complete, as all that remains is either (a)
the retriangulation of patches (if the user decides to output without fur-
ther simplification), or (b) the patch boundary simplification, merging,
and retriangulation steps of SPBM. In contrast, the method of [18, 19]
requires a more involved simplification procedure, as the “flat” patches
of the model (from which the holes were removed) have not yet been

simplified at the completion of their hole-filling procedure.

The memory required by our method is also very low; it is essentially the
same as required by SPBM and reported in chapter 4. The point is that, other
than the original input data, very little storage is needed, since, other than
the face-adjacency information contained in the input model, the only data
structure utilized by the algorithm is the edge list that stores the profile curves
(patch boundary chains) and their simplifications. In contrast, most other
methods require auxiliary data structures for storing intermediate versions of
the simplified model.

Nevertheless, our approach has some limitations. First, our method re-
lies on features being defined by relatively “sharp” edges; e.g., a “smooth”
hole as in a bagel would not be removed using our algorithm. Second, our
method potentially removes some features that one may want to keep, such
as a long skinny “pipe” connection between two larger components (picture

a “dumbbell”). Of course, in some applications, removing such skinny pipes

CHAPTER 5. TOPOLOGY SIMPLIFICATION ALGORITHM 100

| Experimental Results |
| Model | Original Tris| h| c¢|b| Final Tris | Total Time (s) |

Battery 616 0] 0|9 (162, 132,12) | (0.07, 0.06, 0.04)
Disk 752 111 010 (152, 72) (0.1, 0.06)
Box 1,612 41 010 12 0.08
Gear 2,478 | 10130 |0 (1372, 232) (0.78, 0.19)

Cylinder 5392 | 51| 0|0 (356, 312) (0.7, 0.65)

Blockl 6,356 | 16| 0|0 28 0.30

Block2 7,084 | 32| 0|0 44 0.36

Block3 17,644 | 80| 0|0 44 0.97

Fixturel 18,796 | 100 | 0| O 12 1.03

Fixture2 74,396 | 400 | 0[O 12 8.32

Table 2: Results of our approach on several datasets. Here, h is the number of
holes detected, ¢ is the number of cavities, and b is the number of bumps. For
“Battery” we give results for a = 4000,ac = 6500, and o = 12000; for “Disk”
we give results for « = 4 and o = 121; for “Gear” we give results for « = 3
and a = 4; for “Cylinder” we give results for &« = 20 and o = 400. Timings
are in seconds, and are total times, including reading the data, performing
orientation tests and normal computations for triangles.

may be the desired outcome; however, further testing would have to be added
to our algorithm to make this distinction. Third, as with SPBM, we are not
guaranteeing that the simplified model lies within a rigid tolerance € of the
original; we only preserve Hausdorff distance on the simplified chains of edges

that form patch boundaries (and result in visual profiles).

CHAPTER 5. TOPOLOGY SIMPLIFICATION ALGORITHM 101

(c) (d)

Figure 29: The results of simplifying the Disk model: (a) original with 752
triangles, 11 holes; (b) first level topology simplification, removing 10 small
holes; (c) further SPBM simplification with 64 triangles, or (d) second level
topology simplification with 72 triangles.

CHAPTER 5. TOPOLOGY SIMPLIFICATION ALGORITHM 102

&V

(a) (b) ()
(d) (e) (f)

Figure 30: The results of simplifying the Battery model: (a)original with 616
triangles; (b), and (c) are the simplified images from Qslim-1.0 with 100, 12
triangles, respectively; (d), (e), and (f) are our results with 162, 132, and 12
triangles respectively.

CHAPTER 5. TOPOLOGY SIMPLIFICATION ALGORITHM 103

&S

(a) (b)

() (d)

Figure 31: The results from vtk: (a) the simplified Battery image with 154
triangles; (b) the simplified Disk image with 220 triangles; (c) the simplified
Fixture image with 81 triangles; (d) the simplified Block image with 154 tri-
angles.

CHAPTER 5. TOPOLOGY SIMPLIFICATION ALGORITHM 104

© ©
LA

(c) (d)

Figure 32: Other our results: (a) the original Box image with 1,612 triangles;
(b) the simplified Box image with 12 triangles; (c) the original Gear image
with 2,478 triangles; (d) the simplified Gear image with 232 triangles.

Chapter 6

Conclusions and Future

Directions

In this dissertation, we have presented three surface simplification algorithm-
s for general 3D models: greedy-cuts triangulation, patch boundary merging
simplification, and genus reduction simplification. At the heart of our tech-
niques is the patchification process which decomposes the original surface into
numerous patches. We have demonstrated the properties of several simple
heuristic patchification algorithms through several experiments.

Our first contribution was to propose an the extension of the greedy-cuts
algorithm of Silva and Mitchell [61, 62, 63] (which worked only for terrain)
for general 3D models with bounded error. This technique attempts to tri-
angulate by adding the largest possible triangle at each stage. In order to
extend the algorithm for general 3D surfaces, we developed a technique for
bounding the error of the approximation. Also, we proposed a repair proce-

dure to guarantee the termination of this algorithm. Our experiments showed

105

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 106

that general 3D greedy-cuts was slow. However, we have found that there is a
alternative method which accelerates the entire process at the expense of the
ability to explicitly bound the error. By discarding the burden of the greedy-
cuts triangulation process, we developed SBPM, a fast and memory-efficient
simplification technique based on a patch merging scheme. This technique
produces good visual quality while being must faster. Our results are very en-
couranging. In fact, our SBPM technique is faster than QSlim 2.0 (currently
leading 3D simplification code), while using less memory and producing results
of similar visual quality. Our third contribution builds on SBPM, and extends
it to deal with models with high genus and small bumps by an efficient hole
detection strategy. Again, compared to the previous technique of El-Sana [18],
we have obtained a dramatic speedup.

In our experiments we show that our algorithms provide high speed and
very good visual fidelity for CAD models (see Fandisk model in Chapter 4).
The output of SBPM is not just a simplified mesh. It also includes the borders
of all patches which include the feature curves. The identification of surface
feature curves has been widely used in the recent years [54].

There are many opportunities for future work, including: automatic level-
of-detail generations [21], and generalized view-dependent simplifications [20].
We believe our approach is extensible in similar ways. Given its versatility,
speed, and simplicity, it might lead to improved techniques with these charac-

teristics.

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 107

6.1 Patch Boundary Merging Simplification

The main strength of our SPBM algorithm is its speed and low memory con-
sumption. Our future research agenda is to extend the functionalities of the
patchification process and the patch merging process to cover an automatic,

general, and view-dependent approach.

e better visual quality: In general, SPBM generates approximations
with high visual fidelity for CAD models but slightly poor quality for
non-smooth surfaces. We plan to explore more advanced techniques
to enhance the visual quality of the simplified mesh. For this, first,
we would need a more sophisticated patchification strategy, one that
can handle non-smooth surfaces while maintaining most of the surface
features. Then, we plan to consider the implications of adding Steiner
points in the triangulation (e.g., a simple way of creating a Steiner point

is to calculate the average position of all vertices on the patch boundary).

e automatic: At this time, SPBM uses a user-specified error parameter
to guide the approximations. We are interesting in exploring extensions
that are able to automatically generate several levels of detail (without
user intervention). It would be desirable that such a hierarchy be built in
a single pass of the simplification algorithm. (At this time, our technique

would require multiple passes.)

e general: Lots of polygonal datasets often contain non-manifold vertices,

edges, cracks, and coincident polygons. We plan to extend SBPM to also

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 108

deal with imperfect models. A possible approach is to extend the patchi-
fication process in order to include the identification of these defective

parts, and then handle them separately.

e view-dependent: Once SBPM is able to automatically compute sev-
eral level of details, it is possible to assign error weight to each edge,
and stored these in a “merging diagram” which can be used for view-
dependent simplification. There are several interesting issues here, in-
cluding exploring different techniques for patch triangulation, possibly
real-time triangulations (which are done on-line) that generate triangle

strips directly.

6.2 Topology Simplification

With respect to the topology simplification, we also have several interesting

things to work on:

e multiple objects: Similar to the discussion in the previous section,
we would also like to create a general, automatic, and view-dependent
topology simplification algorithm. Since our hole detection process i-
dentifies all holes, bumps, and cavities during the preprocessing phase
of the simplification algorithm, we can add this information, for exam-
ple the size of a hole, to the “error weight” of the border chains of this
hole and then automatically remove this hole. As another important
step, we could extend our method in order to deal with multiple objects.

Recently, Erikson [21] and El-Sana [20] have proposed new topology

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 109

simplification schemes for multiple objects based on the generations of
“virtual edges” among unconnected objects. Using edge-collapse action-
s, two unconnected objects are joined together by collapsing the “virtual
edges” connected to these two objects. Their methods can drastically
reduce the number of approximated triangles while preserving the vol-
ume of the entire environment. We wish to investigate a similar but less
complex approach. We propose to construct an adaptive 3D grid par-
tition for the entire environment and then to generate “virtual edges”
among the patch borders for unconnected objects residing within the
sub-domain of the grid. In contrast with those previous methods, we
could attempt to generate “virtual patches” among unconnected objects
or separate branches of a single object during the preprocessing phase for
the entire environment by connecting “virtual edges” and with boundary
chains. These “virtual patches” could then participate in the merging
process. We believe that this approach will provide a well-controlled

topology simplification.

e robust: Our current hole detection process within our topology sim-
plification algorithm cannot accurately identify a hole or a pipe. This
process only locally searches “hole loops” among sharp edges specified
during the patchification process. Since a hole and a pipe both con-
tain two hole loops, no further information is generated by our current
approach which could distinguish them. To overcome this problem, we
could introduce grid partitions to check the adjacent environment of each
detected hole. Unfortunately, since our method relies on these relatively

“sharp” edges, holes with smooth curvature cannot be recognized by our

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 110

current detection process. A possible way to identify these smooth holes
is based on our advanced patchification process. The second patchifica-
tion strategy introduced in chapter 3 could specify the patch normals,
and then after comparing all patch normals close with respect to the grid

structure, we could identify those smooth holes that need to be filled.

Bibliography

[1] http://www.cs.cmu.edu/afs/cs/user/garland/www /multires/index.html.
[2] http://www.limsi.fr/Individu/krus/CG/LODS.
[3] http://www.ams.sunysb.edu/~jsbm/surfapprox.html.

[4] M. E. Algorri and F. Schmitt. Mesh Simplification. Computer Graphics
Forum (Eurographics’96 Proc.), 15(3): 78-86, 1996.

[6] D. Banks. Interactive Manipulation and Display of Two-Dimensional
Surfaces in Four-Dimensional Space. In Proceedings of the 1992 Sympo-

stum on Interactive 3D Graphics, pages 197-207.

[6] G. Barequet, D. Z. Chen, O. Daescu, M. T. Goodrich, and J. Snoeyink.
Efficiently Approximating Polygonal Paths in Three and Higher Dimen-
sions. In Proc. 14th Annu. ACM Sympos. Comput. Geom., 1998.

[7] G. Barequet, M. Dickerson, and D. Eppstein. On Triangulating Three-
Dimensional Polygons. Comput. Geom. Theory Appl., 10(3):155-170,
1998.

111

BIBLIOGRAPHY 112

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

B. Chazelle, D. Dobkin, N. Shouraboura, and A. Tal. Strategies for Poly-
hedral Surface Decomposition: An Experimental Study. Comput. Geom.

Theory Appl., 7:327-342, 1997.

P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno. A General Method
for Preserving Attribute Values on Simplified Meshes. In Visualization

98, page 7?7 IEEE Computer Society Press, 1998.

P. Cignoni, C. Montani, and R. Scopigno. A Comparison of Mesh Sim-
plification Algorithms. Computers and Graphics, 22/1:37-54, 1998.

J. Cohen, M. Olano, and D. Manocha. Appearance-Preserving Simplifica-
tion. In Proc. SIGGRAPH ’98, Computer Graphics Proceedings, Annual
Conference Series, pages 115-122, July 1998.

D. Cohen-Or. Special Issue on Scene Simplification. Computers and

Graphics, 22/1:1-2, 1998.

J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal,
F. Brooks, and W. Wright Simplification Envelopes. Computer Graphics
(SIGGRAPH ’96 Proceedings) 1996

B. Curless and M. Levoy. A Volumetric Method for Building Complex
Models from Range Images. In SIGGRAPH 96 Conference Proceedings,
Annual Conference Series, pages 303-312, August 1996.

L. De Floriani, P. Magillo, and E. Puppo. Efficient Implementation of
Multi-Triangulation. IEEE Visualization '98 pages 43-50 October 1998.

BIBLIOGRAPHY 113

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

D. Dooley and M. Cohen. Automatic Illustration of 3D Geometric
Models: Lines. In Proceedings of the 1990 Symposium on Interactive 3D
Graphics, pages 77-82.

M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and
W. Stuetzle. Multiresolution Analysis of Arbitrary Meshes. Computer
Graphics (SIGGRAPH ’95 Proceedings), 173-182, August 1995.

J. El-Sana and A. Varshney. Controlled Simplification of Genus for Polyg-
onal Models. In IEEFE Visualization '97 Proceedings, pages 403-410, San
Francisco, CA, 1997. ACM/SIGGRAPH Press.

J. El-Sana and A. Varshney. Topology Simplification for Polygonal Virtual
Environments. IEEE Trans. Visualizat. Comput. Graph., 4(2):135-144,
Apr. 1998.

J. El-Sana and A. Varshney. Generalized View-Dependent Simplification.
Proceedings FEurographics’99., to appear, Aug. 1999.

C. Erikson and D. Manocha. GAPS: General and Automatic Polygonal
Simplification. Proceedings of 1999 Symposium on Interactive 3D Graph-
ics , pages 79-88, Apr. 1999.

M. Garland. Personnal Communication, February 1999.

M. Garland and P. S. Heckbert. Surface Simplification using Quadric Er-
ror Metrics. In Computer Graphics (SIGGRAPH’97 Proceedings), pages
209-216, 1997.

BIBLIOGRAPHY 114

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

M. Garland and P. S. Heckbert. Simplifying Surfaces with Color and
Texture using Quadric Error metrics. In Visualization 98, pages 263-269,

October 1998.

A. Guéziec. Surface Simplification Inside a Tolerance Volume. Technical
Report RC 20440, IBM Research Division, T.J. Watson Research Center,
Yorktown Heights, NY 10958, 1996.

A. Guéziec, F. Lazarus, G. Taubin, W. Horn. Surface Partitions for Pro-
gressive Transmission and Display, and Dynamic Simplification of Polyg-

onal Surfaces. InProceddings VRML’98, pages 25-32, February, 1998.

B. Hamann. A Data Reduction Scheme for Triangulated Surfaces. Com-

puter Aided Geometric Design, 11(2): 197-214, April 1994.

P. S. Heckbert and M. Garland. Fast Polygonal Approximation of Terrains
and Height Fields. Report CMU-CS-95-181, Carnegie Mellon University,
1995.

M. Held. Efficient and Reliable Triangulation of Polygons. In Proc. Com-
put. Graphics Internat. 1998, pages 633643, June 1998.

M. Held. FIST: Fast Industrial-Strength Triangulation of Polygons. Tech-
nical report, University at Stony Brook, 1998.

P. Hinker and C. Hansen. Geometric Optimization. In Visualization 93,

pages 189-195, October 1993.

BIBLIOGRAPHY 115

32]

33]

[34]

[35]

[36]

[37]

[38]

[39]

T. He, L. Hong, A. Kaufman, A. Varshney, and S. Wang. Voxel Based
Object Simplification. In IEEFE Visualization ’95 Proceedings, pages 296
303. ACM/SIGGRAPH Press, 1995.

T. He, L. Hong, A. Varshney, and S. Wang. Controlled Topology Sim-
plification. IEEE Trans. Visualizat. Comput. Graph., 2(2):171-184, Apr.
1996.

T.-C. Ho, J. S. B. Mitchell, and C. T. Silva. The Simplified Patch Bound-
ary Merging Algorithm for Polygonal Surface Simplification. Manuscript
(submitted), March. 1999.

H. Hoppe. Progressive Meshes. Computer Graphics Proc. Ann. Conf.
Series (Proc. SIGGRAPH °96), pp. 99-108, Aug. 1996.

H. Hoppe . View-Dependent Refinement of Progressive Meshes.
In Proceedings of SIGGRAPH’97, pages 198-208, Aug. 1997.

H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh
Optimization. In Computer Graphics (SIGGRAPH ’93 Proceedings), vol-
ume 27, pages 19-26, Aug. 1993.

V. Interrante, H. Funchs, and S. Pizer. Enhancing Transparent Skin

Surface with Ridge and Valley Lines. Visualization 95., page 52-59 1995.

A. D. Kalvin and R. H. Taylor. Superfaces: Polygonal Mesh Simplification
with Bounded Error. IEEE Comput. Graph. Appl., 16(3):64-77, May
1996.

BIBLIOGRAPHY 116

[40] R. Klein, G. Liebich, and W. Strafer. Mesh Reduction with Error
Control. IEEE Visualization ’96 pp. 331-338.

[41] A. W. E. Lee, W. Sweldens, P. Schrider, L. Cowsar, and D. Dobkin.
MAPS: Multiresolution Adaptive Parameterization of Surfaces. Comput-

er Graphics Proceedings, Annual Conference Series 1998, pages 95-104,
1998.

[42] P. Lindstrom and G. Turk. Fast and Memory Efficient Polygonal Simpli-
fication. In Visualization 98, pages 279-286, October 1998.

[43] W. Lorensen and H. Cline. Marching cubes: A High Resurlution 3D
Surface Construction Algorithm. Comput. Graph., 21(4):163-170, 1987.

[44] K-L Low and T-S Tan. Model simplification using Vertex-Clustering.
Proceedings of 1997 Symposium on Interactive 3D Graphics, pages 75-81,
1997.

[45] D. Luebke. A Survey of Polygonal Simplification Algorithms. Technical
Report 97-045, Dept. Computer Science, University of North Carolina at
Chapel Hill, 1997.

[46] D. Luebke and C. Erikson. View-Dependent Simplification of Arbitrary
Polygonal Environments. InProceedings of SIGGRAPH 97, pages 198-
208, Aug. 1997.

[47] M. Lounsbery, T. DeRose, and J. Warren. Multiresolution Analysis for
Surface of Arbitrary Topological Type. In Transactions on Graphics,

16(1) 34-73, January 1997.

BIBLIOGRAPHY 117

[48] K-L Ma and V. Interrante. Extracting Feature Lines from 3D Unstruc-
tured Grids. In IEEFE Visualization ’97 Proceedings, pages 285292, San
Francisco, CA, 1997. ACM/SIGGRAPH Press.

[49] J. S. B. Mitchell and S. Suri. Separation and Approximation of Poly-
hedral Surfaces. Computational Geometry: Theory and Applications, 5,
1995, 95-114.

[50] H. Muller and M. Stark. Adaptive Generation of Surfaces in Volume Data.
The Visual Computer, 9:182-199, 1993.

[51] J. O’'Rourke. Computational Geometry in C. Cambridge University Press,
1994.

[52] D. E. Pearson and J. A. Robinson. Visual Communication at Very Low
Data Rate. Proceedings of the IEEE, volume 4 pages 795-812, April 1985.

53] J. Popovi¢, and H. Hoppe. Progressive Simplicial Complexes.
InProceedings of SIGGRAPH’97, pages 217-224, Aug. 1997.

[54] R. Raskar and M. Cohen. Image Precision Silhouette Edges. Proceedings
of 1999 Symposium on Interactive 3D Graphics , pages 135-140, Apr.
1999.

[55] R. Ronfard and J. Rossignac. Full-Range Approximation of Triangu-
lated Polyhedra. Computer Graphics Forum, 15(3), Aug. 1996. Proc.
Eurographics’96.

BIBLIOGRAPHY 118

[56]

[57]

[58]

[59]

[60]

[61]

[62]

J. Rossignac and P. Borrel. Multi-Resolution 3D Approximation for Ren-
dering Complex Scenes. In Second Conference on Geometric Modelling

in Computer Graphics, pages 453-465, June 1993. Genova, Italy.

S. Satio and T. Takahashi. Comprehensible Rending of 3-D Shapes. In
Proc. SIGGRAPH ’90, pages 197-206, 1990.

W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of Triangle
Meshes. In Computer Graphics (SIGGRAPH 92 Proceedings), volume 26,
pages 6570, July 1992.

W. J. Schroeder. A Topology Modifying Progressive Decimation Algorith-
m. In IEEE Visualization ’97 Proceedings, pages 205-212, San Francisco,
CA, 1997. ACM/SIGGRAPH Press.

R. Shekhar, E. Fayyad, R. Yagel, and J. Cornhill. Octree-Based Decima-
tion of Marching Cubes Surfaces. In IEEFE Visualization 96 Proceedings,
pages 335-342. ACM/SIGGRAPH Press, 1996.

C. T. Silva, J. S. B. Mitchell, A. E. Kaufman. Automatic Generation
of Triangular Irregular Networks using Greedy Cuts. IEEE Visualization
95 pp- 201-208.

C.T. Silva, J. S. B. Mitchell. Greedy Cuts: An Advancing Front Terrain
Triangulation Algorithm. ACM Symposium on Geographic Information
Systems 1998

BIBLIOGRAPHY 119

[63]

[64]

[65]

[66]

[67]

[68]

[69]

C. T. Silva. Parallel Volume Rendering of Irregular Grid. PhD thesis,
Dept. of Computer Science, State University of New York at Stony Brook,
1996.

M. Soucy and D. Lauredeau. Multi-Resolution Surface Modeling from
Multiple Range Views. InConf. on Computer Vision and Pattern Recog-
nition (CVPR ’92) pages 348-353, June 1992.

M. Soucy and D. Lauredeau. Multiresolution Surface Modeling Based on
Hierarchical Triangulation. Computer Vision and Image Understanding

Vol. 63. No. 1. January. pp. 1-14. 1996.

G. Taubin, A. Guéziec, W. Horn, and F. Lazarus. Progressive Forest Split
Compression. In Proc. SIGGRAPH 98, Computer Graphics Proceedings,
Annual Conference Series, July 1998.

G. Taubin. Estimating the Tensor of Curvature of a Surface from a Poly-
hedral Approximation. In Proceedings of the 5th International Conference

on Computer Vision (ICCV), pages 902-907, 1995.

G. Turk. Re-Tiling Polygonal Surfaces. In Computer Graphics (SIG-
GRAPH ’92 Proceedings), volume 26, pages 55-64, July 1992.

G. Turk and M. Levoy. Zippered Plygon Meshes from Range Images. In
Proceedings of SIGGRAPH °94), Computer Graphics Proceedings, Annu-
al Conference Series, pages 311-318, July 1994.

BIBLIOGRAPHY 120

[70] J. C. Xia, J. El-Sana, A. Varshney. Adaptive Real-Time Level-of-
Detail-Based Rendering for Polygonal Models. IEEE Transaction On
Visualization And Computer Graphics Vol. 8 No. 2 April-June 1997.

