
Visual Analysis of Multimodal Sensor Data

DISSERTATION

Submitted in Partial Fulfillment of

the Requirements for

the Degree of

DOCTOR OF PHILOSOPHY (Computer Science)

at the

NEW YORK UNIVERSITY

TANDON SCHOOL OF ENGINEERING

by

Joao Rulff

August 2025

Visual Analysis of Multimodal Sensor Data

THESIS

Submitted in Partial Fulfillment of

the Requirements for

the Degree of

DOCTOR OF PHILOSOPHY (Computer Science)

at the

NEW YORK UNIVERSITY

TANDON SCHOOL OF ENGINEERING

by

Joao Rulff

August 2025

Approved:

Department Chair Signature

Date

ii

Approved by the Guidance Committee:

Major: PhD in Computer Science

Claudio T. Silva
Institute Professor

NYU Tandon School of Engineering

Date

Juliana Freire
Institute Professor

NYU Tandon School of Engineering

Date

Maryam Hosseini
Assistant Professor

University of California Berkeley

Date

Robert Krueger
Assistant Professor

NYU Tandon School of Engineering

Date

iii

Microfilm or other copies of this dissertation are obtainable from

UMI Dissertation Publishing

ProQuest CSA

789 E. Eisenhower Parkway

P.O. Box 1346

Ann Arbor, MI 48106-1346

iv

Vita

Joao Rulff was born in the city of Rio de Janeiro, Brazil. He has a B.Sc. in

Computer Science from Universidade Federal Fluminense. While completing his

undergraduate studies, he was a visiting student at Monmouth University and

completed internships at SLAC-Stanford, IBM, and STI-UFF. He started his Ph.D.

in the fall of 2019, working in data visualization and human-computer interaction.

Throughout his PhD, he has received an urban doctoral fellowship to continue

his work on urban data analytics. He has published papers on top-tier venues,

such as IEEE VIS, ACM CHI, and Eurovis. He was also awarded two Best Paper

Honorable Mention awards at IEEE VIS 2023 and SIBGRAPI 2023. During his

PhD he completed internships at Capital One and NEC Labs

v

Acknowledgements

This dissertation would not be possible without the unconditional support from

my family. My mother and Father, Bernadete and Joao, my sister, Clara, and my

partner, Erika, were fundamental during times of uncertainty throughout my Ph.D.

Especially during the global COVID-19 pandemic, when we could not see each

other in person for almost two years.

I would like to especially thank my advisor, Claudio Silva, for the opportunity

to join his group at New York University, the continuous support and guidance

throughout my Ph.D. studies, and the chance to work on incredible projects. I

would also like to thank the members of my committee, Juliana Freire, Maryam

Hosseini, and Robert Krueger, for their valuable feedback.

I could not forget to express my gratitude to Marcos Lage, my undergraduate

advisor, who introduced me to the academic world and supported and guided me

in every decision I had to make throughout the past 10 years. Marcos and Lhaylla

Crissaff were fundamental pieces in my journey, transcending the professional

relationship and becoming close friends. I would also like to acknowledge my

undergraduate thesis advisor, Vanessa Braganholo.

The work I was able to do during my Ph.D. was only possible due to the amazing

researchers I had the chance to learn from. I would like to thank Fabio Miranda,

Harish Doraiswamy, Luis Gustavo Nonato, Brian Barr, Qi Sun, Michael Krone,

Huy T. Vo, Mark Cartwright, Graham Dove, Charlie Mydlarz, Magdalena Fuentes,

and Juan Bello.

All the friends at VIDA, some of them collaborators, also played a pivotal

role during these years. They made the process easier and way more fun. To

Aecio Santos, Juliana Barbosa, Fernando Chirigati, Raoni Lourenco, Jonathas

Costa, Peter Xenopoulos, Guande Wu, Shaoyu Chen, Sonia Castelo, Roque Lopez,

Giancarlo Pereira, Parikshit Solunke, Erin McGowan, Iran Roman, Bea Steers,

Jorge Ono, Yurii Piadyk, Remi Rampin, Vicky Rampin, Grace Fan, Christos

Koutras, Eduardo Pena, Joao Fonseca, Andrew Bell, Fabio Felix, and Caterina

Fuligni, my deepest thank you.

Last but not least, I would like to thank all the exceptional professors I had the

chance to take courses from at Tandon School of Engineering and the Center for

vi

Data Science. The same recognition goes to the NYU admin team: Ann Borray,

Kari Schwartz, Eve Henderson, and Susana Garcia.

vii

For my family, with all my love and gratitude.

viii

ABSTRACT

Visual Analysis of Multimodal Sensor Data

by

Joao Rulff

Advisor: Prof. Claudio Silva, Ph.D.

Submitted in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy (Computer Science)

August 2025

The proliferation of low-cost, high-fidelity sensors deployed in multiple contexts,

such as in wearable technology and urban infrastructure, has led to an unprecedented

deluge of multimodal data, capturing complex real-world phenomena from different

perspectives. While this data holds the potential for profound insights into human

behavior and urban dynamics, its sheer volume, variety, and complexity present

significant challenges for analysis. Raw sensor readings from multimodal data, such

as video, audio, and time-series streams, are often opaque and require specialized

tools to transform them into actionable knowledge for domain experts. This thesis

addresses the need for new analytical systems by presenting a series of novel

interactive frameworks designed to support the exploration and understanding of

multimodal, sensor-acquired data. These systems bridge the gap between large-scale,

heterogeneous datasets and human cognition through a synergistic combination of

intelligent data management, machine learning, and interactive visualization. This

ix

thesis starts by presenting the role of data captured by sensors mounted on wearable

headsets in supporting the debugging of immersive intelligent assistants in ARGUS.

The focus then shifts to urban analytics, where the thesis introduces a two-part

contribution to better understand pedestrian activity at street intersections. First, it

presents the StreetAware Dataset, a novel, high-resolution, synchronized multimodal

dataset featuring multi-perspective video, audio, and LiDAR scans. Leveraging this

unique resource, the thesis then introduces Crossroads, a pedestrian-centric visual

analytics system that analyzes safety patterns using an automatic data enrichment

pipeline and an interactive human-in-the-loop workflow. Finally, this work presents

Urban Rhapsody, a framework for the large-scale exploration of urban soundscapes

that integrates machine listening with an interactive interface for querying and

building custom classification models. Together, these frameworks demonstrate the

power of visual analytics to make complex sensor data accessible, interpretable,

and actionable, providing critical tools for researchers and practitioners in domains

ranging from immersive analytics to urban planning and transportation safety.

x

Table of Contents

Vita . iv

Acknowledgements . v

Abstract . viii

List of Figures . xx

1 Introduction 1

2 ARGUS: Visualization of AI-Assisted Task Guidance in AR 6

2.1 Introduction . 6

2.2 Related Work . 9

2.3 Background: Building The TIM Personal Assistant 12

2.4 Tasks & Requirements . 18

2.5 ARGUS: Augmented Reality Guidance and User-modeling System . 19

2.6 Case Studies & Discussion . 31

2.7 Conclusion & Future Work . 37

3 StreetAware: A High-Resolution Synchronized Multimodal Ur-

ban Scene Dataset 39

3.1 Introduction . 39

3.2 Related Work . 43

3.3 The StreetAware Dataset . 46

3.4 Use Cases . 59

3.5 Final Considerations . 66

4 Crossroads: A Pedestrian-Centric Visual Analysis of Crossing

Dynamics in Urban Environments 70

4.1 Introduction . 70

4.2 Related Work . 73

xi

4.3 Challenges and Requirements . 77

4.4 The StreetAware Dataset . 79

4.5 The Crossroads System . 80

4.6 Usage Scenarios . 89

4.7 Experts’ Feedback . 97

4.8 Conclusion and Future Work . 99

5 Urban Rhapsody: Large-scale exploration of urban soundscapes 100

5.1 Introduction . 100

5.2 Background . 102

5.3 Related Work . 103

5.4 Sounds of New York City . 105

5.5 Requirements . 109

5.6 Urban Rhapsody . 110

5.7 Case Studies . 117

5.8 Discussion and Conclusion . 125

6 Conclusions and Future Work 127

6.1 Summary of Work . 127

6.2 Future work . 128

xii

List of Figures

1.1 Examples of data collected by sensors mounted on different envi-

ronments. Sensors mounted on immersive headsets can capture

data representing human actions, such as egocentric videos and eye

tracking. Sensors mounted on cars, can capture geolocated images

representing different city neighborhoods. Lastly, static sensors de-

ployed on the city infrastructure can capture temporally-dense videos

and audio recordings of pedestrian activity. 2

2.1 TIM’s architecture proposes a data communication service between

the system components: the Hololens, AI modules, and ARGUS. . . 14

2.2 The online component of ARGUSfor real-time debugging. (A)

Streaming Video Player: Users can inspect the output of the headset’s

camera, overlayed with bounding boxes representing the detected

objects. Users have the option to record any session. (B) Confidence

Controller: a slider that allows the user to control the threshold

model confidence. (C) Perception model outputs, including target

and detected objects. “Target Objects” represent the objects needed

in the current step (from recipe instructions) while “Detected Ob-

jects” shows all the objects identified by the perception models and

their corresponding number of instances (e.g., multiple knives may

be detected in a frame). (D) Reasoning model outputs, including the

step and error predictions, step description, and the performer’s sta-

tus. (E) Raw data views show the raw data collected by the system.

(F) Widgets showing the predicted actions with their probabilities.

In this example, the model predicts that the current action is “Take

Toothpick” with 48% likelihood, followed by “Apply Spreads” with

24% and ”Wrap Wrap” with 18%. 17

xiii

2.3 Overview of the user interface and components of ARGUSOffline.

(A) The Data Manager shows the applied filters (A1) and the list

of retrieved sessions (A2). (B) The Spatial View shows the world

point cloud representing the physical environment, 3D points for

eye and hand positions, and gaze projections and heatmaps. (B1)

Render Controls allow the user to select the elements of the Spatial

View they desire to see (C) Temporal View: (C1) The Video

Player is the main camera video output of the current timestamp

selected by the user. (C2) The Temporal Controller controls the

video player and updates the model output viewer as well. (C3) The

Model Output Viewer displays the output of the machine learning

models (reasoning and perception) used during execution time. . . . 21

2.4 A visual representation of frame selection for the panoramic mosaic

view of the video player (top) and comparison of these panoramic

mosaics with corresponding frames from the same timestep of the raw

main camera video for reference (bottom). Each panoramic mosaic

is composed of several frames sampled from a window around the

current timestep of the raw main camera video. In both examples,

we highlight objects that are visible in the panoramic mosaic but

not in the raw main camera video (toothpick, floss, and jar of jelly,

respectively) in red. 26

2.5 Illustration of the Model Output Viewer applied to the analysis of

a cooking recipe session. To the left, the model outputs are listed

vertically. The bars depict the confidence score of the detected

outputs’ labels at the specific time picked on the timeline. In the

middle, the temporal distribution of ML model output confidences

across the whole session is displayed. To the right, two summaries

are shown: the average confidence and detection coverage for each

output across the entire session. Color darkness is proportional to

confidence value: . 27

xiv

2.6 ARGUSis a visual analytics tool for real-time and historical eval-

uation of sensor and model outputs of AR task assistants. Shown

here are (A) 3rd person perspective of a human (performer) per-

forming a task with AR headset guidance, (B) the AR GUI from the

perspective of the performer, (C) a snapshot of a visual perception

model analyzing data from the headset camera. For each time step,

detailed information highlights the performer’s gaze direction and

the corresponding frame recorded by the headset. (D) heatmaps

of the performer’s gaze projection onto the world point cloud allow

for inspection and understanding of their attention over time. The

cluster on the left shows the performer finalizing a recipe. (E) object

detection information from ARGUSTemporal View illustrating that

Plate was only detected towards the end of the task while Tortilla

was detected throughout the whole session. 29

2.7 Analysis of actions, objects, and steps in the Model Output Viewer.

Color darkness is proportional to confidence value (0% 100%).

The confidence matrix and the average confidence views show that

the confidence scores for objects are higher than actions. The arrows

show the confidence scores for actions and objects at minute 0:14

of the video. The detection coverage view shows that some actions

(e.g., take jar) are rarely identified during the video. 32

2.8 Example of how the Spatial View can help users identify missing

classes in the model’s vocabulary or find clusters of false positives.

(A) Points representing the 3D positions the object detection model

identified as a ”tortilla” during the session. Points on the left repre-

sent a bag of tortillas, while points on the right represent a single

tortilla. (B) Points representing the 3D positions the object detec-

tion model identified as a ”cutting board” during the session. The

cluster on the left contains false positives, where the perception

model generates wrong bounding boxes. 33

xv

3.1 Illustration of the basic concept of combining multimodal sensors

at critical nodes (e.g., intersections) with on-device and in-vehicle

computing capabilities to provide greater awareness to urban traffic

participants. 40

3.2 A photo of the REIP sensor in its protective metal housing ready

for deployment (left) and its internal architecture (right). 47

3.3 Illustration of the sensor positions and data types at the Commodore

Barry Park intersection. Colors denote the different recording ses-

sions, and numbers indicate the REIP sensors. This figure highlights

all data modalities that are being captured during the collection

process: audio, video, and LiDAR scans. Green L indicates the

LiDAR sensor position fixed for all recording sessions. 51

3.4 The sensor’s data acquisition pipeline is built using software blocks

available in the REIP SDK. It contains separate tasks for each camera

and the microphone array. The LiDAR data acquisition is performed

on a separate machine (orchestrator laptop). 52

3.5 Multimodal synchronization workflow. Each sensor is receiving the

global timestamps from a master radio (at 1200 Hz) and is embedding

every 10th of them in a serialized form as an extra audio track

synchronous with the microphone array data. For the cameras used

in REIP sensors, it is not possible to embed the timing information

directly into the video data itself. Instead, the timestamps provided

by the camera driver are converted into the global timeline using

the computing platform that is continuously updating the latest

timestamp received by the microcontroller unit (MCU) via USB.

More details on video synchronization can be found in Section 3.3.3.2.

The camera’s time axis is compressed by about an order of magnitude

for illustration purposes. 53

3.6 Example of a synchronization signal embedded into the last channel

of audio data at a 120 Hz rate. It contains a serialized 32-bit

timestamp that is shared across multiple sensors with 1 µs accuracy

using a 2.4 GHz radio module. High synchronization accuracy is

required due to a high audio sampling rate of 48 kHz. 55

xvi

3.7 A sample of audio data (channel 0) synchronized across multiple

sensors. Every 400 audio samples long audio data chunk can be placed

in the right place on a global timeline by decoding the serialized

timestamps embedded in the dedicated channel at a rate of 120 Hz. 56

3.8 Each frame acquired by the cameras is timestamped three times:

(I) by the camera driver (GStreamer), (ii) by the REIP framework

(Python), and (iii) by the microcontroller receiving global timestamps

from the master radio (Global). This figure illustrates a progressive

degradation of timestamp quality, in terms of jitter, accumulated

throughout the data acquisition pipeline. 57

3.9 Diagram illustrating timestamp processing. We start with the least

jittery GStreamer timestamps and identify any lost frames so that

we can reconstruct the original timeline and average period for the

saved frames. We then convert these reference timestamps into a

global timeline through a series of regression steps that incorporate

the information from other kinds of timestamps without adding jitter. 58

3.10 Mosaic rendering of the synchronized frames from recording session

one at the Chase Center intersection that can be played as a video.

Four sensors with two cameras each (numbered in the corners) provide

eight different views for comprehensive analysis of the intersection.

If a camera did not successfully record during a particular frame,

its block is turned black, such as the left camera of sensor 4 in this

example. 59

3.11 Audio-based localization of a bicyclist crossing the street at Chase

Center and ringing the bell repeatedly (magenta points). In chrono-

logical order: Sensor 2 can see the bicyclist approaching the inter-

section, but localization of the bell ring is not possible because two

sensors were occluded by a noisy bus; Sensor 1 view confirms the

position of the bicyclist taking a right turn; Sensor 4 footage reveals

the reason for the bicyclist’s curved trajectory—the black car did not

stop to yield the right of way; Eventually, the bicyclist is no longer

in the field of view of Sensor 3, but can still be localized thanks to

the diffraction of the bell’s sound waves. 61

xvii

3.12 Sensor positions during data acquisition at DUMBO, Brooklyn.

Colors indicate recording sessions, and numbers denote the sensor.

Above each synchronized video frame, we highlight the relative data

point in the audio time series (in decibels). It can be shown that

events that can be seen in the video, such as the passing of a bus,

have a corresponding peak in the audio data. 62

3.13 Chase Center intersection occupancy by object type during a record-

ing session in the afternoon, with purple lines representing people

and green lines representing cars on the top chart. In the figure, the

four sensors collecting data during this session are represented by

circles. There is a significant (≈3×) increase in the pedestrian count

(blue) around 5 p.m. as people leave work. Moreover, it is possible

to detect traffic light cycles based on the ratio of the number of

pedestrians versus vehicle counts. 63

3.14 Two camera views from the session 2 recording at DUMBO. Camera

A points northwest, and Camera B points southwest. At the time, T

pedestrians (surrounded by an orange box) are visible in camera A

but not in camera B. At the time T + 6500, as the pedestrians cross

the street, they are observable by both cameras. By T + 12,000, the

pedestrians are no longer observable in camera A but are still visible

in Camera B as they continue to walk down the sidewalk. Time

T represents the global timestamp at the moment the pedestrians

begin crossing the street. By extension, T + 12,000 is the time 10 s

later because the global timestamps are updated at a rate of 1200 Hz.

This figure also highlights the advantage of high-resolution video.

With objects at a farther distance from the camera, it becomes

more challenging to detect them and estimate their poses. Higher

resolutions help mitigate the information loss associated with more

distant objects occupying a smaller portion of an image. 65

xviii

4.1 Crossroads’s Data Processing Pipeline, broken down into six steps:

Operations in 2D include Object Detection (A), 2D Tracking (B),

and Pose Detection (C). Once these operations are done, the pipeline

proceeds to operations in 3D space. First, depth computation is

computed for each video frame (D). With that information, we can

then reconstruct different actors (such as pedestrians and cyclists)

in the 3D urban space (E). Finally, once the urban space and actors

are reconstructed and tracked in 3D, we automatically compute

and display different metrics, such as average speed and time taken

between steps (F). 74

4.2 StreetAware Data. On the left, we include a picture of the sensor,

containing two high-resolution cameras and a 12-microphone array,

protected under a layer of gray cloth. The eight images on the

right provide an overview of the sensor arrangement at one of the

intersections: there are four sensors, each with cameras labeled as

left and right. We chose this frame to exemplify the recurring lost

frames, which we discuss more in-depth in Section 4.5.2. 79

4.3 Crossroads can recover trajectory information in occluded scenarios

due to its ability to handle multi-view information. 83

4.4 Mosaic of frames employed to define matching points from differ-

ent cameras used in the registration process. To increase the user

precision, the system implements a lens-inspired tool. 85

4.5 The Crossroads’ Crossing Analysis view supports users in exploring

the crossing data with different visual metaphors and query widgets.

(A) allows users to look at global statistics of different locations

and load data for a selected session. (B)) shows filters to select

trajectories that follow a desired criterion. (C) shows the density

of events that match the query with the selected filters. (D) shows

a video mosaic of all the views available for the intersection. (E)

display the selected trajectories in a list fashion, showing detailed

information about them. Lastly, (F) shows a heat map of cyclist

density at the intersection. 86

xix

4.6 Crossroads, an interactive visual analytics tool for exploring mul-

timodal movement and safety patterns at urban intersections. (A)

provides a global overview, where users select from a list of intersec-

tions and view summary statistics including agent counts and speed

distributions. (B) presents directionally disaggregated flow metrics

and a hexplot that captures behavior signatures by plotting mean

speed against directional change across modes. (C) overlays a speed

heatmap onto a satellite image, highlighting localized high-speed

segments—such as fast right turns, often associated with elevated

pedestrian risk. (D) enables semantic querying within selected re-

gions to retrieve frames where vehicles and pedestrians co-occur,

revealing potentially hazardous interactions such as near-miss in-

cidents. Together, these panels support a multiscale, multimodal

workflow from high-level pattern recognition to detailed, evidence-

based safety investigation. 90

4.7 Detailed representation of pedestrians walking with dogs. Crossroads

summarizes trajectories and metrics of different actors using the

crossing region. 92

4.8 Audio events and correlated high-risk scenarios. (A) shows a pedes-

trian accelerating due to a police car approaching the intersection.

(B) car honks due to heavy traffic. (C) jaywalker sharing the cross-

walk with a car. (D) crowd crossing a lower speed. 95

5.1 Spatial distribution of SONYC sensors (left) showing the coverage

of the city. Right image illustrates the data from a sensor located

near a park in Manhattan. Sensors record both the sound pressure

level at each second (SPL dB), as well as the environmental sounds

(stored as 10-second clips). For each 1-second frame in the clip

(highlighted in red), we compute the classification considering user-

crated prototypes. The figure shows classes following standard urban

audio taxonomies. 107

xx

5.2 The Urban Rhapsody system visual interface: (a) Calendar View;

(b) Sensor Map and Distribution View; (c) Day View (projections);

(d) Focused View (spectrograms); (e) Frame Classification View; (f)

Model Summary; (g) Mixture Explorer. 113

5.3 We use Urban Rhapsody to assess after-hour construction in New

York City, first selecting audio recordings captured by sensors de-

ployed around Broadway. Urban Rhapsody allows users to query

using an audio sample, and drill down to days containing similar

audios (a). Using the interactions provided by the tool, we are able

to create classification models according to a user’s perception of the

soundscape (b,c), and then use these models to classify the entire

data set and look for unusual events (d,e). 119

5.4 Interactive monitoring of the training process and refining the model.

(a) We run a query using our sample birds’ sound and analyze the

clusters; (b) Investigating the clusters on different days to detect

and re-label false positive and false negative instances, and refine

the model; (c) The model evaluation indicates that our prototype

models are converging as we do further iterations of refinement. . . 121

5.5 Looking for bird songs in two different Manhattan locations: (a)

Edge of Washington Square Park with high concentration of bird

songs and (b) a street corner on Broadway with very few instances

of bird songs since we do not have trees for birds to nest. 122

5.6 Spectrogram showing a winter day with no bird song, a summer day

with birds’ singing and the selected day in summer when birds dawn

chorus continued despite loud siren. 123

6.1 Usage scenario of PyAutark. In a few lines of code, users can explore

urban spatiotemporal datasets supported by city infrastructure data.

A and B show the code needed to generate the interactive spatiotem-

poral visualization provided by PyAutark. C shows the distribution

of taxi pickups around parks in lower Manhattan. D shows taxi trip

data projected onto Manhattan’s road network. 130

1

Chapter 1

Introduction

We live in an era of unprecedented data proliferation, offering a granular, digital

lens into previously unexplored phenomena. From the macro-scale of city-wide

activity driven by citizens to the micro-scale of humans performing everyday manual

tasks, sensors are capturing a deluge of information that holds the potential to

unlock profound insights into complex real-world dynamics. This trend is largely

driven by the democratization of sensing technology. Significant advancements

in hardware downsizing and a sharp decline in manufacturing costs are enabling

broader access to these devices. The deployment of low-cost, high-fidelity sensors

is no longer confined to specialized instrumented environments; instead, they are

integrated into our cities, devices, and even wearable technologies, creating a digital

network that constantly monitors and records the world around us.

The data produced by these sensing initiatives is inherently multimodal, captur-

ing phenomena from multiple perspectives and through various signal types. Sensors

integrated into wearable devices, such as augmented reality headsets, provide an

egocentric or first-person view, capturing data streams including egocentric video,

gaze tracking, and inertial measurement unit (IMU) data, which offer intimate

insights into human actions and attention. Conversely, sensors deployed on city

infrastructure provide an exocentric perspective, yielding vast datasets such as

multi-view synchronized videos of intersections and longitudinal audio recordings

of the urban soundscape. This heterogeneity in data sources provides a rich, multi-

faceted view of real-world activities but also introduces significant challenges for

data management and analysis.

2

Although valuable, the sheer amount of data collected by multimodal sensors

can only be truly useful when domain experts—be they specialists in specific

domains, such as urban planners, transportation engineers, or immersive technology

developers—are equipped with the proper tools to navigate and explore it. Raw

sensor readings, in their unprocessed state, are often opaque and hard to interpret.

To transform this data into meaningful insights and actionable knowledge, there

is a critical need for analytical systems that can bridge the gap between complex,

large-scale datasets and human cognition. Such tools must enable experts to explore,

query, summarize, and visualize multimodal information, allowing them to uncover

patterns, validate hypotheses, and debug system behaviors that would otherwise

remain buried in the data. Without these instruments for analysis, the potential

held within our sensor-rich world remains largely untapped.

Figure 1.1: Examples of data collected by sensors mounted on different environments.
Sensors mounted on immersive headsets can capture data representing human
actions, such as egocentric videos and eye tracking. Sensors mounted on cars, can
capture geolocated images representing different city neighborhoods. Lastly, static
sensors deployed on the city infrastructure can capture temporally-dense videos
and audio recordings of pedestrian activity.

Building such visual analysis systems, however, presents its own set of challenges.

It requires a synergistic combination of smart data management techniques and

visualization approaches. Handling the sheer volume, velocity, and variety of the

data demands architectures to ingest, store, and index terabytes of heterogeneous

3

data—from high-resolution video streams to high-frequency audio recordings—in

a way that supports interactive query times, a prerequisite for fluid, exploratory

analysis. Also, regarding interactivity and visualization, there is a need to develop

novel techniques that move beyond conventional charts and graphs. These methods

must be capable of summarizing complex spatiotemporal patterns and providing

intuitive interfaces for experts to compose expressive queries across different modal-

ities. The ultimate goal is to create integrated environments that fuse scalable

data processing with powerful visual metaphors, enabling the interplay between

computational analysis and human expertise.

The research described in this thesis proposal presents new interactive frame-

works to support domain specialists in better understanding and exploring mul-

timodal, sensor-acquired data. These frameworks range from supporting the

debugging of complex human-AI interactions to the analysis of urban activities,

such as pedestrian behavior and noise pollution. These systems are composed of

various modules, such as processing pipelines to extract expressive information

from collections of audio and video, and information-rich interfaces to support

meaningful exploration of large datasets through sophisticated query capabilities

and data summarization. The main contributions are described below:

1. Interactive debugging of intelligent assistants. Debugging immersive

intelligent assistant systems is a complex task, as it requires developers to

analyze multiple data streams from sensors and machine learning (ML) models

that must work together in real-time. To address this challenge, ARGUS

provides a visual analytics system designed to help developers troubleshoot,

improve, and fine-tune the components of an AR assistant. The system’s

primary contribution is its dual-mode functionality, which supports both live,

online monitoring during task execution and offline, retrospective analysis of

historical data. ARGUS introduces novel visual representations to analyze

these complex spatiotemporal and multimodal data streams, allowing devel-

opers to uncover interaction patterns between a performer’s actions and the

ML model outputs. The paper demonstrates the system’s usefulness through

case studies where developers leverage the tool to improve their systems.

2. Novel dataset to support multimodal analysis of intersection dy-

4

namics. To better understand pedestrian dynamics at intersections, we

introduced StreetAware. StreetAware is a novel, high-resolution, synchro-

nized, multimodal dataset designed for analyzing urban intersection dynamics.

Captured using custom REIP sensors at three intersections in Brooklyn, New

York, the dataset provides nearly 8 hours of accurately synchronized, multi-

perspective data, including high-resolution video, multiple audio channels,

and LiDAR scans, all fully anonymized. StreetAware aims to address the lack

of comprehensive data for studying complex interactions between vehicles,

pedestrians, and the environment, facilitating research in computer vision,

urban sensing, and smart city applications like accessibility-aware design and

Vision Zero initiatives.

3. Interactive analysis of pedestrian mobility. CrossRoads is a pedestrian-

centric visual analytics system designed to analyze the complex dynamics

and safety patterns at urban intersections using multimodal data, integrating

video, audio, and traffic signal information. Addressing the limitations of

traditional vehicle-focused analyses and the challenges of processing noisy, real-

world footage, CrossRoads employs an automatic data enrichment pipeline

to extract semantic information like agent trajectories (pedestrians, cyclists,

vehicles) and audio events (honks, sirens). It uniquely features a human-in-the-

loop approach for users to refine and validate 3D trajectory reconstructions,

enhancing accuracy. Through a set of interactive, linked visualizations,

the tool supports multiscale exploration—from global intersection statistics

and movement patterns to detailed inspection of specific incidents like near-

misses—enabling users to perform expressive queries across modalities, identify

high-risk behaviors, and ultimately inform evidence-based safety interventions

and infrastructure design.

4. Longitudinal exploration of city soundscapes. First, we introduce

Urban Rhapsody, a visual analytics framework designed for exploring large-

scale urban audio datasets. It integrates machine listening algorithms for

audio representation with an interactive visual interface, allowing users to

query by audio sample, interactively label sounds based on their perception,

and iteratively build custom classification models (called ”prototypes”) for

5

complex sound concepts. Through linked visualizations including maps,

temporal views, multidimensional projections, and spectrograms, the system

enables the analysis of sound patterns, mixtures, and anomalies across space

and time, facilitating a deeper understanding of the urban soundscape beyond

simple noise level measurements.

1.0.1 Organization

The remainder of this thesis is structured as follows. First, chapter 2 de-

scribes ARGUS, a system that leverages sensor-acquired data to allow for the

debugging of human-ai interactions in a task-guidance setting. Next, we pro-

ceed to describe the efforts in creating a framework to facilitate the analysis

of pedestrians interacting with urban environments. Chapter 3 introduces

StreetAware, a multimodal and multiview dataset comprising synchronized

audio and video streams that represent intersection activity in New York

City. Then, Chapter 4 presents Crossroads, a visual analytics system de-

signed to support the exploration of street-level multimodal data, helping

domain experts categorize intersection activity. Lastly, Chapter 5 shows

Urban Rhapsody, a framework to support the large-scale exploration of urban

soundscapes. This thesis concludes, in Chapter 6, with a discussion on the

need for more reproducible practices in developing visual analytics systems

and presents an initial prototype of a library to facilitate the development of

interactive and spatiotemporal visualizations.

6

Chapter 2

ARGUS: Visualization of

AI-Assisted Task Guidance in

AR

2.1 Introduction

The concept of an augmented reality (AR) assistant has captured the human

imagination for years, becoming a staple of modern science fiction through

popular franchises such as the Marvel Cinematic Universe, Star Trek, and

Terminator. The applications of such a system are seemingly endless. Hu-

mans, even those with domain expertise, are fallible creatures with imperfect

memories whose skills deteriorate over time, especially during repetitive tasks

or under stress. An AR assistant could help experts and novices alike in

performing both familiar and new tasks. For instance, an AR assistant could

aid a surgeon performing a familiar yet complex procedure, who could benefit

from a second set of “eyes” due to the high-stakes nature of their task. Equally,

it could walk an amateur chef through the steps of an unfamiliar recipe. In

an ideal scenario, the AR assistant would become “invisible” in the sense

that it is seamlessly integrated into the task procedure, providing well-timed

audio and visual feedback to guide uncertain performers and correct human

errors while otherwise fading into the background. Overall, the AR assistant

7

would be able to reduce human error via correction, improve performance

by reducing cognitive load, and introduce new tasks across a wide variety of

applications.

While aspects of this vision are currently still aspirational, we are finally

beginning to develop the technology that allows concepts once relegated to the

world of science fiction to become reality. With respect to machine perception,

the recent explosion of research on machine learning (ML), especially deep

neural networks, has given way to powerful models able to detect objects,

actions, and speech in real time with high accuracy. Ever-evolving imple-

mentations of Bayesian neural networks, reinforcement learning, and dialog

systems (e.g., conversational agents) allow for task modeling and transac-

tional question answering. A rise in AR technology, especially the commercial

availability of headsets such as Microsoft HoloLens 2, Magic Leap, Google

Glass, or Meta Quest Pro (and soon, Apple Vision Pro) has provided the

hardware necessary for task guidance. The time is ripe for the development

of assistive AR systems.

Challenges in perceptually-enabled task guidance Developing an AR

assistant, however, comes with a host of challenges. Such a system requires

several moving parts to work in tandem to perceive the performer’s environ-

ment and actions, reason through the consequences of a given action, and

interact with both the performer and the user (for the sake of clarity, we

will refer to subjects using the AR system to perform tasks during a session

as “performers” and subjects using ARGUSto collect and analyze data as

“users”). Creating these parts is a complex and resource-intensive process.

The challenges include collecting, storing, and accessing a large volume of

annotated data for model training, real-time sensor data processing for action

and object recognition (or reasoning), and performer behavior modeling based

on first-person perspective data collected by the AR headset (see Sec. 2.4 for

a more detailed discussion of tasks and requirements).

Our Approach We propose ARGUS: Augmented Reality Guidance

and User-modeling System, a visual analytics tool that facilitates mul-

timodal data collection, enables modeling of the physical state of the envi-

ronment and performer behavior, and allows for retrospective analysis and

8

debugging of historical data generated by the AR sensors and ML models

that support task guidance. Our tool operates in two main modes. The

online mode (see Sec. 2.5.1) supports real-time monitoring of model behavior

and data acquisition during task execution time. This mode displays tailored

visuals of real-time model outputs, which allows users of ARGUSto monitor

the system during live sessions and facilitates online debugging. Data is saved

incrementally. Once finalized, all data and associated metadata collected

during the task is seamlessly stored to permanent data store with analytical

capabilities able to handle both structured data generated by ML models

and multimedia data (e.g. video, depth, and audio streams) collected by the

headset.

Our system can be used to explore and analyze historical session data by

interacting with visualizations that summarize spatiotemporal information as

well as highlight detailed information regarding model performance, performer

behavior, and the physical environment (see Sec. 2.5.2).

Our design was inspired by requirements from developers of AR systems and

experts that create and evaluate these systems in the context of the Defense

Advanced Research Projects Agency’s (DARPA) Perceptually-enabled Task

Guidance (PTG) program [52]. These experts use ARGUSand have provided

feedback throughout its development. In summary, our main contributions

are:

• ARGUS, a visual analytics tool tailored to the development and debug-

ging of intelligent assistive AR systems. It supports online monitoring

during task execution as well as retrospective analysis and debugging

of historical data by coupling a scalable data management framework

with a novel multimodal visualization interface capable of uncovering

interaction patterns between performer actions and model outputs.

• The design of novel visual representations to support complex spatiotem-

poral analysis of heterogeneous, multi-resolution data (i.e., data streams

with different frame rates). ARGUSnot only supports the visualization

of internal AR assistant ML states in the context of the actions of the

performer, but also the visualization of the interactions of the performer

9

with the physical environment.

• We demonstrate the usefulness of ARGUSby a set of case studies that

demonstrate real-world use of ARGUS, exhibiting how AR assistant

developers leverage the tool to improve their systems.

This chapter is organized as follows: Sec. 2.2 reviews the relevant literature

on assistive AR systems and visualization of related data. Sec. 2.3 provides

background and context for ARGUS, including the AR personal assistant

framework and architecture it is designed upon. Sec. 2.4 specifies the require-

ments we aim to achieve. Sec. 2.5 describes ARGUSin detail, including all

components of its online real-time debugging mode and offline data analytics

mode. Sec. 2.6 explores two case studies in which ARGUSproves useful to AR

task assistant developers, ending with user feedback and limitations of our

system. Finally, we offer concluding remarks and future work in Sec. 2.7.

2.2 Related Work

2.2.1 Assistive AR Systems

The idea of using AR technologies to build assistive systems that have an

internal model of the real world and are able to augment what a performer

sees with virtual content dates back more than three decades [39]. Yet only

recent advances in AR display technologies and artificial intelligence (AI),

combined with the processing power to run the necessary computations in

real time, have enabled us to start building such systems. Referring to

the terminology introduced by Milgram and Kishino [148] in their seminal

paper on Mixed Reality, this not only requires a class 3 display—a head-

mounted display (HMD) equipped with see-through capability that can overlay

virtual content on top of the real world—but also a great extent of world

knowledge. That is, the environment should be modeled as completely as

possible so that the assistive system can react to objects and actions in

the real world. Simultaneously, the reproduction fidelity and the extent of

presence of an assistive system should be minimal, since the performer needs

10

to focus on the real world, not be immersed in virtual content. In addition,

the in-situ instructions help to reduce errors and facilitate procedural tasks.

To date, results are mixed for task completion time using an assistive AR

system versus not, with several studies finding longer times with assistive AR

systems [226, 269] whereas others find the opposite [81]. Nevertheless, most

studies agree that AR helps to reduce errors and overall cognitive load as it

provides in-situ instruction and guidance.

AR can be enabled by a multitude of different display technologies, ranging

from handheld devices like smartphones and tablets to projector-based solu-

tions and heads-up displays found in airplanes or modern cars. We, however,

focus on see-through AR HMDs for assistive AR systems, since these do not

significantly encumber the performer. These headset displays do not restrict

performers to a limited space and leave their hands free to execute situated

tasks in the real world. Furthermore, they usually offer a wider range of

built-in sensors for modeling the environment and performer such as cameras,

microphones, or IMUs. See-through AR headset displays available today

include Microsoft HoloLens 2 (the hardware platform used in our work) and

Magic Leap 2.

As was proposed by Caudell and Mizell [39], a common use case for such

systems is to support performers in repair and maintenance tasks [72, 100].

Similarly, AR assistants were proposed for manufacturing, e.g., training [128]

or live monitoring of production lines [17]. Another prominent area for AR

assistive systems is healthcare and medicine [16], e.g., to assist surgery [188]

or other procedures [108, 222]. Furthermore, digital assistants can also make

use of AR to enable a virtual embodiment of the assistant [116, 177, 204].

Most of the modern systems mentioned above integrate ML methods for

specific tasks, e.g., for object or voice command recognition. However, they

are mostly tailored to specific tasks and only have limited support for situated

performer modeling and perceptual grounding. Integrating more complex AI

methods will make the development and testing of such systems also more

challenging.

To support the development of AR assistants, software toolkits have been

proposed, for example, RagRug [76], which is designed for situated analysis,

11

or Data visualizations in eXtended Reality (DXR) [210], which is specifically

designed to build immersive analytics [139] applications. However, while such

toolkits make it easier to develop feature-rich assistive systems that use data

from the multiple sensors provided by the AR headset display and integrate

AI methods, they do not offer explicit tools for external debugging of the

required ML models and sensor streams. Our goal is to fill this gap with

ARGUS. This requires visualizing the multiple data streams from the sensors

as well as the output of the models.

2.2.2 Visualization of Multivariate Temporal Data

The visualization of multivariate temporal data is a very active field of research.

A plethora of different methods and tools have been proposed which, for

example, use multiple views, aggregation, and level-of-detail visualizations to

represent the data efficiently. A review of these methods is beyond the scope

of this paper, therefore, we refer to a number of comprehensive surveys [6,

114, 129].

There have been recent attempts to develop visualization systems to debug

and understand the data acquired by multimodal, integrative-AI applications.

PSI Studio, a platform to support the visualization of multimodal data

streams [24] is able to provide useful visualization of sets of recorded sessions.

However, it requires the user to not only compose their own visual interfaces by

organizing predefined elements in a visualization canvas, but also to structure

the streaming data in a predefined format, psi-store. Built with a similar goal,

Foxglove [79] requires developers to organize their data into a Robot Operating

System (ROS) environment. Moreover, these tools focus on supporting the

visualization of the data streams and are not able to summarize long periods

of recordings with visualizations. To the best of our knowledge, existing tools

also lack the ability to debug associated ML models. Other visualization

tools, such as Manifold [262], are tailored to the interpretation and debugging

of general ML models. In our case, we are interested in a narrower set of ML

models, those that pertain to the understanding the behavior of AI assistants,

which have different requirements than other visualization systems.

12

2.3 Background: Building The TIM Personal

Assistant

In this section we describe the context of the development of ARGUS. This

includes the ecosystem of components needed to support intelligent AR

assistant systems, ranging from software running on the headset device to

data management modules able to ingest data in real-time.

2.3.1 Motivating Context

The development of ARGUSis driven in large part by the requirements of the

DARPA PTG program [52]. PTG aims to develop AI technologies that help

users perform complex physical tasks while making them both more versatile

by expanding their skillset and more proficient by reducing their errors.

Specifically, the program seeks to develop methods, techniques, and technology

for AI assistants that provide just-in-time visual and audio feedback to help

with task execution. The goal is to utilize wearable sensors (head-mounted

cameras and microphones) that allow the AR assistant to see what the

performer sees and hear what they hear, so that the assistant can provide

helpful feedback to the performer through speech and aligned graphics. The

assistants learn about tasks by ingesting knowledge from checklists, illustrated

manuals, training videos, and other sources of information (e.g., making a

meal from a recipe, applying a tourniquet from directions, conducting a

preflight check from a checklist). They then combine this task knowledge

with a perceptual model of the environment to support mixed-initiative

and task-focused performer dialogs. The dialogs may assist a performer

in completing a task, identifying and correcting errors during a task, and

instructing them through a new task, taking into consideration the performer’s

level of expertise. As part of PTG, our team has been building TIM, the

Transparent, Interpretable, and Multimodal AR Personal Assistant, which is

described below.

13

2.3.2 Overview of the TIM Personal Assistant

Our assistive AR framework (TIM) integrates perceptual grounding, attention,

and user modeling during real-time AR tasks and is composed of multiple

software and hardware components. TIM perceives the environment, including

the state of the human performer, by using a variety of data streams (details

below), which are the input to the task guidance system. TIM communicates

with the performer through the HoloLens 2 headset display.

The task guidance system is primarily composed of three AI components

that interpret the incoming data streams: (1) Perceptual Grounding utilizes

information from historical instances of actions from similar tasks and makes

its best prediction of what the current action and objects are. (2) Perceptual

Attention takes the objects and transforms them into 3D coordinates and

contextualizes objects over time in the 3D environment. (3) Reasoning then

uses the objects and actions returned by perception to identify which step of

the task the user is in and to understand whether or not they are performing

the task correctly. Any of these data can be ingested and displayed on our

platform, ARGUS.

2.3.3 System Architecture

Since the computational resources on HoloLens 2 are limited, TIM is imple-

mented as a client-server architecture. To enable data streaming capabilities,

the system utilizes server-side infrastructure that provides a centralized data

communication hub and real-time ML inference to facilitate ingesting, operat-

ing over, and contextualizing the produced data streams. A system diagram

can be seen in Fig. 2.1.

Data Orchestration and Storage The core of our architecture is Redis

Streams, which we use as our data message queue. A REST + Websocket

API provides a uniform abstraction layer for components to interact with.

The HoloLens streams its sensor data to the API where it is made available to

all other components in the system. The user is able to record data streaming

sessions, which will listen and copy all data streams to disk. Later, users can

14

Figure 2.1: TIM’s architecture proposes a data communication service between the
system components: the Hololens, AI modules, and ARGUS.

selectively replay that data in the system as if the HoloLens were running,

for easy offline testing.

Communication TIM uses the REST API to stream onboard sensor data

(i.e., gaze, hand tracking; see details in Section 2.3.4) in real-time. This

allows us to shift the computation-heavy tasks to the server while keeping the

essential tasks on the HoloLens to improve responsiveness. TIM also collects

the ML prediction results from the server and updates the AR interaction

and interface accordingly. The AR client running on the HoloLens ingests two

streams to support contextual interaction: a perception stream that recognizes

objects in the scene and a reasoning stream that recognizes performer actions.

On average, these streams take about 100 ms to complete one update cycle

to the AR client.

2.3.4 Data

The HoloLens 2 can provide various data from multiple sensors. With

Research Mode enabled [232], we stream data from the main RGB camera, 4

grayscale cameras, an infrared depth camera, and an IMU that contains an

accelerometer, gyroscope, and magnetometer. Details of the camera data can

be found in Table 2.1. Although it is theoretically possible to stream some of

the data at higher resolution or frame rate, the need to run a user interface

on the HoloLens creates a practical limit. Not only are the computational

resources limited, but streaming extra data consumes more energy and may

15

Table 2.1: Description of streamed data from HoloLens 2 visual sensors.

Sensor Resolution Format Framerate

RGB camera 760 × 428 RGB8 7.5 fps
Grayscale camera 640 × 480 Grayscale8 1 fps
Infrared active brightness 320 × 288 Grayscale8 5 fps
Infrared depth 320 × 288 Depth16 5 fps

result in headset overheating.

The streamed frame rate in practice may be lower due to the packet drop

during streaming. Hand tracking and eye tracking data are also streamed.

The eye-tracking data consists of 3D gaze origin positions and directions. The

hand tracking data consists of 26 joint points for each hand. Each joint point

contains a 3D position and a quaternion that indicates the orientation. In our

system, the per-frame point cloud which consists of RGB and depth frames

can be integrated into a holistic 3D environment. Performer sessions can vary

in size. For instance, the recording of a simple recipe (preparing pinwheels

[157]) usually takes ∼6 min and results in ∼600 MB data without the point

cloud data, but 3 GB with the point cloud data.

Privacy and Ethical Considerations While AR provides incredible op-

portunities, performer privacy must be protected during data collection and

utilization [183].

Our experiment protocol is approved by an Institutional Review Board

(IRB). It ensures data is never directly linked to an individual identity, code

numbers, rather than names or other identifying information, are used for

video recordings in ARGUS. Names or any other identifiable information are

not collected and do not appear in any part of the system. Despite these

efforts, it is theoretically possible to re-identify performers, see, e.g., [165],

where it is shown that motion data can be used for identification. Another

path to re-identification is the audio produced by the voice interactions.

16

2.3.5 AI Task Guidance System

Perceptual Grounding To connect what the HoloLens sees and hears to task

knowledge, the AR assistant needs to be equipped with models to recognize

physical objects, actions, sounds, and contexts needed to complete a specific

task. TIM uses multimodal machine-sensing models to detect human-object

interactions in the environment. The output is real-time estimations with

model confidence levels of three environmental elements: object categories,

object localizations, and human action detections. We modulate object

outputs via text instructions, allowing us to selectively detect objects and

actions that are part of a particular procedure (e.g., recipe) and disregard

everything else. To achieve this, our models generate and compare text and

sensor representations. The models have the following main features:

Object detection and localization. We use “Detector with image classes” (Detic)

[274] to generate these estimations, since it is a model that produces RGB

frames and free-form text descriptions of objects of interest (e.g., “the blue

cup”) with bounding-box and object mask estimations for the regions in the

frame where the objects are detected. Its direct comparison of RGB and text

modalities is enabled via Contrastive Language-Image Pretraining (CLIP)

[193].

Action recognition. TIM supports three action-recognition models: Omnivore

[87], SlowFast, [69, 113, 249] and EgoVLP [189]. These models process video

streams to output verb-noun tuples that describe actions. Each model has

its benefits and limitations. While Omnivore is considered state-of-the-art

for action recognition, it is a classification model with a fixed vocabulary.

EgoVLP has a joint RGB-text representation that, similar to Detic and CLIP,

allows for the detection of free-form text descriptions of actions. SlowFast

integrates audio and RGB information, potentially allowing for the detection

of actions outside the RGB field of view. Therefore, the optimal model to

use is dependent on the deployment conditions.

Reasoning and Knowledge Transfer Reasoning and knowledge transfer

first preprocess the input task description and create the corresponding objects

17

and actions needed for each step [125, 266]. In each frame, it takes the object

and action outputs from the perceptual component, along with the processed

input task description, and makes two decisions. First, the reasoning module

performs error detection, in which it attempts to determine if the performer

has made an error in the current frame based on how much the objects and

actions detected through perception align with the preprogrammed knowledge

of the step. Second, it performs step prediction, in which the system predicts

whether the current step is complete and should move to the next step. This

decision is governed by a hidden Markov model (HMM) [15]-like approach

that primarily uses the probability of each action to appear in a given step of

the task. These probabilities are calculated beforehand on a training dataset.

Figure 2.2: The online component of ARGUSfor real-time debugging. (A) Streaming
Video Player: Users can inspect the output of the headset’s camera, overlayed
with bounding boxes representing the detected objects. Users have the option to
record any session. (B) Confidence Controller: a slider that allows the user to
control the threshold model confidence. (C) Perception model outputs, including
target and detected objects. “Target Objects” represent the objects needed in
the current step (from recipe instructions) while “Detected Objects” shows all
the objects identified by the perception models and their corresponding number
of instances (e.g., multiple knives may be detected in a frame). (D) Reasoning
model outputs, including the step and error predictions, step description, and the
performer’s status. (E) Raw data views show the raw data collected by the system.
(F) Widgets showing the predicted actions with their probabilities. In this example,
the model predicts that the current action is “Take Toothpick” with 48% likelihood,
followed by “Apply Spreads” with 24% and ”Wrap Wrap” with 18%.

18

2.4 Tasks & Requirements

ARGUSwas developed to support the development and operation of the AR

personal assistant outlined in Sec. 2.3. On top of the obvious need to visualize

the multitude of raw data streams, ARGUSwas designed to enable the real-

time and post-hoc visualization of ML models and performer interactions in

the context of the physical environment, all in a time-synchronized fashion.

To summarize, such a system should have the following design requirements

(R1-R5). These requirements were created by working side-by-side with the

developers of the AR assistant components described in Section 2.3 (i.e.,

perception, reasoning), and with end users through interviews and feedback

sessions during and after use of TIM and ARGUS. For context, the AR-

enabled tasks that ARGUSaims to support include, but are not limited to:

making a meal from a recipe, applying a tourniquet, repairing an engine, and

completing an aircraft preflight check.

[R1] Live monitoring: The ability to visualize the output of the various

components of the system during task execution. This is crucial to

understand possible system failures before completing recording sessions

and gaining real-time insights about model outputs.

[R2] Seamless provenance acquisition: The future availability of the

multimodal dataset produced during a recording session. This supports

developers in improving algorithms and debugging system outputs and re-

searchers in retrospectively investigating user-generated data. Therefore,

automatically storing the acquired data (and metadata) into databases

is important for such a system.

[R3] Retrospective analysis of model performance: The ability to

visualize and inspect large chunks of the acquired data and model

outputs to uncover relevant spatial and temporal trends.

[R4] Physical environment representation: A representation of the

physical environment where the performance occurs. This representation

should support data exploration tasks by explaining most of the observed

user-generated data (e.g. performer movement patterns limited by

19

physical constraints).

[R5] Aggregated and detailed visualization performer behavior: A

summary of the global interaction patterns of the user with the environ-

ment. This is key in analyzing general performer behavior. Aggregating

large chunks of data temporally and spatially can hide important details,

thus, the system should provide both global and local perspectives of

performer behavior data.

2.5 ARGUS: Augmented Reality Guidance

and User-modeling System

As described in Sec. 2.4, we developed ARGUSconcomitantly with TIM

to meet the development needs of building an effective AR task assistant.

In total, ARGUSenables the interactive exploration and debugging of all

components of the data ecosystem needed to support intelligent task guidance.

This ecosystem contains the data captured by the HoloLens’s sensors and

the outputs of the perception and reasoning models outlined in Sec. 2.3.

ARGUShas two operation modes: “Online” (during task performance), and

“Offline” (after performance). Users can use these two modes separately if

needed, for instance, to perform real-time debugging through the online mode.

In another usage scenario, users may start by using the online mode to record

a session and then explore and analyze the data in detail using the offline

mode. We describe additional usage scenarios in Section 2.6 through two case

studies.

2.5.1 ARGUSOnline: Real-time Debugger

Real-Time Debugging The ARGUSarchitecture allows streaming data

collection and processing in real-time, which makes instantaneous debugging

and data validation possible [R1]. As depicted in Fig. 2.2, the online mode

provides information on the outputs of the reasoning and perception models

using custom visual widgets. The caption of Fig. 2.2 describes each component.

20

Since what the HoloLens main camera sees (and thus what is analyzed by the

models) is not the same as what the performer sees (due to different fields of

view), having a real-time viewer such as (A) can help ensure the HoloLens

is capturing what the performer and user wish to capture. Additionally,

components (C) & (F) provide information that can help validate the objects

and actions identified by the models in real-time (as opposed to having to

do so post hoc). We note that these features are primarily intended to aid

a user in analyzing performer behavior and model performance in real-time,

rather than to assist the performer as they complete a task.

Data collection Users of ARGUScan decide when to save the recording for

future analysis. By clicking the Start Recording button, all data captured and

generated by the sensors and models from that point on are redirected from

the online streaming database to the historical database until the user clicks

Stop Recording. The data migration process is transparent to the user [R2].

2.5.2 ARGUSOffline: Visualizing Historical Data

The offline mode’s main goal is to enable analysis of historical data generated

by the models and performer actions in the physical environment [R3]. To

allow for easy exploration of this large and heterogeneous data, ARGUSpro-

vides a visual user interface that enables querying, filtering, and exploration

of the data. Due to the spatiotemporal characteristics of the data, we provide

both spatial and temporal visualization widgets to allow users to analyze the

data from different perspectives. Fig. 2.3 shows the components composing

ARGUSin offline mode. In the following, we describe the main components

of the offline mode: the Data Manager, the Temporal View, and the Spatial

View. We highlight the interaction flow a user is likely to follow, and for each

component, we describe the visualizations, the interactions provided, and

their goals.

21

Figure 2.3: Overview of the user interface and components of ARGUSOffline.
(A) The Data Manager shows the applied filters (A1) and the list of retrieved
sessions (A2). (B) The Spatial View shows the world point cloud representing the
physical environment, 3D points for eye and hand positions, and gaze projections
and heatmaps. (B1) Render Controls allow the user to select the elements of the
Spatial View they desire to see (C) Temporal View: (C1) The Video Player is
the main camera video output of the current timestamp selected by the user. (C2)
The Temporal Controller controls the video player and updates the model output
viewer as well. (C3) The Model Output Viewer displays the output of the machine
learning models (reasoning and perception) used during execution time.

22

2.5.2.1 Data Manager

Users start the exploration by using the Data Manager shown in Fig. 2.3(A)

to filter the set of sessions available in the data store. Our data is organized

as sessions (each session contains all recordings, data streams, and model

outputs for a performer executing a task). The Data Manager enables data

retrieval by allowing users to specify filters and select specific sessions from a

list of results.

Data Querying Users can query the data by specifying various filters, as

shown in Fig. 2.3(A1). Filters are presented in the form of histograms the

users can brush to select the desired range.

Query Results The results component displays the retrieved sessions in

a list format. Fig. 2.3(A2) shows the results for a given query specified by

the user. Each element represents a session showing key features, including

name, duration, date, recorded streams, and available model outputs. Once

an element of the list is selected, the corresponding data will be loaded into

the views of the system.

2.5.2.2 Spatial View

As described in Section 2.3.4, the spatial nature of some of the streamed data

demands a 3D visualization to allow users to meaningfully explore the data.

For this, ARGUSprovides a Spatial View shown in Fig. 2.3(B) that allows

users to analyze how performers interact with the physical environment in

conjunction with the spatial distribution of model outputs. The Spatial View

can help resolve where performers were located, where they were looking

during specific task steps, where objects were located in the scene, etc.

Below, we describe the elements of the Spatial View and its interaction

mechanisms tailored to support the analysis of the spatial data following

well-established visualization guidelines [209] to provide both overview and

detailed information.

The basis of the Spatial View is a 3D point cloud (or world point cloud)

as shown in Fig. 2.3(B) representing the physical environment where the

23

performer is operating [R4]. This representation helps us interpret different

aspects of the space, such as physical constraints imposed by the environmental

layout. However, the point clouds generated based on the data acquired by

the headset cameras can easily contain millions of points, making it unfeasible

to transfer them over the web and render them within most web browsers.

To give an overview of the whole task, all point clouds of one recording are

merged to obtain a temporal aggregation. Hololens 2 generates approximately

one point cloud per half second, which creates redundancy. This redundancy

can be removed by creating a union of all point clouds and then downsampling

it using voxelization. However, selecting imprecise parameters can lead to a

subrepresentation of the physical space, losing important information and,

consequently, hindering analysis. Thus, we parameterize the voxel-based

downsampling to create voxels at 1cm resolution, providing enough detail for

the purposes of our tool. In our experiments, the downsampled point clouds

had less than 100,000 points, even in the worst case, leading to reasonable

transfer and rendering times. With the world point cloud representing the

physical environment, we are able to visualize performer activity in context.

As illustrated in Fig. 2.3, eye position, hand position, and other data streams

can be represented as 3D points in the same scene. The blue dots show the eye

position of the performer during a session, while the green dots show the hand

position. For each collection of 3D points representing a data stream, users

can retrieve more detailed information by interacting with the points. For

example, if the user hovers their mouse over the points representing the eye

position, a line representing the gaze direction will automatically be rendered

in the scene, representing what point in space the performer was looking

at from their current position at a specific timestamp. This is possible by

calculating the intersection of the gaze direction vector with the world point

cloud. This gaze information can also be represented as a 3D point cloud to

provide a visual summary of the areas the performer was focused on [R5].

This interaction also updates the corresponding video frame in Fig. 2.3(C1)

and highlights the models’ outputs in Fig. 2.3(C3).

Although the point cloud provides a summarization of the spatial distribution

of these data streams, this representation fails to convey aggregated statistics

24

of the data, such as the density of points in a given region, which is proportional

to the amount of time the performer spent in a given location of the scene. For

this purpose, a 3D heatmap is a more suitable visualization. The Spatial View

can create 3D heatmaps of each data stream. The heatmap in Fig. 2.3(B)

shows the distribution of the gaze data during the session. We leverage the

voxel information created during the downsampling to calculate the density

of points within voxels. Using an appropriate color scale, we render cells

with non-negligible densities to create the 3D heatmap. Every data stream

containing spatial information can be incorporated into the Spatial View as

3D point clouds or heatmaps in ARGUS. Information regarding perception

and reasoning models is also available in this view. By combining bounding

boxes generated by perception models and depth information captured by

the headset, we reconstruct the center point of each detected object, helping

users understand the spatial distribution of objects. Also, occupancy maps

representing the density of objects in different regions can be derived as

presented in Fig. 2.8. Moreover, the Spatial View provides a summarization

of gaze information by rendering sets of vectors representing gaze directions

over time. Users can control the style (e.g., size and opacity of points) and

visibility of all data streams, choosing what data should be visible for analysis.

Lastly, point clouds can also be filtered based on timestamp ranges, allowing

for focused analysis of specific task steps (“Visibility” in Fig. 2.3(B1)).

2.5.2.3 Temporal View

ML models are a core component of an AI assistant system. While the

field of ML has seen many recent advancements to support assistive AR

applications [17, 72, 188], the need for tools to improve them remains. Model

debuggers are powerful tools used to analyze, understand, and improve

these models by identifying issues and probing ML response functions and

decision boundaries. This helps developers make models more accurate, fair,

and secure, promoting trust and enabling understanding, which is highly

desirable in intelligent AR assistants. ARGUSprovides a model debugger

based on temporal visualizations to debug the ML models used in AI assistant

25

systems [R5]. We describe the different temporal components in detail in the

following subsections.

Video Player The object detection model not only recognizes all objects in

an image but also their positions. To inspect these outputs, ARGUScontains

a video player component that identifies the spatial location of detected

objects over time, as shown in Fig. 2.3C. This component allows the user to

toggle between two views: 1) the raw main camera video stream and 2) a

panoramic mosaic view which consists of a sequence of panoramic mosaics

generated from this main camera stream. We highlight all detected objects

with bounding boxes, which are provided by the object detection model.

The first view of the video player, which displays the raw main camera

video stream collected by HoloLens, enables a highly granular level of model

debugging. This allows the user to note specific frames where object detection

failed or yielded unexpected results. However, the main camera of the

HoloLens has a limited field of view. Often objects that the performer sees at

a given timestep cannot be seen in the frame of the raw main camera video

at that timestep. Therefore, we aggregate frames into a series of panoramic

mosaics in the second view of the video player component, capturing a

broader scope of what the performer sees at each timestep. We generate these

panoramic mosaics by sampling frames from a temporal window centered

around the current timestep. We then compute SIFT features for each

frame [134], match them using a Fast Library for Approximate Nearest

Neighbors (FLANN)-based matcher [158], and filter for valid matches by

Lowe’s ratio test [134] before warping and compositing the frames into a

panoramic mosaic. We observe that these panoramic mosaics expand the

view of the scene significantly, revealing objects within the field of view of the

performer at a given timestep that were not captured by the main camera at

that same timestep (see Fig. 2.4).

We note that in much of the existing literature on panoramic mosaics, the

goal is to capture a seamless wider view of an (often static) scene at a single

point in time. In these cases, previous works have endeavored to work around

both in-scene and camera motion by excluding moving objects within the

scene [103] or only addressing simple, slow camera panning motions [217].

26

Figure 2.4: A visual representation of frame selection for the panoramic mosaic
view of the video player (top) and comparison of these panoramic mosaics with
corresponding frames from the same timestep of the raw main camera video for
reference (bottom). Each panoramic mosaic is composed of several frames sampled
from a window around the current timestep of the raw main camera video. In both
examples, we highlight objects that are visible in the panoramic mosaic but not in
the raw main camera video (toothpick, floss, and jar of jelly, respectively) in red.

When capturing video from an AR headset of a performer completing a task,

however, unpredictable and rapid motion is not only unavoidable, but a

valuable indicator of performer behavior. Therefore, our goal extends beyond

the typical spatial expansion provided by a panoramic mosaic; we also aim to

show how objects move around the complete scene over time, and how the

object detection model performs over the given time range in order to facilitate

both temporal and spatial analysis of a scene. We note that in our example

task shown in Fig. 2.4 (cooking), the performer will often remain in the same

27

t1 t2 t3 t4 t5 t6 t7

Toothpicks

Paper towel

Peanut butter

Tortilla

Cutting board

Global SummariesModel Outputs Confidence Matrix

Figure 2.5: Illustration of the Model Output Viewer applied to the analysis of a
cooking recipe session. To the left, the model outputs are listed vertically. The bars
depict the confidence score of the detected outputs’ labels at the specific time picked
on the timeline. In the middle, the temporal distribution of ML model output
confidences across the whole session is displayed. To the right, two summaries are
shown: the average confidence and detection coverage for each output across the
entire session. Color darkness is proportional to confidence value: .

position for many consecutive timesteps, consequently, the panoramic mosaic

may not significantly expand the field of view at every timestep. Nevertheless,

for tasks where the performer traverses a larger area or turns their head in a

wider range (and at timesteps where that behavior occurs in this task), the

panoramic mosaic will significantly increase the portion of the scene shown

at a given timestep.

Model Output Viewer During the debugging process of AR assistant

models, the need for model output summaries is key to starting an analysis or

evaluation. However, the temporal aspect inherent to these kinds of models

makes this task more challenging since they often need to manage the sequence

of actions or events chronologically. The Model Output Viewer provides a

summarization of the temporal distribution of the ML models outputs across

the whole session (see Fig. 2.3(C3)). This visualization is especially useful to

find salient patterns, such as quick transitions between steps in step detection

models, or to evaluate prediction consistency across time, allowing users to

28

quickly have a global picture of the model behavior, something that could

not be achieved by analyzing specific time frames.

As mentioned in Section [R5], for AR assistive systems, the most relevant

model outputs are the objects, actions, and steps. Once these model outputs

are available, they are used to create the matrix visual representations for

temporal model analysis. Fig. 2.5 illustrates the Model Output Viewer, where

three main components are highlighted: the model outputs, the confidence

matrix, and the global summaries. The Model output view presents all the

model outputs grouped by category. For example, as shown in Fig. 2.3(C3),

there are three categories listed vertically: Objects, Actions, and Steps. The

object, action, and step sections have multiple rows, each of which lists the

model outputs for each category, e.g., the detected objects identified by the

perception model. Confidence matrix : The x-axis (or columns) indicates the

time, from 0 to the total duration of the session (video). Each cell of the

matrix is colored according to the confidence score of the detected item at time

t (0% 100%). If no action, object, or step is present, the matrix cell is

left blank (white). The total number of cells is proportional to the size of the

session (seconds), and all cells are equal in height. Users can hover over the

cells to see additional details. Global summaries: The Model Output Viewer

also provides summaries of the average confidence and detection coverage for

each row on the right side of the view so users can quickly evaluate them.

The average confidence only takes the confidence value of detected objects,

actions, or steps into account. Detection coverage refers to the total number

of detections available for each model output (objects, actions, and steps).

Even though the Temporal View representation can provide a visual summary

of the temporal distribution of the model output, details-on-demand func-

tionalities remain crucial for debugging. The Model Output Viewer allows

users to do a focused analysis by letting them explore the model output

results at specific points in time for further analysis. The user can use the

temporal controller or the 3D viewer to make this selection. After this, all the

objects, actions, and steps detected for that specific point in time that meet

the confidence threshold are highlighted, as shown in Fig. 2.3(C3). Users

can adjust the confidence threshold value using the slider to investigate the

29

(B)

Eye Position

Gaze Projection
(A)

3rd Person

AR GUI

Perception

Eye Position

Gaze Projection

Nut Butter

Jam

Paper Towel

Tortilla

Knife

Board

Plate

Toothpicks

(B)

(C)

(C) (D)

(A)

(E)

Figure 2.6: ARGUSis a visual analytics tool for real-time and historical evaluation
of sensor and model outputs of AR task assistants. Shown here are (A) 3rd person
perspective of a human (performer) performing a task with AR headset guidance,
(B) the AR GUI from the perspective of the performer, (C) a snapshot of a visual
perception model analyzing data from the headset camera. For each time step,
detailed information highlights the performer’s gaze direction and the corresponding
frame recorded by the headset. (D) heatmaps of the performer’s gaze projection
onto the world point cloud allow for inspection and understanding of their attention
over time. The cluster on the left shows the performer finalizing a recipe. (E) object
detection information from ARGUSTemporal View illustrating that Plate was only
detected towards the end of the task while Tortilla was detected throughout the
whole session.

30

object detection results. We also display object and action labels with bars

depicting the confidence value for each label following guidelines of Felix et

al. [70] (see Fig. 2.6).

2.5.3 Implementation and Performance Details

The implementation of ARGUSfollows a set of constraints to allow for in-

teractive query and rendering times. The backend supporting the rest API

was written using Python and FastAPI [196]. The ML models were trained

and/or fine-tuned using PyTorch and serve predictions in real-time utilizing

the same streaming protocol used by ARGUS. The interface was structured

as a dashboard-like single-page application built with React [216] and Type-

Script [145]. The visualization of 3D components uses Three.js [229] and

D3 [25]. All the data consumed by ARGUSonline mode comes from querying

our Redis database, while the data available in the offline mode comes from

the data store in JSON format. All the code is open source and hosted on

GitHub [10].

We have measured the latency of Microsoft’s Windows Device Portal (part of

their mixed reality capture [146]) at ∼1.3 s for streaming the main Hololens 2

camera, while ARGUS has a lower latency of ∼300 ms. Currently, during

online use, we save the various data streams at they get off the device. For the

session in Section 2.6.2, which takes 1:42 min, the streamed point cloud has

more than 10 M points, and it is highly redundant, since the same geometry

is sampled over and over again. After the performer finishes a recording,

we merge and downsample this data into a consolidated point cloud (see

Sec. 2.5.2.2), in this case with 70,000 points. We also create a voxel grid to

generate the heat maps, which take 2.3 s. After loading, all data is rendered

in real-time.

31

2.6 Case Studies & Discussion

In this section, we present two case studies describing how model developers

have made use of some of the available features. The section ends with

feedback from domain experts who have used ARGUSwhile developing AR

task guidance software and a discussion of limitations.

2.6.1 Improving Step Transitions in Reasoning Module

To showcase how the Model Output Viewer supports the exploration and

analysis of AI assistant model outputs (objects, actions, and steps), we

describe how an ML engineer used this tool, the insights they gained, and how

the reasoning module of the AI assistant, TIM, was improved through these

insights. The ML engineer began by exploring the outputs of the reasoning

and perception modules of a recorded session where a performer used TIM to

follow a recipe [157].

Analyzing step transitions The visualization of the entire cooking session

can help users find salient patterns, e.g., how the transitions between steps

were carried out. The first repeated pattern identified by the ML engineer

while using ARGUS’s Model Output Viewer was the slow transition between

steps (see Fig. 2.7). Investigating the “Steps” reveals that steps 1, 3, and 4

were performed over unexpectedly longer periods of time than steps 0 and 2.

Also, the user noticed that the model only identified 5 out of 12 steps. Clearly,

these two observations indicate that the reasoning module is making errors

in identifying recipe steps. This visual summary of the Model Output Viewer

allows developers to quickly possess a global picture of model performance

and assess errors. This could not be achieved as easily without ARGUS.

Exploring detected objects Under “Objects” in the Model Output Viewer

(Fig. 2.7), the ML engineer noticed that the Detic model identified most of the

objects for the entirety of a recipe video. This is apparent from the confidence

matrix, where most rows are colored (meaning an object was detected). The

user also analyzed the confidence values of each detected object. For instance,

at the 0:14 mark of the video, objects like board, nut butter, and knife had

32

Figure 2.7: Analysis of actions, objects, and steps in the Model Output Viewer.
Color darkness is proportional to confidence value (0% 100%). The confidence
matrix and the average confidence views show that the confidence scores for objects
are higher than actions. The arrows show the confidence scores for actions and
objects at minute 0:14 of the video. The detection coverage view shows that some
actions (e.g., take jar) are rarely identified during the video.

33

Figure 2.8: Example of how the Spatial View can help users identify missing classes
in the model’s vocabulary or find clusters of false positives. (A) Points representing
the 3D positions the object detection model identified as a ”tortilla” during the
session. Points on the left represent a bag of tortillas, while points on the right
represent a single tortilla. (B) Points representing the 3D positions the object
detection model identified as a ”cutting board” during the session. The cluster
on the left contains false positives, where the perception model generates wrong
bounding boxes.

high confidence values, indicated by the yellow background (see zoomed-in

views in Fig. 2.7). They could also see this trend in the “Average Confidence”

column, which provides an average of confidence values throughout the video.

Identifying missing actions The ML engineer also analyzed the “Actions”

section of the Model Output Viewer. They noticed that some actions were

rarely detected by the EgoVLP model. As we can see in the “Detection

Coverage” column, actions like put knife, move wrap, and take cloth were

detected an unusually few number of times. This indicated that it was difficult

for EgoVLP to detect those actions. They also noticed that the confidence

values for the actions were much lower than the ones for objects. As is visible

in Fig. 2.7, the predominant color during the whole session was light purple,

which represents low confidence in detecting the actions. Also, at time 0:14

of the video, the confidence values for “scoop spreads” and “apply spreads”

were low. In the “Average Confidence” column, we can see that actions such

as “wash knife” and “insert toothpick” had approximately 30% confidence.

This information led the ML engineer to hypothesize that a decrease in the

confidence threshold might be necessary to recognize steps effectively. The

visualizations provided by ARGUSalso help to investigate whether lowering

the threshold would lead to false positives in the step recognition.

Using insights to improve the reasoning module After the analysis,

34

Table 2.2: Accuracy of the old and new version of the reasoning module for
recognizing the steps of the recipe.

Version S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Total

Old 1.0 0.9 0.3 0.9 0 0 0 0 0 0 0 0 0.35

New 1.0 1.0 0.5 1.0 0 0 0.4 0.9 0 1.0 1.0 0 0.73

the ML engineer modified the reasoning module to handle actions with low

confidence. The reasoning module defaults to selecting actions with greater

than 70% confidence. The ML engineer used the confidence slider of Model

Output Viewer to tune this value. The most promising value they found was

30%. They reran the new version of the reasoning module for the same video.

As shown in Table 2.2, the step estimation accuracy increased for every step

and from 35% to 73% overall. Also, this new version was able to identify 8

out of 12 steps, while the previous version only identified 4 out of 12 steps.

Interpreting the new results The Model Output Viewer was also useful for

the ML engineer to understand why the reasoning module failed to recognize

some steps. As we can see in Table 2.2, steps 4, 5, and 8 were not recognized.

For instance, step 5 (“Roll the tortilla from one end to the other into a log

shape”) is directly related to the action “move wrap”, and this action was not

identified at all during the entire session (see “Detection Coverage” column).

Since this action is necessary for step 5, it was not identified by the reasoning

module.

2.6.2 Using Spatial Features to Explain Failures

Although the Temporal View can help users uncover undesired patterns

in model performance, it does not paint the full picture of the situation,

as model failures might be related to spatial characteristics or performer

behavior. In this case study, we show how the Spatial View can provide

deeper insights into both reasoning and perception models by assisting users

in finding regions where the perception models underperform and to correlate

performer behavior with reasoning outputs. A very common way to assess

the quality of perception models is by checking the spatial distribution of

static objects. In other words, the physical objects captured by the headset

35

cameras can generally be classified as either static objects (objects that will

likely not move) or dynamic objects. This classification can help users quickly

identify regions where the perception model fails by detecting objects not

expected to move throughout a recording session. This case study highlights

how this sanity check becomes trivial in ARGUS.

We start the exploration by first using the Data Manager to load the parts of

a recording where the perception model underperformed. Once a recording

from this period is loaded, we can use the Spatial View to find regions of the

space where the performer was interacting. Fig. 2.3 shows points of performer

positions (blue) and gaze projection (orange). During an initial inspection,

the user can quickly recognize three darker regions projected in the world’s

point cloud. The rightmost region represents the time during which the

performer was interacting with ARGUSin online mode to start the recording,

while the other two regions are on the desk. The user then hovers the mouse

over the points on the 3D point cloud representing the gaze projection on

the world point cloud to look at the corresponding video frames in Temporal

View. This interaction reveals that the left region contains the ingredients for

the recipe, while the actions (e.g., “spreading jelly on the tortilla”) happen

on the right side. By highlighting the heatmaps only, it becomes clear that

the performer spent most of their time looking at the right side of the table

(darker region), meaning the performer spent more time executing actions

than selecting ingredients. With this understanding of the spatial distribution

of the performer’s attention, the user can infer that the model outputs high

confidence values for tortilla and cutting board throughout the entire session

as shown in Fig. 2.7, which makes the user question the validity of the output.

Then, the user displays the 3D point cloud denoting the 3D positions of

tortillas shown in Fig. 2.8(A). Two clusters show up, allowing the user to

look at the corresponding frames, realizing that the left cluster represents

a bag of tortillas while the other is the tortilla used for the recipe. This

process highlights the need for a more comprehensive class vocabulary able

to represent both tortillas and bags of tortillas. Following that, the same

process is conducted for the cutting board class, and a similar pattern with

two clusters arises (see Fig. 2.8(B)). Since the cutting board was a static

36

object in the recording, the user can quickly realize that one of the clusters

may be representing a model failure. The corresponding video frames selected

interactively confirm that the left cluster contains only false negatives. Lastly,

inspecting the bounding boxes rendered on the video frames (see Fig. 2.8)

gives the user more detailed information about the error. In this case, the

user sees that the model is generating bounding boxes covering almost the

entire field of view of the performer.

2.6.3 Expert Feedback

The Model Output Viewer provides a visualization of object and action

detections with model confidence levels. Even if a model performs very well

on an offline evaluation dataset, when deployed in real-time, it will inevitably

be presented with previously unseen conditions such as room lighting, skin

pigmentation, or object angle. This is known as the “domain-shift” problem

[273], where a model fails to perform when presented with data not well

represented in its offline evaluation dataset. ARGUSstreamlines real-time

deployment, and its Model Output Viewer enables the evaluation of model

confidence in a virtually unconstrained domain. This sheds light on which

conditions the models perform best, and informs how model robustness

could be enhanced by expanding data with new collection or augmentation

strategies.

ARGUSis also useful for scenarios where multiple information sources must

be analyzed at the same time. For TIM’s reasoning module, which consumes

multiple inputs in parallel (e.g., the detected objects/actions and its confidence

scores), ARGUS’s visualizations allow the user to understand the reasons the

system made the predictions and under what circumstances it succeeded/failed.

As shown in Sec. 2.6.1, this tool helped the ML engineer to improve the system.

As ML models develop new capabilities and produce richer representations,

it becomes increasingly important to develop scalable visualizations of those

outputs. Conventionally, ML engineers either log outputs to the terminal or

use drawing libraries to bake the predictions on top of the video. However,

there is limited real estate when drawing on a video, and often the predictions

37

and their associated text make it difficult to view the underlying image frames.

In contrast, ARGUSprovides a high level of interactivity, which allows it to

selectively visualize relevant information while allowing the user to change

the view and granularity of this information to suit their needs. Additionally,

being able to contextualize and explore ML model outputs in 3D can lead

to a better understanding of how model outputs can change based on the

perspective, and spatially ground the predictions for an entire recording in a

single view. Overall, tools like ARGUSdrastically lighten the visualization

load placed on ML engineers and provide a convenient tool for understanding

their models.

Limitations While useful for exploration of spatiotemporal data captured by

an intelligent assistant, ARGUSneeds more robust data processing algorithms.

For instance, in sessions where the performer’s hands are recurrently in the

field of view of the headset camera, the point cloud generation process captures

and transforms it into points of the world space, resulting in potential noise

that does not represent the physical environment. To overcome this problem,

we review recordings with noisy point clouds and define bounding boxes

representing regions where these noisy points must be excluded from the final

rendering. We plan to explore methods [65, 147] to automatically remove

point cloud noise during run-time acquisition.

2.7 Conclusion & Future Work

We presented ARGUS, an interactive visual analytics system that empowers

developers of intelligent assistive AR systems to seamlessly analyze complex

datasets created by integrating multiple data streams at different scales,

dimensions, and formats acquired during performance time. Furthermore,

through interactive and well-integrated spatial and temporal visualization

widgets, it allows for retrospective analysis and debugging of historical data

generated by ML models for AI assistants.

We envision ARGUSto unlock several avenues for future research connecting

human-computer interaction, visualization, and machine learning commu-

38

nities revolving around the goal of developing better and more reliable AR

intelligent systems. In the future, we intend to conduct a deeper evaluation of

our system’s performance metrics (e.g. rendering times, stream latency). We

also plan to explore how to extend the system to support the comparison of

sessions of multiple performers. This includes the data and model outputs and

will require registration of the point clouds. User-generated data acquisition

(annotation) and integrated AI techniques during exploration time (segmen-

tation and model training based on the annotated data) are other fronts we

would like to cover. Since our Temporal and Spatial Views allow users to

explore data and output models across the entire session, adding annotation

capabilities is a natural next step. Furthermore, we want to investigate

privacy-preserving methods for storing and streaming the collected data,

similar to ones that have been proposed, e.g., for eye-tracking data [27, 53],

to prevent performer identification.

39

Chapter 3

StreetAware: A

High-Resolution Synchronized

Multimodal Urban Scene

Dataset

3.1 Introduction

Driven by continuous improvements in computational resources, bandwidth

optimization, and latency, activity-rich traffic intersections have been impli-

cated as excellent locations for smart city intelligence nodes [118]. Audio

and video sensors located at intersections are, thus, capable of generating

large amounts of data. Concomitantly, deep learning and edge computing

of these data allow for real-time geospatial mapping and analysis of urban

intersection environments, including moving entities such as pedestrians and

vehicles. Intersections are some of the most critical areas for both drivers

and pedestrians. They are where vehicles and pedestrian paths cross most

frequently. Globally, pedestrians represent 23% of the 1.35 million worldwide

road traffic deaths every year, with most events occurring at pedestrian cross-

ings [211, 247]. Thus, predicting pedestrian trajectories at intersections and

communicating this information to drivers or assisted/autonomous vehicles

40

could help mitigate such accidents. Understanding an intersection scene

has significant implications for self-driving vehicles in particular. Figure

3.1 outlines the concept of enhancing the safety of traffic participants by

providing real-time insights into out-of-sight events at intersections using a

combination of multimodal sensing and edge and in-vehicle computing. In

this example, pedestrians and semi-autonomous cars are detected by sight

(cameras) and sound (microphones) at intersections, and the information is

relayed to each car’s self-driving system. In this process, edge computing and

cloud communication help inform the intelligent transportation network with

real-time information.

Figure 3.1: Illustration of the basic concept of combining multimodal sensors

at critical nodes (e.g., intersections) with on-device and in-vehicle computing

capabilities to provide greater awareness to urban traffic participants.

Within the navigation system of an autonomous vehicle, its control system

must have detailed, accurate, and reliable information as it approaches such a

scene to determine, for instance, the number of road entries into an upcoming

crossing or pedestrian and vehicle trajectories to avoid collisions [12]. For

such purposes, urban analytical data should have high precision, granularity,

41

and variation (such as multiple perspectives of the same area) to be effectively

helpful.

In this work, we present 73

4
h of synchronized data collected at urban inter-

sections by specialized Reconfigurable Environmental Intelligence Platform

(REIP) sensors developed by the Visualization and Data Analytics (VIDA)

Research Center at NYU [186]. REIP sensors are capable of dual 5MP video

recording at 15fps, as well as 12-channel audio at 48kHz, for recording pedes-

trian and vehicle traffic at various locations. We selected three intersections

in Brooklyn, New York, with diverse demographic, urban fabric, and built

environment profiles and equipped each with four REIP sensors. The sensors

were placed at each corner of the intersection and recorded the dynamics

of pedestrian and vehicle interaction for several ≈40 min sessions, resulting

in a total of ≈2 TB of raw audiovisual data. The data were synchronized

across all sensors with high accuracy for both modalities (one video frame

and one audio sample, respectively) using a custom time synchronization

solution detailed later. High-synchronization is important so that events

that happen across cameras and between video and audio can be viewed

and analyzed together with reduced effort, and with confidence, those events

actually occurred at the time inscribed in the data.

The presented dataset, which we call StreetAware, is unique to other street-

level datasets such as Google Street View because of the following combination

of characteristics:

• Multimodal: video, audio, LiDAR;

• Multi-angular: four perspectives;

• High-resolution video: 2592 × 1944 pixels;

• Synchronization across videos and audio streams;

• Fully anonymized: human faces blurred.

To demonstrate these key features of the data, we present four uses for

the data that are not possible on many existing datasets — (1) to track

objects using the multiple perspectives of multiple cameras from both audio

42

(sound-based localization) and visual modes, (2) to associate audio events

with their respective visual representations using audio and video, (3) to track

the amount of each type of object in a scene over time, i.e., occupancy, and

(4) to measure the speed of a pedestrian while crossing a street using multiple

synchronized views and the high-resolution capability of the cameras.

Our contributions include:

4.1. The StreetAware dataset, which contains multiple data modalities and

multiple synchronized high-resolution video viewpoints in a single dataset;

4.2. A new method to synchronize high-sample-rate audio streams;

4.3. A demonstration of use cases that would not be possible without the

combination of features contained in the dataset;

4.4. A description of real-world implementation and limitations of REIP

sensors.

The data presented here will enable other researchers to develop unique

applications of machine learning to urban street-level data, such as modeling

pedestrian-vehicle interactions and recognizing pedestrian attributes. Such

analysis can subsequently help inform policy and design decisions made in the

context of urban sensing and smart cities, including accessibility-aware design

and initiatives like Vision Zero. Among the other possibilities we discuss later,

further analysis of our data can also shed light on the optimal configuration

needed to record and analyze street-level urban data.

This chapter is structured as follows. In Section 3.2, we review some of the

literature on street-view datasets and how these types of data have been

analyzed with ML-based techniques. In Section 3.3, we discuss our custom

sensors and detail data acquisition and processing, with emphasis on the

precise synchronization of multiple data modalities (i.e., audio and video).

We lay out the motivation for and demonstrate the potential applications of

the data in Section 3.4 and provide a discussion and concluding remarks in

Sections 3.5.

43

3.2 Related Work

In this section, we will review some of the currently available audiovisual

urban street-level datasets, then succinctly review applications of such data

related to deep learning-based object detection, pedestrian tracking, and

safety.

3.2.1 Datasets

A handful of related datasets exist. The first is the popular Google Street View

[89]. Released in 2007, at a time when a limited number of cities had their

own street-level photography programs, Google Street View was revolutionary

in that it combined street-level photography with navigation technology.

Publicly available but not entirely free, Google Maps Street View includes an

API and extensive street-level image coverage throughout much of the World’s

roadways. Unlike StreetAware, Google Street View is a collection of disparate

images instead of stationary video recordings of specific places. Moreover,

Google Street View often has multiple viewpoints that are in close proximity

to one another, but they do not overlap in time. Therefore, synchronization

across multiple views is not possible. Another dataset is Mapillary [242].

Mapillary street-level sequences contain more than 1.6 million vehicle-mounted

camera images from 30 major cities across six continents, distinct cameras,

and different viewpoints and capture times, spanning all seasons over a nine-

year period. All images are geolocated with GPS and compass, and feature

high-level attributes such as road type. Again, these data are not video or

synchronized and do not include audio. The next dataset is Urban Mosaic

[153], which is a tool for exploring the urban environment through a spatially

and temporally dense data set of 7.7 million street-level images of New York

City captured over the period of one year. Similarly, these data are image-

only and unsynchronized across views. Another street-level urban data set is

SONYC [36]. SONYC consists of 150 million audio recording samples from

the “Sounds of New York City” (SONYC) acoustic sensor network and is

aimed at the development and evaluation of machine listening systems for

44

spatiotemporal urban noise monitoring. However, SONYC does not contain

visual information. Finally, there is Urban Sound & Sight (Urbansas) [80],

which consists of 12 h of unlabeled audio and video data along with 3 h of

manually annotated data, but does not contain multiple views. These and

other street-level datasets (most oriented toward self-driving vehicle research)

are listed in Table 3.2.1 with brief descriptions of each. StreetAware is unique

in that it combines stationary, multi-perspective, high-resolution video and

audio in a synchronized fashion.

Dataset Location Size Description Annotations?
GSV [89] 100+ countries >220 B Vehicle-mounted camera images;

download not free
No

Mapillary [242] 30+ cities >1.6 M Vehicle-mounted camera images;
condition-diverse; GPS-logged

No

Urban Mosaic [153] New York 7.7 M Vehicle-mounted camera images No
SONYC [18] New York 150 M 10-second audio samples Yes
Urbansas [80] Europe 15 h 10-second audio & video samples Yes
KITTI [84] Germany 1 k Vehicle-mounted camera images;

laser scans; GPS-logged
Yes

NuScenes [34] Boston, MA 1.4 M Vehicle-mounted camera images;
radar & LiDAR; multi-camera

Yes

Waymo [223] USA 1 M Vehicle-mounted camera images;
LiDAR; condition-diverse

Yes

I2V-MVPD [19] Tunisia 9.48 k Vehicle-mounted & stationary syn-
chronized images

Yes

EuroCity Persons [28] 30+ cities 47 k Vehicle-mounted camera images;
condition-diverse; pedestrian-
oriented

Yes

PIE [199] Toronto 911 k Vehicle-mounted camera images;
pedestrian & vehicle-oriented

Yes

KrishnaCam [213] Pittsburgh, PA 7.6 M Images from Google Glasses on
pedestrian

No

MEVA [49] Indiana 9.3 kh Stationary RGBIR & UAV video Yes
Neovision2 Tower [40] California 20 k Stationary camera images Yes
Cityscapes [48] 50+ cities 25 k Vehicle-mounted camera images Yes
NightOwls [175] Europe 279 k Vehicle-mounted camera images

at night
Yes

Cerema [51] Controlled envi-
ronment

62 k Stationary camera images of
pedestrians; varied rain/fog/light
conditions

Yes

StreetAware Brooklyn, NY 7.75 h Stationary audio & video; synchro-
nized, multi-perspective

No

Table 3.1: Summary of available street-level datasets

45

3.2.2 Deep Learning Applications

A number of recent studies have explored the use of deep learning for de-

tecting and analyzing objects in street-level audio and video data. A study

by Zhang et al. [261] developed an approach to automatically detect road

objects and place them in their correct geolocations from street-level images,

relying on two convolutional neural networks to segment and classify. Doiron

et al. [61] showed the potential for computer vision and street-level imagery

to help researchers study patterns of active transportation and other health-

related behaviors and exposures. Using 1.15 million Google Street View

(GSV) images in seven Canadian cities, the authors applied PSPnet [267],

and YOLOv3 [200] to extract data on people, bicycles, buildings, sidewalks,

open sky, and vegetation to create associations between urban features and

walk-to-work rates. Charitidis et al. released a paper in 2023 [41] in which

they utilized several state-of-the-art computer vision approaches, including

Cascade R-CNN [35] and RetinaFace [58] architectures for object detection,

the ByteTrack method [265] for object tracking, DNET architecture [252]

for depth estimation, and DeepLabv3+ architecture [43] for semantic seg-

mentation to detect and geotag urban features from visual data. Object

detection systems have also been specifically developed for the collection and

analysis of street-level imagery in real-time [219]. In “Smart City Intersec-

tions: Intelligence Nodes for Future Metropolises” [118], Kostec et al. detail

intersections as intelligence nodes using high-bandwidth, low-latency services

for monitoring pedestrians and cloud-connected vehicles in real-time. Other

computer vision applications to urban street view imagery include extracting

visual features to create soundscape maps [268], mapping trees along urban

street networks [135], estimating pedestrian density [230] and volume [42],

associating sounds with their respective objects in video [80], and geolocating

objects from a combination of street-level and overhead imagery [170].

Pedestrian speed and trajectory prediction are some of the primary computer

vision goals in the urban data analytical community, especially in the field of

advanced driver assistance systems [211]. The performance of state-of-the-art

pedestrian behavior modeling benefits from recent advancements in sensors

46

and the growing availability of large amounts of data (e.g., StreetAware) [117].

A study by Kuo et al. [231] compared estimations of pedestrian speed from a

classical model and a neural network in corridor and bottleneck experiments,

with results showing that the neural network can better differentiate the two

geometries and more accurately estimate pedestrian speed. Ahmed et al. [5]

sought to use a fast region-convolutional neural network (Fast R-CNN) [88],

a Faster R-CNN [201], and a Single Shot Detector (SSD) [130] for pedestrian

and cyclist detection based on the idea that automated tracking, motion

modeling, and pose estimation of pedestrians can allow for a successful and

accurate method of intent estimation for autonomous vehicles. Other related

studies in the literature include applying deep learning techniques for the

prediction of pedestrian behavior on crossings with countdown signal timers

[78], mapping road safety from street view imagery using an R-CNN [203], and

identifying hazard scenarios of non-motorized transportation users through

deep learning and street view images in Nanjing, China [239].

3.3 The StreetAware Dataset

In this section, we will first review existing audiovisual sensor options and

make the case for harnessing the REIP sensors (Figure 3.2), which were

custom-designed and constructed at our lab. Next, we describe how the data

are collected, processed, and synchronized.

3.3.1 REIP Sensors

A multi-view requirement for our data collection could be easily satisfied

with off-the-shelf video surveillance systems, which often include a set of

wireless IP cameras. These cameras transmit their video feeds to a central

data storage location, typically a local hard drive, which can sometimes be

synchronized with the cloud but is not required for the system to operate.

The cameras may also include a night mode, which can prove beneficial

during low-light conditions. However, these cameras rarely provide audio due

47

to privacy concerns and rely on manually configured timing information or

NTP (Network Time Protocol) for timestamping the video. The latter is a

significant barrier to a multi-view analysis of fast-moving objects such as cars.

A car traveling at 40 mph covers more than a meter of ground per frame

when recorded at 15 fps. Therefore, frame-accurate video synchronization is

also a requirement for our dataset, and unfortunately, it cannot be met with

off-the-shelf security cameras, which often operate at reduced frame rates due

to limited storage.

Figure 3.2: A photo of the REIP sensor in its protective metal housing ready for

deployment (left) and its internal architecture (right).

There exist commercial motion tracking systems that use high-speed cameras

synchronized by NTP. Although these cameras provide high temporal resolu-

tion and accuracy for video, they are insufficient for synchronizing audio data,

which requires sub-millisecond timing accuracy. Furthermore, such cameras

are typically designed for indoor infrared light imaging, are costly, and rely

on an Ethernet interface for synchronization and data transfer, which makes

them impractical for larger-scale urban deployments.

48

Another commercial device that provides quality video with audio at a rea-

sonable price is the GoPro camera. However, the GoPro was designed for

independent operation, so it does not feature quality synchronization across

multiple cameras. Moreover, synchronization across video and audio modali-

ties is also known to be a problem due to audio lag offset and differences in

sampling frequencies. Recently, GPS-based time-coding has been introduced

in the latest versions of GoPro cameras. This could help with synchronizing

the start of the recordings, but does not solve the ultimate problem of long-

term synchronization. The time drift caused by manufacturing variations of

the internal crystal oscillator’s frequency that drives digital logic (including

the sampling frequency) is also susceptible to temperature-based variations.

Moreover, there is no way to know when the GoPro is experiencing lost frames

during recording, which ruins the single timestamp-based synchronization

altogether. The solution would be a continuous (re)synchronization of the

cameras from a single clock source during the entire recording process. Other

potential issues include remote control and monitoring of the camera’s status,

as well as weatherproofing that may require external devices and housing,

depending on the camera version.

Ultimately, the sensors used in this study are custom-built in our lab. An

overview of the sensor’s architecture is provided in Figure 3.2 with its specifica-

tions listed in Table 3.3.1. The sensor includes two cameras and a microphone

array. It also features a high-precision custom synchronization solution for

both video and audio data based on a 2.4 GHz radio module receiving common

global timestamps from a master radio device. Each camera records 5 MP

video at 15 fps, and the microphone array records audio through 12 syn-

chronized channels. The custom acoustic front-end was designed to capture

audio from the 4 × 3 digital pulse density modulated (PDM) micro-electro-

mechanical systems (MEMS) microphones. It uses the USB MCHStreamer

as an audio interface, which is a USB audio class-compliant device, making

it compatible with the readily available microphone block in the REIP SDK

[186]. Each sensor has 250 GB of internal storage and is operated on a Flash-

Fish portable power station. The computing core is the NVIDIA Jetson Nano

Developer Kit, which offers edge-computing capabilities. The majority of

49

the sensor’s hardware is enclosed within the weatherproof aluminum housing.

Heat sinks are designed to offer resistance to extreme temperatures, providing

better performance. For sensor control, a locally deployed network router and

Wi-Fi connectivity are used.

Feature Specification

Internal Storage 250 GB

Power capacity 300 Wh

Camera resolution 5 MP

Camera field-of-view 160◦ (85◦ max per camera)

Camera frame rate 15 fps (nominal)

Audio channels 12 (4 × 3 array)

Audio sampling rate 48 kHz

NVIDIA Jetson Nano GPU and CPU cores 128 and 4

NVIDIA Jetson Nano CPU processor speed 1.43 GHz

NVIDIA Jetson Nano RAM 4 GB LPDDR4

Table 3.2: REIP sensor specifications including its two cameras, 12-channel micro-

phone array, and NVIDIA Jetson Nano as a computing platform.

REIP sensors provide high-resolution video and audio recording with an in-

built synchronization solution (the high-level architecture is shown in Figure

3.2). Both cameras and audio interface are USB 2.0 devices. Of note is the

design of the audio pipeline where the MCHStreamer interface is receiving

an additional audio-like signal from the microcontroller unit (MCU). The

purpose of this signal is to embed the global timing information received

by the radio module as additional audio channels. For video, the individual

image frames are timestamped by the NVIDIA Jetson Nano as they arrive into

the camera block of the data acquisition and processing pipeline powered by

REIP SDK. For that, the MCU is also connected to the computing platform

50

via a USB 1.1 interface and continuously provides the latest global timestamp

transmitted to each sensor by a master radio module (a separate device).

3.3.2 Data Collection

Three intersection locations were selected to acquire the dataset with different

road configurations and pedestrian demographics as described below:

4.1. Commodore Barry Park. This intersection is adjacent to a public school.

It has a low-to-medium frequency of traffic, making it an uncrowded

intersection.

4.2. Chase Center . This intersection is adjacent to the Chase Bank office

building within Brooklyn’s MetroTech Center. It is also an active

pedestrian intersection.

4.3. DUMBO. The intersection of Old Fulton Street and Front Street is under

the Brooklyn Bridge. Being a tourist destination, this intersection is

the busiest of the three. Due to smaller crosswalks and heavy traffic, it

presents challenges such as occlusion and a diverse range of pedestrian

types.

Overhead map locations and the sensors’ positions for the recording sessions

at Commodore Barry Park as an example are shown in Figure 3.3. Each

sensor is equipped with two 5 MP USB cameras providing a combined 160◦

horizontal field of view at a recording rate of 15 fps. The 4 × 3 microphone

array of each sensor records at a sampling rate of 48 kHz. Every sensor was

powered by a portable power station with a 300 Wh capacity. An Ouster

OS-1 LiDAR sensor is also included. It has a configuration of 16 vertical

scanning lines at 1◦ angular resolution and 1024 samples per revolution.

We used four REIP sensors at each intersection, one placed at each corner

of the intersection. We recorded several 30–45 min long sessions at each

intersection—four at Commodore Barry Park, three at Chase Center, and

four at DUMBO. This results in about 200 GB of raw audiovisual data

51

Figure 3.3: Illustration of the sensor positions and data types at the Commodore
Barry Park intersection. Colors denote the different recording sessions, and numbers
indicate the REIP sensors. This figure highlights all data modalities that are being
captured during the collection process: audio, video, and LiDAR scans. Green L
indicates the LiDAR sensor position fixed for all recording sessions.

recorded by each sensor per location (limited by the sensor’s max storage

capacity of 250 GB). In total, we collected ≈2 TB of raw data.

The data acquisition pipeline of the sensors is shown in Figure 3.4. The

pipeline is based on the software blocks available in the REIP SDK as released

in [186]. Because our sensors are based on the budget NVIDIA Jetson Nano

computing platform, a slight modification was necessary for a camera block

to be able to timestamp every frame from both cameras for synchronization

purposes. We bypass the decoding of JPEG images sent by the cameras

to free up CPU resources. Instead, we direct the raw video stream to the

file using features of GStreamer library [1] that the camera block is based

upon. Still, we did experience some lost frames when recording during the

summer month of August due to the throttling of the sensor’s NVIDIA Jetson

Nano computing platform after prolonged exposure to extreme temperature

conditions.

The output of the sensor’s data acquisition pipeline contains three types of

data: 500 MB chunks of video data (approximately one minute of recording,

depending on the intersection), JSON files containing batches of timestamps

52

Figure 3.4: The sensor’s data acquisition pipeline is built using software blocks
available in the REIP SDK. It contains separate tasks for each camera and the
microphone array. The LiDAR data acquisition is performed on a separate machine
(orchestrator laptop).

for each frame in the video data chunks, and 5-second long chunks of audio

data with its timing information embedded as extra audio channels. We

spare the users from working with the sensor’s raw data by preprocessing it,

including anonymization and synchronization. We also use a space-efficient

video codec, H.264, instead of the camera’s original MJPEG data stream.

Table 3.3 summarizes the specifications of the processed dataset that we are

releasing.

3.3.3 Data Synchronization

In this section, we detail our synchronization techniques, first for audio, then

for video data modality. The synchronization techniques are independent for

each modality. Figure 3.5 illustrates the overall principle.

The method is fundamentally reliant on the hardware design of the sensors

where the communication delay between the master radio and each sensor’s

slave radio is constant, and the radio waves propagation delay is negligible

due to the large speed of light of 299,792 km/s. Similarly, the data readout

latency for the cameras is equal across sensors because of the identical cameras

used. The video modality can then be synchronized with audio by calibrating

the frame readout latency. For that, a rapid event with a loud sound, such

as a clap, is recorded in close proximity to the sensor (for negligible sound

propagation delay). The true time of the event is then deducted based on

sound and compared to the latest global timestamp received by the computing

platform when the video frame is released by the driver into a REIP pipeline.

53

Table 3.3: Dataset specifications after processing, featuring 3 data modalities (audio,
video, and LiDAR) with synchronized footage.

Feature Specification

Number of geographic locations 3

Number of recording sessions 11

Typical recording length 30–45 min

Total unique footage time 465 min (7.75 h)

Total number of image frames ≈403,000

Video resolution 2592 × 1944 pixels

Number of data modalities 3

Synchronized and anonymized True

Video synchronization tolerance 2 frames

Audio synchronization tolerance 1 sample

Total audio & video size 236 GB

Total LiDAR size 291 GB

Total size 527 GB

Figure 3.5: Multimodal synchronization workflow. Each sensor is receiving the

global timestamps from a master radio (at 1200 Hz) and is embedding every 10th of

them in a serialized form as an extra audio track synchronous with the microphone

array data. For the cameras used in REIP sensors, it is not possible to embed

the timing information directly into the video data itself. Instead, the timestamps

provided by the camera driver are converted into the global timeline using the

computing platform that is continuously updating the latest timestamp received by

the microcontroller unit (MCU) via USB. More details on video synchronization

can be found in Section 3.3.3.2. The camera’s time axis is compressed by about an

54

3.3.3.1 Audio

Audio synchronization is a challenging task because audio data are being

sampled at a very high rate, 48 kHz in the case of our sensors. Furthermore,

the speed of sound wave propagation in the air is c = 343 m/s which translates

into a synchronization accuracy requirement of less than one millisecond,

across all sensors, for any meaningful audio-based sound source locations to

work. Such accuracy cannot be achieved by simply attaching a timestamp

to the chunks of audio provided by the driver because of the large ’jitter’ of

such timestamps caused by the random operating system (OS) interrupts on

the computing platform. Therefore, the synchronization information must be

embedded into the audio data itself before it even makes it to the audio driver

of the OS. In this subsection, we introduce a novel method for high-accuracy

audio synchronization by means of embedding a special signal into a dedicated

audio channel of the audio interface (Figure 3.6).

The radio module of each sensor receives a global timestamp from a master

radio transmitting it at a rate of 1200 Hz. Unlike the operating system of

the computing platform, the microcontroller operating the radio module via

Serial Peripheral Interface (SPI) can be programmed to process the incoming

data packets from the master radio in a very deterministic way. Specifically,

the packet arrival interrupt request (IRQ) signal from the radio module causes

the MCU to interrupt its current routine and execute a function that decodes

the latest timestamp from the data payload of the packet and phase-adjusts

the MCU’s internal timer to match the master radio’s clock. The jitter of the

continuously adjusted slave clock is less than 1 µs with the nRF24L01+ 2.4

GHz radio module. The timer, in turn, generates a special synchronization

signal connected to one of the inputs of the MCHStreamer device that we use

as an audio interface. The MCHStreamer device supports up to 16 channels of

synchronous Pulse Density Modulated (PDM) audio recording. An example

of how this synchronization signal appears in PCM audio format (converted

to by MCHStreamer) is shown in Figure 3.6.

55

Figure 3.6: Example of a synchronization signal embedded into the last channel

of audio data at a 120 Hz rate. It contains a serialized 32-bit timestamp that is

shared across multiple sensors with 1 µs accuracy using a 2.4 GHz radio module.

High synchronization accuracy is required due to a high audio sampling rate of 48

kHz.

We are using a simple UART-like serial protocol with one start bit, a 32-bit

payload, and a more than 200 audio 200-sample-long stop bit to generate the

audio synchronization signal. The start bit and payload bits are five audio

samples wide for more reliable encoding. Such a signal is easy to decode

during audio processing, and a single audio sample synchronization accuracy

is achieved because the start bit of the sequence is aligned with the time

of arrival of the timestamp from the master radio, and the microcontroller

has a deterministic delay when processing this information. An example of

synchronized audio data is shown in Figure 3.7.

56

Figure 3.7: A sample of audio data (channel 0) synchronized across multiple sensors.

Every 400 audio samples long audio data chunk can be placed in the right place on

a global timeline by decoding the serialized timestamps embedded in the dedicated

channel at a rate of 120 Hz.

3.3.3.2 Video

Video recording occurs at a much lower sampling rate than audio. For in-

stance, the cameras in REIP sensors are configured to record at 15 fps. That

corresponds to a ≈67 ms period between consecutive frames. The radio

module receives a new global timestamp every ≈0.83 ms, which is almost

two orders of magnitude more frequent. Therefore, it makes sense for video

recording to timestamp each frame as it is being received by the driver and

calibrates the latency between the moment of assignment of this timestamp

and when the frame is actually exposed instead of inventing a way of embed-

ding the timing information directly into the image data during exposure as

we did for audio. However, this approach comes with new challenges, such

as timestamp jitter and lost frames.

There are three timestamps assigned to each video frame: (1) the GStreamer

57

timestamp, which starts from zero and is defined by the camera driver upon

arrival of the frame into the queue from the USB, (2) the Python timestamp

representing the current system time, which is added using the time.time()

function when the frame is released by GStreamer into the data acquisition

and processing pipeline powered by REIP SDK (Figure 3.4), and (3) the

Global timestamp added to the frame metadata at the same time as the

Python timestamp which is the latest global timestamp communicated to

the global time block from the MCU via USB 1.1 interface, introducing extra

jitter. Figure 3.8 depicts the jitter progression as it propagates farther down

the data acquisition pipeline.

Figure 3.8: Each frame acquired by the cameras is timestamped three times: (I) by

the camera driver (GStreamer), (ii) by the REIP framework (Python), and (iii) by

the microcontroller receiving global timestamps from the master radio (Global).

This figure illustrates a progressive degradation of timestamp quality, in terms of

jitter, accumulated throughout the data acquisition pipeline.

We developed a method for reducing the jitter of global timestamps to virtu-

ally zero before rendering the synchronized video streams (Figure 3.9). The

main source of timestamp jitter is operating system interrupts that happen

when the computing platform, for example, needs to process various I/O

events or perform memory management. That is why GStreamer timestamps

have the least amount of jitter because they are defined when the OS handles

USB 2.0 data transfers from the camera. That is also why we are starting with

GStreamer timestamps to reliably detect if and when there are any frames

lost by looking for gaps larger than the expected period of the camera’s frame

rate. After correcting for lost frames, we then convert these timestamps into a

58

global timeline through a couple of regressions incorporating the information

from other types of timestamps without adding jitter.

Figure 3.9: Diagram illustrating timestamp processing. We start with the least

jittery GStreamer timestamps and identify any lost frames so that we can reconstruct

the original timeline and average period for the saved frames. We then convert

these reference timestamps into a global timeline through a series of regression

steps that incorporate the information from other kinds of timestamps without

adding jitter.

In addition to correcting for lost frames and eliminating jitter, our method also

fixes any queue overflow issues that often result in the jamming of multiple

frames one after another with very similar Python and Global timestamps.

This happens when the queue is emptied out quickly after a prolonged operat-

ing system interrupt. Another less common issue is when the frames saved to

the disk get corrupted due to high data flow or during the copying of the data

from the sensors to a server. The solution requires the corresponding times-

tamps to be deleted from the metadata, and the associated non-decodable

frames are considered lost.

To further validate the video synchronization, we render a surveillance-style

mosaic video using processed frames from all eight cameras at a given inter-

section and a global timeline produced by the synchronization of timestamps.

Figure 3.10 shows a mosaic of the frames at the moment at the Chase Center

intersection. Essential for many analysis applications, at any given moment,

the recording of all traffic remains in sync from multiple viewpoints. Frames

for which a camera did not successfully record data are temporarily made

black in the camera’s associated block in the mosaic.

59

Figure 3.10: Mosaic rendering of the synchronized frames from recording session

one at the Chase Center intersection that can be played as a video. Four sensors

with two cameras each (numbered in the corners) provide eight different views for

comprehensive analysis of the intersection. If a camera did not successfully record

during a particular frame, its block is turned black, such as the left camera of

sensor 4 in this example.

3.4 Use Cases

In this section, we will demonstrate four use cases highlighting the potential

applications of StreetAware. First, we present two examples of how such

data can enhance pedestrians’ safety in large urban areas by (1) informing

pedestrians and incoming traffic of occluded events using multiple sensors and

sound-based localization, and (2) associating audio events (such as the pres-

ence of loud engines) with their respective visuals. Second, we present easily

quantifiable metrics that can be extracted from the data using the StreetAware

infrastructure framework: (3) calculating object counts (occupancy) over time,

and (4) measuring pedestrian speed during crosswalk traversal.

60

3.4.1 Audio Source Localization

As the number of sensors deployed in urban environments increases, cities

have the potential to become more human-centered by prioritizing pedestrians

over cars. Adaptive traffic and pedestrian signal timing is one example of how

an intelligent sensing platform can be used to provide a safer environment

for pedestrians. By making the signal timing adjustable to the volume of

foot traffic as well as the needs of different groups of people, we can allocate

longer signal timing to, for example, crowded intersections or pedestrians with

special needs such as the elderly, pregnant, or those with vision impairments

[78]. Most traffic monitoring systems use one or two fixed cameras for each

intersection. However, the complex configuration of intersections in large

cities makes it challenging for one or two cameras to count and detect every

traffic participant at a busy intersection. They have inherent limitations of

fixed field of view and susceptibility to occlusions.

In this first use case, we demonstrate how a synchronized multisensor setting

can leverage a data modality, such as audio, to localize sound-emitting traffic

participants and reduce the chance an object is completely obstructed by

another. The ability of the sensors to “listen” as well as “see” allows the

sensor network to remain resilient against occlusions and dead zones. Figure

3.11 shows an example of detecting the position of a bicyclist using sound,

regardless of whether or not the bicyclist is in any of the cameras’ field of

view, thanks to the diffraction property of the sound waves. In order to recon-

struct the position of the bicyclist ringing the bell, we first annotate the high

amplitude peaks, ti, in the audio data, synchronized using the common time

scale as reconstructed from the dedicated audio channel with the serialized

timestamps (see Section 3.3.3.1). With the known sensor positions, pi, one

can find the sound source position, p, at time, t, by minimizing the errors:

p, t = argmin
p,t

4∑

i=1

(||p−pi||− c · |t− ti|)
2
, (3.1)

where c = 343 m/s is the speed of sound in air. All four sensors must hear the

sound for this to be a well-posed problem. The results are shown in Figure

61

3.11 and are in good agreement with the video footage from the same sensors.

There are examples of when audio-based localization was not possible because

of noise pollution by a bus and vice versa when the object was out of the

field of view of the cameras but could still be heard which illustrates the

benefits of such a complementary multimodal approach. This audio-based

sound source localization would not be possible without the synchronization

technique presented in this paper.

Figure 3.11: Audio-based localization of a bicyclist crossing the street at Chase

Center and ringing the bell repeatedly (magenta points). In chronological order:

Sensor 2 can see the bicyclist approaching the intersection, but localization of the

bell ring is not possible because two sensors were occluded by a noisy bus; Sensor

1 view confirms the position of the bicyclist taking a right turn; Sensor 4 footage

reveals the reason for the bicyclist’s curved trajectory—the black car did not stop

to yield the right of way; Eventually, the bicyclist is no longer in the field of view

of Sensor 3, but can still be localized thanks to the diffraction of the bell’s sound

waves.

62

3.4.2 Audiovisual Association

Figure 3.12: Sensor positions during data acquisition at DUMBO, Brooklyn. Colors

indicate recording sessions, and numbers denote the sensor. Above each synchro-

nized video frame, we highlight the relative data point in the audio time series (in

decibels). It can be shown that events that can be seen in the video, such as the

passing of a bus, have a corresponding peak in the audio data.

Automatic audiovisual urban traffic understanding is a growing area of re-

search with many potential applications of value to the industry, academia,

and the public sector [80]. Deep learning algorithms can leverage video record-

ings to detect and count a variety of objects in a given scene and calculate

specific metrics, such as the distance from one source to another. Although

very useful, these algorithms can be improved through augmentation with

non-visual data, such as audio. For example, scene understanding can be

improved by determining the proximity of out-of-view objects emitting sounds

or by detecting loud noises. In addition, local governments may care about

noise levels. In New York, for example, city agencies have created laws to

automatically monitor and mitigate noise pollution, such as the noise emitted

by loud mufflers installed on cars [47]. Thus, sensor networks that include

audio, such as the one outlined in this paper, can provide the audio resources

necessary to improve urban scene understanding and to monitor city noise.

63

With StreetAware, in Figure 3.12, we show how audio can inform the pres-

ence of large engines (trucks and buses) at an intersection. Above the video

frames, we highlight the corresponding point in time on the acoustic time

series (in decibels) extracted from the audio files. With this method, we can

easily relate noise peaks to events captured on video. This example shows

how StreetAware can advance the state-of-the-art development of audiovisual

urban research by providing multiple camera views linked with audio signals

to enhance audiovisual recognition algorithms (which are usually trained on

single-view video datasets).

3.4.3 Occupancy Tracking & Pedestrian Speed

Figure 3.13: Chase Center intersection occupancy by object type during a recording
session in the afternoon, with purple lines representing people and green lines
representing cars on the top chart. In the figure, the four sensors collecting data
during this session are represented by circles. There is a significant (≈3×) increase
in the pedestrian count (blue) around 5 p.m. as people leave work. Moreover, it is
possible to detect traffic light cycles based on the ratio of the number of pedestrians
versus vehicle counts.

Stakeholders interested in monitoring the level of activity and quantity of

pedestrians and traffic in an area could make use of StreetAware. Here, we

64

present an example in which we evaluate the occupancy of one of the intersec-

tions during a recording session. First, the dataset is evaluated with HRNet,

an object detection, human pose estimation, and segmentation algorithm.

Adapted from the Faster R-CNN network, HRNet is capable of performing

state-of-the-art bottom-up segmentation via high-resolution feature pyramids

[235]. The network is trained on the COCO dataset [127]. We detect six

classes: person, car, bicycle, truck, motorcycle, and bus (Figure 3.13). Figure

3.14, in turn, shows example visualizations containing detected objects and

human pose outlines. For pose estimation, the model is executed for each

“person” detection independently with a focus on that particular bounding

box. Such an approach results in temporally consistent pose estimation as

the person is walking towards or away from the camera despite significant

lens vignetting and brightness variation across the image.

Using this detection framework, Figure 3.13 shows the total count of the

various urban scene entities throughout an entire recording session at the

Chase Center intersection. We intentionally chose this particular recording

session because it was conducted around 5 p.m., when people are finishing their

workday and traveling home. This activity results in a spike in pedestrian and

car traffic. There are roughly three times as many pedestrians counted (most

crossing a street) toward the end of the recording than at the beginning. This

trend also inversely correlates with car count, presumably because cars yield

the right-of-way to pedestrians. We do not observe as much change in the

number of cars or other motorized vehicles because this intersection is typically

more consistently busy throughout the day, and there is limited space along

the street curbs to park cars compared to pedestrians on sidewalks. Parked

cars present a certain level of static background count for the car object class.

As outlined in Section 3.2.2, measuring and predicting pedestrian behavior,

such as their speed and trajectory, are of interest to the computer vision and

urban design research communities. Figure 3.14 presents a simple example of

capturing the same pedestrian across two different sensors, highlighting the

utility of multiple camera views. The speed of the pedestrian in Figure 3.14 is

manually calculated at 1.1 m/s, derived from traveling ≈11 m (as measured

from Google Maps) in 10 s (12,000 global timestamps difference at 1200 Hz up-

65

Figure 3.14: Two camera views from the session 2 recording at DUMBO. Camera
A points northwest, and Camera B points southwest. At the time, T pedestrians
(surrounded by an orange box) are visible in camera A but not in camera B. At
the time T + 6500, as the pedestrians cross the street, they are observable by
both cameras. By T + 12,000, the pedestrians are no longer observable in camera
A but are still visible in Camera B as they continue to walk down the sidewalk.
Time T represents the global timestamp at the moment the pedestrians begin
crossing the street. By extension, T + 12,000 is the time 10 s later because the
global timestamps are updated at a rate of 1200 Hz. This figure also highlights
the advantage of high-resolution video. With objects at a farther distance from
the camera, it becomes more challenging to detect them and estimate their poses.
Higher resolutions help mitigate the information loss associated with more distant
objects occupying a smaller portion of an image.

date rate). Therefore, one could use a deep learning algorithm and the data’s

internal timing to accurately and automatically measure pedestrian speed.

66

3.5 Final Considerations

In this study, we collected unique data about traffic and pedestrians from

three urban intersections using customized high-resolution audio-video sensors.

The novel data includes multiple modalities (audio, video, and LiDAR) with

highly accurate temporal information and synchronization. Since the data

were recorded in New York City, many demographics are captured. This is par-

ticularly important since some of these groups, such as wheelchair users and

people with varying levels and types of disabilities, are absent from large-scale

datasets in computer vision and robotics, creating a steep barrier to developing

accessibility-aware autonomous systems [264]. Identifying pedestrians with dis-

abilities, the qualities of their behavior, and ease at traversing the sensed urban

environment is an area of possible exploration with datasets such as this one.

With high-resolution video data, such as in StreetAware dataset, it is impor-

tant to protect people’s privacy. For that, we leveraged human pose detections

to identify where pedestrians are and applied Gaussian blur over the elliptical

areas covering their faces. Because automatic methods are not perfect and

complete pose detection is particularly susceptible to misdetection in highly

crowded areas due to occlusions, we also employ a second model that does

direct face detection [251]. Combined with aggressive detection thresholds

that result in a high likelihood of producing false positives, we were able to

achieve robust video anonymization across the entire dataset.

In Section 3.4, we demonstrated four uses of the data that are not possible

with many other datasets. Section 3.4.1 provided an example of how the

multiple perspectives and audio data can be leveraged for the localization

of the sound-emitting objects to help overcome visual occlusion by other

objects such as large vehicles. Section 3.4.2 showed that there exist qual-

itative associations between objects captured by the sensors’ cameras and

sounds captured by the sensors’ microphones. More quantitatively, in Section

3.4.3, we showed that a computer vision model can track the amount and

type of objects in our data, confirmed by checking the video and counting

numbers at specified times. With closer inspection of the occupancy data,

one can notice a regular pattern in bus occupancy. Indeed, a bus route does

67

pass through the intersection. This further highlights the importance of our

synchronization technique with diligent temporal accounting to correct for

any lost frames that might accumulate into a significant time gap in the video

footage. Otherwise, attempts at temporal analysis, such as, for example,

reconstruction of the bus schedule, would suffer from a systematic error.

Finally, in Section 3.4.3, we presented a simple example of how a coordinated

arrangement of multiple synchronized cameras can provide a foundation for

pedestrian tracking applications, i.e., unique detection of pedestrians con-

sistent across frames and views. Some currently available software, such as

NVIDIA’s DeepStream SDK [179], contains built-in C/C++ and Python

pipelines for pedestrian tracking. Such tracking technologies could be com-

bined with geo-referenced locations for pedestrians and vehicles to create a

map. This digital twin of an intersection, complete with object locations, can

be used for high-level analysis such as determining pedestrian and vehicle

counts, travel distances, speeds, and trajectories as they navigate their way

through the sensed space.

3.5.1 Limitations

Overall, the REIP sensors have demonstrated great versatility in data ac-

quisition pipelines and operating conditions. They even withstood, without

damage, a sudden rain incident during one of the recording sessions at Com-

modore Barry Park. The majority of the sensor’s hardware is enclosed within

an aluminum weatherproof housing with heat sinks, however, we still expe-

rienced occasional periods of lost frames, even during operation in shadows,

due to the random operating system interrupts and throttling of the CPUs.

Therefore, any long-term deployments would need to account for these issues

in a comprehensive way.

The data presented in this study are limited in a few ways. First, the ge-

ographic coverage is narrow. Though the activity at each site is somewhat

varied, ultimately, data were only collected at three intersections in a sin-

gle borough in a single highly-developed city in the United States. Second,

compared to some other available datasets, StreetAware lacks diverse envi-

68

ronmental conditions such as nighttime, precipitation, and fog. However, we

did preserve some of the more challenging recording sessions where select

sensors experienced an increased amount of occlusion from vegetation during

windy conditions. Moreover, third, the data are quite raw—the audio and

video recordings are not labeled (e.g., objects, actions, sound sources, etc.)

and the LiDAR files provided are unprocessed. In its current form, a user

would not be able to query the data for information or have an idea of what

is happening over time in a scene without manually inspecting the data or

performing further processing and analysis.

3.5.2 Conclusion

In this chapter, we presented the StreetAware dataset, which contains synchro-

nized multi-perspective street-level audio and video in a single dataset. We

also presented a new method to synchronize high-sample rate audio streams

and demonstrated unique use cases for the data; in the process, we describe

the limitations and real-world implementation of REIP sensors.

Moving forward, further applications can be developed to make use of a digital

map, such as calculating the distance between vehicles and pedestrians and

other vehicles and, thus, the detection of near-collision situations. Aspects

unique to StreetAware, such as audio, LiDAR, and multiple in-sync views

could be used to augment the performance of such applications (e.g., incor-

porating the sound of car horns into near-accident detection). Other future

areas of investigation include determining the optimal number of cameras

to capture the same information captured in this dataset, and the viability

of processing the data in real-time on-site (edge computing). Building off

the pedestrian detection and speed measurement established here, looking

ahead, we intend to evaluate pedestrian and vehicle movement per traffic light

cycle. We will leverage the multi-view and synchronization features of the

dataset to reconstruct the timing of traffic lights as seen from different camera

locations. This will enable us to measure pedestrian and motorist adherence

to traffic laws. Other researchers exploring urban street sensing applications

that benefit from high-resolution, multimodal, and precisely synchronized

69

data should find this dataset especially useful.

70

Chapter 4

Crossroads:

A Pedestrian-Centric Visual

Analysis of Crossing Dynamics

in Urban Environments

4.1 Introduction

The analysis of urban intersections and pedestrian crossings has been an

integral part of transportation studies for decades. Despite their seemingly

simple design, intersections embody significant complexities, specifically from

the traffic engineering and planning perspectives. This complexity extends

across various dimensions, including design, control mechanisms, and con-

siderations for safety, right-of-way, and traffic flow [112, 163, 218]. Each of

these aspects intertwines to create multifaceted challenges that require a

deep understanding and sophisticated solutions to effectively manage and

optimize intersection performance. As a shared space between motorized

and non-motorized users with varying operation speeds, mobility levels, and

reaction times [115], intersections are known to pose higher risks of accidents,

specifically for more vulnerable users such as pedestrians and cyclists.

71

Urban crossing regions and intersections play a critical role in urban circu-

lation and dynamics; however, many studies have predominantly focused on

optimizing these spaces to reduce car traffic congestion and improve vehicular

flow, often at the expense of pedestrian needs and safety. Engineers and

planners frequently use advanced quantitative methods to analyze intersec-

tions, prioritizing signal systems and timing adjustments that favor vehicle

throughput over pedestrian considerations.From a planning perspective, there

is increasing recognition of the need for a more balanced approach that equally

prioritizes pedestrians’ and cyclists’ safety and convenience [112, 163, 227].

Shifting towards a pedestrian-centric approach for the analysis and planning

of intersections poses several challenges, particularly in data acquisition and

analysis. Traditionally, intersection analyses rely on incident-level crash data,

which often fail to capture the complete context of accidents and do not

provide sufficient information for thorough safety assessments and effective

prevention strategies [112]. Advanced approaches that utilize video footage

typically depend on top-down camera views [123], which obscure crucial

micro-decisions and behavioral patterns that are essential for comprehensive

safety analyses [82, 102, 137, 171].

The process of analyzing these videos is not only time-consuming but also

prone to inaccuracies, which can undermine the identification of critical

patterns and anomalies. In fact, manually inspecting various agents — pedestrians,

cyclists, vehicles, etc. — within these complex environments, and analyz-

ing their behavior is impractical. To tackle these challenges, we introduce

Crossroads: a visual analytics system that leverages a novel multimodal

dataset [185] composed of audio and video collected from various urban cross-

ings in New York City. While many existing approaches focus on high-level

aggregated metrics or single-modal data, Crossroads addresses the complexity

of analyzing micro-level interactions and agent behaviors in a spatiotemporally

dense, multi-modal context. By seamlessly integrating video, audio, traffic

signal states, and 3D reconstructions, our system confronts the unique visu-

alization hurdles posed by noisy, real-world intersection data. Aligning these

heterogeneous data streams to reveal both global trends and fine-grained

incident-level patterns requires a specialized design to handle occlusions,

72

sparse views, and the need for precise user-driven corrections.

At the core of Crossroads are: (1) an automatic data enrichment strategy used

to add semantics to urban crossing footage, such as physical measurements of

the actors present at the crossing region; (2) a human-in-the-loop trajectory

augmentation and refinement approach used to better understand agents’

movements; and (3) a set of interactive visualizations that enable the analysis

of urban crossings.

Automatic Data Enrichment Crossroads’s enrichment strategy involves

the identification of crossing agents, the computation of agent trajectories,

and the classification of sound types (sirens, horns, etc.) synchronized with

traffic light states. By adding this layer of semantics, users can efficiently and

expressively build query events within long video recordings, making it possible

to filter hours of footage for meaningful events and streamline subsequent

analysis. As part of this process, we employ an enrichment pipeline based

on modern computer vision techniques to automatically locate, track, and

reconstruct objects of interest (e.g., pedestrians, cyclists, cars, and trucks).

Human-in-the-loop Reconstruction The human-in-the-loop data refine-

ment approach used in the system improves the 3D representation of the

agents interacting in the scene, adding a new layer of information to the

dynamic patterns visible in the videos. Reconstructing urban crossings with

real-world footage is particularly challenging due to noisy, sparsely overlap-

ping frames that often hinder feature matching and structure-from-motion

techniques [205]. By enabling users to supervise the reconstruction pro-

cess, Crossroads improves the reliability of the metrics extraction process,

ultimately yielding more accurate trajectories and visual representations of

agent movement. This interactive feedback loop empowers domain experts

to directly address uncertainties in automatically generated data.

Interactive Visual Analysis Finally, the system incorporates a set of

interactive visualizations that support both macro-level overviews and micro-

level interrogations of urban crossing behavior. Planners and researchers

can compare events, observe global agent behaviors, and examine individual

trajectories while benefiting from the real-time feedback loop that ensures

73

high-precision analytics. This approach not only supports established analyt-

ical needs — such as aggregated speed or turning counts — but also facilitates

nuanced, instance-level exploration of trajectory anomalies, near-collisions, or

traffic violations. By unifying multiple data modalities in a single visual inter-

face, Crossroads bridges the gap between conventional top-down analysis and

fine-grained, user-driven corrections. In summary, our contributions include:

• An automatic data enrichment pipeline to extract semantic information

from a large collection of video footage. The output of this pipeline is a

digital twin representation of the intersection, enabling spatiotemporal

queries that can capture events and retrieve summary statistics of the

various crossing regions.

• Crossroads, a visual analytics tool that comprises a set of interactive and

interlinked visualization metaphors to allow domain experts to pose queries

and inspect results to identify events and global behavior patterns in urban

crossings. Moreover, our tool also supports user supervision to extract and

refine accurate 3D information from the crossing agents.

• A set of usage scenarios developed together with a domain expert, leverag-

ing both summarization capabilities of Crossroads and detailed inspection

of specific high-risk scenarios. These case studies highlight how our tool

can help detect infrastructure problems that can harm the safety of such

intersections.

4.2 Related Work

In this section, we first review papers analyzing pedestrian behavior in dy-

namic environments. Then, we present previous works on urban visual

analytics systems targeting multimedia (video and audio) data.

4.2.1 Urban Crossroads

According to the World Health Organization, about 70% of all pedestrian

deaths in European Union countries and 76% in the United States occur in

74

Figure 4.1: Crossroads’s Data Processing Pipeline, broken down into six steps:
Operations in 2D include Object Detection (A), 2D Tracking (B), and Pose Detection
(C). Once these operations are done, the pipeline proceeds to operations in 3D
space. First, depth computation is computed for each video frame (D). With that
information, we can then reconstruct different actors (such as pedestrians and
cyclists) in the 3D urban space (E). Finally, once the urban space and actors are
reconstructed and tracked in 3D, we automatically compute and display different
metrics, such as average speed and time taken between steps (F).

urban areas [181]. Safety concerns often arise in road areas where different

types of transportation (e.g., passenger cars, public buses, bikes) compete for

space, sometimes in the same lane [136]. The rise in popularity of electric

scooters and electric bicycles this past decade has been a cause of alarm in

pedestrian safety: researchers are studying pedestrian injuries related to these

electric modes of transportation, which achieve higher speeds than, say, a

normal bicycle, and with many riding them on the sidewalk [98, 212]. In

the United States, for instance, pedestrian deaths increased by 41% between

2008 and 2018 [181]. In 2021, 22% of pedestrian deaths in the United States

occurred at intersections [104]. Intersections are inherently high-risk locations

where various transit modes converge. Additionally, with the ubiquity of

mobile phones, their usage on the streets is linked with decreased attention

and increased injuries and fatalities [168, 169]. Wells et al. describe a process

where coders physically stood at busy intersections on two college campuses

to document and investigate the impact of distractions (e.g., texting, talking

on the phone, wearing headphones) on street-crossing safety [244].

75

An important task related to analyzing intersections involves implementing

effective modal separation strategies. Often, these strategies are heavily

skewed toward facilitating vehicular traffic, such as aiming to maximize flow

and minimize delays for vehicles [136], overlooking the risk to more vulnerable

users such as pedestrians and cyclists. Recent studies have attempted to

address this shortcoming by incorporating pedestrian movement and vehicle

interaction patterns into analyses [44, 66, 176]. Recent research has also

focused on developing a better understanding of the nature and challenges

surrounding the issue of pedestrian safety [83, 259]. Many of these studies

focus on pedestrian behavior in relation to intersection design [207]. There

is evidence that pedestrian expected waiting time influences the number of

attempts needed to cross a street [22] successfully and the collision risk [9].

In a study of 1864 intersections in Montreal, Canada, it was found that curb

extensions, raised medians, exclusive left turn lanes, and pedestrian priority

phases of the traffic light reduced pedestrian injuries [218].

To perform intersection safety analysis, first, data (e.g., audio & video) collec-

tion of intersection participants is required, followed by organizing the data

into usable datasets [208]. The data can then be used to model pedestrian

behavior and safety. Models, such as linear regression and neural networks,

are chosen based on the modeling task and the size and variation of the data.

For example, Quintero et al. [191, 192] used a 3D pose of pedestrians to learn

pedestrian dynamics in a latent space for predicting actions and directions.

From there, such modeled patterns can provide a higher-level understanding

of behavior and safety, such as examination of the trajectory (e.g., calculating

the crossing speed of pedestrians [228]) to more complicated analyses (e.g.,

predicting a driver’s turning intention or the development of a safety measure

such as time-to-collision [13]). Given the importance of easily viewing and

navigating intersection data and the output of associated models, Crossroads

aims to provide a consolidated way to efficiently search for and visualize

various forms of analyses within an intersection dataset — all without the

need for manual data collection. Crossroads will also help validate findings

and test hypotheses similar to those in the aforementioned studies.

76

4.2.2 Urban Analytics for Multimedia Data

Our work is situated at the intersection of urban visual analytics and multime-

dia analytics. In urban visual analytics, several previous contributions have

been made to enable the analysis of data generated within the boundaries of

cities and to tackle urban-specific problems [59, 71, 73, 272]. Most of these

works, however, make use of tabular data, such as taxi trips [75] or social media

activities [152]. With the advancement of sensing capabilities, recent works

have also leveraged multimedia data for urban analysis, leveraging datasets

composed of images [154], laser scans [94], audio [202], and surveillance

videos [20, 121]. However, most works in the surveillance category propose to

(1) use visual analytics to improve computer vision tasks for video data, such as

improving detection of traffic light [90], movable objects [99], or comparison of

models [106]; or (2) use visual analytics on features extracted from raw video,

without allowing the user to inspect the videos themselves, such as Bi et al. [23],

that used video data to simulate intersection traffic, and Sun et al. [220] that

used features for traffic surveillance. Few visual analytics studies utilize video

data to address traffic congestion while still allowing users to inspect and

correct errors in the data visually. For example, Lee et al. [121] incorporated

CCTV video data for real-time surveillance and prediction of traffic congestion.

Piringer et al. [187] proposed AlVis to explore live and historic CCTV data

in tunnels. Namitha et al. [166] proposed an interactive tool to realize queries

to generate surveillance video synopsis. In contrast, Valdrighi et al. [233] pro-

posed MoReVis to incorporate visual encoding to enhance spatial context in 2D

videos and analyze trajectories and interactions between agents in 2D space.

Our work stands out from previous works in two key ways. First, while previ-

ous works have primarily focused on car-centric tasks and problems, our work

is the first to use street-level video data within a visual analytics system. Our

goal is to better understand the dynamics between pedestrians and various

urban elements (e.g., cars, bikes, traffic lights). This approach represents a

shift towards pedestrian-focused urban analysis, a significant departure from

the more common vehicular perspectives in the field. Second, earlier efforts

have relied on high-quality data obtained from extensive sensor networks and

77

have filtered out noisy, irrelevant data. Instead, our study uses data from

cost-effective sensors, integrating both video and audio data. We provide

functionalities in Crossroads to tackle their inherent problems, allowing users

to not only filter out noise but also improve data quality through a visual

feedback loop. This, therefore, enhances the applicability of our findings in

real-world settings.

4.3 Challenges and Requirements

In collaboration with urban planners and transportation researchers, we have

identified a series of challenges in designing a visual analytics system tailored

to the study of intersections. These challenges emerged through a series

of meetings, during which experts from both domains shared their insights

into analyzing intersections. First, since intersections are complex environ-

ments, fully capturing their dynamics requires integrating data from different

modalities, such as audio and video recordings. Second, given the size and

complexity of these data, it would be unfeasible to manually inspect them

directly to outline the characteristics of an intersection or retrieve events such

as bike-pedestrian collisions to perform an incident analysis. To enable effec-

tive intersection analysis, the system must allow users to compose expressive

queries across multimodal datasets. The more expressive these queries are,

the more thoroughly users can explore the crossing data, uncovering insights

to inform new interventions and shape urban policies.

Additionally, queries and analyses may depend on information that is not

directly measured by cameras or sensors but can be derived from the sensed

data. For instance, pedestrian, cyclist, and vehicle trajectories and their

velocities in a 3D representation of the intersection can be reconstructed from

video footage, enabling the identification of risk situations such as near misses.

Likewise, recognizing audio patterns, such as horns and sirens, can help iden-

tify periods with valuable contextual information. However, automatically

extracting 3D trajectories from data captured in complex and uncontrolled en-

vironments, such as intersections, is challenging. Variations in light conditions,

78

occlusion, noise, and other recurring issues can cause off-the-shelf algorithms

to present high failure rates, which can significantly degrade the quality of the

extracted information and render it unusable for analysis (see Section 4.5.2

for details). Although recent advances in 3D reconstruction from sparse views,

such as Dust3r [237], are promising, these models are mostly trained on and

targeted towards static scenes of rigid objects. In Crossroads, on the other

hand, we are interested in answering questions about the motion and interac-

tion of different agents in urban environments. For this reason, implementing

a human-in-the-loop strategy is important to enhance the computer vision

and machine learning models used to extract information from multimodal

data. This approach also serves as a data consistency validation, ensuring

that high data quality standards are maintained. Finally, such a system

must offer visualizations and interactions that allow users to create visual

summaries of an intersection while also allowing them to flag and annotate

data to identify significant events or inconsistencies that need to be addressed.

Based on these challenges, we established a set of requirements to guide the

development of Crossroads.

[R1] Multimodal data queries. Support the ability to compose and ex-

ecute queries across video and audio data, enabling system users to

correlate information across modalities and understand patterns among

the actors’ interaction in the region of interest.

[R2] Automatic extraction of semantic information. Automatically

extract interpretable information from multimodal data to support

longitudinal analysis. This includes the detection and tracking of the

movements of pedestrians, cyclists, etc., as well as the identification of

audio events, such as horns and sirens.

[R3] Trajectories reconstruction and validation. Reconstructing the 3D

trajectories of crossing agents is vital to analyze their behavior better.

Since automatic state-of-the-art approaches still produce noisy results

in real-world situations, the system should adopt a human-in-the-loop

approach to validate and improve the 3D reconstruction of crossing

agent trajectories.

[R4] Annotation of data elements. Provide users with the ability to an-

79

Figure 4.2: StreetAware Data. On the left, we include a picture of the sensor,
containing two high-resolution cameras and a 12-microphone array, protected under
a layer of gray cloth. The eight images on the right provide an overview of the
sensor arrangement at one of the intersections: there are four sensors, each with
cameras labeled as left and right. We chose this frame to exemplify the recurring
lost frames, which we discuss more in-depth in Section 4.5.2.

notate data during the analysis, allowing them to tag significant events,

such as near-miss incidents, 3D trajectories that need refinement, and

trajectories for comparison.

[R5] Visual representation of crossing states. Provide a 3D visual sum-

mary of an intersection, capturing global agents’ behaviors and spatial

patterns and the trajectories and interactions of agents in particular

situations.

4.4 The StreetAware Dataset

Our work makes use of a novel dataset called StreetAware [185]. The creation

of StreetAware was driven by the recognition that intersections are data-rich

nodes within urban environments. These locations capture a wide range of

complex interactions between pedestrians, cyclists, vehicles, and infrastructure

(see Figure 4.2). The StreetAware dataset consists of approximately 8 hours of

audio and video recordings at different intersections in New York City. These

intersections were selected in collaboration with transportation researchers to

capture a diverse range of scenarios, covering diverse demographics, urban lay-

outs, and built environment profiles. The recording sessions used the sensors

80

specifically designed to accurately synchronize multiple video and audio inputs.

Each sensor is equipped with a 12-channel microphone array that collects

audio at 48 kHz, along with two high-resolution video cameras (2592 × 1944

pixels) capable of recording at 15 frames per second. Together, the cameras in

each sensor provide an approximate horizontal field of view of 160 degrees. The

cameras are positioned approximately 2 meters above the ground, offering an

optimal view of pedestrian activity at the intersections. Each recording session

captured approximately 45 minutes of data, with four sensors deployed at an in-

tersection, producing eight synchronized videos from distinct viewpoints. Fig-

ure 4.2 provides an overview of an arrangement at one of the intersections. In

addition to synchronized videos, the dataset also includes synchronized audio

data. The audio data from each microphone was synchronized, enabling accu-

rate classification of audio events and precise extraction of the locations of au-

dio sources. Additionally, the dataset includes the intrinsic matrix parameters

for each camera, and all videos have been pre-processed to remove distortion.

In total, the dataset provides 527 GB of synchronized and anonymized audio

and video data. The StreetAware dataset has the potential to assist domain

experts in a wide range of different analytical tasks, helping them better

understand the dynamics of intersections and support more accurate, data-

driven decisions. However, the complex nature of the data presents challenges

for exploration, as previously highlighted. Querying and summarizing events

across multiple data modalities requires visualization techniques to ensure

that users with limited technical expertise can interactively extract meaningful

insights from the raw data streams.

4.5 The Crossroads System

To address the challenges outlined in the previous sections, we introduce

Crossroads. In this section, we first provide an overview of the automatic data

enrichment process employed by Crossroads (Section 4.5.1). Then, we present

Crossroads’s interface and interactions to support querying and comparison

capabilities (Section 4.5). Finally, we present a discussion of opportunities

81

for human-in-the-loop interventions to fine-tune and expand 3D information

(Section 4.5.2).

4.5.1 Data Enrichment

Processing Crossroads’s data to extract physical measurements involves several

computational steps, as outlined in Figure 4.1. In the 2D image operations,

our goal is to extract a set of consistent trajectories within the image space

(i.e., 2D trajectories), representing the movement of the actors interacting

on the crossing region, such as cars, pedestrians, and cyclists. The outputs

from the 2D space are then passed to the next set of steps, which operate

in the 3D urban space, with the goal of extracting trajectories within the

urban environment (i.e., 3D trajectories) and then extracting measurements

of interest. Finally, a set of operations augments the data with information

regarding environmental noise and traffic lights. The produced data is stored

and indexed in a relational database to support analytical queries.

2D enrichment To achieve requirement R2, our pipeline starts by processing

raw video data (2D space) from all of the StreetAware sessions. In this step, we

perform three operations: object detection, pose detection, and 2D tracking.

First, the pipeline starts by processing the videos to detect the presence of

objects of interest in every frame, applying the widely used object detector

YOLOv12 [109]. Concurrently, we also track the detected objects through

the frames of the video, assigning a tracking ID to each one of the bounding

boxes using the state-of-the-art multi-object tracker BotSort [4]. The output

of this step is a set of bounding boxes per frame together with their track IDs

and class names, allowing us to extract trajectories of the identified objects.

Following this step, we extract human poses (HRNet [45]) and car keypoints

(OpenPifPaf [119]) from every bounding box classified as such. These will be

needed to compute the 3D trajectories and associated metrics described in the

following subsection. These steps are represented in Figure 4.1-A, B and C.

3D estimation As outlined in requirements R3 and R5, Crossroads should

enable users to query and visualize dynamic aspects of the crossing regions

that are only accurately computed in a three-dimensional space, such as speed,

82

acceleration, height, and direction. Therefore, for each one of the trajectories

described in the previous step, classified as either pedestrian or car, we recover

the three-dimensional information of these actors using the keypoints gener-

ated by the pose detection algorithms described above. We accomplish this by

estimating depth maps [253, 254] from the frames of the videos and transform-

ing each one of the pose keypoints into a 3D point as represented in Figure 4.1-

D and E. Once this process is done, however, the reconstructed information

from each video will live in its own coordinate system. So, we transform the

points to a shared coordinate system based on the extrinsic camera param-

eters computed based on the annotations made with the registration helper

(more details on this process are provided in Section 4.5). As represented in

Figure 4.1-F the trajectories of each video are projected into this shared space

representing the intersection region. From these trajectories, we extract met-

rics of interest that will enable users to search and visualize events happening in

the recording sessions. We utilize the 3D pose representation, to calculate mea-

surements such as height, average speed, acceleration, and gait information.

Although these 3D representations of the trajectories can provide an initial

estimation of physical measurements, allowing users to query for events, they

suffer from the noisy output of the depth maps and potential occlusions,

as shown in Figure 4.3. Moreover, this approach generates redundant in-

formation since trajectories representing the same agents are reconstructed

once for each video, producing redundant data. Due to this fact, Crossroads

provides a mechanism (see requirement R3) where users can manually match

trajectories across the camera feeds to generate more accurate representations

of the trajectories, which will be discussed in Section 4.5.2.

Environmental Information Lastly, we also link environmental informa-

tion with the reconstructed data (see requirements R1)-R2. We first use

a machine listening model (YAMNet [85]) to detect informative sounds at

urban intersections, like car honks and emergency vehicle sirens. To process

the audio, we first normalized the sound levels. Then, we split the audio into

2-second segments. For each segment, YAMNet gives us a list of scores that

show how likely each audio event is present in that segment. Most recordings

in the StreetAware dataset were captured at intersections with traffic lights.

83

At these intersections, we marked pedestrian signals by drawing a box around

them and used the average red brightness to determine if the signal indicated

cross, stop, or flicker. This information helps us identify unusual situations

at intersections, such as jaywalkers and pedestrian acceleration when the red

light is flickering.

Figure 4.3: Crossroads can recover trajectory information in occluded scenarios
due to its ability to handle multi-view information.

4.5.2 Human-in-the-loop Interaction for Data Enrich-

ment

Crossroads deals with real-world data captured in crowded environments,

which can introduce various challenges, such as occlusion (e.g., a person

may be obscured by a passing car) and environmental factors (e.g., changing

lighting). These difficulties can introduce undesired noise in the data and

incomplete representations of the dynamic actors interacting in the scene.

However, with simple interactions, users can provide valuable information to

the system to improve the data and augment the automatic representation

generated by our processing pipeline.

This section presents key opportunities to enrich the processed data with

user feedback. We first discuss our approach to facilitate camera registration.

Then, we present tracking and reconstruction augmentation strategies that

84

Crossroads implements through intuitive interactions through our interface,

satisfying R3.

Camera registration One of the main challenges discussed in this work

is recovering dynamic 3D information from urban intersections using video

recordings from sparse views. This process needs suitable approaches to re-

cover the position of the different cameras in the scene, also known as camera

registration. These methods rely on automatic keypoint detection and match-

ing algorithms, which are typically designed to process video data from a mov-

ing camera with highly overlapping fields of view. However, the StreetAware

dataset is captured from a small set of cameras at fixed locations, each with dif-

ferent fields of view. Classic feature detection and matching algorithms, such

as SIFT [133] and FLANN [159, 160, 161] have a high likelihood of false de-

tections and matches under scenarios similar to ours, which negatively impact

the calibration accuracy. Throughout the development of this tool, we exper-

imented with different automatic registration approaches to recover camera

positions in each recording session. However most of them fail to adequately

produce good camera position estimations. We solve this issue by observing

that manually annotating matching points on the pedestrian crossing lines

should be a straightforward task for users, requiring a marginal effort to pro-

duce accurate sets of matching points across different views. With Perspective-

n-Point pose computation, a camera can be successfully registered with as

few as four non-collinear points. This observation motivated the need for the

registration helper view described in Section 2.5, which supports users in anno-

tating matching points across different views. In addition to acquiring a more

accurate camera registration, the manual annotation of points in Crossroads

supports real distances between the annotated points of the crosswalk zebra.

With these measurements, our system recuperates the relative position and

orientation of all cameras and places them in a ”world” coordinate system with

a meaningful scale. Therefore, distance traveled in a trajectory can be, for in-

stance, expressed in meters or inches, which in turn enables users of Crossroads

to better understand and analyze the environment of these urban intersections.

Reconstruction augmentation Although our data processing pipeline

relies on state-of-the-art computer vision algorithms to detect, track, and

85

Figure 4.4: Mosaic of frames employed to define matching points from different
cameras used in the registration process. To increase the user precision, the system
implements a lens-inspired tool.

reconstruct the dynamic information of the crossing regions [221, 236, 256],

as any machine learning-based algorithm, these are susceptible to errors.

Below, we present two examples of how simple interactions implemented in

Crossroads can help users augment the data during interaction time and

evolve the dataset over time.

Occlusions frequently happen at busy intersections, mainly in cases of heavy

traffic or the presence of large vehicles. These events might hinder the ac-

curate calculation of trajectories, hiding information regarding the pedestrian

behavior in these scenarios. Using Figure 4.3 as an example, we can observe

the case where a pedestrian carrying a suitcase and a dog tries to cross a busy

street. The occlusion generated by a large vehicle prevents us from visualizing

the pedestrian’s full trajectory. Luckily, the multi-view aspect of the datasets

Crossroads supports allows users to recover the complete trajectory informa-

tion. By clicking on the corresponding bounding boxes representing the same

pedestrian in different views using the mosaic component, described in Sec-

tion 4.5, Crossroads uses accurate pose information to reconstruct the full tra-

jectory. In the case presented in Figure 4.3, after manually reconstructing the

pedestrian trajectory, it gets easier to see the pedestrian stopped in the middle

of the crosswalk while checking for any vehicles coming in their direction.

Finally, visualizing pedestrians’ gait can uncover important patterns, poten-

86

tially highlighting people at low mobility levels. The process described above

also supports our system in improving the 3D pose of pedestrians, uncovering

more accurate gait information. As presented in Figure 4.3, a comparison

between the automatic pose reconstruction and the augmented reconstruction

is supported by user annotation. Although the trajectory metrics (speed,

acceleration, and change in direction) only suffer from minimum changes,

the gait information can help us characterize the pedestrians. For instance,

double support (DS) time is the time spent with both feet on the ground

during the gait cycle. Both feet on the ground allow for greater stability and

control of direction [167]. Higher DS time and larger variability in DS time

are associated with higher risks of falling [97, 246]. Gait analysis of pedestrian

allows for urban planners to prepare and adapt the current infrastructure to

benefit people of all motor skills.

Figure 4.5: The Crossroads’ Crossing Analysis view supports users in exploring the
crossing data with different visual metaphors and query widgets. (A) allows users
to look at global statistics of different locations and load data for a selected session.
(B)) shows filters to select trajectories that follow a desired criterion. (C) shows
the density of events that match the query with the selected filters. (D) shows a
video mosaic of all the views available for the intersection. (E) display the selected
trajectories in a list fashion, showing detailed information about them. Lastly, (F)
shows a heat map of cyclist density at the intersection.

87

4.5.3 Interface & Interactions

In this section, we describe the key components of the Crossroads interface,

which enable users to analyze urban crossings using the StreetAware dataset.

We guide the development of our interface by well-established information visu-

alization principles, where users can interact with visual metaphors summariz-

ing different aspects of the data while providing mechanisms to highlight fine-

grained details of the data. Crossroads implements two main views. The Regis-

tration Helper assists users in annotating spatial features from the videos to fa-

cilitate camera registration. The analysis view provides query tools and visual

metaphors to summarize the data, integrating 2D, 3D, and audio information.

Registration Helper As described in Section 4.3, our tool must enable the

exploration of automatically extracted physical measurements of actors, such

as pedestrians, cyclists, and cars interacting within the crossing area (require-

ment R2). These measurements are based on dynamic 3D representations.

However, conventional techniques for recovering this 3D information require

camera registration techniques that are prone to failure in the StreetAware

dataset’s camera setup.

We overcome this challenge by introducing the Registration Helper view,

which enables users to define matching points manually across videos from

different cameras. These matching points will allow us to register the cam-

eras with a few annotated points accurately. In this view, besides defining

matching points, the user can also define shapes that will support the analysis

of the intersections in the 3D visualizations provided in the Analysis view.

This view consists of three key components. First, a mosaic of frames is

generated based on the user’s selection of a specific frame number, as shown in

Figure 4.4. Once the mosaic is displayed, users can define matching points by

clicking on corresponding points in each image. A lens-inspired widget, which

zooms into the image region under the mouse pointer, assists in precisely

annotating these matching points. Once matching points are set, users can

define 3D shapes based on these points. The system automatically generates

the 3D shapes and renders them in the other views to support the analysis of

crossing regions using the user-defined points. This feature is especially useful

88

for delineating sidewalk and crosswalk areas in the visual representations,

providing essential spatial context for the analyses conducted by system users.

Analysis View At the core of Crossroads, the Analysis view (shown in Fig-

ure 4.5) enables users to identify common patterns and potential outlier events

by combining query widgets for filtering trajectories of interest (supporting

R4) with customized visual metaphors to summarize and explore details of

the selected trajectories (supporting R5). Moreover, it also supports queries

across multimodal data (supporting R1), enabling users to correlate audio

events with pedestrian behavior. The interaction in this view starts with the

user clicking on the session selector to pick a session of interest. The session

selector button (Figure 4.5-A) opens a modal where a list of available session

recordings is presented. An aerial image of the region is displayed for each

recorded session in the database. Also, the users can click on the map view

to explore where the recording session took place on Google Maps. Once

a session is selected and the data is loaded into the view, populating the

filters list (Figure 4.5-B). The filters combine drop-down lists with histograms

showing the distribution of metrics relative to each trajectory in the session.

For example, users might be interested in analyzing events where cars and cy-

clists share the intersection region. So, by selecting the corresponding classes

using the class drop-down, all the other filters will be updated, showing the

distribution of metrics for the selected classes, such as the distribution of

speeds. Moreover, users can combine filters to build more complex queries.

By brushing the histograms on the filters list, it is possible to specify fast

pedestrians walking through the intersection while the traffic light is red.

Once the filters are updated, the temporal distribution component highlights

when trajectories satisfying the applied filters are present by showing area

charts with different colors, representing different classes (Figure 4.5-C). This

feature supports the identification of times when selected classes coexist in

the intersection region. The user then interacts with this visual representation

to brush time ranges and load the individual trajectories to the trajectory

list component and the 3D view (Figure 4.5-E and F), respectively.

On the trajectory list, all the selected trajectories are shown with detailed

information, such as the duration it is visible on the video and the class name.

89

Users can expand each entry in the list to get more information, such as

speed, change in velocity, traffic light information, and audio event occur-

rences. Users can click on the play icon to play the video segments when the

trajectory is visible in the mosaic view (Figure 4.5-D). In the mosaic view, the

bounding boxes of every trajectory happening at the same time interval are

overlaid in each of the videos. This information supports users in matching

trajectories across videos to generate detailed 3D pose information, allowing

for the gait analysis of pedestrians and noise removal from automatically

generated trajectories. This process is further explored in Section 4.5.2.

Lastly, the reconstruction view (Figure 4.5-F) enables the trajectory compar-

ison of different video segments and summarization of the current selection.

The user can toggle between a heatmap representation and a trajectory repre-

sentation. The heatmap summarizes the average occupancy of the intersection,

while the trajectories representation allows the user to compare different tra-

jectories. Users can also click on specific trajectories to load detailed pose

information. Clicking on trajectories also triggers the mosaic component to

play the corresponding video. This view of the trajectories enables the compar-

ison of events happening at different moments of the video (requirement R4).

4.6 Usage Scenarios

To evaluate Crossroads, we detail two usage scenarios created in collaboration

with an urban planner with over 10 years of experience. These scenarios

demonstrate the key features of Crossroads and illustrate how the system can

be applied to address real-world challenges. The scenarios were subsequently

reviewed by two additional experts, whose feedback is discussed in Section 4.7.

4.6.1 Global Analysis of Intersections

To facilitate high-level exploration and comparison across multiple urban

intersections, our tool includes global summaries of the recording sessions

(Figure 4.6-A). Each session is represented by a unique name and a snapshot

90

Figure 4.6: Crossroads, an interactive visual analytics tool for exploring multimodal
movement and safety patterns at urban intersections. (A) provides a global overview,
where users select from a list of intersections and view summary statistics including
agent counts and speed distributions. (B) presents directionally disaggregated
flow metrics and a hexplot that captures behavior signatures by plotting mean
speed against directional change across modes. (C) overlays a speed heatmap onto
a satellite image, highlighting localized high-speed segments—such as fast right
turns, often associated with elevated pedestrian risk. (D) enables semantic querying
within selected regions to retrieve frames where vehicles and pedestrians co-occur,
revealing potentially hazardous interactions such as near-miss incidents. Together,
these panels support a multiscale, multimodal workflow from high-level pattern
recognition to detailed, evidence-based safety investigation.

91

of its location, enabling users to quickly situate the site geographically. Ex-

panding the session card, a detailed summary is presented, where users can

inspect mode-specific activity and speed characteristics. The mode profile

includes counts and types of observed agents—pedestrians, cyclists, and vehi-

cles—captured across all cameras. The speed profile shows median and mean

moving speeds per mode. These offer a concise statistical fingerprint of each

intersection to guide deeper investigation.

At our Concord intersection, one of the locations available in StreetAware,

the mode profile reveals a disproportionately high volume of vehicular traffic

relative to pedestrian activity, suggesting a vehicle-dominant intersection

with limited pedestrian flow. The speed profile further reveals that vehicular

speeds are not only higher in absolute terms, but also display lower variability,

indicating a consistent flow pattern—often characteristic of intersections with

minimal stopping or yielding.

By computing trajectories using our system, we inspect directional movement

patterns (Figure 4.6-B). By doing so, a clear asymmetry emerges: the A→C

right-turn leg exhibits both high traffic volume (281 vehicles) and elevated

speeds relative to other directions. The kernel density estimate plot shows the

speed distribution for this leg skewed higher than others, and the KDE peak

for A→C surpasses 10 m/s. Compared with the average vehicle speeds across

all intersections in the dataset, approximately 6.1 m/s based on the heatmap

summary, shown in the same section. This pattern is further visualized in

Figure 4.6-C, highlighting a spatial concentration of high-speed movement

along the right-turn path. This path intersects directly with the pedestrian

crosswalk, increasing the risk of conflict.

Figure 4.6-D enables further inspection through semantic querying: selecting

the crosswalk region surfaces trajectories where vehicles and pedestrians co-

occur. One such frame reveals a near-miss scenario—a pedestrian jaywalking is

caught in the intersection while a vehicle proceeds with a high-speed right turn.

This case exemplifies how Concord St.’s turning behavior deviates from norma-

tive patterns, and how our system guides users from statistical anomalies to

real-world behavioral evidence. It underscores the value of integrating direc-

92

Figure 4.7: Detailed representation of pedestrians walking with dogs. Crossroads
summarizes trajectories and metrics of different actors using the crossing region.

tional speed, volume, and spatial-semantic queries into intersection analysis

workflows.

4.6.2 Analysis of Crossing Patterns for Design Inter-

vention

Urban crossings are critical points where diverse groups of pedestrians inter-

act with vehicular traffic, creating complex movement patterns that require

thoughtful design interventions. Vulnerable groups, such as guardians with

young children, people pushing strollers, and dog walkers, often exhibit spo-

radic and less predictable trajectories that standard design measures fail to

accommodate. Crossroads can facilitate discovering these crossing behaviors

and inform targeted design interventions. This scenario demonstrates how

93

the tool enables a traffic researcher to: 1) identify high-risk pedestrian groups,

2) analyze distinct behavioral patterns, and 3) propose design interventions

based on the observed patterns by analyzing videos from intersections with

varying densities.

Identifying vulnerable pedestrian groups The analysis begins by iden-

tifying high-risk groups, specifically parents with children and individuals

walking with dogs, noted for their unpredictable trajectories in transportation

research [144]. Using the Analysis view, as presented in Figure 4.5, the user

filters the trajectory list to locate specific targets, such as strollers and dogs.

The user starts by analyzing patterns of pedestrians walking dogs. After filter-

ing trajectories of dogs and pedestrians, the temporal distribution component

updates, showing times when dogs and pedestrians are sharing the street. The

same process is done for people carrying strollers. The user then scrolls over

the trajectory list to find the trajectories corresponding to the pedestrians

walking with dogs. Then, the user annotates all the dog walkers to allow for

the comparison of their trajectories and speeds using the reconstruction view.

Lastly, the user also identifies some peaks in the number of people crossing

at specific times, suggesting a crowd movement in the crossing region.

Behavioral profiling and speed analysis The next step involves analyzing

the identified groups’ crossing patterns and speeds. The user reviews the

video instances annotated in the analysis view to observe pedestrian groups

under different conditions, such as crowded versus normal traffic flows. In

crowded settings, pedestrian speed is often constrained by the group’s lead,

indicating a need for distinct signal timing strategies in high-density scenar-

ios. Using Crossroads empowers the user to analyze micro-behaviors, subtle,

moment-to-moment actions taken by pedestrians, which play a crucial role in

understanding risk assessment and adaptive responses at urban intersections.

These behaviors include hesitations, stops, speed changes, and interactions

with environmental cues like sounds or nearby vehicles. Capturing these

micro-behaviors provides invaluable insights into how pedestrians, particu-

larly vulnerable users, assess risks and make real-time decisions at crossings.

Behavioral profiling shows that people walking with children often struggle

to keep them within the intersection boundaries, resulting in deviations from

94

a straight path and an average crossing speed of 0.8 m/s. Front carrying an

infant or a child can reduce the average speed by around 10%. Those pushing

strollers display more cautious behavior while crossing with an average speed

of 1.24 m/s, often stopping mid-crossing. Finally, as shown in Figure 4.7,

pedestrians walking with dogs display a similar behavior, showing a straight

trajectory to cross the street at an average speed of 1.46 m/s. The recon-

struction view makes it easier to detect a case where a dog walker leaves the

crosswalk region to reach their destination quickly.

Propose design interventions Based on the observed behaviors, key inter-

ventions include: 1) widening crosswalks in crowded intersections to handle

larger pedestrian volumes, 2) increasing the size of intersection box, and

widening the space between the stop line and crossing line to provide a buffer

for unpredictable movements, and 3) implementing adaptive signal timing

based on real-time crowd density and pedestrian group dynamics to ensure

safe crossing for vulnerable groups.

Throughout the analysis, Crossroads ’s interactive 3D reconstruction, object

detection, dynamic filtering, and video review, enhance the accuracy and

applicability of the analysis, ensuring that proposed interventions are directly

grounded in observed pedestrian behavior. This scenario highlights how

Crossroads bridges the gap between micro-behavior analysis and tactical

urban design, offering insights not possible using top-down view analysis and

supporting the design of safer, more inclusive intersections.

4.6.3 Uncovering High-Risk Patterns with Multimodal

Queries

Distracted pedestrian behaviors pose serious safety risks and often lead to near-

miss incidents. High pedestrian volumes combined with inattention create com-

plex and hazardous crossing scenarios that standard safety measures frequently

fail to address. Consequently, these situations are likely to produce interac-

tions between drivers and pedestrians represented in audio events, such as car

honks. Moreover, pedestrian might change their behavior when ambulances or

95

Figure 4.8: Audio events and correlated high-risk scenarios. (A) shows a pedestrian
accelerating due to a police car approaching the intersection. (B) car honks due to
heavy traffic. (C) jaywalker sharing the crosswalk with a car. (D) crowd crossing a
lower speed.

police cars are approaching the intersection. Here, we use Crossroads’s ability

to query for audio events together with pedestrian speed and acceleration to

find potential high-risk scenarios and common driver behavior under different

circumstances. The insights gained from this analysis are crucial for designing

interventions that mitigate these common yet dangerous pedestrian actions.

Motivated by findings from the Federal Highway Administration’s study [3],

which highlighted the increased frequency of high-risk and near-miss scenarios

at unsignalized intersections, the user plans to compare two intersections. The

process begins with the user loading session data of a signalized intersection

in Crossroads. Two filters are then applied in the filters list. First, the user

filters for car honks and police sirens audio events, and reduces to scope

to consider only trajectories of pedestrians and cars. Once these filters are

applied, the query distribution component shows moments where the number

96

of cars is similar to the number of pedestrians and moments where the number

of cars is much higher than the number of pedestrians. The user continues to

inspect the configuration of both cases by selecting and replaying the video

segment of each case. The mosaic views show that when fewer pedestrians

are present in the intersection, the car honk is usually motivated by heavy

traffic, as represented in Figure 4.8. However, when inspecting one of the

periods when a police siren sound was detected, one of the trajectories shown

on the 3D view presents a significant, abrupt change in speed. By clicking

on it, both the mosaic viewer plays it and the reconstructed 3D poses appear

on the screen. The user then sees a police car turning onto the intersection

while the pedestrian accelerates to cross. This behavior suggests that part of

the intersection might be occluded with heavy traffic, and this lower visibility

poses a higher risk of accidents. An intervention might be needed to alert

pedestrians that cars can turn into the crossing region at high speeds or to

force drivers to reduce speed when near the crosswalk.

The exploration process moves to the signalized intersection. The user repeats

the same process to filter for trajectories when there is a car honk detected

and update the query distribution view. A similar pattern is shown. However,

most car honks at this intersection are now related to drivers trying to make

other cars move faster at the traffic light change. Then, moving the attention

towards the reconstruction view, the user detects a moment when a car and

a pedestrian share the crosswalk at the green light, suggesting a jaywalking

event. The user plays the trajectory in the mosaic view and confirms the

contravention: the pedestrian waits on the street instead of the sidewalk,

looking for a halt in traffic flow, and, once it happens, takes advantage to

quickly cross the street while the traffic light is still green for vehicles. This

can turn dangerous quickly when larger vehicles, such as the SUV and pick-up

truck seen in the video, are at the intersection. Although it was not the

case for the jaywalking event being analyzed, these larger vehicles reduce the

visibility of pedestrians crossing the street, and it can become particularly

dangerous with cyclists moving fast through these patches of low visibility

while a pedestrian jaywalks. This behavior motivates a more in-depth study

of traffic light cycles in this region, giving more time for pedestrians to cross.

97

4.7 Experts’ Feedback

To further evaluate Crossroads, we introduced the system and usage scenarios

to two practitioners with Ph.D. degrees in transportation engineering to use

the tool and reflect on their experiences. One practitioner is a transporta-

tion modeler working in the public sector for the city of Boston, and the

other is a traffic engineer working in the private sector in Sacramento. Both

provided valuable insights into the usability and effectiveness of Crossroads,

highlighting its strengths and suggesting areas for improvement.

4.7.1 Feedback from the Transportation Modeler

The transportation modeler found Crossroads ’s object detection and interac-

tive features particularly valuable, though she noted challenges with spatial

orientation within the tool. Key suggestions include:

Effectiveness of the interactive feedback loop and object detection

features She praised the object detection capabilities for accurately identi-

fying various agents, including pedestrians, cyclists, dogs, and strollers. The

correction feature allowed precise adjustments to mismatched data, enhancing

the reliability of trajectory information. She emphasized, “The combination of

these features sets this tool apart, as it avoids over-reliance on black-box algo-

rithms by enabling expert intervention in sensitive contexts that directly impact

public safety.” This hands-on approach aligned with her preference for trans-

parent, expert-driven analysis, especially in areas affecting public well-being.

Impact of advanced filtering options The practitioner was impressed by

the advanced filtering options, particularly the ability to combine height and

gait patterns with filters such as pedestrian light flicker. She noted, “These

capabilities significantly bolster the analysis of pedestrian behavior and safety

assessments at intersections, providing valuable insights for transportation

planning and safety analysis.”

Recommendations for orientation enhancements Despite the tool’s

strengths, she experienced disorientation within the map viewer and sug-

gested several enhancements: incorporating a north arrow to help users orient

98

themselves, a reset button to return to a default viewing angle, and a base

map overlay to provide contextual information. She emphasized that these

additions would enhance situational awareness and help link trajectories with

the real-world features of the selected intersection.

4.7.2 Feedback from the Traffic Engineer

The traffic engineer, working in the private sector in Sacramento, frequently

analyzes large multimodal trajectory datasets and highlighted the value of

Crossroads ’s 3D visualizations and advanced spatial filtering capabilities.

Key suggestions and feedback include:

Insights from 3D trajectory visualization and aggregated metrics He

noted that “the 3D visualization of different modes of movement (pedestrians,

cyclists, and vehicles), can provide detailed insights at a finer scale while still

allowing me to assess aggregated metrics such as traffic volume on each branch

or turning cyclist volumes.” He appreciated the spatial filtering options, which

enabled him to query for potential conflicts at high-turning volume areas,

facilitating a comprehensive conflict analysis.

Integration of noise data for risk assessment The expert also found

the integration of noise data, particularly honking sounds, to be valuable

for identifying high-risk or alert scenarios. He emphasized that “this feature

could uncover moments of heightened stress or danger that would otherwise

be missed in traditional traffic analysis.”

Suggestions for enhanced orientation and comparative analysis To

improve spatial awareness, he recommended adding base maps—either im-

agery or vector-based—to contextualize the scene better. He also suggested

enabling side-by-side views of multiple intersections to facilitate comparative

analysis, allowing traffic engineers to assess and compare conditions across

different urban settings more effectively.

99

4.7.3 Summary of Experts’ Feedback

Both the public and private sector experts underscored the significant po-

tential of Crossroads for enhancing intersection analysis. They highlighted

the importance of object detection, advanced filtering, and spatial querying

capabilities in delivering actionable insights. However, they also noted areas

for improvement, particularly in user orientation within the 3D environment

and enhancing the tool’s capacity for comparative analysis across multiple

intersections. These insights directly inform our ongoing development of

Crossroads, ensuring it continues to meet the needs of practitioners in real-

world settings by providing precise, transparent, and adaptable tools for

urban safety and traffic planning.

4.8 Conclusion and Future Work

In this paper, we presented Crossroads, a system to enable the analysis of

data representing intersection dynamics. Our approach provides effective

analytical capabilities, minimizing reliance on black-box procedures in trans-

portation and safety planning and enhancing transparency in analysis and

decision-making. Combined with StreetAware data, this approach bolsters

human-centered analysis and tactical urbanism, shifting away from top-down

perspectives that often neglect vulnerable users, like mothers front-carrying

children, or miss micro-behaviors linked to distress, interactions, or responses

to environmental noise and stressors.

Looking forward, we plan to tackle some of the limitations of the current

system version. We plan to do an in-depth error analysis of the reconstructed

information and incorporate feedback collected from system users. Lastly, we

envision this framework to be extensible to other types of human activity, such

as humans practicing sports. While our evaluation approach finds parallels

in previous studies [154], we recognize the need for a broader assessment. To

this end, we plan to conduct a larger-scale evaluation involving experts from

various cities, allowing us to capture a wider range of urban contexts and

planning challenges.

100

Chapter 5

Urban Rhapsody:

Large-scale exploration

of urban soundscapes

5.1 Introduction

City soundscapes represent a rich source of information about urban sys-

tems, such as transportation, civil construction, and social activity. Low-cost

sensors can be used to capture aspects of this acoustic environment, and

computational methods for large-scale data analysis offer new approaches to

characterizing the different contributing sources. Such understanding offers

insight into how a city behaves through space and time (e.g., ”what are the

typical sounds in a neighborhood during the night?”), and can help in tack-

ling various urban problems such as noise pollution. The research reported

here was undertaken in partnership with researchers from one such sensing

initiative, the Sounds of New York City (SONYC) project [18], who have

developed and deployed low-cost sensors to measure and stream real-time

sound pressure level (SPL) and audio data. To date, more than fifty sensors

have been deployed throughout New York City (NYC), collecting data for

over five years (in total, more than 60 TB). To meaningfully understand this

data, the project’s researchers are developing new machine listening models

101

that 1) extract audio embeddings and 2) classify these sounds based on a set

of predefined labels. However, these tasks pose several challenges that impede

even state-of-the-art models’ effectiveness in capturing the urban soundscape’s

dynamism. First, audio is complex, a recording typically captures different

sound sources (e.g., dogs barking and people talking) simultaneously. Second,

sound events are transient (e.g., a honking car horn) but in aggregation

can last for hours (e.g., car engines on a busy highway). Third, audio has

a temporal aspect, and so unlike images or words, sounds do not have a

straightforward pictorial representation, limiting our ability to quickly review

a large collection of recordings in parallel. Hundreds of images can be reviewed

at the same time, with objects identified in minutes. However, looking for

patterns or events in a large collection of audio data often requires listening

to hours of individual recordings one after another. Analyzing audio data

is time-consuming and hard to scale. This calls for novel techniques and

visualization interfaces to facilitate the process, leveraging human expertise.

Motivated by these challenges and the need to gain new insights into the

soundscape of the city, we introduce Urban Rhapsody, a framework for the

interactive visual analysis of large collections of urban acoustic data. Us-

ing recent advances in machine listening to generate audio representations,

Urban Rhapsody allows analysts to create a visual representation of the

soundscape across different ranges of temporal and geographical granularity.

We adopt a human-in-the-loop approach that enables users to interactively

label data points, create new classification models based on their expertise of

the soundscape, and assess the performance of audio classification tasks. Fi-

nally, because noise patterns might happen at different scales (minutes, days,

months, etc.) in the urban environment, we employ a multilevel visualization

scheme. Using case studies that demonstrate the utility of Urban Rhapsody,

we showcase support for fast exploration of similar sounds or concepts, as-

sessment of classification model outputs in different scenarios, geographical

and temporal understanding of the embedding space, and summarization of

soundscapes by key representative audio frames. Previous approaches to these

challenges were either applied in a different context [57], or constrained to

the analysis of sound pressure level (SPL) data [156], painting an incomplete

102

picture regarding urban noise problems [271]. Urban Rhapsody is the first

visual analytics framework that enables a comprehensive analysis of urban

acoustic environments, going beyond time series to leverage a unique audio

data set that enables a more comprehensive analysis. Our contributions can

be summarized as follows: (1) A set of requirements, elicited in collaboration

with SONYC’s audio researchers, for visual exploration of large urban audio

sets. (2) A set of visual interactions that enables users to iteratively construct

audio machine learning models; (3) An interactive visual analysis framework,

Urban Rhapsody, that supports concept-based exploration of large collections

of audio recordings (such as the ones generated over the five-year deployment

of the SONYC sensor network). We illustrate this with two case studies set

in NYC, highlighting how our approach can be useful in tackling issues that

have generated intense public debate. Our framework is also available on

GitHub (https://github.com/VIDA-NYU/Urban-Rhapsody).

5.2 Background

According to the World Health Organization, in Western Europe alone, more

than 1 million healthy life-years are lost annually to environmental noise

pollution [180], and in NYC, an estimated 9 out of 10 adults are exposed

to excessive noise levels [172]. This impacts public health [95], social well-

being [93] and quality of life [64], as noise increases stress, sleep disruption,

annoyance and distraction [29, 96, 162, 180]. To mitigate this, governments

devise noise codes that typically consider SPL measurements in relation to time

of the day/week and location and impose regulations that aim at mitigating

the noise at the source (e.g., by erecting sound barriers around major roads or

modifying building designs) [2, 30, 95]. However, enforcing these codes is time-

consuming and costly, requiring trained inspectors to be present at sites to

make assessments and capture sound carefully using calibrated equipment [18].

Beyond this, noise pollution can be highly subjective [56], and so quantita-

tive SPL metrics may be insufficient [92, 195]. Because of this, there is a

shift towards understanding the source of the noise, and to consider context

103

in people’s perception of sounds [194, 234]. Such a “soundscape approach”

[31, 54, 184] views the acoustic environment as composed of both positive and

negative sources [32]. Data gathered using SONYC sensors offers a unique

opportunity to measure noise pollution quantitatively and additionally gain

insights into the acoustic environment’s qualitative characteristics. We can

therefore conduct structured assessments at scale, accounting for both SPL

and sound source. This raises important challenges (outlined in Section 5.4.2)

that we seek to address in this research. Urban Rhapsody is the first step

towards allowing domain experts to better understand the soundscape of

complex cities such as NYC.

5.3 Related Work

5.3.1 Urban visual analytics

Urban areas are a major source of data that have tremendous potentials to

improve policy making, enhance the lives of citizens, and pursue sustainable

development. Visualization systems have for long been an important tool for

the analysis of urban data [62, 272]. Several approaches use urban data to

study different properties of a city, such as air pollution [270], public utility

service problems [263], sunlight access [150], land use [190], human movement

patterns [122, 151, 178], transportation [7, 75, 105, 241, 260], and also the

relationship between these data sets [46, 60, 138]. More general tools, such

as ArcGIS [110], Urbane [63, 74], and Vis-A-Ware [182] have facilitated the

use of multiple urban data sets to help inform urban planning and decision

making process.

In our previous work, Time Lattice [156], we have tackled the problem of

noise pollution by proposing a data structure and visual interface that allowed

experts to explore a large data set composed of SPL dB measurements from

SONYC sensors. We only used SPL measurements without considering that

the soundscape of a city is composed of different sources and can be perceived

differently by different people. With Urban Rhapsody, our goal is to account

104

for the user’s knowledge and perception in the exploratory process of large

collections of urban sound recordings in a vocabulary-free approach, meaning

that users are free to explore the soundscape according to any concept they

create. To the best of our knowledge, Urban Rhapsody is the first visual

analytics system specifically designed to allow domain experts to explore a

large collection of sound recordings of an urban environment.

5.3.2 Environmental sound representation

In recent years, several large audio data sets have been released that have

moved the field of environmental machine listening forward [77, 86]. However,

many audio classification tasks do not map onto the class vocabulary of these

data sets and thus require additional labeling, which is time-consuming and

costly. To address this problem, machine listening practitioners have turned

to transfer learning [255] in recent years, which has been shown to be effective

for many audio classification tasks [8, 11, 37, 50, 91, 107, 120, 225]. In transfer

learning, models are typically pre-trained on large data sets using supervised

[11, 101] or self-supervised learning [8, 37, 107, 120, 225], and the knowledge

acquired during pre-training is re-used for tasks where data is limited. A

common method of re-using this knowledge is to treat the pre-trained models

as feature extractors, utilizing learned latent representations (i.e., embeddings)

from within the pre-trained models as the inputs to models with little or

no labeled data. Look, Listen, and Learn [8] is one such pre-trained model

whose embeddings were shown to be discriminative in several environmental

audio classification tasks [8, 37, 50, 245]. This model is pre-trained using

self-supervision on an auxiliary task of audio-visual correspondence. In this

work, we use OpenL3 [50], an open-source code of Look, Listen, and Learn,

as an audio feature extractor to transform each audio recording into a series

of embedding representations.

105

5.3.3 Machine-learning-aided multimedia exploration

Machine learning has opened a new horizon in data exploration across various

fields, with numerous systems making use of the powerful capabilities it

provides. For instance, Urban Mosaic [155] uses deep learning representations

to search for patterns in a large collection of street-level images. II-20 [258]

allows users to generate image classifiers using novel interactions. Previous

works tried to explore the semantic meaning of the features extracted by

deep learning models, as they do not always map into human-understandable

semantic features: Embedding Projector [215] and Latent Space Cartogra-

phy [131] enable the analysis of embedding spaces for multimedia data through

multidimensional projections [111, 142] to enable users to understand features

that might be encoded in the latent representations.

To create classification models that can recognize human-understandable

features in multimedia data sets, previous approaches employ active learning

frameworks leveraging the users as oracle annotators to annotate new samples

the system identified as the most informative. For example, previous studies

investigated the usefulness of active learning for labeling tasks [21] and its

application in other fields such as anomaly detection [124, 126], commuting

flow estimation [257], and image categorization [258]. These approaches often

guide the user on choosing the next subsets of the data to label next to

improve the performance of the model, which, in our case, can limit the user

in applying their previous understanding of the soundscape to label the con-

cepts [164]. Our proposal leverages a set of techniques presented in previous

works to enable users to better understand the spatiotemporal distribution

of events in acoustic recordings while accounting for their knowledge of the

soundscape to build concept-based classification models to gain insights into

the dynamics of the urban environment.

5.4 Sounds of New York City

The research reported in this paper was undertaken in conjunction with audio

and machine listening experts from the SONYC project [18], and utilizes

106

data generated by the project’s sensors. Our collaborators have background

in urban science and machine listening [37, 63, 155, 238]. In addition, the

project communicates their findings to the media [33] and works closely with

the NYC Department of Environmental Protection to understand their needs

and investigate new ways of monitoring and mitigating noise pollution.

5.4.1 A data set of urban sounds

The SONYC acoustic sensor network consists of more than 50 sensors deployed

around three boroughs of NYC: Manhattan, Brooklyn, and Queens. Figure 1.1

shows the spatial distribution of the sensors. These sensors are positioned

15 to 25 feet above the ground. To maintain the privacy of bystanders and

prevent the recording of intelligible conversations, the sensors do not record

continuously, but rather record 3 10-second recordings at random intervals

within each minute of a day (i.e., for a single day, each sensor will record 720

minutes worth of 10-second audio recordings uniformly distributed throughout

the 1440 minutes of the day). As of 2021, SONYC has collected approximately

1,700,000 hours of SPL data (stored as second or millisecond resolution

timeseries), and 877,000 hours of recorded audio. To extract a discriminative,

lower-dimensional representation of each 10-second recording, we employ

OpenL3 trained on an environmental sound subset of AudioSet [50]. OpenL3

is an open-source library for computing deep audio embeddings, developed by

researchers from SONYC, and its design choices were informed by the need

to classify sounds from urban environments. For each 10-second recording,

we use a hop size and window size of 1.0 second (with centered windows) to

compute 10 512-dimensional feature vectors. This produces a feature vector

that coarsely captures the general acoustic aspects of the environment.

5.4.2 Challenges

The complexity of the urban environment brings several challenges when it

comes to analyzing and extracting insights from urban sound data, especially

considering such a large data set as the one captured by SONYC.

107

Engine

Machinery impact

Non-machinery impact

Powered-saw

SP
L

(d
B)

Sp
ec

to
gr

am
Fr

am
e-

w
is

e
cl

as
si

fic
at

io
n

Alert signal

Music

Human voice

Dog

10-second clip

1-second frame

Figure 5.1: Spatial distribution of SONYC sensors (left) showing the coverage of
the city. Right image illustrates the data from a sensor located near a park in
Manhattan. Sensors record both the sound pressure level at each second (SPL dB),
as well as the environmental sounds (stored as 10-second clips). For each 1-second
frame in the clip (highlighted in red), we compute the classification considering
user-crated prototypes. The figure shows classes following standard urban audio
taxonomies.

Sound representation. In complex environments such as cities, many sound

classes seem quite similar, such as car alarms and sirens, but are distinct in

the noise code and should be treated as such. On top of that, when handling

sounds from cities, the acoustic environment changes by location and by time

within seasonal cycles. As a self-supervised method, OpenL3 does not need

human-generated labels to be trained, while still providing good sensitivity

to different urban sounds. However, it falls short of properly accounting for

all of the complexity of the soundscape of a city.

Mixture of sounds. Unlike images, where visual objects are opaque, sound

objects are conceptually transparent, meaning that multiple objects (sound

sources) can have energy at the same frequency [248]. This is especially

true in an environment as complex as cities, where sounds are emitted from

multiple sources, creating a soundscape that, albeit quite characteristic, is

108

very difficult to parse and understand. In other words, in a city, at any given

instant in time, a sound recording might have a mixture of background (e.g.,

bird songs, dog barks) and foreground sounds (e.g., engine, party, sirens).

Sound exploration. Again unlike images, there is no clear pictorial represen-

tation of audio data. This gap between audio data and visual representation is

challenging when building visual analytics systems. Visual objects are opaque

(a given pixel in a visual image corresponds to only one object), whereas sound

objects are transparent (multiple objects can have energy at the same fre-

quency). Sounds are therefore serial objects: when assessing an image, we can

visually scan it to identify each visual object in the scene, creating a visual map

of the objects that can help us fully understand the scene. Sounds only exist at

one moment in time; once the moment is gone, the sound is also gone. In other

words, a user can only observe a sound one moment at a time, unlike images

where we can observe multiple objects at a time. In spectrograms representa-

tion, similar neighboring pixels cannot be assumed to belong to the same object

(i.e., frequencies are non-locally distributed on the spectrogram [248]). As we

can notice, creating visual representations of sounds is a challenge, specifically

considering a scenario with multiple sound sources, such as urban soundscapes.

Sound labeling and classification. Although previously proposed classi-

fiers provide a reasonable link between embeddings and human-understandable

vocabulary, their class vocabularies are limited, providing a narrow view of

the rich and varied soundscape of the city, which is comprised of numerous

types of sound events. Furthermore, manually labeling sound data to be

used as groundtruth for model training is a laborious process. As previously

mentioned, sounds are serial objects where the user needs to listen to one at a

time, limiting the number of audio files that can be labelled in a short period of

time. Purely automated mechanisms, however, are prone to misclassifications

given the complexity of soundscapes.

Data size. Over the past five years, SONYC has generated more than 60 TB

of data, including high-resolution SPL timeseries and audio recordings. If

we consider the embeddings computed with OpenL3, we have 86,400 feature

vectors with size 512 (177 MB in total) per sensor per day. Any visualization

system must properly handle such data size to be interactive [132], either by

109

sampling, filtering or aggregating the data.

5.5 Requirements

In our collaboration with machine listening researchers, over the course of two

years in the context of the SONYC project, we established a set of require-

ments for a visual analytics tool to facilitate their analysis workflows. We then

validated the working system through interactive demo sessions exploring a

number of potential use cases. Underlying our work is the necessity to account

for user knowledge when exploring the urban soundscape for different concepts.

During these meetings, we identified the following main tasks that the experts

desire to perform with the tool: 1) Select and listen to sound recordings from a

set of sensors, considering different days of the week and time ranges; 2) Consid-

ering a query audio, quickly identify a set of possible similar sounds throughout

a long period; 3) Create and refine classification models that allow for search-

ing of complex sound scenes; 4) Assess classification performance interactively.

To accomplish the listed tasks, we identified the following system requirements:

[R1] Interactive identification and labeling of similar sounds. Given

the highly complex acoustic environment we observe in cities, audio represen-

tations cannot encode specific audio events that users might be interested in.

Moreover, the high-dimensional nature of audio representations makes it hard

to visually analyze such data, making multidimensional projection techniques

a standard in this process. However, in many cases, user-perceived similarities

between sets of audio frames (i.e., a one-second slice of the ten-second audio

snippet) might not be represented in the selected projection technique, e.g.,

similar frames are far apart in the projected space (low-dimensional space),

making it harder for users to find similar audio frames. Hence, finding similar

audio frames based on user’s perception is one of the requirements of the

Urban Rhapsody framework.

[R2] Projection steering based on user perception. When exploring

audio embeddings extracted from urban recordings through multidimensional

projections, we often recognize clusters that do not represent the user’s per-

110

ception of the soundscape. Based on the user’s understanding of the data set

expressed through labeled points, the system should provide the capability

of producing new projections that better encode the user’s perception.

[R3] Iterative creation of classification models. Considering that cur-

rent machine listening models present certain limitations, the system should

provide the capability to iteratively create new classification models based

on the data points labeled by the user (and, therefore, the user’s perception

of the soundscape). The system should also support assessing the evolution

of the model’s convergence through successive iterations.

[R4] Local and global sound perspectives. Audio embeddings might

possess certain characteristics that only become clear when analyzed locally or

globally. Then, it is important for the user to assess their local characteristics

and to relate one sound to its immediate neighborhood or distant clusters.

[R5] Match between audio and visual representations. Visualizing

audio files in the frequency domain is important for the user when assessing

the accuracy of both the embeddings and classifications. For instance, two

sounds might have very similar spectro-temporal patterns and classifications

but completely different embeddings; it is important, therefore, to further

assess and create hypotheses on what led to these different outputs.

[R6] Support interactive query times. The system should support in-

teractive queries to enable the easy and quick labeling of data points and the

creation of classification models.

5.6 Urban Rhapsody

To satisfy the previous requirements, we introduce Urban Rhapsody. A

visual analytics tool able to provide a human-centered exploration of the

urban soundscape using prototypes created on the fly through different in-

teraction mechanisms. Our description of the framework is broadly divided

into three parts. First, we describe our approach to generate classification

models (or prototypes) of different concepts denoting complex urban sound

scenes. Second, we describe the different components of Urban Rhapsody’s

111

visual interface (also see accompanying video), followed by a discussion of its

architecture and implementation.

5.6.1 Prototype-based interaction

In Urban Rhapsody, we would like to support the search for audio events based

on concepts and not only based on a single audio event. Here, we use the term

concept to refer to an abstract idea or a general representation of a category in

mind, such as “crowded street”, which can be perceived differently by people.

In one of our case studies, we describe a case where the user keeps refining

their concept of construction while annotating new sounds that together

compose the full picture of a construction. To allow for this kind of search, we

define prototypes, a structure composed of a classification model and a set of

representative audio frames that defines a user’s understanding of a concept.

The classification model learns how to distinguish between the audio frames

that are part of a given concept according to the user’s perception represented

by annotations made during the interaction process with the system. Once the

user starts labeling a specific concept in Urban Rhapsody, they can generate

a new classification model that will be trained using annotated frames as

input. Since our goal is to find occurrences of specific concepts in our data set,

we should train this model with a diverse enough sample of the data so it can

generalize well to different scenarios. Given this constraint, we train our model

to distinguish between two labels: positive (frame is part of the concept) and

negative (not part of the concept). For positive labels, we use all the frames

annotated as the concept we are interested in. For negative labels, we use

frames explicitly annotated as not being part of a concept and a random sample

of all frames in our data set twice as big as our set of positive-labeled frames.

The classifier we train in Urban Rhapsody is based on the classic random forest

algorithm using a standard parameter setting for audio classification [240].

However, any classification model capable of outputting a likelihood score of

a data point belonging to a class can be used in Urban Rhapsody. In this

version, the likelihood function is calculated as the average prediction score

across the trees in the forest. This interaction supports requirement R3.

112

Following R6, Urban Rhapsody must be capable of providing interactive

query times during the exploration process. However, the size of the data set

handled by our framework blocks us from filtering interesting audio frames

by scanning the entire data set and computing the prediction probability of a

given model to generate our visualizations. For this reason, after every model

refinement made by the user, we also calculate a set of representative audio

frames that will help us sample the data set to a smaller size before filtering

interesting points using the aforementioned classification model. We calculate

representative points of a concept by selecting all the points annotated as

being part of a concept by the user and running a density-based clustering

algorithm on the positive-annotated frames for a concept. For each cluster, we

calculate the frame closest to its centroid and add it to the set of representative

frames of that concept. The representative audio frames also help the users

keep track of the concept they are creating through their interaction with the

system. We enable the user to use these representative points as query input

for a concept search using an approximated nearest neighbors (ANN) query.

5.6.2 Visual interface

The visual interface was designed to provide the user with the ability to

browse through the entire data set, identify and annotate concepts present

in audio samples, and, finally, iteratively and interactively build prototype

models that generalize these concepts over the entire data set. Figure 5.2

shows the different components of the visual interface. Next, we discuss the

design of each visualization based on its functionality: provide easy navigation

through the audio collection, enable the annotation of audio concepts, allow

for the detailed inspection of individual audio samples and facilitate the

evaluation of prototype models.

Audio collection navigation. The interface implements several strategies

to enable navigating through our data set. The first is the Calendar View

(Figure 5.2(a)). This component presents a calendar of the year with each

cell representing a single day. Within each cell, we can visualize a bar chart

representing the distribution of frames of a specific concept during the four

113

(a)

(c)(b)

(d)

(e)

(f)

(g)

Figure 5.2: The Urban Rhapsody system visual interface: (a) Calendar View;
(b) Sensor Map and Distribution View; (c) Day View (projections); (d) Focused
View (spectrograms); (e) Frame Classification View; (f) Model Summary; (g)
Mixture Explorer.

time slices of a day, allowing for the fast identification of the daily distribution

of sounds. The bars of each cell are also colored according to the density of a

specific concept in a day (more examples in a day will lead to darker blue bars).

If a Calendar View cell is clicked, all the data corresponding to that specific

day is loaded and in the day view (Figure 5.2(c)). Using the Day View, we

can visualize the audio frames through the analysis of scatterplots generated

by projecting high-dimensional feature vectors (audio embeddings) into a two-

dimensional space using UMAP [142]. Although UMAP was the projection

technique used for this version of Urban Rhapsody, given its dimensionality

reduction capabilities, it is important to notice that Urban Rhapsody is

agnostic of projection technique. The adaptation of the system to better

accommodate experts’ needs in terms of projection techniques is trivial. Here,

the users can horizontally stack projections in three ways: reprojecting a

subset of the data available for a day (i.e., reproject specific clusters to capture

local structures of the data), removing a subset of the data, and reprojecting

the remaining points (useful for removing clusters representing sensor failure,

114

for example), and, lastly, steer the projections based on frames annotated

by the user using a semi-supervised dimensionality reduction algorithm [224]

that can learn a new low-dimensional space that better encodes the user’s

perception of the data (i.e., bringing frames with the same labels closer while

keeping the different ones distant from each other), therefore supporting R2.

The projections in the Day View are linked and allow for selecting points

through a bounding box or periods of the day. Selections update the Distribu-

tion View as well as the components designed for the individual inspection of

audio samples, the Focused and the Frame Classification Views, shown in Fig-

ure 5.2(d, e) are described later in this section. At last, the projected points,

each representing an audio frame, can be colored according to a likelihood of

belonging to a concept or user annotation. When a day is loaded, Urban Rhap-

sody automatically calculates a hierarchical clustering of the points and up-

dates the Mixture Explorer, represented in Figure 5.2(g) by a tree. Each node

of the tree represents a cluster found by the algorithm. Each node is subdivided

into subnodes, each being one concept that the user previously created. In the

example presented in Figure 5.2(g) each subnode is representing a concept (peo-

ple talking, birds, and siren from left to right) and is colored based on the aver-

age likelihood of the correspondent cluster contain the specific concept (darker

green for higher likelihoods). If a node is clicked, the corresponding cluster is

selected in the scatterplots and all the components of the interface are updated

accordingly. For example, the node where all subnodes are darker green is

where the user is more likely to find frames that contain all created concepts. It

is important to notice that hierarchical clustering is a powerful visual strategy

that enables the user to explore clusters of different sizes, both locally and glob-

ally (R4), and gain new insights into sound mixtures by focusing its inspection

on cluster where previously created concepts are more likely to be found.

Annotation of audio concepts. One of the requirements elicited with

domain experts is regarding the ability to annotate specific audio frames

(R1). To satisfy this requirement, Urban Rhapsody provides a mechanism to

annotate specific audio frames that works as follows: users can select specific

frames by using the selection mechanisms provided by the scatterplots or

select a cluster using the hierarchical tree. Once a selection is made, the users

115

can click on the labeling icon on top of the scatterplot to open a dialog that

will allow for the annotation of these frames with as many labels as they want

(positive labels). Also, users are able to annotate frames with negative labels,

to explicitly say that a selection of frames is not part of a specific concept.

This will help refine the prototype models when we find false positives during

the exploration process.

Inspection of audio samples. To inspect details of an audio recording se-

lected by the user during the exploration of the projections, Urban Rhapsody

contains two widgets with visualization metaphors commonly used by audio

experts: the Focused View (Figure 5.2(d)) and the Frame Classification View

(Figure 5.2(e)). The Focused View shows a spectrogram of the audio samples

selected in the projection. A spectrogram is a visual representation of the

magnitude of the short-time Fourier transform, which describes the signal’s

energy by frequency as it varies with time. It can be visually encoded in a

heatmatrix where each cell represents the intensity of a frequency in a given

time. For example, the spectrogram of an audio file containing the sound of

a siren contains wave patterns. Previous work investigated the usefulness of

spectrograms in representing audio classes for humans and its performance in

comparison to others standard audio visualizations [38]. We use this represen-

tation to allow the user to compare different sounds without having to listen

to multiple audio files. The Frame Classification View displays the likelihood

of observing a concept in the audio sample. In this way, the color of each cell

of the matrix represents the probability of observing different sound classes in

the associated audio frame. Finally, Urban Rhapsody allows the user to click

on the spectrogram to listen to the recording. This interaction is important to

bridge the gap between the visual representation and the actual audio (R5).

Evaluation of prototypes. As users keep creating and refining prototypes,

they can evaluate its performance by making use of several components of our

interface. First, for any given selection on the scatterplots, they can check a

histogram showing the distribution of a concept’s likelihood across the selected

points. If the histogram is shifted to the right, it means the selection has a

higher chance of belonging to a concept. Besides that, the users can assess the

robustness of models in the Model Summary View (Figure 5.2(f)) where we

116

present the evolution of the prototypes over the course of several refinements.

Once we create a new version of a labeled subset for a specific concept, we

train a new classification model to be part of the prototype and evaluate

old versions of the prototype’s classification model to assess the change in

prediction over time. At some point, the user can come to a conclusion that

labeling more points has no significant impact on the classification model and

then stop the process.

5.6.3 Analysis flow

The exploration process starts with the user querying the data set using any of

the three approaches we propose: select a frame from the examples we provide

in a Query View as input for the similarity query, upload their own audio

snippet and select a frame from this audio snippet, or query using one of the

created prototypes. For all three query approaches, the user is able to select

the number of frames the query will retrieve. Once the query is processed, the

Calendar View is updated, showing the density of a given class, or concept, on

each cell throughout the year (color), and its distribution within the day (bar

chart). Next, the user can select a specific day and load all the available data

for that day to further inspect the day’s soundscape using the scatterplots in

the Day View. At this point, the user can select specific regions of the scatter-

plot and listen to the correspondent audio frames, reproject specific regions of

the day scatterplot to focus on local structures, remove undesired clusters or

steer the scatterplot based on the annotation of frames. Also, color the points

by prototype probability or created annotations. These operations will help

users in two tasks: assess the performance of the prototypes they are creating

and find data points that should be labeled as any concept of interest. Follow-

ing that, it’s possible to create different prototypes and refine existing ones

based on new annotations the users are creating, either positive annotations

or negative. Meanwhile, when prototypes are created and refined, the Model

Summary gets updated, showing the change in prediction probability of the

models and the set of representative frames of a given concept. When the user

is confident about the prototype they are creating, they can reuse this proto-

117

type to query the entire data set and look for specific temporal patterns that

a specific concept is happening. This analysis flow denotes the importance of

having a user in the loop to evaluate the performance of the prototype models

as Urban Rhapsody allows for the creation of concepts that match the user

perception of the city’s soundscape, which can not be evaluated quantitatively.

5.6.4 System implementation

We decided to develop Urban Rhapsody following a client-server architecture.

We structured our application following microservices guidelines to ensure that

we could effortlessly add new features to the tool and scale its deployment to

make it available for the general public. The storage component keeps audio

recordings and their embeddings located in different folders following the same

naming convention for faster localization. Each audio file is also associated

with a set of metadata attributes with temporal and spatial information (time

of the recording and location of the sensor) that is kept in a separate database.

The core of our application is composed of several microservices. The data

server is responsible to serve audio files and spectrogram images. The web

server provides users with a bundle of our Angular web application. The user

server stores annotations on RocksDB [63]. The most complex services of our

system are the ML server and the ANN server. The first is responsible for

all machine-learning-related operations, such as multidimensional projections,

hierarchical clustering, and model training. Following R6, the operations

are processed using GPUs through RAPIDS libraries [197]. CPU-based li-

braries would not be able to handle such data-intensive operations required

by Urban Rhapsody. The ANN server is responsible for computing similarity

queries based on the euclidean distance between frames.

5.7 Case Studies

In this section, we demonstrate the application of Urban Rhapsody through

two case studies using data from the SONYC sensors. In doing so, we highlight

118

how the requirements listed in Section 5.5 are met in different tasks. The

first case study explores how Urban Rhapsody can facilitate the interactive

labeling and exploration of data for investigating out-of-hours construction

noise, a pressing issue facing many large cities. The second one highlights

another capability of Urban Rhapsody to facilitate searching for mixture of

sounds to explore the impact of anthropogenic noises such as siren on bird

songs. These case studies can be of interest to various stakeholders, from

the general public and advocacy groups to government agencies, such as the

Dept. of Environmental Protection.

5.7.1 After-hour construction noise

Construction noise is one of the primary sources of noise-related complaints

in NYC. As the city grows, new structures are built, old ones get renovated,

and economic pressures and deadlines lead developers to request the city for

permits allowing them to perform construction outside the regular workday

hours (i.e., 8 AM to 5 PM). In the past few years, this has been a major source

of dispute between NYC residents and developers [140], and this problem is

increasingly getting worse. In 2018, NYC’s Department of Buildings issued

around 67,000 after-hour permits, more than double the number of permits

issued in 2012. Although developers must follow strict noise guidelines during

after-hour constructions, the increase in the number of complaints related

to these types of disturbances indicates otherwise. Even though the city

constantly issues noise construction fines through manual inspections, the

after-hour nature of these noises makes it especially hard to monitor them.

This is a significant problem that needs to be addressed by cities and their

different departments, with severe political, social, and economic ramifications.

In this study, we use the SONYC network to understand the impact of

construction-related noises on the soundscape of NYC. Our first goal is to

assess if these noises were captured by our sensors, to facilitate noise code

enforcement activities. Secondly, we would like to use examples that we found

during our initial exploration to build a prototype capable of pointing us

to specific days and times where after-hour construction work might have

119
Br

oa
dw

ay
, N

YC

Drilling
Large engine
Powered saw

Audio recordings

H
ea

vy
-c

on
st

ru
ct

io
n

m
od

el
Co

ns
tr

uc
tio

n
m

od
el

Powered saw

Drilling
Powered saw

(c)

(b)(a)

Interactive labeling Model inferenceQuerying by audio sample

0 2 4 6 8 10 12 14 16 18 20 22 24

0 2 4 6 8 10 12 14 16 18 20 22 24

Hour distribution

Late at night
heavy-construction

noise

Late evening
construction noise

Hour distribution(e)

(d)(d)

Figure 5.3: We use Urban Rhapsody to assess after-hour construction in New York
City, first selecting audio recordings captured by sensors deployed around Broadway.
Urban Rhapsody allows users to query using an audio sample, and drill down to
days containing similar audios (a). Using the interactions provided by the tool,
we are able to create classification models according to a user’s perception of the
soundscape (b,c), and then use these models to classify the entire data set and look
for unusual events (d,e).

happened. We start by querying our data set for similar audio snippets

using one of the examples provided in the system containing the recording

of a powered saw (R1). Using the Calendar View, we can quickly observe

a day containing most of the similar audio excerpts according to our ANN

model (Figure 5.3(a, top)). We select that day, and Urban Rhapsody gener-

ates a UMAP projection of all the audio frames within that day (Figure 5.3(a,

bottom)). After a quick inspection of the projection scatterplot, we can notice

a set of distinctive clusters (highlighted in red). Using the tool’s interactions,

we start by selecting the one cluster containing most of the points retrieved

by the initial similarity query. By listening to a few recordings, we can notice

that the points belonging to this cluster are perceptually similar to a powered

saw, very common on construction sites (R2). We also notice that most of

these audio snippets were recorded around 8 AM, as the hour distribution

chart shows us. Figure 5.3(b,c) highlights the recordings that happened

around 8 AM, and it’s possible to again see different clusters. After listening

to recordings from each cluster, we noticed that each one of them represents

different sounds (powered saw, drilling machine, engine). At this point, we

can leverage Urban Rhapsody’s feature that allows us to create models on

the fly and decide whether to include certain sounds in our prototype (R3).

120

Once we label recordings from that specific day, we generate two construction

prototypes (with and without large engine noise). We can now use them to

guide the exploration through different days of the year. This step allows us to

speed up the search for similar sounds, without the need to listen to hours and

hours of soundscape audio files. Also, during this guided exploration, we can

adjust the prototype by labeling more points, either as negative or positive la-

bels, as we assess the model’s performance by listening to the recordings. This

interactive process is highlighted in Figure 5.3(b,c), for two different models.

After refining our models once, we listened to the representative snippets

of our prototypes and used them to look for unusual events. The calendar

heatmaps show the results of the prototype queries (Figure 5.3(d,e)) where

we can spot two interesting events. In February, we noticed that during two

days, construction work happened during the night (Figure 5.3(d)). And that,

during many days in October, the same engine noise started at 11 PM and

lasted for approximately 30 minutes (Figure 5.3(e)).

To further validate this finding, we used citizen complaints filled through

NYC’s 311 non-emergency service phone number. Interestingly, there were

actually a series of complaints reported on those two specific days of February.

The ability to intuitively create prototypes based on audio files listened in the

exploratory process sets Urban Rhapsody apart. Findings such as these not

only highlight the usefulness of a passive network of sensors (as opposed to

active sensors deployed in inspection visits), but also the usefulness of distin-

guishing different noises emitted from construction sites. Previous approaches,

like Noise Profiler [156], focus on the SPL characteristics, a useful but crude

measurement of noise. By enabling the exploration of specific types of noise,

Urban Rhapsody can 1) provide a clearer picture of the soundscape near a

construction site, 2) facilitate monitoring tasks carried out by enforcement

agencies, and 3) validate the accuracy of 311 complaints.

5.7.2 Birds in New York City

The impacts of urban noise, air pollution, and the built environment on

residents and migrating birds have been extensively studied [206]. There is

121
(a)

Querying by audio sample

Bird sound

Model evaluationInteractive labeling

May 28April 18April 12
(b) (c)

Figure 5.4: Interactive monitoring of the training process and refining the model.
(a) We run a query using our sample birds’ sound and analyze the clusters; (b)
Investigating the clusters on different days to detect and re-label false positive and
false negative instances, and refine the model; (c) The model evaluation indicates
that our prototype models are converging as we do further iterations of refinement.

a strand of research that specifically analyze birdsong to discover if exposure

to loud urban noise can lead to significant changes in their song traits and

the time and frequency of their chorus, specifically since birds use different

sounds to communicate, mate, and defend breeding territories and rely on

the vocal communication to sustain their lives [143, 214].

One of the main challenges in the majority of bioacoustics and avian behavior

studies is the costly and time-consuming nature of working with audio data,

which limits the duration and geographical extent of the research. The applica-

tion of machine learning in bird song classification is not new [141], but most of

the developed models are trained using specific sets of data, limiting the user

to a pre-defined set of labels, with no control over what the model perceives as

bird songs. This is specifically important in bird song studies since the model

can classify some sounds, such as whistling, as bird sounds and discard some

bird songs which are very different from what it was trained on [250]. In this

case study, we demonstrate how Urban Rhapsody can facilitate such studies

by providing a robust and easy to use solution where the user can search for

specific sounds among hundreds of hours of recordings, refine the results if

needed to reach the confidence level of interest, monitor the frequency and

changes in the song traits, and investigate the impact of anthropogenic noises

on birds. Sitting on the Atlantic Flyway, NYC offers great resting grounds for

birds traveling along the north-south migratory route in the Americas [55]. We

choose Washington Square Park, a popular local park situated in a dense and

122

M
ay 26 analysis

So
un

d
m

ix
tu

re
 a

na
ly

si
s

Te
m

po
ra

l d
is

tr
ib

ut
io

n

0 2 4 6 8 10 12 14 16 18 20 22 24 0 1 2 3 4 5 6 7 8 9 10

Hour distribution Birds model confidence

(b)

(a)

Early morning and
evening birds

Birds

Mixture

Siren

Figure 5.5: Looking for bird songs in two different Manhattan locations: (a) Edge
of Washington Square Park with high concentration of bird songs and (b) a street
corner on Broadway with very few instances of bird songs since we do not have
trees for birds to nest.

busy neighborhood of the Manhattan borough, with the natural environment

for birds to nest as well as the attributes representing a crowded and noisy ur-

ban environment [243]. The first step is to build our bird representation model.

We start our exploration by using one of the bird song examples provided in

the query view. Next, we select a day with high density of similar bird sounds.

As shown in Figure 5.4(a), we generate a UMAP projection of our selected

day on the Day View and see that majority of the bird songs are clustered on

the bottom region of the projection (blue points). Next, we create our first

representation model of bird songs to speed up our search across different

days (R1). We can find false positives and false negative examples throughout

this process, fix those and refine our prototype. For instance, we found out that

on April 18th, the model assigned a high likelihood to a small cluster of points

(Figure 5.4(b)). We investigate this cluster closely and realize they are not

bird songs, so we re-label these points, refine our model, make a new prediction

with updated weights, and run this process iteratively until the model reaches

a robust state (R2). In the Model Summary View (Figure 5.4(c)), we can see

that our new prototypes are converging: Our first model had the worst per-

formance, and as we continued refining, the difference between the prediction

probabilities of the labeled birds’ data set get smaller after each iteration (R3).

Using our refined model, we run a new query to explore the distribution and

patterns of bird songs near Washington Square Park over the course of one

year. The retrieved results clearly show two levels of seasonal patterns: a

123

daily pattern with peaks in the mornings and afternoons corresponding to the

dawn and dusk chorus times, and another pattern with peaks during spring to

early summer, when songbirds usually migrate, as illustrated in Figure 5.5(a).

This signifies the robust performance of the model in classifying birds. We

also look at the corner of Broadway and Waverly Pl., where we have no trees

on both sides of the street, to see if we can find similar patterns there. As

Figure 5.5(b) shows, we have very few instances of bird songs in that location

throughout 2017.

One useful aspect of Urban Rhapsody is the ability to analyze sound mixtures.

To investigate how the siren sound can impact or even halt the birds’ chorus,

we use Urban Rhapsody to query for dawn chorus times (6-11 AM) where

siren was also present. This allows us to discover whether loud sirens can halt

birds’ dawn chorus or whether birds in noisy urban areas like Manhattan local

parks are adapted to the level of noise [173, 174]. We can use the Mixture Ex-

plorer to differentiate between these two sounds, as illustrated by Figure 5.5(a,

bottom right). Notice that nodes containing bird songs, siren, or mixture

of both are clearly distinguishable with our visual encodings (R4). Drilling

down to this specific example (Figure 5.6), we can see that the birds continue

singing despite the loud siren (R5). This analysis can create a ground for

further research by bioacousticians and researchers in this field to investigate

whether this pattern is more prevalent in birds of specific species or whether

we can find incidents of ambient noise halting birds singing. Urban Rhapsody

helped us to iteratively refine our model, track the sounds of interest and

search for a combination of sounds across a large data set, detect the pattern

Summer dayWinter day

Birds Siren

Mixture

Figure 5.6: Spectrogram showing a winter day with no bird song, a summer day with
birds’ singing and the selected day in summer when birds dawn chorus continued
despite loud siren.

124

and drill down to the exact moments to listen and investigate more.

125

5.8 Discussion and Conclusion

We have presented Urban Rhapsody, a novel interactive system for seamlessly

exploring large audio data sets, based on user-generated concepts. Leveraging

machine learning techniques, Urban Rhapsody supports labeling and analysis

at scale, while our multilevel visualization approach enables the inspection

of temporal patterns at varying levels of granularity. By enabling users to

interactively label data based on their knowledge, Urban Rhapsody can be

used to augment self-supervised methods that might not account for audio

complexity. We illustrate its potential through data collected by the SONYC

project. However, Urban Rhapsody can be applied to other longitudinal

spatiotemporal acoustic data (e.g., bioacustics [68, 149]), and to support this

we made the tool available on GitHub. We hope this will encourage researchers

to use it in many different contexts and further develop the code base.

Limitations. While we define interactivity based on benchmarks for querying

large data [14], we also identify three potential bottlenecks: similarity search,

model training, and projection generation. Urban Rhapsody responds to

similarity queries by returning up to 10,000 points in less than one second

(for the examples provided as initial query seeds [67]). However, a one-time

preprocessing computation is required to generate indices. This takes on

average one hour per sensor/year and needs 9 GB of memory space (for

sensors with low rates of missing data). GPU implementations [197, 198]

achieve response times of under one second when loading Day View selections

and for inference of created concept models. Deploying Urban Rhapsody to

handle data from alternate sensor networks requires sufficient memory space

to handle query indices, GPU capabilities to train models, and connectivity

to support client-server architectures.

Expert feedback. Analyzing large collections of audio data is a challenging

task, in which views into the data can be limited. The number of classes

classifiers detect may be small, not matched to the task at hand, or too coarse-

grained. Deep audio embeddings help to distill the semantics of audio to a

smaller number of dimensions, but they are still very opaque and not easily

interpretable. In addition, translation between modalities (e.g., using visual

126

tools to explore audio data) is also highly challenging, and yet we know that

it can be very effective. Our collaborators highlighted that Urban Rhapsody

helps overcome these challenges by enabling interactive exploration, labeling,

clustering, and reprojection of collections of audio data; and supports insights

into models, labeled data, and previously unseen patterns within unlabeled

data.

Future work. We plan to investigate whether Urban Rhapsody can accu-

rately and efficiently represent concepts matching the user’s mental model

of their data. To investigate this we plan to conduct a large-scale user study

with machine learning and audio researchers. While previous research [38]

shows that spectrogram visualizations lead to high annotation accuracy at low

time and labor costs, further investigation is also needed to explore additional

visualization metaphors (e.g., to summarize longer periods of audio record-

ings). We will also explore how the analyses supported by systems such as

Urban Rhapsody can useful to public officials and community representatives.

Conclusion. Urban Rhapsody is an interactive visual analytics tool for gain-

ing insight into large collections of audio data, which we have demonstrated

through use cases that characterize the acoustic environment of NYC. We be-

lieve that Urban Rhapsody offers an important step in moving beyond simple

metrics, such as SPL, and will be of value to researchers in human-centered

machine learning, acoustics, and urban science.

127

Chapter 6

Conclusions and Future Work

6.1 Summary of Work

This thesis proposes several interactive frameworks to tackle the growing

challenge of interpreting the complex, heterogeneous data streams captured

by ubiquitous sensors. The work puts forward a series of novel interactive

frameworks designed to empower domain specialists to explore and derive

insights from this data. The primary contributions include: ARGUS, a vi-

sual analytics system for debugging the intricate interplay between human

actions and AI model outputs in augmented reality task-guidance systems;

the StreetAware Dataset, a unique high-resolution, synchronized, multimodal

collection of video, audio, and LiDAR data from New York City intersections

designed to study complex urban dynamics; Crossroads, a pedestrian-focused

visual analytics system that uses the StreetAware data to analyze intersection

safety through automatic data enrichment and human-in-the-loop trajectory

refinement; and Urban Rhapsody, a framework for the large-scale interac-

tive exploration and classification of urban soundscapes. Together, these

contributions advance the overarching goal of developing specialized visual

analytics tools that make complex, real-world multimodal data accessible and

actionable for experts across various domains.

128

6.2 Future work

The work in this thesis aligns with a broader effort within the visualization

community to develop powerful yet accessible visual analytics (VA) systems.

The goal of this movement is to bridge the gap between complex data and

human understanding by combining automated computational methods with

interactive visual interfaces. However, the creation of such systems is a

challenging task. It demands a wide range of skills, spanning from software

engineering and algorithm design to user-centered design. Also, this process

must be done in close partnership with domain specialists. The result of

such a complex process is that the field is populated with many bespoke

VA systems built for a single purpose. While often effective for their initial

goal, these one-off solutions are frequently difficult to adapt, reproduce, or

build upon, which ultimately reduces their long-term value and slows down

cumulative progress in the field and its application to other disciplines.

Over the past two decades, the visualization community has made significant

advancements in developing tools to facilitate the creation of custom data

visualizations. This ecosystem ranges from low-level, expressive libraries like

[26], which allow developers a more flexible control over SVG-based graphics,

to high-level declarative grammars like Vega-Lite [?], which enable the rapid

generation of complex charts from concise JSON specifications. Other notable

toolkits such as Plotly, ECharts, and deck.gl have further democratized vi-

sualization development by providing pre-packaged components for common

chart types and high-performance geospatial rendering. While these general-

purpose tools are undeniably powerful and flexible, they are not inherently

optimized for the unique demands of spatiotemporal data, a cornerstone of

Urban Analytics. Analyzing this type of data effectively often requires highly

interactive and coordinated multiple-view interfaces, where selections in one

view (e.g., a specific time span on a timeline) dynamically filter and update

the data displayed in another (e.g., a map showing geographic locations).

Implementing this brushing-and-linking behavior across spatial and temporal

dimensions requires significant engineering, presenting a steep learning curve

and a substantial development burden that hinders rapid, exploratory analysis.

129

A further challenge lies in the disconnect between these visualization libraries

and the standard workflow of a data scientist. Jupyter notebooks have become

the de facto environment for data exploration, modeling, and analysis. While

several libraries, such as anywidgets, ipywidgets, bqplot, and ipyleaflet, have

emerged to enable interactive visualizations directly within a notebook, they

often provide low-level components. A data scientist wishing to build querying

capabilities on spatiotemporal data must still manually wire together multiple

interactive widgets, managing state and event handling. This development

effort detracts from the primary task of data analysis and creates a significant

barrier. This challenge creates a need for a high-level paradigm that seamlessly

integrates into the notebook environment, allowing data scientists to generate

interactive spatiotemporal visualizations with minimal code and without

having to switch contexts to a full-fledged web development environment.

6.2.1 PyAutark: A High-level Approach to Create Spa-

tiotemporal Urban Visualizations

To start addressing the challenge of creating more reusable and accessible VA

systems for spatiotemporal data, we have been designing a novel high-level

Python library to bridge the gap between urban data analysis and interactive

visualization. PyAutark provides a declarative paradigm tailored explicitly for

creating visual analytics applications for spatiotemporal data directly within

a data scientist’s native environment. The library is built to empower urban

data scientists to rapidly develop and deploy coordinated multi-view interfaces

for exploring city-scale datasets, such as taxi trips, with just a few lines of

Python code, lowering the barrier to entry for creating exploratory tools. This

uses the urban domain as a primary testbed—a compelling choice for several

reasons. From a societal perspective, with the majority of the world’s popula-

tion projected to live in cities by 2050, urban challenges like transportation and

pollution are becoming increasingly critical. From a domain perspective, the

interconnected nature of urban problems necessitates the integration of diverse

datasets, making them ideal candidates for visual analytics. Indeed, VA sys-

tems have been instrumental in tackling a wide range of urban issues, yet this

130

domain also exemplifies the problem of bespoke, hard-to-replicate solutions.

Figure 6.1: Usage scenario of PyAutark. In a few lines of code, users can explore
urban spatiotemporal datasets supported by city infrastructure data. A and B show
the code needed to generate the interactive spatiotemporal visualization provided
by PyAutark. C shows the distribution of taxi pickups around parks in lower
Manhattan. D shows taxi trip data projected onto Manhattan’s road network.

The main principle of PyAutark is its ability to contextualize thematic data

by projecting it onto physical urban layers. The library’s design is built

131

around the concept of mapping geolocated datasets—such as taxi trips, noise

complaints, or crime occurrences—onto spatial canvases that represent the city

structure. These canvases can be 2D layers, like road networks or neighbor-

hood polygons, or rich 3D layers representing building geometries. PyAutark’s

main capability is to abstract away the complex spatial computations (e.g.,

point-in-polygon aggregation, spatial joins) and rendering logic required for

these projections. This allows a data scientist to, for example, take a raw

dataset of taxi trips and, with a single command, visualize the trip density

aggregated by neighborhood, or project pick-up and drop-off counts directly

onto a 3D model of the city’s buildings. This powerful feature of mapping

dynamic data onto static physical layers provides immediate spatial context,

transforming raw data points into an interpretable urban narrative and setting

the stage for a more intuitive and powerful analytical workflow.

Figure 6.1 shows how PyAutark can be used to facilitate the exploration of

spatiotemporal datasets. In this example, the user, working on a Jupyter

Notebook environment, is interested in understanding the distribution of

taxi pickups in Manhattan. The user starts by selecting the urban layers

they are interested in using as a canvas to project their thematic data, taxi

pickups in this example. Fig. 6.1-A shows that the user selected three different

layers (parks, buildings, roads) that will be automatically downloaded from

OpenStreetMaps using the Overpass API. Following the definition of the

urban layers of interest, the user loads their thematic data by providing a

name to the dataset and the location of the data on their local machine

(Fig. 6.1-B). Once the user tells PyAutark to render the current configuration,

an interactive visualization will be displayed in the notebook cell output.

PyAutark will create a calendar widget in the top-right corner, allowing users

to look at the temporal distribution of the taxi trips. Once a cell representing

a day is clicked on the calendar widget, the taxi pickups will be projected onto

one of the urban layers based on the user’s selection. In (Fig. 6.1-C), the user’s

intention was to understand which park has the most number of taxi pickups

around it, by projecting the taxi pickups data onto the closest park area for

each trip, PyAutark colors the park areas with a color scale representing the

density of taxi pickups. It becomes visible that Battery Park is the park

132

that attracts the highest number of taxi pickups. The same can be done by

projecting the taxi pickup data to the road network, as presented in Fig. 6.1-D.

The development of PyAutark represents a first step toward a general-purpose

tool designed to democratize the exploration of spatiotemporal data. By

providing a high-level paradigm that integrates directly into the data sci-

ence ecosystem, it begins to lower the barriers that have historically made

sophisticated visual analytics an exclusive domain of visualization experts.

However, this is an ongoing effort. For PyAutark to fulfill its potential, future

work will focus on expanding its core capabilities. Key priorities include

adding support for flexible temporal aggregations—allowing users to seam-

lessly switch between daily, weekly, and monthly views—and enabling the

composition of more complex dashboards with multiple linked widgets. As

the library evolves, the ultimate goal is to foster a robust, community-driven

tool that empowers researchers and practitioners across disciplines to unlock

the insights hidden within their spatiotemporal data.

133

Bibliography

[1] Gstreamer. accessed on 20 February 2023.

[2] Technology for a quieter America, National Academy of Engineering.

Technical report, Technical report, NAEPR-06-01-A, 2007.

[3] F. H. Administration. Navigating safety at unsignalized intersections.

Public Roads, 79(4), January/February 2016.

[4] N. Aharon, R. Orfaig, and B.-Z. Bobrovsky. Bot-sort: Robust associa-

tions multi-pedestrian tracking. arXiv preprint arXiv:2206.14651, 2022.

[5] S. Ahmed, M. Huda, S. Rajbhandari, C. Saha, M. Elshaw, and

S. Kanarachos. Pedestrian and cyclist detection and intent estimation

for autonomous vehicles: A survey. Appl. Sci., 9(11):2335, 2019.

[6] W. Aigner, S. Miksch, H. Schumann, and C. Tominski. Visualiza-

tion of Time-Oriented Data. Human–Computer Interaction Series.

Springer-Verlag, London, 2011.

[7] G. Andrienko and N. Andrienko. Spatio-temporal aggregation for

visual analysis of movements. In 2008 IEEE Symposium on Visual

Analytics Science and Technology, pages 51–58. IEEE, 2008.

[8] R. Arandjelovic and A. Zisserman. Look, listen and learn. In

Proceedings of the IEEE International Conference on Computer Vision,

pages 609–617, 2017.

[9] J. Arellana, S. Fernández, M. Figueroa, and V. Cantillo. Analyzing

pedestrian behavior when crossing urban roads by combining rp and sp

134

data. Transportation research part F: traffic psychology and behaviour,

85:259–275, 2022.

[10] ARGUS. Augmented reality guidance and user-modeling system.

https://github.com/VIDA-NYU/ARGUS, 2023.

[11] Y. Aytar, C. Vondrick, and A. Torralba. Soundnet: Learning sound rep-

resentations from unlabeled video. arXiv preprint ID:1610.09001, 2016.

[12] A. L. Ballardini, A. Hernandez Saz, S. Carrasco Limeros, J. Lorenzo,

I. Parra Alonso, N. Hernandez Parra, I. Garćıa Daza, and M. A. Sotelo.

Urban intersection classification: A comparative analysis. Sensors,

21(18):6269, 2021.

[13] T. Banerjee, K. Chen, A. Almaraz, R. Sengupta, Y. Karnati, B. Grame,

E. Posadas, S. Poddar, R. Schenck, J. Dilmore, S. Srinivasan,

A. Rangarajan, and S. Ranka. A modern intersection data analytics

system for pedestrian and vehicular safety. In 2022 IEEE 25th

International Conference on Intelligent Transportation Systems (ITSC),

pages 3117–3124, 2022.

[14] L. Battle, P. Eichmann, M. Angelini, T. Catarci, G. Santucci, Y. Zheng,

C. Binnig, J.-D. Fekete, and D. Moritz. Database benchmarking for

supporting real-time interactive querying of large data. In Proceedings

of the 2020 International Conference on Management of Data, SIGMOD

’20, pages 1571–1587. ACM, 2020.

[15] L. E. Baum and T. Petrie. Statistical inference for probabilistic

functions of finite state markov chains. The annals of mathematical

statistics, 37(6):1554–1563, 1966.

[16] R. Beams, E. Brown, W.-C. Cheng, J. S. Joyner, A. S. Kim, K. Kontson,

D. Amiras, T. Baeuerle, W. Greenleaf, R. J. Grossmann, A. Gupta,

C. Hamilton, H. Hua, T. T. Huynh, C. Leuze, S. B. Murthi, J. Penczek,

J. Silva, B. Spiegel, A. Varshney, and A. Badano. Evaluation Challenges

for the Application of Extended Reality Devices in Medicine. Journal

of Digital Imaging, 35(5):1409–1418, 2022.

135

[17] M. Becher, D. Herr, C. Müller, K. Kurzhals, G. Reina, L. Wagner,

T. Ertl, and D. Weiskopf. Situated Visual Analysis and Live Monitoring

for Manufacturing. IEEE Computer Graphics and Applications,

42(2):33–44, 2022.

[18] J. P. Bello, C. Silva, O. Nov, R. L. Dubois, A. Arora, J. Salamon,

C. Mydlarz, and H. Doraiswamy. Sonyc: A system for monitoring,

analyzing, and mitigating urban noise pollution. Communications of

the ACM, 62(2):68–77, 2019.

[19] A. Ben Khalifa, I. Alouani, M. Mahjoub, and A. Rivenq. A novel multi-

view pedestrian detection database for collaborative intelligent trans-

portation systems. Future Gener. Comput. Syst., 113:506–527, 2020.

[20] B. Benjdira, A. Koubaa, A. T. Azar, Z. Khan, A. Ammar, and

W. Boulila. Tau: A framework for video-based traffic analytics lever-

aging artificial intelligence and unmanned aerial systems. Engineering

applications of artificial intelligence, 114:105095, 2022.

[21] J. Bernard, M. Hutter, M. Zeppelzauer, D. Fellner, and M. Sedlmair.

Comparing visual-interactive labeling with active learning: An

experimental study. IEEE Transactions on Visualization and Computer

Graphics, 24(1):298–308, 2017.

[22] I. M. Bernhoft and G. Carstensen. Preferences and behaviour of

pedestrians and cyclists by age and gender. Transportation Research

Part F: Traffic Psychology and Behaviour, 11(2):83–95, 2008.

[23] H. Bi, T. Mao, Z. Wang, and Z. Deng. A deep learning-based framework

for intersectional traffic simulation and editing. IEEE Transactions

on Visualization and Computer Graphics, 26(7):2335–2348, 2020.

[24] D. Bohus, S. Andrist, A. Feniello, N. Saw, M. Jalobeanu, P. Sweeney,

A. L. Thompson, and E. Horvitz. Platform for situated intelligence.

CoRR, abs/2103.15975, 2021.

[25] M. Bostock. D3.js. https://d3js.org/.

136

[26] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven docu-

ments. IEEE Transactions on Visualization and Computer Graphics,

17(12):2301–2309, 2011.

[27] E. Bozkir, O. Günlü, W. Fuhl, R. F. Schaefer, and E. Kasneci.

Differential privacy for eye tracking with temporal correlations. PLOS

ONE, 16(8):1–22, 2021.

[28] M. Braun, S. Krebs, F. Flohr, and D. M. Gavrila. The eurocity persons

dataset: A novel benchmark for object detection. arXiv, 2018.

[29] A. Bronzaft. Neighborhood noise and its consequences. Survey Research

Unit, School of Public Affairs, Baruch College, New York, 2007.

[30] A. L. Bronzaft and L. Hagler. Noise: The invisible pollutant that

cannot be ignored. In Emerging Environmental Technologies, Volume

II, pages 75–96. Springer, 2010.

[31] A. L. Brown. Soundscapes and environmental noise management.

Noise Control Engineering Journal, 58(5):493–500, 2010.

[32] A. L. Brown. A review of progress in soundscapes and an approach to

soundscape planning. International Journal of Acoustics and Vibration,

17(2):73–81, 2012.

[33] Q. Bui and E. Badger. The Coronavirus Quieted City Noise. Listen

to What’s Left. The New York Times, May 2020.

[34] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,

A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom. nuscenes: A

multimodal dataset for autonomous driving. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 11621–11631, Long Beach, CA, USA, June 2019.

[35] Z. Cai and N. Vasconcelos. Cascade R-CNN: delving into high quality

object detection. arXiv, 2017.

137

[36] M. Cartwright, J. Cramer, A. E. M. Méndez, Y. Wang, H.-H. Wu,

V. Lostanlen, M. Fuentes, G. Dove, C. Mydlarz, J. Salamon, et al.

SONYC-UST-V2: an urban sound tagging dataset with spatiotemporal

context. arXiv, 2020.

[37] M. Cartwright, J. Cramer, J. Salamon, and J. P. Bello. TriCycle: Audio

representation learning from sensor network data using self-supervision.

In 2019 IEEE Workshop on Applications of Signal Processing to Audio

and Acoustics (WASPAA), pages 278–282. IEEE, 2019.

[38] M. Cartwright, A. Seals, J. Salamon, A. Williams, S. Mikloska, D. Mac-

Connell, E. Law, J. P. Bello, and O. Nov. Seeing sound: Investigating

the effects of visualizations and complexity on crowdsourced audio

annotations. Proceedings of the ACM on Human-Computer Interaction,

1(CSCW):1–21, 2017.

[39] T. Caudell and D. Mizell. Augmented reality: an application of

heads-up display technology to manual manufacturing processes. In

Proceedings of the Twenty-Fifth Hawaii International Conference on

System Sciences, volume ii, pages 659–669, 1992.

[40] A. Chakraborty, V. Stamatescu, S. C. Wong, G. B. Wigley, and D. A.

Kearney. A data set for evaluating the performance of multi-class

multi-object video tracking. In Proceedings of the Automatic Target

Recognition XXVII, volume 10202 of Cergy-Pontoise, France, pages

112–120, Anaheim, CA, USA, April 2017. SPIE.

[41] P. Charitidis, S. Moschos, A. Pipertzis, I. J. Theologou, M. Michailidis,

S. Doropoulos, C. Diou, and S. Vologiannidis. Streetscouting: A deep

learning platform for automatic detection and geotagging of urban

features from street-level images. Appl. Sci., 13(1):266, 2023.

[42] L. Chen, Y. Lu, Q. Sheng, Y. Ye, R. Wang, and Y. Liu. Estimating

pedestrian volume using street view images: A large-scale validation

test. Comput. Environ. Urban Syst., 81:101481, 2020.

138

[43] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam.

Encoder-decoder with atrous separable convolution for semantic image

segmentation. arXiv, 2018.

[44] R. Chen, J. Hu, M. W. Levin, and D. Rey. Stability-based analysis of

autonomous intersection management with pedestrians. Transportation

research part C: emerging technologies, 114:463–483, 2020.

[45] B. Cheng, B. Xiao, J. Wang, H. Shi, T. S. Huang, and L. Zhang.

Higherhrnet: Scale-aware representation learning for bottom-up human

pose estimation, 2019.

[46] F. Chirigati, H. Doraiswamy, T. Damoulas, and J. Freire. Data

polygamy: the many-many relationships among urban spatio-temporal

data sets. In Procedings of the 2016 International Conference on

Management of Data, pages 1011–1025, 2016.

[47] City Report, Inc. New york rolling out noise law, listening tech for

souped-up speedsters. accessed on 16 January 2023.

[48] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-

nenson, U. Franke, S. Roth, and B. Schiele. The cityscapes dataset

for semantic urban scene understanding. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages

3213–3223, Las Vegas, NV, USA, June 2016.

[49] K. Corona, K. Osterdahl, R. Collins, and A. Hoogs. MEVA: A large-scale

multiview, multimodal video dataset for activity detection. In Proceed-

ings of the IEEE/CVF Winter Conference on Applications of Computer

Vision, pages 1060–1068, Snowmass Village, CO, USA, March 2020.

[50] J. Cramer, H.-H. Wu, J. Salamon, and J. P. Bello. Look, listen, and

learn more: Design choices for deep audio embeddings. In 2019 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 3852–3856. IEEE, 2019.

139

[51] K. Dahmane, N. Essoukri Ben Amara, P. Duthon, F. Bernardin,

M. Colomb, and F. Chausse. The cerema pedestrian database: A

specific database in adverse weather conditions to evaluate computer

vision pedestrian detectors. In Proceedings of the 2016 7th International

Conference on Sciences of Electronics, Technologies of Information and

Telecommunications (SETIT), pages 472–477, Hammamet, Tunisia,

December 2016.

[52] DARPA. Perceptually-enabled task guidance (PTG). https://www.

darpa.mil/program/perceptually-enabled-task-guidance.

[53] B. David-John, D. Hosfelt, K. Butler, and E. Jain. A privacy-preserving

approach to streaming eye-tracking data. IEEE Transactions on

Visualization and Computer Graphics, 27(5):2555–2565, 2021.

[54] W. J. Davies, M. D. Adams, N. S. Bruce, R. Cain, A. Carlyle,

P. Cusack, D. A. Hall, K. I. Hume, A. Irwin, and P. Jennings.

Perception of soundscapes: An interdisciplinary approach. Applied

acoustics, 74(2):224–231, 2013.

[55] L. Day and D. Riepe. Field Guide to the Neighborhood Birds of New

York City. JHU Press, 2015.

[56] K. M. de Paiva Vianna, M. R. A. Cardoso, and R. M. C. Rodrigues.

Noise pollution and annoyance: An urban soundscapes study. Noise

& Health, 17(76):125, 2015.

[57] T. Dema, M. Brereton, J. L. Cappadonna, P. Roe, A. Truskinger,

and J. Zhang. Collaborative exploration and sensemaking of big

environmental sound data. Computer Supported Cooperative Work,

26(4–6):693–731, 2017.

[58] J. Deng, J. Guo, Y. Zhou, J. Yu, I. Kotsia, and S. Zafeiriou. Retinaface:

Single-stage dense face localisation in the wild. arXiv, 2019.

[59] Z. Deng, D. Weng, S. Liu, Y. Tian, M. Xu, and Y. Wu. A survey of

urban visual analytics: Advances and future directions. Computational

Visual Media, 9(1):3–39, 2023.

140

[60] Z. Deng, D. Weng, X. Xie, J. Bao, Y. Zheng, M. Xu, W. Chen, and

Y. Wu. Compass: Towards better causal analysis of urban time

series. IEEE Transactions on Visualization and Computer Graphics,

28(1):1051–1061, 2021.

[61] D. Doiron, E. Setton, J. Brook, Y. Kestens, G. Mccormack, M. Winters,

M. Shooshtari, S. Azami, and D. Fuller. Predicting walking-to-work

using street-level imagery and deep learning in seven canadian cities.

Sci. Rep., 12:18380, 2022.

[62] H. Doraiswamy, J. Freire, M. Lage, F. Miranda, and C. Silva.

Spatio-temporal urban data analysis: A visual analytics perspective.

IEEE Computer Graphics and Applications, 38(5):26–35, 2018.

[63] H. Doraiswamy, E. Tzirita Zacharatou, F. Miranda, M. Lage, A. Ail-

amaki, C. T. Silva, and J. Freire. Interactive visual exploration of

spatio-temporal urban data sets using urbane. In Proceedings of the

2018 International Conference on Management of Data, SIGMOD ’18,

pages 1693–1696. ACM, 2018.

[64] J. Dratva, E. Zemp, D. F. Dietrich, P.-O. Bridevaux, T. Rochat,

C. Schindler, and M. W. Gerbase. Impact of road traffic noise annoyance

on health-related quality of life: Results from a population-based study.

Quality of Life Research, 19(1):37–46, 2010.

[65] Y. Duan, C. Yang, H. Chen, W. Yan, and H. Li. Low-complexity point

cloud denoising for lidar by pca-based dimension reduction. Optics

Communications, 482:126567, 2021.

[66] S. El Hamdani, N. Benamar, and M. Younis. Pedestrian support in

intelligent transportation systems: Challenges, solutions and open

issues. Transportation Research Part C: Emerging Technologies,

121:102856, 2020.

[67] Faiss. URL: https://faiss.ai/.

141

[68] A. Farnsworth, S. Kelling, V. Lostanlen, J. Salamon, A. Cramer, and

J. P. Bello. BirdVox-296h: a large-scale dataset for detection and

classification of flight calls. Dec. 2021.

[69] C. Feichtenhofer, H. Fan, J. Malik, and K. He. Slowfast networks

for video recognition. In Proceedings of the IEEE/CVF international

conference on computer vision, pages 6202–6211, 2019.

[70] C. Felix, S. L. Franconeri, and E. Bertini. Taking word clouds

apart: An empirical investigation of the design space for keyword

summaries. IEEE Transactions on Visualization and Computer

Graphics, 24:657–666, 2018.

[71] Z. Feng, H. Qu, S.-H. Yang, Y. Ding, and J. Song. A survey of visual

analytics in urban area. Expert Systems, 39(9):e13065, 2022.

[72] I. Fernández del Amo, J. A. Erkoyuncu, R. Roy, and S. Wilding.

Augmented Reality in Maintenance: An information-centred design

framework. Procedia Manufacturing, 19:148–155, 2018.

[73] L. Ferreira, G. Moreira, M. Hosseini, M. Lage, N. Ferreira, and

F. Miranda. Assessing the landscape of toolkits, frameworks, and

authoring tools for urban visual analytics systems. Computers &

Graphics, 123:104013, 2024.

[74] N. Ferreira, M. Lage, H. Doraiswamy, H. Vo, L. Wilson, H. Werner,

M. Park, and C. Silva. Urbane: A 3D framework to support data driven

decision making in urban development. In 2015 IEEE Conference on

Visual Analytics Science and Technology (VAST), pages 97–104. IEEE,

2015.

[75] N. Ferreira, J. Poco, H. T. Vo, J. Freire, and C. T. Silva. Visual

exploration of big spatio-temporal urban data: A study of new york

city taxi trips. IEEE Transactions on Visualization and Computer

Graphics, 19(12):2149–2158, 2013.

142

[76] P. Fleck, A. Sousa Calepso, S. Hubenschmid, M. Sedlmair, and

D. Schmalstieg. RagRug: A Toolkit for Situated Analytics. IEEE

Transactions on Visualization and Computer Graphics, pages 1–1, 2022.

[77] E. Fonseca, X. Favory, J. Pons, F. Font, and X. Serra. FSD50k: an open

dataset of human-labeled sound events. arXiv preprint ID:2010.00475,

2020.

[78] M. Fourkiotis, C. Kazaklari, A. Kopsacheilis, and I. Politis. Applying

deep learning techniques for the prediction of pedestrian behaviour

on crossings with countdown signal timers. Transp. Res. Procedia,

60:536–543, 2022.

[79] Foxglove. Foxglove - Visualizing and debugging your robotics data.

[80] M. Fuentes, B. Steers, P. Zinemanas, M. Rocamora, L. Bondi,

J. Wilkins, Q. Shi, Y. Hou, S. Das, X. Serra, et al. Urban sound & sight:

Dataset and benchmark for audio–visual urban scene understanding. In

Proceedings of the ICASSP 2022–2022 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 141–145,

Singapore, May 2022.

[81] M. Funk, S. Mayer, and A. Schmidt. Using in-situ projection to

support cognitively impaired workers at the workplace. In Proceedings

of the 17th international ACM SIGACCESS conference on Computers

& accessibility, pages 185–192, 2015.

[82] A. Fyhri, H. B. Sundfør, T. Bjørnskau, and A. Laureshyn. Safety

in numbers for cyclists—conclusions from a multidisciplinary study

of seasonal change in interplay and conflicts. Accident Analysis &

Prevention, 105:124–133, 2017.

[83] T. Gandhi and M. M. Trivedi. Pedestrian protection systems: Issues,

survey, and challenges. IEEE Transactions on Intelligent Transportation

Systems, 8(3):413–430, 2007.

143

[84] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous

driving? the kitti vision benchmark suite. In Proceedings of the 2012

IEEE Conference on Computer Vision and Pattern Recognition, pages

3354–3361, Providence, RI, USA, June 2012.

[85] J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen, W. Lawrence,

R. C. Moore, M. Plakal, and M. Ritter. Audio set: An ontology and

human-labeled dataset for audio events. In 2017 IEEE international

conference on acoustics, speech and signal processing (ICASSP), pages

776–780. IEEE, 2017.

[86] J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen, W. Lawrence,

R. C. Moore, M. Plakal, and M. Ritter. Audio set: An ontology and

human-labeled dataset for audio events. In 2017 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 776–780. IEEE, 2017.

[87] R. Girdhar, M. Singh, N. Ravi, L. van der Maaten, A. Joulin, and

I. Misra. Omnivore: A single model for many visual modalities. In

Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 16102–16112, 2022.

[88] R. Girshick. Fast R-CNN. arXiv, 2015.

[89] Google LLC. Google street view. accessed on 20 February 2023.

[90] L. Gou, L. Zou, N. Li, M. Hofmann, A. K. Shekar, A. Wendt, and

L. Ren. VATLD: A visual analytics system to assess, understand and

improve traffic light detection. IEEE Transactions on Visualization

and Computer Graphics, 27(2):261–271, 2021.

[91] S. Grollmisch, E. Cano, C. Kehling, and M. Taenzer. Analyzing the

Potential of Pre-Trained Embeddings for Audio Classification Tasks. In

2020 28th European Signal Processing Conference (EUSIPCO), pages

790–794. IEEE, 2021.

144

[92] C. Guastavino. Etude sémantique et acoustique de la perception des

basses fréquences dans l’environnement sonore urbain. PhD Thesis,

Paris 6, 2003.

[93] H. F. Guite, C. Clark, and G. Ackrill. The impact of the physi-

cal and urban environment on mental well-being. Public Health,

120(12):1117–1126, 2006.

[94] H. Guo, Z. Wang, B. Yu, H. Zhao, and X. Yuan. Tripvista: Triple per-

spective visual trajectory analytics and its application on microscopic

traffic data at a road intersection. In 2011 IEEE Pacific Visualization

Symposium, pages 163–170, 2011.

[95] M. S. Hammer, T. K. Swinburn, and R. L. Neitzel. Environmental noise

pollution in the United States: developing an effective public health

response. Environmental Health Perspectives, 122(2):115–119, 2014.

[96] A. S. Haralabidis, K. Dimakopoulou, F. Vigna-Taglianti, M. Giampaolo,

A. Borgini, M.-L. Dudley, G. Pershagen, G. Bluhm, D. Houthuijs,

and W. Babisch. Acute effects of night-time noise exposure on blood

pressure in populations living near airports. European Heart Journal,

29(5):658–664, 2008.

[97] J. M. Hausdorff, D. A. Rios, and H. K. Edelberg. Gait variability and

fall risk in community-living older adults: A 1-year prospective study.

Archives of Physical Medicine and Rehabilitation, 82(8):1050–1056, 2001.

[98] N. L. Haworth and A. Schramm. Illegal and risky riding of electric

scooters in brisbane. Medical Journal of Australia, 211(9):412–413, 2019.

[99] W. He, L. Zou, A. K. Shekar, L. Gou, and L. Ren. Where can we help?

a visual analytics approach to diagnosing and improving semantic

segmentation of movable objects. IEEE Transactions on Visualization

and Computer Graphics, 28(1):1040–1050, 2022.

[100] S. Henderson and S. Feiner. Exploring the Benefits of Augmented Re-

ality Documentation for Maintenance and Repair. IEEE Transactions

on Visualization and Computer Graphics, 17(10):1355–1368, 2011.

145

[101] S. Hershey, S. Chaudhuri, D. P. Ellis, J. F. Gemmeke, A. Jansen, R. C.

Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold, and others.

CNN architectures for large-scale audio classification. In 2017 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 131–135. IEEE, 2017.

[102] M. M. Howlader, Y. Ali, A. Burbridge, and M. M. Haque. Before-after

safety evaluation of part-time protected right-turn signals: An extreme

value theory approach by applying artificial intelligence-based video

analytics. Accident Analysis & Prevention, 194:107341, 2024.

[103] C.-T. Hsu and Y.-C. Tsan. Mosaics of video sequences with moving

objects. Signal Processing: Image Communication, 19(1):81–98, 2004.

[104] Insurance Institute for Highway Safety. Pedestrian fatality statistics,

2023. Accessed: 17 March 2024.

[105] M. Itoh, D. Yokoyama, M. Toyoda, Y. Tomita, S. Kawamura, and M. Kit-

suregawa. Visual fusion of mega-city big data: an application to traffic

and tweets data analysis of metro passengers. In 2014 IEEE Interna-

tional Conference on Big Data (Big Data), pages 431–440. IEEE, 2014.

[106] S. Jamonnak, Y. Zhao, X. Huang, and M. Amiruzzaman. Geo-context

aware study of vision-based autonomous driving models and spatial

video data. IEEE Transactions on Visualization and Computer

Graphics, 28(1):1019–1029, 2022.

[107] A. Jansen, M. Plakal, R. Pandya, D. P. Ellis, S. Hershey, J. Liu, R. C.

Moore, and R. A. Saurous. Unsupervised learning of semantic audio

representations. In 2018 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 126–130. IEEE, 2018.

[108] T. Jiang, D. Yu, Y. Wang, T. Zan, S. Wang, and Q. Li. HoloLens-Based

Vascular Localization System. Journal of Medical Internet Research,

22(4):e16852, Apr. 2020.

[109] G. Jocher, A. Chaurasia, and J. Qiu. Ultralytics YOLO. Jan. 2023.

146

[110] K. Johnston, J. M. Ver Hoef, K. Krivoruchko, and N. Lucas. Using

ArcGIS geostatistical analyst, volume 380. Esri Redlands, 2001.

[111] P. Joia, D. Coimbra, J. A. Cuminato, F. V. Paulovich, and L. G.

Nonato. Local affine multidimensional projection. IEEE Transactions

on Visualization and Computer Graphics, 17(12):2563–2571, 2011.

[112] A. Kathuria and P. Vedagiri. Evaluating pedestrian vehicle interaction

dynamics at un-signalized intersections: A proactive approach for

safety analysis. Accident Analysis & Prevention, 134:105316, 2020.

[113] E. Kazakos, A. Nagrani, A. Zisserman, and D. Damen. Slow-fast

auditory streams for audio recognition. In ICASSP 2021-2021 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 855–859. IEEE, 2021.

[114] J. Kehrer and H. Hauser. Visualization and Visual Analysis of

Multifaceted Scientific Data: A Survey. IEEE Transactions on

Visualization and Computer Graphics, 19(3):495–513, 2013.

[115] O. Kilani, M. Gouda, J. Weiß, and K. El-Basyouny. Safety assessment of

urban intersection sight distance using mobile lidar data. Sustainability,

13(16):9259, 2021.

[116] K. Kim, L. Boelling, S. Haesler, J. Bailenson, G. Bruder, and G. F.

Welch. Does a Digital Assistant Need a Body? The Influence of Visual

Embodiment and Social Behavior on the Perception of Intelligent Virtual

Agents in AR. In 2018 IEEE International Symposium on Mixed and

Augmented Reality (ISMAR), pages 105–114, 2018. ISSN: 1554-7868.

[117] R. Korbmacher and A. Tordeux. Review of pedestrian trajectory

prediction methods: Comparing deep learning and knowledge-based

approaches. IEEE Trans. Intell. Transp. Syst., 23:24126–24144, 2022.

[118] Z. Kostić, A. Angus, Z. Yang, Z. Duan, I. Seskar, G. Zussman, and

D. Raychaudhuri. Smart city intersections: Intelligence nodes for

future metropolises. Computer, 55:74–85, 2022.

147

[119] S. Kreiss, L. Bertoni, and A. Alahi. OpenPifPaf: Composite Fields

for Semantic Keypoint Detection and Spatio-Temporal Association.

IEEE Transactions on Intelligent Transportation Systems, pages 1–14,

March 2021.

[120] A. Kumar, M. Khadkevich, and C. Fügen. Knowledge transfer from

weakly labeled audio using convolutional neural network for sound

events and scenes. In 2018 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 326–330. IEEE, 2018.

[121] C. Lee, Y. Kim, S. Jin, D. Kim, R. Maciejewski, D. Ebert, and S. Ko. A

visual analytics system for exploring, monitoring, and forecasting road

traffic congestion. IEEE Transactions on Visualization and Computer

Graphics, 26(11):3133–3146, 2020.

[122] M. Lenormand, B. Gonçalves, A. Tugores, and J. J. Ramasco. Human

diffusion and city influence. Journal of The Royal Society Interface,

12(109):20150473, 2015.

[123] J. Li, L. Liu, H. Xu, S. Wu, and C. J. Xue. Cross-camera inference

on the constrained edge. In IEEE INFOCOM 2023-IEEE Conference

on Computer Communications, pages 1–10. IEEE, 2023.

[124] Z. Liao, Y. Yu, and B. Chen. Anomaly detection in gps data based on

visual analytics. In 2010 IEEE Symposium on Visual Analytics Science

and Technology, pages 51–58. IEEE, 2010.

[125] A. Lin, S. Rao, A. Celikyilmaz, E. Nouri, C. Brockett, D. Dey, and

W. B. Dolan. A recipe for creating multimodal aligned datasets for

sequential tasks. In Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, pages 4871–4884, 2020.

[126] H. Lin, S. Gao, D. Gotz, F. Du, J. He, and N. Cao. Rclens: Interactive

rare category exploration and identification. IEEE Transactions on

Visualization and Computer Graphics, 24(7):2223–2237, 2017.

148

[127] T.-Y. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick,

J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft

COCO: common objects in context. arXiv, 2014.

[128] C.-F. Liu and P.-Y. Chiang. Smart glasses based intelligent trainer

for factory new recruits. In Proceedings of the 20th International

Conference on Human-Computer Interaction with Mobile Devices

and Services Adjunct, MobileHCI ’18, pages 395–399. Association for

Computing Machinery, 2018.

[129] S. Liu, D. Maljovec, B. Wang, P.-T. Bremer, and V. Pascucci. Visualiz-

ing High-Dimensional Data: Advances in the Past Decade. IEEE Trans-

actions on Visualization and Computer Graphics, 23(3):1249–1268, 2017.

[130] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Fu, and

A. Berg. SSD: single shot multibox detector. arXiv, 2015.

[131] Y. Liu, E. Jun, Q. Li, and J. Heer. Latent space cartography: Visual

analysis of vector space embeddings. Computer Graphics Forum,

38(3):67–78, 2019.

[132] Z. Liu and J. Heer. The effects of interactive latency on exploratory

visual analysis. IEEE Transactions on Visualization and Computer

Graphics, 20(12):2122–2131, 2014.

[133] D. Lowe. Object recognition from local scale-invariant features. In

Proceedings of the Seventh IEEE International Conference on Computer

Vision. IEEE, 1999.

[134] D. G. Lowe. Distinctive image features from scale-invariant keypoints.

International Journal of Computer Vision, 60(2):91–110, Nov. 2004.

[135] S. Lumnitz, T. Devisscher, J. Mayaud, V. Radic, N. Coops, and

V. Griess. Mapping trees along urban street networks with deep

learning and street-level imagery. ISPRS J. Photogramm. Remote.

Sens., 175:144–157, 2021.

149

[136] W. Ma, L. Zou, K. An, N. H. Gartner, and M. Wang. A partition-enabled

multi-mode band approach to arterial traffic signal optimization. IEEE

Transactions on Intelligent Transportation Systems, 20(1):313–322,

2018.

[137] T. K. O. Madsen and H. Lahrmann. Comparison of five bicycle

facility designs in signalized intersections using traffic conflict studies.

Transportation research part F: traffic psychology and behaviour,

46:438–450, 2017.

[138] A. Malik, R. Maciejewski, N. Elmqvist, Y. Jang, D. S. Ebert, and

W. Huang. A correlative analysis process in a visual analytics

environment. In 2012 IEEE Conference on Visual Analytics Science

and Technology (VAST), pages 33–42. IEEE, 2012.

[139] K. Marriott, F. Schreiber, T. Dwyer, K. Klein, N. H. Riche, T. Itoh,

W. Stuerzlinger, and B. H. Thomas, editors. Immersive Analytics.

Springer International Publishing, 2018.

[140] J. C. Mays. Why Construction Noise Is Keeping You Up at 3 A.M.

The New York Times, Sept. 2019.

[141] A. McIlraith and H. Card. Bird song identification using artificial

neural networks and statistical analysis. In CCECE’97. Canadian

Conference on Electrical and Computer Engineering. Engineering

Innovation: Voyage of Discovery. Conference Proceedings, volume 1,

pages 63–66. IEEE, 1997.

[142] L. McInnes, J. Healy, and J. Melville. Umap: Uniform manifold

approximation and projection for dimension reduction. arXiv preprint

ID:1802.03426, 2018.

[143] S. Mendes, V. J. Colino-Rabanal, and S. J. Peris. Bird song variations

along an urban gradient: The case of the european blackbird (turdus

merula). Landscape and Urban Planning, 99(1):51–57, 2011.

[144] J. Mesimäki and J. Luoma. Near accidents and collisions between pedes-

trians and cyclists. European transport research review, 13(1):38, 2021.

150

[145] Microsoft. Typescript. https://www.typescriptlang.org/.

[146] Microsoft. Using the windows device portal. https:

//learn.microsoft.com/en-us/windows/mixed-reality/develop/

advanced-concepts/using-the-windows-device-portal, 2022.

[147] M. Miknis, R. Davies, P. Plassmann, and A. Ware. Near real-time

point cloud processing using the pcl. In 2015 International Conference

on Systems, Signals and Image Processing (IWSSIP), pages 153–156.

IEEE, 2015.

[148] P. Milgram and F. Kishino. A Taxonomy of Mixed Reality Visual

Displays. IEICE Transactions on Information Systems, E77-D, 1994.

[149] B. S. Miller, M. Milnes, and S. Whiteside. Long-term underwater

acoustic recordings 2013-2019. URL: https://researchdata.edu.au/

long-term-underwater-2013-2019/967510.

[150] F. Miranda, H. Doraiswamy, M. Lage, L. Wilson, M. Hsieh, and C. T.

Silva. Shadow Accrual Maps: Efficient accumulation of city-scale

shadows over time. IEEE Transactions on Visualization and Computer

Graphics, 25(3):1559–1574, 2019.

[151] F. Miranda, H. Doraiswamy, M. Lage, K. Zhao, B. Gonçalves, L. Wilson,

M. Hsieh, and C. T. Silva. Urban Pulse: Capturing the rhythm of

cities. IEEE Transactions on Visualization and Computer Graphics,

23(1):791–800, 2017.

[152] F. Miranda, H. Doraiswamy, M. Lage, K. Zhao, B. Gonçalves, L. Wilson,

M. Hsieh, and C. T. Silva. Urban Pulse: Capturing the rhythm of

cities. IEEE Transactions on Visualization and Computer Graphics,

23(1):791–800, 2017.

[153] F. Miranda, M. Hosseini, M. Lage, H. Doraiswamy, G. Dove, and

C. T. Silva. Urban mosaic: Visual exploration of streetscapes using

large-scale image data. In Proceedings of the 2020 CHI Conference on

Human Factors in Computing Systems, CHI’20, pages 1–15, New York,

NY, USA, April 2020. Association for Computing Machinery.

151

[154] F. Miranda, M. Hosseini, M. Lage, H. Doraiswamy, G. Dove, and

C. T. Silva. Urban mosaic: Visual exploration of streetscapes using

large-scale image data. In Proceedings of the 2020 CHI Conference on

Human Factors in Computing Systems, CHI ’20, page 1–15, New York,

NY, USA, 2020. Association for Computing Machinery.

[155] F. Miranda, M. Hosseini, M. Lage, H. Doraiswamy, G. Dove, and

C. T. Silva. Urban Mosaic: Visual exploration of streetscapes using

large-scale image data. In Proceedings of the 2020 CHI Conference on

Human Factors in Computing Systems, CHI ’20, page 1–15. ACM, 2020.

[156] F. Miranda, M. Lage, H. Doraiswamy, C. Mydlarz, J. Salamon,

Y. Lockerman, J. Freire, and C. T. Silva. Time Lattice: A data

structure for the interactive visual analysis of large time series.

Computer Graphics Forum, 37(3):23–35, 2018.

[157] MIT Lincoln Laboratory. PTG evaluation tasks vol. 1. TBD, 2022.

[158] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with

automatic algorithm configuration. In International Conference on

Computer Vision Theory and Applications, 2009.

[159] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with

automatic algorithm configuration. In International Conference on

Computer Vision Theory and Application VISSAPP’09), pages 331–340.

INSTICC Press, 2009.

[160] M. Muja and D. G. Lowe. Fast matching of binary features. In

Computer and Robot Vision (CRV), pages 404–410, 2012.

[161] M. Muja and D. G. Lowe. Scalable nearest neighbor algorithms for

high dimensional data. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 36, 2014.

[162] A. Muzet. The need for a specific noise measurement for population

exposed to aircraft noise during night-time. Noise and Health, 4(15):61,

2002.

152

[163] M. S. Nabavi Niaki, N. Saunier, and L. F. Miranda-Moreno. Is that

move safe? case study of cyclist movements at intersections with cycling

discontinuities. Accident Analysis & Prevention, 131:239–247, 2019.

[164] M. Nadj, M. Knaeble, M. X. Li, and A. Maedche. Power to the oracle?

Design principles for interactive labeling systems in machine learning.

KI-Künstliche Intelligenz, 34(2):131–142, 2020.

[165] V. Nair, L. Rosenberg, J. F. O’Brien, and D. Song. Truth in motion:

The unprecedented risks and opportunities of extended reality motion

data. https://arxiv.org/abs/2306.06459, 2023.

[166] K. Namitha, A. Narayanan, and M. Geetha. Interactive visualization-

based surveillance video synopsis. Applied Intelligence, 52(4):3954–3975,

July 2021.

[167] A. Nandy, S. Chakraborty, J. Chakraborty, and G. Venture. Modern

Methods for Affordable Clinical Gait Analysis. Academic Press, 2021.

[168] J. Nasar, P. Hecht, and R. Wener. Mobile telephones, distracted

attention, and pedestrian safety. Accident Analysis & Prevention,

40(1):69–75, 2008.

[169] J. L. Nasar and D. Troyer. Pedestrian injuries due to mobile phone

use in public places. Accident Analysis & Prevention, 57:91–95, 2013.

[170] A. Nassar. Learning to Map Street-Side Objects Using Multiple Views.

PhD thesis, Université de Bretagne Sud, Brittany, France, 2021.

[171] B. Navarro, L. Miranda-Moreno, N. Saunier, A. Labbe, and T. Fu. Do

stop-signs improve the safety for all road users? a before-after study of

stop-controlled intersections using video-based trajectories and surrogate

measures of safety. Accident Analysis & Prevention, 167:106563, 2022.

[172] R. L. Neitzel, R. R. Gershon, T. P. McAlexander, L. A. Magda,

and J. M. Pearson. Exposures to transit and other sources of noise

among New York City residents. Environmental science & technology,

46(1):500–508, 2012.

153

[173] E. Nemeth and H. Brumm. Birds and anthropogenic noise: are urban

songs adaptive? The American Naturalist, 176(4):465–475, 2010.

[174] E. Nemeth, N. Pieretti, S. A. Zollinger, N. Geberzahn, J. Partecke,

A. C. Miranda, and H. Brumm. Bird song and anthropogenic noise:

vocal constraints may explain why birds sing higher-frequency songs

in cities. Proceedings of the Royal Society B: Biological Sciences,

280(1754):20122798, 2013.

[175] L. Neumann, M. Karg, S. Zhang, C. Scharfenberger, E. Piegert,

S. Mistr, O. Prokofyeva, R. Thiel, A. Vedaldi, A. Zisserman, et al.

Nightowls: A pedestrians at night dataset. In Proceedings of the Asian

Conference on Computer Vision, Berlin/Heidelberg, Germany, pages

691–705, Perth, WA, Australia, December 2018. Springer.

[176] Y. Ni, M. Wang, J. Sun, and K. Li. Evaluation of pedestrian safety

at intersections: A theoretical framework based on pedestrian-vehicle

interaction patterns. Accident Analysis & Prevention, 96:118–129, 2016.

[177] A. Nijholt. Towards Social Companions in Augmented Reality: Vision

and Challenges. In N. A. Streitz and S. Konomi, editors, Distributed,

Ambient and Pervasive Interactions. Smart Living, Learning, Well-being

and Health, Art and Creativity, Lecture Notes in Computer Science,

pages 304–319. Springer International Publishing, 2022.

[178] A. Noulas, S. Scellato, R. Lambiotte, M. Pontil, and C. Mascolo. A

tale of many cities: universal patterns in human urban mobility. PloS

one, 7(5):e37027, 2012.

[179] NVIDIA. Deepstream sdk. accessed on 31 January 2023.

[180] W. H. Organization. Burden of disease from environmental noise:

Quantification of healthy life years lost in Europe. World Health

Organization. Regional Office for Europe, 2011.

[181] W. H. Organization. Helmets: a road safety manual for decision-makers

and practitioners. World Health Organization, 2nd ed edition, 2023.

154

[182] T. Ortner, J. Sorger, H. Steinlechner, G. Hesina, H. Piringer, and

E. Gröller. Vis-a-ware: Integrating spatial and non-spatial visualization

for visibility-aware urban planning. IEEE Transactions on Visualization

and Computer Graphics, 23(2):1139–1151, 2016.

[183] S. Pase. Ethical considerations in augmented reality applications. In

Proceedings of the International Conference on e-Learning, e-Business,

Enterprise Information Systems, and e-Government (EEE), page 1.

The Steering Committee of The World Congress in Computer Science,

Computer Engineering and Applied Computing (WorldComp), 2012.

[184] S. R. Payne, W. J. Davies, and M. D. Adams. Research into the

practical and policy applications of soundscape concepts and techniques

in urban areas. Technical report, University of Salford, 2009.

[185] Y. Piadyk, J. Rulff, E. Brewer, M. Hosseini, K. Ozbay, M. Sankaradas,

S. Chakradhar, and C. Silva. Streetaware: A high-resolution

synchronized multimodal urban scene dataset. Sensors, 23(7), 2023.

[186] Y. Piadyk, B. Steers, C. Mydlarz, M. Salman, M. Fuentes, J. Khan,

H. Jiang, K. Ozbay, J. P. Bello, and C. Silva. Reip: A reconfigurable

environmental intelligence platform and software framework for fast

sensor network prototyping. Sensors, 22(10):3809, 2022.

[187] H. Piringer, M. Buchetics, and R. Benedik. AlVis: Situation awareness

in the surveillance of road tunnels. In 2012 IEEE Conference on Visual

Analytics Science and Technology (VAST), pages 153–162, 2012.

[188] B. Puladi, M. Ooms, M. Bellgardt, M. Cesov, M. Lipprandt, S. Raith,

F. Peters, S. C. Möhlhenrich, A. Prescher, F. Hölzle, T. W. Kuhlen,

and A. Modabber. Augmented Reality-Based Surgery on the Human

Cadaver Using a New Generation of Optical Head-Mounted Displays.

JMIR Serious Games, 10(2):e34781, 2022.

[189] K. Qinghong Lin, A. Jinpeng Wang, M. Soldan, M. Wray, R. Yan,

E. Zhongcong Xu, D. Gao, R. Tu, W. Zhao, W. Kong, et al. Egocentric

video-language pretraining. arXiv e-prints, pages arXiv–2206, 2022.

155

[190] D. Quercia and D. Saez. Mining urban deprivation from foursquare:

Implicit crowdsourcing of city land use. IEEE Pervasive Computing,

13(2):30–36, 2014.

[191] R. Quintero Mı́nguez, D. Fernández-Llorca, and M.-A. Sotelo.

Pedestrian intention and pose prediction through dynamical models

and behaviour classification. 09 2015.

[192] R. Quintero Mı́nguez, I. Parra, and M.-A. Sotelo. Pedestrian path

prediction based on body language and action classification. 10 2014.

[193] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,

G. Sastry, A. Askell, P. Mishkin, J. Clark, et al. Learning transferable

visual models from natural language supervision. In International

conference on machine learning, pages 8748–8763. PMLR, 2021.

[194] M. Raimbault and D. Dubois. Urban soundscapes: Experiences and

knowledge. Cities, 22(5):339–350, 2005.

[195] M. Raimbault, C. Lavandier, and M. Bérengier. Ambient sound

assessment of urban environments: field studies in two French cities.

Applied Acoustics, 64(12):1241–1256, 2003.

[196] S. Ramı́rez. Fastapi. https://fastapi.tiangolo.com/.

[197] RAPIDS. URL: https://rapids.ai/start.html.

[198] RAPIDS Benchmark. URL: https://www.alcf.anl.gov/sites/

default/files/2021-03/NVIDIA_RAPIDS_ANL.pdf.

[199] A. Rasouli, I. Kotseruba, T. Kunic, and J. Tsotsos. Pie: A large-scale

dataset and models for pedestrian intention estimation and trajectory

prediction. In Proceedings of the 2019 IEEE/CVF International

Conference on Computer Vision (ICCV), pages 6261–6270, Seoul,

South Korea, October–November 2019.

[200] J. Redmon and A. Farhadi. Yolov3: An incremental improvement.

arXiv, 2018.

156

[201] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: towards

real-time object detection with region proposal networks. Adv. Neural

Inf. Process. Syst., 28:1497, 2015.

[202] J. Rulff, F. Miranda, M. Hosseini, M. Lage, M. Cartwright, G. Dove,

J. Bello, and C. T. Silva. Urban rhapsody: Large-scale exploration of

urban soundscapes. Computer Graphics Forum, 41(3):209–221, 2022.

[203] A. Sainju and Z. Jiang. Mapping road safety features from streetview

imagery: A deep learning approach. ACM/IMS Trans. Data Sci.,

1:1–20, 2020.

[204] A. Schmeil and W. Broll. MARA - A Mobile Augmented Reality-Based

Virtual Assistant. In 2007 IEEE Virtual Reality Conference, pages

267–270, 2007.

[205] J. L. Schonberger and J.-M. Frahm. Structure-from-motion revisited.

In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 4104–4113, 2016.

[206] G. Seress and A. Liker. Habitat urbanization and its effects on birds.

Acta Zoologica Academiae Scientiarum Hungaricae, 61(4):373–408, 2015.

[207] M. S. Shirazi and B. Morris. Observing behaviors at intersections:

A review of recent studies & developments. In 2015 IEEE Intelligent

Vehicles Symposium (IV), pages 1258–1263, 2015.

[208] M. S. Shirazi and B. T. Morris. Looking at intersections: A survey of

intersection monitoring, behavior and safety analysis of recent studies.

IEEE Transactions on Intelligent Transportation Systems, 18(1):4–24,

2017.

[209] B. Shneiderman. The eyes have it: A task by data type taxonomy for

information visualizations. In Proceedings 1996 IEEE symposium on

visual languages, pages 336–343. IEEE, 1996.

[210] R. Sicat, J. Li, J. Choi, M. Cordeil, W.-K. Jeong, B. Bach, and H. Pfis-

ter. DXR: A Toolkit for Building Immersive Data Visualizations. IEEE

157

Transactions on Visualization and Computer Graphics, 25(1):715–725,

2019. Conference Name: IEEE Transactions on Visualization and

Computer Graphics.

[211] B.-I. Sighencea, R.-I. Stanciu, and C.-D. Căleanu. A review of deep

learning-based methods for pedestrian trajectory prediction. Sensors,

21(22):7543, 2021.

[212] N. Sikka, C. Vila, M. Stratton, M. Ghassemi, and A. Pourmand.

Sharing the sidewalk: A case of e-scooter related pedestrian injury. The

American Journal of Emergency Medicine, 37(9):1807.e5–1807.e7, 2019.

[213] K. K. Singh, K. Fatahalian, and A. A. Efros. Krishnacam: Using a

longitudinal, single-person, egocentric dataset for scene understanding

tasks. In Proceedings of the 2016 IEEE Winter Conference on

Applications of Computer Vision (WACV), pages 1–9, Lake Placid, NY,

USA, March 2016.

[214] H. Slabbekoorn. Songs of the city: noise-dependent spectral plas-

ticity in the acoustic phenotype of urban birds. Animal Behaviour,

85(5):1089–1099, 2013.

[215] D. Smilkov, N. Thorat, C. Nicholson, E. Reif, F. B. Viégas, and

M. Wattenberg. Embedding projector: Interactive visualization and

interpretation of embeddings. arXiv preprint arXiv:1611.05469, 2016.

[216] M. O. Source. React. https://react.dev/.

[217] D. Steedly, C. Pal, and R. Szeliski. Efficiently registering video into

panoramic mosaics. In Tenth IEEE International Conference on

Computer Vision (ICCV’05) Volume 1, volume 2, pages 1300–1307 Vol.

2, 2005.

[218] J. Stipancic, L. Miranda-Moreno, J. Strauss, and A. Labbe. Pedestrian

safety at signalized intersections: Modelling spatial effects of exposure,

geometry and signalization on a large urban network. Accident Analysis

& Prevention, 134:105265, 2020.

158

[219] M. Sukel, S. Rudinac, and M. Worring. Urban object detection

kit: A system for collection and analysis of street-level imagery. In

Proceedings of the 2020 International Conference on Multimedia

Retrieval, ICMR’20, pages 509–516, New York, NY, USA, June 2020.

Association for Computing Machinery.

[220] G. Sun, Y. Zhao, D. Cao, J. Li, R. Liang, and Y. Liu. AtoMixer:

Atom-based interactive visual exploration of traffic surveillance data.

Journal of Computer Languages, 53:53–62, 2019.

[221] K. Sun, B. Xiao, D. Liu, and J. Wang. Deep high-resolution

representation learning for human pose estimation. In CVPR, 2019.

[222] X. Sun, S. B. Murthi, G. Schwartzbauer, and A. Varshney. High-

Precision 5DoF Tracking and Visualization of Catheter Placement in

EVD of the Brain Using AR. ACM Transactions on Computing for

Healthcare, 1(2):9:1–9:18, 2020.

[223] Sun, P., H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,

J. Guo, Y. Zhou, Y. Chai, B. Caine, et al. Scalability in perception

for autonomous driving: Waymo open dataset. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 2446–2454, Long Beach, CA, USA, June 2019.

[224] B. Szubert, J. E. Cole, C. Monaco, and I. Drozdov. Structure-preserving

visualisation of high dimensional single-cell datasets. Scientific reports,

9(1):1–10, 2019.

[225] M. Tagliasacchi, B. Gfeller, F. de Chaumont Quitry, and D. Roblek.

Pre-training audio representations with self-supervision. IEEE Signal

Processing Letters, 27:600–604, 2020.

[226] A. Tang, C. Owen, F. Biocca, and W. Mou. Comparative effectiveness

of augmented reality in object assembly. In Proceedings of the SIGCHI

conference on Human factors in computing systems, pages 73–80, 2003.

159

[227] L. Tang, Y. Liu, J. Li, R. Qi, S. Zheng, B. Chen, and H. Yang.

Pedestrian crossing design and analysis for symmetric intersections:

Efficiency and safety. Transportation research part A: policy and

practice, 142:187–206, 2020.

[228] M. S. Tarawneh. Evaluation of pedestrian speed in Jordan with

investigation of some contributing factors. Journal of Safety Research,

32(2):229–236, 2001.

[229] three.js. three.js. https://threejs.org/.

[230] E. Tokuda, Y. Lockerman, G. Ferreira, E. Sorrelgreen, D. Boyle, R. Jr.,

and C. Silva. A new approach for pedestrian density estimation using

moving sensors and computer vision. arXiv, 2018.

[231] A. Tordeux, M. Chraibi, A. Seyfried, and A. Schadschneider. Prediction

of pedestrian speed with artificial neural networks. arXiv, 2018.

[232] D. Ungureanu, F. Bogo, S. Galliani, P. Sama, X. Duan, C. Meekhof,

J. Stühmer, T. J. Cashman, B. Tekin, J. L. Schönberger, P. Olszta,

and M. Pollefeys. Hololens 2 research mode as a tool for computer

vision research. CoRR, abs/2008.11239, 2020.

[233] G. Valdrighi, N. Ferreira, and J. Poco. Morevis: A visual summary

for spatiotemporal moving regions, 2023.

[234] E. Van Kempen, J. Devilee, W. Swart, and I. Van Kamp. Characterizing

urban areas with good sound quality: Development of a research

protocol. Noise and Health, 16(73):380, 2014.

[235] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu,

Y. Mu, M. Tan, X. Wang, et al. Deep high-resolution representation

learning for visual recognition. arXiv, 2019.

[236] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu,

Y. Mu, M. Tan, X. Wang, W. Liu, and B. Xiao. Deep high-resolution

representation learning for visual recognition. TPAMI, 2019.

160

[237] S. Wang, V. Leroy, Y. Cabon, B. Chidlovskii, and J. Revaud. Dust3r:

Geometric 3d vision made easy. In CVPR, 2024.

[238] Y. Wang, N. J. Bryan, J. Salamon, M. Cartwright, and J. P. Bello.

Who calls the shots? Rethinking few-shot learning for audio. In 2021

IEEE Workshop on Applications of Signal Processing to Audio and

Acoustics (WASPAA), pages 36–40. IEEE, 2021.

[239] Y. Wang, D. Liu, and J. Luo. Identification and improvement of

hazard scenarios in non-motorized transportation using multiple deep

learning and street view images. Int. J. Environ. Res. Public Health,

19(21):14054, 2022.

[240] Y. Wang, A. E. M. Mendez, M. Cartwright, and J. P. Bello. Active learn-

ing for efficient audio annotation and classification with a large amount

of unlabeled data. In 2019 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 880–884. IEEE, 2019.

[241] Z. Wang, M. Lu, X. Yuan, J. Zhang, and H. Van De Wetering. Visual

traffic jam analysis based on trajectory data. IEEE Transactions on

Visualization and Computer Graphics, 19(12):2159–2168, 2013.

[242] F. Warburg, S. Hauberg, M. López-Antequera, P. Gargallo, Y. Kuang,

and J. Civera. Mapillary street-level sequences: A dataset for lifelong

place recognition. In Proceedings of the 2020 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pages 2623–2632,

Seattle, WA, USA, June 2020.

[243] Washington Square Park Eco Projects. Explore birds, 2021.

[244] H. L. Wells, L. A. McClure, B. E. Porter, and D. C. Schwebel.

Distracted pedestrian behavior on two urban college campuses. Journal

of Community Health, 43(1):96–102, July 2017.

[245] K. Wilkinghoff. On open-set classification with L3-Net embeddings

for machine listening applications. In 2020 28th European Signal

Processing Conference (EUSIPCO), pages 800–804. IEEE, 2021.

161

[246] D. S. Williams and A. E. Martin. Gait modification when decreasing dou-

ble support percentage. Journal of Biomechanics, 92:76–83, July 2019.

[247] World Health Organization. Global status report on road safety. 2018.

accessed on 31 January 2023.

[248] L. Wyse. Audio spectrogram representations for processing with

convolutional neural networks. arXiv preprint ID:1706.09559, 2017.

[249] F. Xiao, Y. J. Lee, K. Grauman, J. Malik, and C. Feichtenhofer.

Audiovisual slowfast networks for video recognition. arXiv preprint

arXiv:2001.08740, 2020.

[250] J. Xie and M. Zhu. Handcrafted features and late fusion with deep learn-

ing for bird sound classification. Ecological Informatics, 52:74–81, 2019.

[251] Y. Xu, W. Yan, H. Sun, G. Yang, and J. Luo. Centerface: Joint face

detection and alignment using face as point. arXiv, 2019.

[252] F. Xue, G. Zhuo, Z. Huang, W. Fu, Z. Wu, and M.-H. Y. Jr. Toward

hierarchical self-supervised monocular absolute depth estimation for

autonomous driving applications. arXiv, 2020.

[253] L. Yang, B. Kang, Z. Huang, X. Xu, J. Feng, and H. Zhao. Depth

anything: Unleashing the power of large-scale unlabeled data. In

CVPR, 2024.

[254] L. Yang, B. Kang, Z. Huang, Z. Zhao, X. Xu, J. Feng, and H. Zhao.

Depth anything v2. arXiv:2406.09414, 2024.

[255] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How Transferable

Are Features in Deep Neural Networks? In Procedings of the 27th

International Conference on Neural Information Processing Systems

- Volume 2, NIPS’14, pages 3320–3328. MIT Press, 2014.

[256] C. Yu, B. Xiao, C. Gao, L. Yuan, L. Zhang, N. Sang, and J. Wang.

Lite-hrnet: A lightweight high-resolution network. In CVPR, 2021.

162

[257] L. Yu, W. Wu, X. Li, G. Li, W. S. Ng, S.-K. Ng, Z. Huang, A. Arunan,

and H. M. Watt. iviztrans: Interactive visual learning for home and

work place detection from massive public transportation data. In 2015

IEEE Conference on Visual Analytics Science and Technology (VAST),

pages 49–56. IEEE, 2015.

[258] J. Zahálka, M. Worring, and J. J. Van Wijk. Ii-20: Intelligent

and pragmatic analytic categorization of image collections. IEEE

Transactions on Visualization and Computer Graphics, 2020.

[259] M. H. Zaki, T. Sayed, and S. E. Ibrahim. Comprehensive safety

diagnosis using automated video analysis: Applications to an urban

intersection in edmonton, alberta, canada. Transportation research

record, 2601(1):138–152, 2016.

[260] W. Zeng, C.-W. Fu, S. M. Arisona, A. Erath, and H. Qu. Visualizing

mobility of public transportation system. IEEE Transactions on

Visualization and Computer Graphics, 20(12):1833–1842, 2014.

[261] C. Zhang, H. Fan, W. Li, B. Mao, and X. Ding. Automated detecting

and placing road objects from street-level images. Comput. Urban Sci.,

1:18, 2019.

[262] J. Zhang, Y. Wang, P. Molino, L. Li, and D. S. Ebert. Manifold:

A Model-Agnostic Framework for Interpretation and Diagnosis of

Machine Learning Models. IEEE Transactions on Visualization and

Computer Graphics, 25(1):364–373, 2019.

[263] J. Zhang, E. Yanli, J. Ma, Y. Zhao, B. Xu, L. Sun, J. Chen, and

X. Yuan. Visual analysis of public utility service problems in a

metropolis. IEEE Transactions on Visualization and Computer

Graphics, 20(12):1843–1852, 2014.

[264] J. Zhang, M. Zheng, M. Boyd, and E. Ohn-Bar. X-world: Accessibility,

vision, and autonomy meet. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision (ICCV), pages 9762–9771,

Montreal, QC, Canada, October 2021.

163

[265] Y. Zhang, P. Sun, Y. Jiang, D. Yu, Z. Yuan, P. Luo, W. Liu, and

X. Wang. Bytetrack: Multi-object tracking by associating every

detection box. arXiv, 2021.

[266] Z. Zhang, P. Webster, V. S. Uren, A. Varga, and F. Ciravegna.

Automatically extracting procedural knowledge from instructional

texts using natural language processing. In LREC, volume 2012, pages

520–527. Citeseer, 2012.

[267] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing

network. arXiv, 2016.

[268] T. Zhao, X. Liang, W. Tu, Z. Huang, and F. Biljecki. Sensing urban

soundscapes from street view imagery. Comput. Environ. Urban Syst.,

99:101915, 2023.

[269] X. S. Zheng, C. Foucault, P. Matos da Silva, S. Dasari, T. Yang, and

S. Goose. Eye-wearable technology for machine maintenance: Effects

of display position and hands-free operation. In Proceedings of the 33rd

Annual ACM Conference on Human Factors in Computing Systems,

pages 2125–2134, 2015.

[270] Y. Zheng, F. Liu, and H.-P. Hsieh. U-air: When urban air quality

inference meets big data. In Procedings of the 19th ACM SIGKDD

international conference on Knowledge discovery and data mining,

pages 1436–1444, 2013.

[271] Y. Zheng, T. Liu, Y. Wang, Y. Zhu, Y. Liu, and E. Chang. Diagnosing

new york city’s noises with ubiquitous data. In Proceedings of the

2014 ACM International Joint Conference on Pervasive and Ubiquitous

Computing, pages 715–725, 2014.

[272] Y. Zheng, W. Wu, Y. Chen, H. Qu, and L. M. Ni. Visual analytics

in urban computing: An overview. IEEE Transactions on Big Data,

2(3):276–296, 2016.

[273] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy. Domain gener-

alization in vision: A survey. arXiv preprint arXiv:2103.02503, 2021.

164

[274] X. Zhou, R. Girdhar, A. Joulin, P. Krähenbühl, and I. Misra. Detecting

twenty-thousand classes using image-level supervision. In Computer

Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, Octo-

ber 23–27, 2022, Proceedings, Part IX, pages 350–368. Springer, 2022.

