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ABSTRACT

VISUAL INTERCOMPARISON OF MULTIFACETED

CLIMATE DATA by

Jorge L. Poco Medina

Advisor: Prof. Cláudio T. Silva, Ph.D.

Submitted in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy (Computer Science)

September 2015

Gauging consensus among predictions and outputs of multiple simulation models

is a critical problem for understanding global climate change patterns. This requires

similarity analysis of climate models which typically involve multiple data facets like

space, time, input parameters, output variables, etc. Such model inter-comparison

enables scientists to explore and develop different hypotheses about ecosystem processes

and climate change indicators. While it is widely accepted that interactive visualization

can enable scientists to better explore model similarity from different perspectives and

different granularities of space and time, currently there is a lack of such visualization

tools.

To fill this gap, the main contributions of this dissertation are grouped in three

stages: Design Space Analysis, Visual Exploration, and Visual Analytics Approaches.

In the first stage for Design Space Analysis, we understood the state-of-the-art of

static visualizations that climate scientists use. Based on this exploratory study, we

derived a design problem taxonomy of static plots. After analyzing the results of

this study, as a follow-up, we set up another study on color map usage by climate

scientists.

vii



By reflecting on the inadequacies of the static visualizations, and because analysis

of similarity and dissimilarity is a complex problem given the multiple facets involved

in such comparisons. We designed a Visual Exploration tool. SimilarityExplorer is

an exploratory visualization tool which facilitates visual intercomparison of climate

model data and its multiple facets, like, space, time, similarity, output variables, etc..

Making it easier for climate scientists to explore model relationships from multiple

perspectives.

Even with exploration tools, it is still difficult to analyze the whole dataset

or explore the complete parameter space. That is why, in the third stage Visual

Analytics Approaches, we analyzed how multiple descriptors of these models, namely,

their structural characteristics and their outputs can be reconciled using a novel

visual analytics paradigm ‘visual reconciliation’. Then, we proposed a topology-

based framework to help study the differences in various models directly in the high

dimensional data domain.
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Chapter 1

Introduction

1.1 Motivation

Climate scientists have made substantial progress in understanding the earth’s

climate system, particularly at global and continental scales. Climate research is

now focused on understanding climate change over wider ranges of time and finer-

space scale, which generates ultra-scale datasets. At such scales, a single snapshot

of data will result in a terabyte or more of data, and modest time scales will result

in petabytes of data. An insightful analysis in climate science depends on using

software tools to discover, access, manipulate, and visualize the datasets of interest.

These data exploration tasks can be complex and time-consuming, and they frequently

involve many resources from both the modeling and observational climate communities.

However, currently there is a lack of flexible visual analytics techniques to support

such complex exploration tasks, and this thesis aims to fill that gap.

In general, climate simulations refer to one or more output variables (e.g., tem-

perature, precipitation, gross primary productivity). These simulations are run using

multiple models, initial conditions, or parameterizations in order to gain confidence in

the results and bound understanding. Consensus among model results is an important

metric used for judging model performance. Analysis of model output similarity

and dissimilarity is a complex problem because of the multiple facets involved in

such comparisons: space, time, output variables, and model similarity. Thus, novel

visualization techniques that integrate space, time, and similarity, are needed to let

climate scientists efficiently explore models relationships from multiple perspectives.

At the same time, the visualization techniques need to be augmented with automated

analytical models for guiding the domain experts in their exploration, since manual

exploration of the large parameter spaces is cumbersome.
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The ever-growing data deluge has made visualization an important medium for

intuitively portraying and communicating complex information, cutting across various

disciplines such us climate sciences. However, creating visualizations demand significant

time and effort, which often creates a bottleneck for domain experts [1]; and creating

effective visualizations requires knowledge about visualization design principles and

best practices. That is why, a systematic analysis of how climate scientists use

and design visualizations is required for reflecting upon the causes and effects of

design problems. It is important to follow-up this work with multiple user studies to

understand the mismatch between visualization principles and the state-of-the-art in

the climate science domain.

In this dissertation we tackle the problem of intercomparison of multifaceted

climate data from three fronts: i) design space analysis, ii) visual exploration tools,

and iii) visual analytics approaches.

The detailed discussion about these contributions is preceded by a background

on climate modeling and model intercomparison goals which are relevant for this

dissertation.

1.2 Climate Models

Climate scientists and ecologists (henceforth, we use the term “climate scientists”

or “ecologists” interchangeably) build computer-based models to simulate, understand

and predict climate systems. These models are based on mathematical representations

that can incorporate the physics, chemistry, and other processes of the atmosphere,

oceans and land. In this dissertation, we focus on two types of climate models:

Terrestrial Biosphere Models (TBM). TBMs simulate terrestrial ecosystem

processes and the terrestrial-atmosphere carbon exchange in relation to prescribed

boundary conditions: vegetation cover, soil properties, climate, etc. They have become

an integral tool for extrapolating local observations and understanding to much larger

terrestrial regions, as well as for testing hypotheses about how ecosystems will respond

to changes in climate and nutrient availability [2]. TBMs can be used to attribute

carbon sources (e.g., fires, farmlands) and sinks (e.g., forests, oceans) to explicit

ecosystem processes.

Species Distribution Models (SDM). SDMs combine observations of species

occurrence or abundance with environmental layers. They are used to gain ecological
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insights and to predict distributions across various landscapes including terrestrial,

freshwater, and marine realms [3]. They help ecologists answer questions about the

relationship between the environmental variables.

Model Intercomparison. A key approach for climate modeling is to use multiple

models as a way to gain confidence in the results and bound understanding. Therefore,

intercomparison of a suite of climate models over space, time, and different land cover

types is an important research area. Thus, researchers want to know which models are

similar, and why, when, and where they are similar. But the volume and complexity

of model outputs present many challenges for analysis and visualization. Furthermore,

to gain additional confidence in model output, researchers compare observations with

model simulations in a benchmarking activity.

1.3 Thesis Statement

Effective understanding of similarities and differences among multiple climate

models requires the combination of novel visual exploration techniques with automated

analytical methods for enabling the climate scientists to identify salient patterns, and

generate and validate hypotheses about climate phenomena.

1.4 Contributions

This dissertation proposes the use of novel visual analytics techniques for the

purposes of exploration and analysis of climate data. The related contributions not only

advance the scientific understanding of relationships among climate models, but also

address important research challenges in the visualization community. These include

multi-scale geospatial data exploration, correlating the effect of high-dimensional

parameter spaces with model outputs, and finally, bridging the gap between the domain

experts’ analysis goals and effective visualization techniques through participatory

design processes.

Based on the three fronts we mentioned before, our contributions can be summarized

as follows:

In Design Space Analysis.

• An Exploratory Study of Visualization Use and Design for Climate Model

Comparison [4].
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1. We propose a classification scheme that categorizes the design problems in

the form of a descriptive taxonomy. The taxonomy is a first attempt for

systematically categorizing the types, causes, and consequences of design

problems in visualizations created by domain experts;

2. We demonstrate the use of the taxonomy for: i) identifying problem conse-

quences and their trade-offs, ii) a detailed analysis of causes of matches and

mismatches about design problems between visualization experts and cli-

mate scientists, and iii) feedback on redesigned solutions for a representative

sample of problem instances;

3. We provide a summary and analysis of the findings for enabling scientists

in designing improved visualizations, and for reflecting on the gaps and

opportunities for visualization research.

• Perceptual Evaluation of Color Scales for Climate Model Comparison [5].

1. We characterize geospatial data comparison tasks performed by climate

scientists. These are (i) judging overall magnitude, (ii) evaluating differences

in spatial variation, and (iii) identifying regions of maximal difference;

2. We measure the performance of climate scientists in each of these tasks

using different color scales;

3. We compare the scientists’ quantitative performance against their perceived

performances and preferences;

In Visual Exploration Tools.

• SimilarityExplorer: A Visual Intercomparison Tool for Multifaceted Climate

Data [6].

1. We propose a domain characterization for the TBM community by system-

atically defining the domain-specific intents for analyzing model similarity

and characterizing the different facets of the data;

2. We define a classification scheme for combining visualization tasks and

multiple facets of climate model data in one integrated framework, which

can be leveraged for translating the tasks into the visualization design;

3. We present SimilarityExplorer, an exploratory visualization tool that facili-

tates similarity comparison tasks across both space and time through a set

of coordinated multiple views;

4. We present two case studies from climate scientists, who used our tool for

a month for gaining scientific insights into model similarity.



5

in Visual Analytics Approaches.

• Visual Reconciliation of Alternative Similarity Spaces in Climate Modeling [7].

1. We introduce a novel visual analytics paradigm: visual reconciliation as

the problem of reconciling multiple alternative similarity spaces through

visualization and interaction;

2. We apply visual reconciliation to help climate scientists understand the

dependency between alternative similarity spaces for climate models;

3. We facilitate iterative refinement of groups with the help of a feedback loop

and optimization techniques to guide the exploration;

4. We present case studies that demonstrate the usefulness of our technique

in the area of climate science.

• Using Maximum Topology Matching to Explore Differences In Climate Mod-

els [8].

1. We introduce the concept of maximum topology matching that computes

a locality-aware correspondence between similar extrema of two scalar

functions.

2. We design a visualization interface that allows ecologists to explore Species

Distribution Models using their topological features and to study the

differences between pairs of models found using maximum topological

matching.

3. We demonstrate the utility of the proposed framework through several

use cases using different data sets and report the feedback obtained from

ecologists.

1.5 Outline

In order to understand the common problems in climate data visualizations, in

Chapter 2 we describe an exploratory study, developed closely with our collabora-

tors. Based on this study, in Chapter 3 we explain the results of a user study to

understand the mismatch between the visualization principles and the ubiquitous uses

of rainbow colormap in the climate community. Next, in Chapter 4 we depict the

SimilarityExplorer, a visual intercomparison tool for multifaceted climate data. Then,

in Chapter 5 we introduce the visual reconciliation technique. In Chapter 6 we explain

the topology-based framework to explore differences in various models directly in the

high dimensional space. Finally in Chapter 7 we conclude the dissertation along with

future work.
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Chapter 2

An Exploratory Study of

Visualization Use and Design for

Climate Model Comparison

Creating visualizations demands significant time and effort, which often creates

a bottleneck for domain experts [1]; and creating effective visualizations requires

knowledge about visualization design principles and best practices. However, there

has been little work on systematically judging the quality of visualizations used and

created by non-experts in visualization. While authors like Tufte and Few [9, 10]

have critiqued visualization examples and offered guidelines for better design, very

few academic attempts exist for classifying types of design problems and judging their

consequences, especially when domain experts design visualizations.

To fill this gap, in this chapter we describe a systematic analysis of how climate

scientists use and design visualizations for reflecting upon the causes and effects of

design problems. The data that we analyzed comprises of a series of semi-structured

interviews with climate scientists, about visualizations collected from research papers

and presentations.

The benefits of such an exploratory study are two-fold. First, it allows domain

scientists to better critique their visualization designs and incorporate that knowledge

into building more effective visual representations. Second, reflecting on the analysis

of visualization design problems is an opportunity for the visualization community to

investigate how the state-of-the-art in visualization meets the analysts’ needs, and

introspect how design principles can be better applied to suit the evolving challenges

in data presentation and communication. In this work we judge how well domain

experts and visualization researchers agree on design problems, based on which we
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(a) Design problems in a stacked scatter
plot stemming from over plotting and use of
many different symbols.

(b) Design problems in the multiple maps
stemming from poor encoding of relative simi-
larity.

Figure 2.1: Illustrating two common visualization use case scenarios and
their associated visualization design problems, for comparing terrestrial bio-
spheric models (figures adapted from [2]). In (a) stacked scatter plots with multiple
visual symbols lead to an ineffective visual search for models and inefficient comparison
of spread among their output variables. In (b) outliers indicated by red regions are
clearly visible but similarity analysis among 17 different maps is difficult without any
encoding that reflects relative similarity among the models.

redesigned some of their existing visualizations and judged the effectiveness of the

solutions from their feedback.

In our study, we focus on comparison of terrestrial biospheric models. Typical

visualization usage and design by climate scientists for such comparisons is shown in

Figure 2.1. Figure 2.1(a) shows the use of scatter plot for comparing output variables

for multiple models. Figure 2.1(b) shows the use of multiple maps for analyzing

similarity of models over different spatial regions. The challenges for concise visual

representation in these cases is non-trivial because of the underlying diversity and

complexity of the data. The aim of this exploratory study was to find, for these

complex analysis tasks, what are some recurring design problems. While we also found

some examples of optimal visualization designs, our goal in this chapter was not to

comment on the general state-of-the-art in visualization practice in climate science,

but to focus on the problematic visualization designs and devise a model for describing

those problems.
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Our high-level analysis questions for understanding visualization design problems

were: do the chart types address the goals of visual representation? Are there design

flaws specific to those chart types or are there generalizable problems cross-cutting chart

types? Does the literature on visualization design offer solutions to those problems?

We collected a representative sample of 15 research papers from our collaborators that

used visualizations for comparing terrestrial biospheric models. The over-arching goal

was to create a taxonomy that systematically answers the aforementioned analysis

questions. In summary, the contributions of this chapter are three-fold:

1. A systematic classification of visualization design problems in the climate science

domain resulting in a descriptive taxonomy of types, causes, and implications of

such problems.

2. Application of the taxonomy for: i) identifying problem consequences and their

trade-offs, ii) a detailed analysis of causes of matches and mismatches about

design problems between visualization experts and climate scientists, and iii)

feedback on redesigned solutions for a representative sample of problem instances.

3. Summary and analysis of the findings for enabling scientists in designing improved

visualizations, and for reflecting on the gaps and opportunities for visualization

research.

2.1 Related Work

We discuss the related work with respect to the existing studies on visualization

usage and design, and the relevant theoretical models that have been proposed for

characterizing the visualization process and design.

2.1.1 Studies on Usage and Design of Visualization

In recent times, there has been some progress towards studying how people outside

the visualization community use, design, and reason about visualizations. This body

of research is critical in diversifying the field of visualization by gaining insight into

the potential roadblocks that people from different communities face, while designing

perceptually effective visualizations and subsequently using the interpretations for

their benefit.

To this end, Grammel et al. attempted to understand how people who are unfamiliar

with visual data analysis, i.e. InfoVis novices, construct visualizations and the potential
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roadblocks in doing so [11]. They found that constructing effective visual mappings

was the most significant roadblock, which was consistent with the findings of Heer et

al. [12]. Somewhat related to this, researchers [13] studied the problems low-literacy

users face while retrieving information online, and how interactive visualization can

help in the process. Researchers have also explored the problem [14] from the point-of-

view of existing visual analytics tools: they found that while conducting investigative

analysis, several roadblocks exist in understanding, choosing, using, and reading views

properly.

Some of the studies also focus on collaborative environments. Walny et al. [15]

studied how pen and touch interactions on interactive whiteboards facilitate reasoning

and understanding of visualizations. Isenberg et al. [16] discussed the role of the

tabletop for visual analytics tasks and derive design implications for future co-located

collaborative tabletop problem solving systems. Most of these studies focus on the

usage patterns of visualizations for novice users. In our work, the focus is on domain

experts who have compiled the data to specifically address their research questions

but who do not have detailed expertise to design the most effective visualizations.

There is a lack of studies that characterize the types of problems that arise when

domain experts design visualizations.

2.1.2 Models Characterizing Visualization Process and De-

sign

Among the many theoretical models that exist in visualization, the ones that are

relevant for our work fall into two broad categories: i) models which characterize the

visualization process, starting from data transformation to human perception and

cognition, and ii) models that capture the different aspects of a visualization design

and its implications, especially from an end user’s perspective. One of the earliest

instances of a process model, was the data-state reference model proposed by Card [17],

which was later extended by Chi’s pipeline model [18] for representing different data

transformation stages and the intervening operations. This was further extended by

Ware [19] whose model focused more on the visual representation and its perceptual

implications. For the visualization design models, we find instances where researchers

have studied the use and creation of visualizations from a designer’s point of view [20]

or as the product of a collaboration between designers and end users [21]. Heer et

al.[12] proposed a model for providing guidelines to novice users on the encoding type

used. We propose a taxonomy model, which is similar in its characteristics with the
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visual uncertainty model [22] that combines both visualization process and design in

one holistic framework. The functionality of our model is similar in spirit with the

work of Walny et al. [23], who generated a taxonomy by studying how visualizations

on white boards are typically produced, what their purposes are and how people from

outside the visualization community use visual thinking for solving their problems.

2.2 How Climate Scientists Use Visualization

Our collaborators are climate scientists specializing in Terrestrial Biosphere Mod-

els (TBMs). As visualization researchers, we worked closely with them in the Multi-

Scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) as part

of the DataONE Scientific Exploration, Visualization, and Analysis (EVA) Working

Group. In this section we describe briefly what domain-specific problems they aim to

address by designing visualizations.

TBMs simulate terrestrial ecosystem processes and the terrestrial-atmosphere

carbon exchange in relation to prescribed boundary conditions: vegetation cover,

soil properties, climate, etc. They have become an integral tool for extrapolating

local observations and understanding to much larger terrestrial regions, as well as

for testing hypotheses about how ecosystems will respond to changes in climate and

nutrient availability [2]. TBMs use complex analysis scenarios and generate diverse

and large volumes of multidimensional data. Visualization thus constitutes an integral

component of most model output analysis processes not only for understanding and

representing the data, but also for subsequent dissemination of the scientific knowledge.

Visual representations in the form of images and charts used in academic publications

and presentations play a critical role in communicating the scientific findings to a

broader community.

A key approach for environmental modeling is to use multiple models as a way to

gain confidence in the results and bound understanding. Therefore, intercomparison

of a suite of terrestrial biospheric models over space, time, and different land cover

types is an important research area. But the volume and complexity of model outputs

present many challenges for analysis and visualization.

To gain additional confidence in model output, researchers compare observations

with model simulations in a benchmarking activity. Furthermore, modelers want to

know which models are similar, and why, when, and where they are similar. Linking

model structures with model output can be used to understand why models are

different from benchmarks and each other. Visualization plays a crucial role in all
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Figure 2.2: One of the few examples of optimal visualization design from our
collected sample [24]. where the intent was effectively captured and communicated.
Here small multiple line charts are used in conjunction with maps for showing region-
wise temperature variation of two classes of climate models.

of these steps for understanding model characteristics and visually representing the

scientific findings.

2.3 Methodology

The goal of our study was to diagnose design problems in visualizations created

by climate scientists. While in course of our research we also discovered visualization

examples which adhered to the best practices (Figure 2.2), our aim here was to

focus exclusively on the causes and consequences of the problems. We followed a

descriptive approach where we could provide useful guidelines for climate scientists

and discover challenges for visualization researchers. To achieve this purpose we

adopted a qualitative methodology featuring in-depth analysis of climate visualization

examples, generation of descriptive classifications schemes, as well as multiple inter-
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views, workshops, surveys, and focus groups. In the following section, we describe our

methodology in details.

2.3.1 Participants

In the course of our project we collaborated with 20 climate scientists, with 5 of

them being direct collaborators from the Multi-Scale Synthesis and Terrestrial Model

Intercomparison Project (MsTMIP). Most of them have over ten years of experience

in climate modeling. The overall goal of MsTMIP is to provide feedback to the

terrestrial biospheric modeling community to improve the diagnosis and attribution of

carbon sources and sinks across regional and global scales. Our group of collaborators

were mostly climate modelers working as part of the EVA working group under the

DataONE initiative; and they spanned across different national labs and universities

within the United States.

With our direct collaborators, we interacted over a six month period via semi-

structured interviews, which were both in-person and through teleconferences, and

three workshops where we exchanged knowledge about our respective domains and

conducted interviews. With the indirect collaborators, we attended their presentations

at workshops, took note of their visualization designs and received their feedback on

our findings through teleconferences.

2.3.2 Evaluators

The group of evaluators who were involved in data collection, analysis, and

synthesis; comprised of four data visualization experts: one doctoral student, one

research scientist and two faculty members. All the evaluators have at least four

(and for two of them more than ten) years of research and practical experience in

visualization. The coding part of our work loosely follows the tradition of expert-based

evaluation of user interfaces like heuristic evaluation, where it has been demonstrated

that a small number of experts can reliably detect most of the problems [25].

Also, following-up on the same tradition, rather than relying exclusively on the

personal judgment of the evaluators, we created guidelines and support material to

inform and guide their work. Since a single established set of visualization heuristics

does not exist yet, we decided to: i) review the few initial attempts to create visual-

ization heuristics we found in the literature [26, 27]. and ii) create our own synthesis

of visualization principles drawn from the visualization design and research literature.

We provide more details about the synthesis of visualization principles in Section 2.3.5.
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Figure 2.3: Workflow for our qualitative study comprising of seven different stages
as annotated in yellow. The workflow highlights the tight interaction with climate
scientists that led to the taxonomy of design problems, its subsequent refinement and
application for finding solutions. The problems and solutions were further analyzed
and reflected upon for providing general design guidelines to domain experts and
highlighting lessons learnt for visualization researchers.

2.3.3 Workflow and Goals

The workflow we adopted for our exploratory study is outlined in Figure 2.3 and

is characterized by seven distinct stages we performed to gather the necessary data

and perform our research.

In (1) Data collection we interacted with our collaborators, through in-person

meetings and teleconferences to collect visualization examples and intents that are

representative of the typical tasks performed by the climate scientists. In (2) Syn-

thesis of design principles we reviewed the existing literature on visualization

design principles and organized them into a reference list we used to inform and guide

our critique of visualization examples. In (3) Coding we used the reference list to

manually annotate the collected examples and generate descriptive codes that captured

potential design problems. In (4) Taxonomy generation we systematically and iter-

atively refined and organized the codes to generate a design problem taxonomy. In (5)

Problem matches and mismatches we discussed representative examples of the

collected design problems with the climate scientists to gather instances of diverging

opinion between visualization experts and the domain experts. This phase allowed us

to refine the taxonomy and to build a much richer view on how visualization design

principles can and should be instantiated in practice. In (6) Solution Redesign,

based on the suggestion of our group of collaborators, we extended our analysis to

include discussions of solutions. We redesigned some selected examples and gathered

additional feedback from the scientists. Finally, in (7) Guidelines and lessons

learned we reflected on the output generated by our analysis and interactions and

came up with a set of general guidelines, pitfalls and lessons learned.

For data collection, the qualitative analysis of the examples, and the following

derivation of a design problems taxonomy; we followed the grounded theory method-

ology [28]. Grounded theory is a systematic methodology used in social sciences to
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derive classification schemes from the analysis of large quantities of qualitative data

and guides the researchers through iterative phases of data collection, code generation,

and their organization into descriptive categories. This approach recently gained

some momentum in the visualization research community and it has been successfully

adopted in a growing number of studies to analyze visualization artifacts and their use

in real-world scenarios [29, 30, 31, 23, 32]. This methodology allowed us to critique

and analyze visualizations created by scientists without any pre-formed hypothesis,

thereby allowing the data to dictate the taxonomy that emerged. The aspects we

imbibed from grounded theory were alternating between data collection and analysis,

refining the conceptual relationships within the data, and subsequent generation of a

theoretical paradigm for structuring our findings.

2.3.4 Data Collection

During our data collection phase we first interacted with the climate scientists to

generate a representative sample of visualizations to be used for our analysis.

2.3.4.1 Visualization Examples

The visualization examples were collected in consultation with our collaborators,

from a set of 20 presentations in two workshops, 15 research papers from the climate

science domain, and four interview sessions. Our effort was to ensure that the collected

sample represents the state-of-the-art in visualizations used for comparing climate

model data. From these sources we generated a total of 105 images which we used as

the basis for our study. Given the high experience level of our collaborators we were

confident from our interactions, that these images constituted a representative sample

for our study. Among the examples we collected, 80% of the visualizations comprised

of geographical maps, scatter plots and variants of line charts. The remaining 20%

was a heterogeneous set of examples which could not be organized into any consistent

group or description. For this reason we decided to exclude them from the analysis

and focused on 80% consistent group of images, which comprised of 40 line charts, 30

geographical maps, and 15 scatter plots.

2.3.4.2 Visualization Intents

In a preliminary coding pass we realized it was hard to judge the merit of the

collected examples without first knowing the visualization intents. Rather than
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evaluating the collected example exclusively under an abstract set of principles, we

preferred to ground our analysis on the following main questions:

Q1. Does the chart represent the intent correctly?

Q2. Does the chart convey the main message efficiently and effectively [33]?

These high-level questions guided the latter stages of the evaluation pipeline, such

as the synthesis of design principles and coding.

As we felt we could not derive the intent and message of every single example

without the help of our domain experts, we conducted surveys and teleconferences to

come up with a more reliable set of intents. To achieve this purpose we performed

the following steps: i) two investigators formed an initial idea of the intents from the

descriptions in the collected material and collected them in a document containing

pairs of images and intents; ii) we distributed a survey with the intents to a group of

2 scientists asking them to mark whether they agreed or disagreed with the stated

intent and to add their own version of the intent where necessary; iii) for those cases

where the scientists disagreed (with us or between them) we performed an interview

session for further clarification and collected the right intents.

This phase was crucial in understanding the motivation and context behind the

creation of the visualizations. In some cases, we initially misread the intent, which

was subsequently clarified in these interview sessions. For example, as shown in

Figure 2.1(a), we initially deduced that the initial intent was to identify the models

which showed high or low values for the carbon flux output variables NEP, GPP, Rh

(organized vertically in the three stacked panels). But in an interview session it was

clarified that the primary intent is to show the overall variability of prognostic (green)

and diagnostic (purple) models and also to show the which models belonged which

ecoregions for the different variables.

An analysis of the collected intents showed that in the context of climate model

intercomparison, the general intents of scientists were mainly to identify similar models

and compare their spatial or temporal variability over different granularity of space

and time. In previous work, we had designed an interactive interface that helped

scientists realize these intents through a rich exploratory visualization tool [6]. In this

work, we judged the design problems of the static visualizations with respect to these

intents.
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2.3.5 Synthesis of Design principles

The basis for our judgment of design problems was the rich literature of visualization

design principles that have evolved over time. While we observed that there is

no single conceptual framework which can be applied for such analysis, various

theoretical principles, starting from Bertin’s seminal work, to the most recent research

on information graphics, have guided visualization design over the years. These

design principles come from different areas of visualization research, and address

different but often complementary issues such as: principles for optimal visual design,

criteria for design based on data type, matching the visual properties to best support

human perception and cognition, and also more recently, how best to communicate

the message by properly structuring the information. All these categories subsume

the two general questions Q1 and Q2 on which we eventually based our judgment of

the visualizations. Before starting the coding phase, we worked on collecting design

principles and synthesizing them in a way that codes based on those principles could

be used for the study. Note that these principles were applied only in the context of

the scientists’ intents for any visualization. Here, we provide a brief summary of the

main sources we used to inform our research.

2.3.5.1 Optimality of design

From Tufte’s seminal work [9] and Tukey’s research on statistical graphics [34]

we adopted the principles of graphical excellence and integrity. Graphical excellence

encompasses a number of criteria for design by maximizing the the data/ink ratio (i.e.,

information and data density) and avoiding accessory elements and embellishments.

Graphical integrity refers to a truthful representation of the data (related to Q1) for

avoiding potential misinterpretation due to scaling issues or distortion.

2.3.5.2 Criteria for design based on data type

From the early work of Mackinlay [33] we adopted the criteria of expressiveness and

effectiveness to qualify visualizations in terms of the encoding parameters and degree

of salience of visual attributes. From Bertin’s seminal work [35] we derived principles

of effective visual encoding of data features into visual variables. We also considered

the work of Card et al. [36] and MacEachren et al. [37] which revise and extend the

early of work of Bertin respectively in information visualization and geo-visualization.

These enabled us to judge the appropriateness of the visualization parameters (related

to Q1) based on the data type they represented.
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2.3.5.3 Perceptual Implications of Design

Bertin’s seminal work on visual variables such as position, size, shape, color,

orientation, and texture; formed the most important basis of our judgment of the

appropriateness of the design parameters. Bertin focused on defining the possible visual

variables and reflected on their perceptual implications for visualization design. The

work of Bertin was extended by Cleveland and McGill [38] and Ware [19], who provided

much needed empirical evidence of the perceptual effectiveness of visual variables

through controlled user studies. Together with Bertin’s work, such experimental

research form the core of the science of visualization. For addressing Q2, we utilized

the following concepts inspired from these threads of research: the importance of

visual encoding keeping pre-attentive processing in mind, ranking of visual variables

based on different tasks, perceptual effects and properties of color, importance of

spatial organization of visualization design, etc.

2.3.5.4 Design for more effective visual communication

Finally we also considered recent approaches from data visualization practitioners.

These mainly address the concern of how visualization should not only support

exploration and analysis, but should also be able to visually communicate the data.

For addressing Q2, we utilized design guidelines from Stephen Few’s book “Show Me

the Numbers” [10] and from “The Functional Art” [39] a data narrative-oriented book

written by data journalism expert Alberto Cairo.

2.3.6 Coding

In the coding phase we analyzed all the image instances for potential problems with

respect to the visualization intents that were collected in the initial phase. The codes

we used for describing the problems were based on our synthesis of design principles.

For each example we collected codes describing design problems and relevant issues.

For instance, the scatter plot example shown in Figure 2.1(a), was coded with: clutter,

chart selection, and color map. Wherever more clarity was needed, we resolved our

doubts by asking further questions to the scientists. We met at regular intervals to

share, compare, merge, and refine the set of codes; and after several iterations we

reached a stable set. Halfway into this process, during our discussions we realized

design problems sometime have non-trivial implications and solutions. For this reason

we started collecting, together with problems, descriptions of design consequences and

their trade-offs, which are presented in Sections 2.4.3 and 2.7.
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Figure 2.4: Different levels in the design problem taxonomy. Problems are
categorized according to the stage in the visualization pipeline, the type and the cause.
The leaf nodes for problem cause are shown in Figures 2.5 and 2.7. The most frequently
occurring problems were the visual variable problem (37% cases), communication
gap (30% cases), and clutter (29% cases); followed by color map choice (28% cases) and
distortion (20% cases). Some of the less frequent problems were level of detail (17%
cases), comparison complexity (15% cases), and chart appropriateness (13% cases).

2.3.7 Generating a Taxonomy of Design Problems

After collecting the codes we moved to the axial and selective coding [28] phase

where we merged, grouped and structured the codes into a full taxonomy. During this

phase we went through several refinements by having one of the investigators mainly

working on the classification scheme and another investigator testing the scheme with

the library of examples, while discussing inconsistencies collaboratively. We stopped

the process when we felt that we reached a stable and satisfactory description of all

the problems.

One of the issues during this phase was to choose an agreed upon level of abstraction

for categorizing the design problems. For this we used a bottom-up approach by

analyzing which problems are similar in terms of: which stage of the visualization

process they were introduced and what effect they had on the visual representation

and the perception of patterns. Accordingly, we came up with a three-level taxonomy,

that helped us categorize the causes and implications of the problems.

2.4 Taxonomy of Design Problems

The taxonomy we have derived is a classification scheme where a visualization

example can be associated with multiple design problems that are described by different

nodes of the taxonomy tree (Figure 2.4). For deciding a classification that captures

the causes and effects of design problems, we took inspiration from the taxonomy of

visual uncertainty [22] based on the traditional information visualization pipeline [18].

The latter can be regarded as a visual communication channel [40] and thought of
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being composed of two distinct phases: encoding, that is associated with mapping

the data on to the screen-space; and decoding, that is associated with perceptual and

cognitive processes on the user’s side. The classification scheme, based on encoding

and decoding stages as the first level, enables us to systematically analyze different

dimensions of the design problems. The levels are described below:

i) Problem Stage. The first level decides whether it is in the encoding or the

decoding stage that a design problem is found. Encoding deals with problems that

mostly depend on the choices the designer makes when deciding how to transform

data points to visual features. Problems on the encoding side enable us to address

if the encoding strategy (e.g., choices involving chart type, visual variables, color

map) adheres to visualization best practices. Decoding captures design problems that

go beyond the specific scope of visual encoding and the deliberate encoding choices

a designer makes. These problems may be due to the effect of the limited screen

resolution, perceptual implications of the visual parameters and auxiliary elements

(grids, legends, annotations). They mainly affect the effectiveness with which the user

can decode the presented information.

ii) Problem Type. An encoding problem or a decoding problem can be classified

into multiple types, depending on the problem characteristic. The type level separates

the encoding and decoding problems into different classes, which encapsulate the

low-level causes of these problems. The classes belonging to the encoding side reveal

the gaps in fulfilling the necessary conditions for a good encoding. For example,

it could reveal if the chart type and visual mapping were appropriate. Fulfilling

the necessary conditions for a good encoding might not always be sufficient for a

visualization to be useful. The classes belonging to the decoding side reveal if the

necessary conditions were also sufficient, by revealing if there was too much clutter, or

if the there was distortion of information or the visual complexity was too high.

iii) Cause of problem. This is the level at which leaf nodes of the taxonomy tell

us the precise cause of the problem. These causes reveal the low-level details of the

problem types. For example, from this level we know the cause of a color map problem

or the cause of a distortion problem.



20

Figure 2.5: Design problems found at the encoding stage of the visualization
pipeline reflected how well the input parameters such as chart type, visual variables,
level-of-detail and color map were chosen by the scientists. Darker color at the lowest
level indicates higher frequency of a particular cause (e.g. Choice) within a problem
type (e.g. Visual Variable problem).

2.4.1 Encoding Problems

The encoding side of the taxonomy helps us ask questions such as: “Do the encoding

parameters such as chart selection reflect the intent?”, “Can the visual mapping and

color map choice be improved?”, “Given the intent, is the data shown at an appropriate

level of detail?”. In this section we describe the causes of design problems during the

encoding stages (Figure 2.5).

2.4.1.1 Chart appropriateness

The first design decision that the scientists have to make for reflecting their intent,

is which chart type to use. The chart appropriateness issue deals with whether the

charts selected by the scientists appropriately reflected their intent. For judging this

problem, we analyzed if any inherent limitation of a chart type, or the resulting

configuration of the visual representation interfered with the intent. The two causes

for the appropriateness problem were as follows:

Mismatch. Mismatch captured cases in which the chosen visual representation was

not the best option for conveying the intent due to its inherent limitations. This issue

was observed mainly in scatter plots. For example, one of the intents in the scatter

plot in Figure 2.1(a) was to find which models belonged to which ecoregions. The

author attempted to convey this intents through a variant of a traditional scatter plot,

where the X-axis represents a categorical attribute (the ecoregions) rather then a

numeric value, as is usually expected. This unexpected configuration created confusion

among the scientists and made the chart difficult to interpret. A scatter plot is unable

to clearly show the models that belong to a particular ecoregion due to over plotting.

An additional problem is the use of the many different symbols for representing each
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model, which leads to an inefficient conjunctive visual search. In Section 2.6 we discuss

a solution to this problem.

Configuration. Configuration problem deals with the arrangement of multiple

charts in a common canvas. We found several examples where scatter plots, line

charts and maps were stacked together for comparing climate model behavior. This

can be observed in Figure 2.6. The intent in this case was to compare the temporal

variation of annual cycles. But the horizontal stacking of the line charts, where

time was represented on the X-axes, made it difficult to compare the Y -axes values.

This problem was also observed in Figure 2.1(b) where multiple maps where stacked

together without any ordering based on similarity.

2.4.1.2 Visual Variable

Visual variable problem captures cases in which the designers made poor choices

in the mapping data attributes to visual variables. This is one of the most important

design decisions in the visualization process [35, 36]. Since the number of data

attributes generally outnumbers the number of visual variables (position, shape, size,

color, orientation, etc.) by far, effective utilization of the latter is crucial in designing

effective visualizations. The two causes for the visual variable problem were as follows:

Choice. The choice of visual variables was one of the leading causes of problems

we found in our collection. While the choice affects all the subsequent visualization

stages of human perception and cognition, here we focus on how visual mapping can

“above all show the data” as suggested by Tufte’s principle of graphical excellence [9].

The different classes of problems due to choice of visual variables were: representation

of discrete data attributes in scatter plots and line charts using a combination of

visual variables, and use of color as a quantitative channel for comparing averages and

differences on geographical maps. For example in the scatter plot in Figure 2.1(a), one

of the main problem was the representation of discrete data attributes, i.e. climate

models, using visual variables such as shape, texture, and orientation concurrently. The

use of multiple symbols causes conjunctive visual search [19] which is inefficient and

not a good use of the pre-attentive capabilities of the human vision system. Moreover,

combination of shape (different symbols), texture (filled and unfilled shapes), and

orientation (triangles pointing in different directions), do not adhere to the rule of

integral and separable visual dimensions [19]. In line charts, a recurring problem was



22

Figure 2.6: Problems due to clutter: color mixing, visual variable problem:
ambiguity, and chart appropriateness: configuration The intent behind this
multiple line chart figure [41] is to enable readers to analyze the variation of annual
cycles over time in terms of the ensemble mean, the standard deviation and the
individual values. It is difficult to compare temporal trends due to the side-by-side
placement. Color mixing among the lines causes clutter.

the use of dots, solid lines, and dotted lines which would create difficulty in recognizing

and tracing the different items.

Ambiguity. Another category of problems with visual variables, was ambiguity,

where the use of visual variables was inconsistent: either different visual variables

were used to represent the same data attribute, or the same visual variable was used

to represent different data attributes. While the choice of visual variables reflects how

well the latter reflects the different data properties, ambiguity reflects if even after a

correct choice was made, there were additional inconsistencies. For example, in the line

chart example in Figure 2.6, there are only a few different colors used for representing

the different categories. It almost seems there is a relationship among them, although

none is explicitly mentioned in the text. The same problem was observed in maps,

where a white or grey was used to represent two different factors: absence of data and

lack of correlation among values that are represented. As evident ambiguity can lead

to misinterpretation of the data where a relationship can be deduced even if there

is none and if there are multiple relationships, only one of them might have been

conveyed.

2.4.1.3 Level-of-Detail

For the visual encoding of data attributes, it is important to choose an appropriate

level-of-detail that would not only preserve the fidelity of the data as much as possible,
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but also effectively communicate the intent. The two causes of the level-of-detail

problem were as follows:

Granularity. This problem was observed in cases where either a coarser or finer

granularity level could better reflect the intent. For example, a recurring issue with the

maps was that pixel-based representation was used for mapping quantitative variables

and enabling model comparison. While this led to high fidelity, comparison across

multiple maps was difficult because of the low-level details that readers had to classify

and compare. As shown in Figure 2.1(b), this would be inefficient as the lowest level of

granularity would not facilitate a high-level overview of the salient patterns. It would

instead cause a sequential search for finding similarities and dissimilarities among the

maps.

Jaggedness. charts representing time series. The salient peaks and crests in the

time series were occluded because of the jaggedness. The main source of the problem

was the tendency of the scientists to plot daily or monthly data, even when the intent

was to show the annual variability of any given entity. In those cases smoothing could

be used by computing an average and that would highlight the main trends. In the

redesign Section (Section 2.6), we present a line chart example (Figure 2.12) that

shows these jagged patterns.

2.4.1.4 Color Map

Choosing an appropriate color map is essential for the effective display and analysis

of data. Based on fundamental human perceptual principles and the type of data

being displayed (sequential, diverging, or categorical), there are formal and systematic

ways to make an appropriate color choice based on the task at hand. Color maps for

quantitative attributes are important for making an accurate judgment, while those

for qualitative attributes are important for distinguishing among different categories

efficiently. Since the implications of these two types of color maps are different, we

treated these two problems separately:

Quantitative mapping. For quantitative color maps, the rainbow color map was

used in most cases. As extensively documented in the visualization literature [42, 43],

the lack of perceptual ordering and isoluminance in case of rainbow color map can

cause inaccurate interpretation of the data. It has also been shown in case of scientific

data, the crucial role that a perceptually motivated color map plays, for example in
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Figure 2.7: Design problems found at the decoding stage of the visualization
pipeline reflected how the communication of the intended message was affected by
the design choices. Darker color at the lowest level indicates higher frequency of a
particular cause (e.g. Overlap) within a problem type (e.g. Clutter).

case of diagnosing heart conditions [44]. From the examples we collected, geographical

maps suffered from this problem the most. In many cases we found that scientists

are only interested in recognizing the extreme values, and the colors red and blue are

associated with the semantics of temperature: red signifying hot regions and blue

signifying cooler regions. But in many of those cases, all the hues of the rainbow are

used for encoding the data. A divergent color map with only a luminance variation [45]

would be appropriate in that case.

Qualitative mapping. For qualitative color maps, the problem was when represent-

ing discrete variables with color (Figure 2.12). If the hues are not separable enough,

visual search for the variables would be inefficient. We found that it is a common

requirement for the climate scientists to represent more than 10 discrete variables (in

the form of regions or climate models) in a single chart. If color is the chosen visual

variable, the choice of hue then becomes critical. The Tableau 20 color palette can be

used in that case. ColorBrewer [45] only offers about 11 distinct colors.

2.4.2 Decoding Problems

Once the encoding parameters are chosen in the design process, to the judge the

quality of the visualization, we have to judge its perceptual implications. Analysis

of problems at the decoding stages of the visualization, that is the perception and

cognition stages, enables us to evaluate a visual representation by asking questions

such as: “Is it perceptually confusing?” “Does it represent the patterns without dis-

torting it or being too complex?” “Does it emphasize the intended message clearly

enough?”. In this section we describe the problems caused during these stages of the

pipeline (Figure 2.7).



25

2.4.2.1 Clutter

We adopt the definition of clutter which relates the degradation of a display with

the number, representation, and organization of items [46]. Many of the visualization

examples, across maps, line charts, and scatter plots were cluttered and there were

different reasons for clutter. The two causes of clutter were as follows:

Color mixing. Color mixing (Figure 2.6) was one of the causes for clutter. This is

different from the color map problem, because color mixing mainly occurred between

the the chart elements and the background or among the different sets of symbols. For

this case, the color map could have been appropriate, but there needed to be another

extra degree of caution for avoiding color mixing. Color mixing was observed mainly

in maps and line charts. For example in the line chart in Figure 2.6, the color mixing

between the grey band, the grey mean line and the chosen colors for the other lines

cause clutter.

Overlap. Overlap encompasses over-plotting of data items in scatter plots and maps,

and large number of crossings in line charts. In some instances of line charts, the

thickness of individual lines made it difficult to identify and trace the paths of individual

lines. Over plotting of different visual variables on a scatter plot (Figure 2.1(a)) made

it difficult to recognize and visually search for the individual data points. While over

plotting and overlap are artifacts of the representation, and are often unavoidable, the

key question here is whether these artifacts interfered with the intent. For example, in

case of the scatter plot example, over plotting interferes with the intent, as identifying

each model is one of the intents of the author.

2.4.2.2 Distortion

Distortion of the data in a visual representation is a serious problem that can either

lead to potential misinterpretation or an inaccurate perception of the data, especially

when quantitative attributes are involved. The causes for distortion are as follows:

Scale inconsistency. Choosing different scales for the same variable leads to incon-

sistent representation of the patterns. This is a decoding problem, because the chosen

scale is appropriate for a given variable, but when multiple variables are involved, lack

of attention to consistency can mislead readers. We found this to be a problem in

some geographical maps, where a single rainbow color map was used to represent data

which were at different scales, leading to misrepresentation of the patterns. In some
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Figure 2.8: Problems due to chart appropriateness: mismatch, distortion:
scale inconsistency, comparison complexity: superposition overload, com-
munication gap: legend, annotation. The intent in this figure [47] was to compare
the errors of two plant functional types (DBF, EVG), color-coded in green and blue, and
quantified in two ways: NRMSE and Chi-Sq. The X-axis in all three scatter plots
represent the Chi-Sq statistic. It is hard to separate the patterns between the two
functional types: a regression line and annotation of key trends would more clearly
communicate the message.

scatter plots and line charts (Figure 2.8) we found that the scale of one or more of the

attributes are different from others. In this case the X-axis represents the chi-squared

statistic and in the topmost line chart, the tick placement is different from the others,

signifying a different log-scale for encoding the data than others.

Projection error. This problem is typical of maps, and due to the inherent mapping

from a 3D sphere to a 2D surface, we observed projection error in some of the map

examples. We observed that while some error is unavoidable, use of better projection

techniques could reduce the amount of the error. For example, an equal-area projection

will be more appropriate in displaying area-sensitive data like fire-burnt area.
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2.4.2.3 Comparison complexity

The main goal in TBM domain being model intercomparison, the primary intent

behind most visualizations was to facilitate comparison at different levels. We found

that the comparison complexity in terms of number of data points per chart, or

number of charts per views, or their placement, led to some design problems. We

take inspiration from Gleckler et al.’s taxonomy of visual comparison methods [48]

for categorizing these problems. We classified this as a decoding problem because

even a correct encoding choice could lead to comparison complexity and influence the

communication of the main message. The two causes of comparison complexity were

as follows:

Superposition overload. This category deals with the case where the number of

entities in a chart are far too many for facilitating an effective comparison. This issue

was observed mainly in line charts and scatter plots. As opposed to a small multiple

display, a large single [49] was often required by climate scientists for comparing

models to observations, or comparing individual values to ensemble mean. In some of

those cases, superposition overload of too many elements led to clutter (Figure 2.12)

and in some case, although clutter was not caused, superposition overload interfered

with the intent (Figure 2.8). In the first case, the drawbacks of the superposition are

obvious and we discuss a small multiple solution to this problem in Section 2.6.3. We

found small multiples being used by scientists in case of maps, but we found only one

line chart example where a small multiple was used for reducing overloading.

Lack of explicit encoding. This case with the issue where explicit encoding

of relationship among the compared entities would have led to better design. It

has been observed that small multiples are important while visualizing multiple

variables [9] but care should be taken to position and sequence the individual charts

appropriately so that visual search is optimized [10]. For example, in case of the

multiple maps (Figure 2.1(b)), the intent here is to deduce the degree of similarity

among the different models. However a random arrangement does not immediately

show how much similar, the maps are. It requires visual inspection almost on a

pixel-by-pixel basis for judging similarity. In that case, extracting some summary

statistic about the degree of similarity and using that for positioning the maps seemed

to be a good solution. We will discuss this solution and its evaluation in the case

study section.
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2.4.2.4 Communication Gap

In many of the visualization examples we collected, we found problems with

factors which do not directly interfere with the intent, but might create problems with

communication of patterns. These are auxiliary information about charts, which were

categorized as follows:

Grids. Grids can be used for chunking the important pieces of information, which

might not be intuitive immediately. Human brains are good at picking out patterns.

Often, fairly small changes to a graphic layout that strengthen the appearance of

grouping or other types of patterns will add to the ability of the graphic to deliver an

instant impression or overview of the message being communicated. While unnecessary

grid lines must be avoided in keeping with the idea of minimizing non-data ink proposed

by Tufte [9], judicious use of grids help in capturing the reader’s attention to the salient

portions of the chart. For example, use of column-wise grid lines in Figure 2.1(a)

could separate the ecoregion-wise patterns for the different models. In our collected

examples, we found two scatter plots were grids were used to chunk the information

space, for denoting groups of data points belonging to a model or a year.

Legend. In some visualization examples, we found that the charts are not self-

contained: lack of legends for different symbols or relationships meant one has to

either browse through the captions or the textual description for making sense of what

the symbols mean. This was especially difficult where lots of different symbols are

used on a chart, for example, the scatter plot shown in Figure 2.8.

Annotation. In different visualization examples, we observed that annotation of

salient patterns or data points on the chart could communicate the intent or some

other critical aspects more effectively. For example, in case of the multiple maps (Fig-

ure 2.1(b)), the white color on the maps denotes a lack pf spatial extent, but that is

not documented within the image itself. An annotation would clearly communicate

this important aspect of the chart.

2.4.3 Problem consequences

After we created the final version of the taxonomy, we realized that while the

taxonomy enabled us to categorize the problems and their causes, it did not capture

their severity, and most importantly, their impact. In light of the numerous trade-offs
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Causes of Problem Consequence
Visual variable problem: ambiguity

Misinterpretation
Distortion: scale inconsistency
Distortion: projection error

InaccuracyDistortion: scale inconsistency
Color map: quantitative mapping
Chart appropriateness: mismatch

Lack of expressiveness
Chart appropriateness: configuration
Visual variable problem: choice
Level-of-detail: jaggedness
Visual variable problem: choice
Level-of-detail: granularity

Inefficiency

Color map choice: qualitative mapping
Clutter: color mixing
Clutter: overlap
Comparison complexity: superposition overload
Comparison complexity: lack of explicit encoding
Communication gap: grids
Comparison complexity: lack of explicit encoding

Lack of emphasisCommunication gap: grids, legend
Communication gap: annotation

Table 2.1: Connecting design problems to problem consequences sorted
by severity. Misinterpretation has the highest degree of severity owing to the
misrepresentation of the intent. Lack of emphasis is least severe as the problems
are dependent on the inefficiency of the visual communication process, and not the
incorrectness of the representation.

a visualization practitioner has to face when creating a visualization, it would be useful

to have: guidance on how severe a visualization problem could be, and a categorization

of consequences it may lead to. To solve this problem we went through our list of

problems again and consulted our synthesis of design principles which were based

on the two high-level questions: Q1, about correctness; and Q2, about effectiveness

and efficiency of visual representations. Based on these questions and inspired by

the seminal work on graphical integrity [9] and the criteria of expressiveness and

efficiency by Mackinlay [33], we created a list of potential problem consequences.

These consequences bridged the low-level causes of design problems to high-level

effects, which were more comprehensible from a domain scientists’ point-of-view. The

association of design consequences with design problems is shown in Table 2.1, sorted

by their level of severity. The level of severity is defined by the graphical integrity

principle [9], according to which the most important criteria for a visual representation

is to represent the data correctly and accurately. The different problem consequences

are described below.
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2.4.3.1 Misinterpretation

Certain design problems could lead to misinterpretation of the data. Since this

consequence directly interfered with the correctness of the interpretation, and vi-

olated the principles of graphical integrity [9], it had the highest level of severity.

As shown in Table 2.1, ambiguity of visual variables and distortion due to scale

inconsistency (Figure 2.8) could lead to the misinterpretation of the data.

2.4.3.2 Inaccuracy

In scientific data analysis, an important requirement for visual representations is

to allow scientists to deduce accurate estimates from the display. When certain design

problems could lead to an inaccurate interpretation of the data with respect to the

original intent, they would cause inaccuracy. The most prevalent design problems that

caused this issue were distortion due to projection error and quantitative color maps

in the form of rainbow color maps. Problems like chart mismatch could also cause an

inaccuracy problem. For example in case of the scatter plot example (Figure 2.1(a)),

one has to mentally compute the spread of the different output variables, and therefore

inaccurately perceive the differences in the spread.

2.4.3.3 Lack of expressiveness

The expressiveness [33] criteria dictated whether the visual representation matched

with the properties of the data attributes. A lack of expressiveness condition would

not clearly convey the intent as the certain aspects of the representation would not

match the intent. The problems leading to lack of expressiveness from our taxonomy

were chart mismatch, chart configuration, visual variable problem due to choice,

level-of-detail due to jaggedness, and lack of explicit encoding.

2.4.3.4 Inefficiency

Efficiency of algorithms are measured in terms of speed. Inefficiency in visualization

design could also be traced to the slowness of the interpretation on the part of the

reader. When certain design problems did not directly interfere with the interpretation

of the data with respect to the original intent in terms of its correctness or accuracy, but

affected the speed and efficiency, they led to inefficiency. This category encompasses

the principles of effectiveness [33], use of pre-attentive features [19] and visual variables

for efficient search for patterns [38]. The problems leading to this consequence based

on our taxonomy were level-of-detail due to granularity, qualitative color maps, clutter
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due to color mixing, superposition overload, and communication gap due to lack of

grids and legend.

2.4.3.5 Lack of emphasis

In static charts it is often important to draw the reader’s attention to salient

portions of patterns that have higher priority than the rest. This can be done by

highlighting different aspects and organizing the information in a structured way [10].

While these do not directly correspond to the data being shown, the emphasis on the

key aspects of a chart affects that message that readers decode from a chart. The

problems leading to a lack of emphasis consequence based on our taxonomy were lack

of explicit encoding, grids and annotations. Since this consequence does not directly

interfere with the intent, it has the lowest level of severity.

2.5 Matches and mismatches

At this point of our study, we realized we had the opportunity to get back to

our group of climate scientists and get feedback on our categorization of the design

problems. We realized this would not only be a useful way of validating our work, but

it would also be interesting to observe how visualization problems compiled by a group

of visualization expert would be received by a group of domain scientists. We realized

that while extensive research exists on reporting design problems when evaluating

visualization and, as we have seen above, on providing visualization guidelines, there’s

very little understanding or even exploration of how criticism and guidance is received

and used by domain experts. We were interested in spotting cases where visualization

experts and domain scientists disagree and dig deeper into why and how this kind of

disagreement happens.

2.5.1 Interview Procedure

Before conducting the interview, for avoiding redundancy, we made a pass through

all the problem categories, in an attempt to filter out the images which are very similar

to one another. For example, in the case of a rainbow color map problem, we only

showed a few examples which expressed the problem.

We arranged for a face-to-face interaction with our direct collaborators, as part of

a workshop, and the entire interaction lasted for about four hours. We described the

taxonomy along with problems from the collected examples. Since some of the scientists



32

did not have a background in visualization, we first gave examples of best practices in

the choice of visual variables, color maps, chart selection, etc. We exercised caution

in not using too many technical terms, but explained the problems as illustratively

and simply as possible. We asked the scientists to fill up a spreadsheet where they

had to write if they agreed or disagreed with a design problem. They also added in a

comments section, the reasons for their disagreement.

We realized that there could be disagreement among the climate scientists them-

selves, about design problems. We did not want an apriori settlement of their

disagreement, but instead wanted to collect raw data about the same and see if there

is a majority disagreement. Therefore we requested our collaborators to record their

feedback independently. After collecting all the responses, we separated cases which

had majority agreement (more than half the people agree about a design problem)

and majority disagreement (more than half the people disagreed among themselves in

acknowledging a design problem).

2.5.2 Cases with Majority Agreement

Figure 2.9 shows the distribution of the percentage of majority agreement and

disagreement, sorted by high percentage of disagreement majority from top to bottom.

We can observe that the scientists were generally in agreement with problems that

lead to the most severe consequence, i.e., misinterpretation: scale inconsistency and

ambiguity of visual variables. Also, there was a high percentage of agreement for

comparison complexity problems and communication gap problems caused by lack of

legend and annotation. As observed from Table 2.1, these categories lead to lack of

emphasis consequence whose degree of severity was low and did not directly interfere

with the communication of the intent.

In course of our interaction with the scientists we could reason with this apparent

dichotomy, that is, they tended to agree with problems with lead to consequences

with both highest and lowest degrees of severity. One of the reasons was that, the

scientists could immediately recognize why certain problems led to misinterpretation

as the visual representation in those cases misrepresented the data. There were other

cases, like the comparison complexity problem, where majority of the scientists agreed

with the problem, but they were not aware of the solution. It took a while for us to

illustrate how lack of explicit encoding or superposition overload hindered their main

intended task, which was comparison of models, and which solutions could work better.

We showed them sketches and examples of how these problems could be solved by
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Figure 2.9: Causes of problems sorted by high percentage of majority dis-
agreement from top to bottom along the Y -axis. Scientists were mostly in agreement
with the most severe problems. They were generally in disagreement with problems
which required significant knowledge about visualization best practices and those
which were in conflict with the domain conventions.

making the decoding process more efficient and emphasizing the salient patterns; after

which they agreed with the problem. Understanding the effect of the communication

gap problem caused by lack of legend or annotation did not require much visualization

expertise. In several cases the scientists commented:

“This figure desperately needs a legend, it is so difficult to flip back and

forth to know what the symbols mean.”

For the annotation problem, the scientists sometimes acknowledged that annotation

of the main trends would help them to focus directly on the main message instead of

searching for it.

2.5.3 Cases with Majority Disagreement

During our interview, we found several instances where it was difficult for the

visualization experts to convince the climate scientists about design problems, including
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well-known pitfalls like rainbow color map and 3D views. The cases with majority

disagreement are shown in Figure 2.9. These were, especially cases where the problems

did not directly interfere with the intended tasks. In other words, the problems

did not have any misleading consequence, however they interfered with accuracy,

expressiveness, efficiency, and emphasis. Some of the comments we got for problematic

charts based on these consequences were:

“Improvements are subjective.”

“Minor problem.”

“This might be a problem but I am ok with this plot.”

Next we describe categories of major disagreements we have found during our

interactions with the scientists. They are categorized in three main classes:

2.5.3.1 Domain Conventions

We found that the source of some of the design problems were existing conventions

that the climate scientists followed. In some examples of line charts and scatter plots,

we found them to be too cluttered or superposed with too many details to make sense

of. For example, in many cases we found the use of dots along with lines on line charts,

which cluttered the display and which we coded for both clutter due to overlap and

choice of visual variables. However scientists explained that the observed data is by

convention encoded by black dots, and the simulated data is encoded otherwise to

distinguish them, and enable comparison between the two categories, i.e. observed

and simulated.

For the superposition overload problem we found a group of line charts, that were

similar to the one in Figure 2.12, but with the additional complexity of multiple dots in

addition to the lines, representing observation data. This was an obvious candidate for

overload. However, some of the scientists asserted that this was more of a convention

in the climate science community for representing observation data on top of lines for

comparing simulation data, and they were comfortable with such a representation.

2.5.3.2 Loss Aversion

Similar to the tendency to avoid losses rather than acquire gains, which is popularly

known as a loss aversion problem [50], climate scientists tended to focus more on

avoiding loss of data in their visualizations, than on tuning the chart parameters for

gaining insight from them. The recurring level-of-detail problem with line charts and
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maps exemplified this tendency. In examples where multiple maps were compared for

understanding similarity of models, we suggested that a coarser granularity would

facilitate more effective comparison. This was because if the number of maps being

compared is more than three or four, it becomes difficult to perform a pixel-by-pixel

comparison, where the data is encoded at the finest level of granularity.

For the granularity problem, were multiple maps were compared using a pixel-by-

pixel mapping (Figure 2.1(b)), although there was largely a consensus, some scientists

said:

“I would have to see the coarser version to really know if it is better,

though.”

While one of them said:

“Difficult to get a widespread trend. Personally, My eye tends to be drawn

to red dots so I may be missing much of the information presented. A

seldom problem is that I have trouble mentally overlaying the different

plots. Each plot is a different variable/model. From this visualization, I

have trouble comparing the locations and extremism of values at the same

geography.”

This showed that the comparison mechanism is not effective due to the low granularity

but they were not convinces unless alternate solutions showed them the real benefit.

In many line charts, daily data were plotted where monthly or annual were being

compared. Scientists observed that there is a need or tendency to show all the data

because the time spent in extracting the data is significant. Also they believe that

there might be some anomalies that might be missed by aggregating the data. Though

all of them did not agree, there was general consensus about this fact. When shown

alternatives with monthly averages computed, one of the scientists commented:

“I agree with you on this. But the situation is that people, especially

scientists, they tends to show data as raw as possible. I think if this figure

is used in scientific publications, it’s fine.”

2.5.3.3 Awareness about visualization best practices

We found that in many cases scientists were not aware of what the visualization

best practices are and why they should adhere to them. The categories which led to a

lot of discussion between the scientists and visualization experts, involved use of 3D
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plots (coded under chart mismatch), use of color maps and choice of visual variables.

It has been well documented in the literature that 3D plots lead to distortion and

ineffective reading of the data [51]. However, since climate scientists are already

oriented towards reading 3D volume visualizations, they did not think that a 3D

layout for abstract data could create a problem.

The same applies to the color map problems. In most cases they felt that the since

they are already used to reading data from rainbow color maps, a more perceptually

motivated color map would not make a difference to the goal of the intent. In a few

cases they commented that:

“I agree that the color map can be better but that would be a cosmetic

changes and won’t affect the intent.”

The effective use of pre-attentive features was also another category where climate

scientists did not agree with most of the problems.. For example, the scatter plot

in Figure 2.1(a) encodes all the models by using different symbols. Even in absence

of over plotting, the different symbols would cause an inefficient, conjunctive visual

search. We discuss later in Section 2.6 how we could avoid this problem.

2.6 Solution Redesign

During our interactions with the climate scientists suggested that they needed to

look at some solutions for better understanding the consequences of problems and how

to avoid those. We agreed while it was useful to directly see why some problems should

be avoided, and it was also important to see if the redesigned visualizations solved

their problems better. We believed this phase would useful for visualization experts,

because we got additional inputs which were not explicitly revealed in the previous

phases. However, it is worth noting here that we follow a descriptive approach rather

than a prescriptive one [52] and the final decision to judge the merit of a solution is

left to the scientists.

For selecting images for our solution redesign, it was necessary to select a sampling

of cases where scientists disagreed with the problem, or they agreed with the problem

but were unaware of the solution. This would potentially demonstrate the effectiveness

of optimal visualization designs to the climate scientists, if they found the solutions

to be beneficial. As described in Section 2.5.3, there was a high level of agreement for

problems that led to misinterpretation, inaccuracy, and lack of emphasis. Therefore,

we selected examples for which the problems mainly led to lack of expressiveness and
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inefficiency, given by Table 2.1. We also selected examples where there was a high

degree of agreement about the problem, but they were unaware of the solution, like,

the problem due to comparison complexity caused by superposition overload and lack

of explicit encoding.

To get feedback on the solutions, for each of the images, we specifically asked

them if the redesigned solution conveyed the original intent better, and also if there

were additional information they could gather which was not possible in the original

visualization.

2.6.1 Scatterplot

Intent(s). The context of analysis here was comparison of models with respect to

their output variables and respective ecoregions (Figure 2.1(a)). The primary intent

here was to look at the spread of the prognostic and diagnostic models with respect to

the different output variables, and a secondary task was to identify, for each variable,

which models belonged to which ecoregion.

Design Problems and Consequences. The design problems were chart mismatch,

choice of visual variables, granularity, and lack of grid lines. Chart mismatch happens

because for the scatter plot to convey the first intent, readers have to mentally compute

the spread, which is avoidable with a different representation; and more seriously, the

second intent is very difficult to convey on a scatter plot due to over plotting. The

granularity problem is caused by plotting every data point in a scatter plot, whereas

the intent was to look at the spread of the models. Visual variables with different

colors, shapes and orientation cause users to perform an inefficient, conjunctive visual

search for the models. Absence of grid lines leads to a lack of emphasis of where the

users should focus their attention: the chart should be read column-wise, which can

be emphasized by use of grid lines. Grid lines were used by the climate scientists in

two other examples, but as we observed from Figure 2.9, most of them did not agree

that adding grids could be beneficial in several examples.

Solution. A box plot is a more appropriate solution for conveying the first intent,

i.e., allowing the users to readily understand the different patterns of spread. This is

shown in Figure 2.10. Since there are only a few outliers, we label them directly on

the plot. For showing the membership of models in an ecoregion, we use a tabular

representation of the models in the form of a heat map, eliminating the need of

additional visual variables that might lead to confusion. The heat map is basically a
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Figure 2.10: Solution redesign for improving the scatter plot shown in Fig-
ure 2.1(a). A box plot conveys the intent of showing spread among the output
variables of prognostic and diagnostic models, and the accompanying heatmap alle-
viates the problem of having to visually search multiple symbols for knowing which
models belong to which ecoregions.

presence-absence chart where a cell is colored if a model belongs to an ecoregion, and

left white, if the model is absent for that ecoregion.

Using the box plot, one can immediately recognize the much higher than average

spread for diagnostic models, for the CRP ecoregion for the NEP variable. One can also

compare across different variables and models; for example the less average spread

for both classes of models for GPP and NEP variable, where there are a few outlier

models. This trend is however absent for the Rh variable. From the heatmap one can

also immediately detect that most of the outlier models are diagnostic models, and

find that the Rh variable is contained by much less number of diagnostic models as

opposed to NEP and GPP.

Scientists’ Feedback. Initially scientists were not convinced that the box plots

are an improvement as they thought the scatter plot showed more information, like
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the ability to spot the models directly on the visualization. However when we added

the heat map, showing their ecoregion membership much more efficiently, they were

convinced that the combination of box-plot and heat map eliminated the design

problems. This is evident from the following comment by one of the scientists:

“Initially, I was inclined to reply that I liked seeing the model scatter on

the first graph, i.e., I can think that I can see skew, bi-modality, etc from

the scatter plot and if we just slightly offset the points horizontally and

with only 20 points, then the overlap would not be too bad and I could glean

more information. But upon examining the plot, well, you convinced me.

What you provided does as good of a job as what I had imagined I would

have preferred. In particular, showing the box and stem AND the outliers

gave a good bit of information, as did the heat map.”

They were also convinced about the utility of the dual view:

“one can immediately detect that most of the outlier models are diagnostic

models. This was very difficult to achieve using the original scatter plots.

One can also see that most of those models are for NEP and GPP and those

are not present for the Rh variable.”

2.6.2 Map

Intent(s). The intent here was to identify similarities and dissimilarities among mod-

els for summer months during the period 2000-2005, based on the spatial distribution

of the NEP variable.

Design Problems and Consequences. The design problems was mainly a lack

of explicit encoding as the positioning of the maps do not represent the degree of

similarity among the models. Thus, the scientists have to sequentially search and

compare models to get insight into their relative similarity. It is thus hard to find

pairwise similarity between maps and find groups of similar maps.

Solution. We aimed to improve the visualization by deriving a summary statistic

about similarity that climate scientists use, and manipulate the layout for encoding

similarity. In discussions with the climate scientists, we used statistical information

about the models, that is, root mean squared difference (RMSD) which is widely used

in the climate science domain. Using the pairwise computation of RMSD between
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models, we applied multidimensional projection for displaying the maps in a two-

dimensional space (Figure 2.11) using the ISOMAP [53] technique. RMSD was used

as the distance function and in the two-dimensional space the proximity of the models

denote similarity.

For representing the maps directly based on the projection view, we adjusted

the layout using an optimization algorithm [54], so that maps did not overlap and

spatial information was retained. Displaying the maps directly was important as the

spatial extents of the models were different and the scientists wanted to see them

on the geographical map. The projection view shows clear patterns. Note the point

representing the MC1 model is far away from the rest of points, it means that its

corresponding map is very different than the others. Another example are the maps

SibB3 and VEGAS, their points are near meaning that they are similar (confirmed by

the looking at the maps). Another similar group is formed by CLM-CASA and ORCHIDEE

maps.

Scientists’ Feedback. There was consensus among the scientists that the resultant

figure not only conveyed the original intent but also showed additional information,

like quantifying the degree of similarity or dissimilarity of the models based on a metric

they were familiar with. They observed that this is a new visualization approach than

what they are used to, and one of them expressed caution about the abstraction being

used:

“I have to be cautious about the MDS method used. I agree that placing

maps in different locations will be beneficial. But the MDS method is only

one way to represent the similarity among those maps from one certain

specific aspect.”

However, they were convinced about the utility of the approach and its benefit in

expressing model similarity:

“Shows the outliers, and their degree of outlying, more clearly than the

original. This is a great solution to a very commonplace visualization in

climate modeling.”

2.6.3 Line Chart

Intent(s). The intent here was to compare the temporal variability of multiple

models with respect to each other and also with respect to the ensemble mean.
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Figure 2.11: Solution redesign for the multiple maps in Figure 2.1(b). Explicit
encoding of similarity through multidimensional projection, where higher proximity
signifies greater similarity among the models. The layout of the maps is based on the
projection shown at the inset. Subsequent layout optimization for ensuring no overlap
enables efficient comparison among multiple models.

Design Problems and Consequences. The problems with the spaghetti plot [55]

as shown in Figure 2.12 were comparison complexity due to superposition overload,

level-of-detail due to jaggedness of lines; and clutter due to overlap. Superposition

overload and overlap led to an inefficient comparison of the temporal patterns. Jagged-

ness was caused by plotting of monthly data and this lead to a lack of expressiveness

as the salient annual peaks and crests were occluded.

Solution. We aimed to solve this problem by converting the large single [49] or the

spaghetti plot, into a series of small multiples. As shown in Figure 2.13, we converted

the individual lines into a band for showing the range of variation, and plotted the

ensemble mean in each of the plots, shown by the black line. Each line plot now

belongs to a model, and the line is highlighted in red. We avoid using different colors

for each model, as the labels are sufficient for identification of a model. We found the

small multiple approach being used the scientists mostly in case of maps, and in one
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Figure 2.12: Original representation of the spaghetti plot for comparing tem-
poral variation of net uptake of 8 models, indicated by the colored lines.

more example, where maps and line charts were used for linking the spatiotemporal

trends. One of the problems we did not address was the jaggedness of lines. Since we

are losing resolution by using small multiples, one option was to compute an average by

combining several years, and smooth out the time series. However due to information

loss, scientists were not comfortable with the idea of smoothing by computation of

average.

Scientists’ Feedback. The scientists unanimously felt that the resulting small

multiple display overcomes the problems that are traditionally present with a spaghetti

plot. One of them commented:

“The new plots are definitely better than the original one. It’s difficult to

identify each model line in the original plot due to over-plotting.”

They appreciated the minimalist design by using few colors and also the fact that

temporal variation could be compared quickly and intuitively with both the multi-

model range, and the lines representing different models. One of the scientists also

observed that:

“If the goal is to visualize model similarity then we can apply the same

layout optimization as applied to the multiple maps example to rearrange

similarly behaving models together.”

They were confident that this would be an exemplary visualization which will be

emulated in model comparison scenarios and preferred over the traditional spaghetti

plot.
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Figure 2.13: Solution redesign for improving the spaghetti plot. Separating the
model representations into small multiples of line charts enables efficient comparison
of each model trend with the ensemble mean and range of variance.

2.7 Design Problem Trade-Offs

In this section we present one of the the key findings of our study, which is a

reflection on the trade-offs among the different problem consequences. Many design

problems and consequences cannot be simultaneously avoided. An awareness of the

trade-offs is necessary for the scientists to judge how best to configure a visualization.

The first decision that scientists have to take, is to weigh which design consequence

more, and accordingly decide which potential design problems to avoid the most. A

perfect visualization is hard to achieve and there is no one-size-fits-all formula for

generating one. Visualization design is heavily parameterized by the scientists’ intent,

which needs to take into account the different trade-offs. Following were the different

trade-offs we found in our analysis.
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2.7.1 Lack of Expressiveness vs Inaccuracy

This trade-off was observed in cases where scientists’ intent for visualizing the

data at the finest level of detail, led to a lack of expressiveness of the salient patterns.

For example, in case of jagged lines, an average could be computed to reduce the

number of steps, and that would lead to higher expressiveness, but at the cost of

inaccuracy. Another similar example of this trade-off was choice of visual variable

and granularity problem in maps due to pixel-by-pixel representation on maps. As

acknowledged by some of the scientists, a coarser representation would have lead to

better expressiveness of the data.

2.7.2 Inefficiency vs Inaccuracy

This trade-off was observed in cases where an accurate representation was achieved

at the cost of an efficient one. Superposition of multiple lines and points for comparison

with observation data is a common practice with climate scientists. While in many cases

superposition facilitates accurate multiway comparison, fulfilling the expressiveness

criteria, in some cases this also leads to clutter leading to inefficiency. Especially

during in publications and broader dissemination, these criteria are important. In

these cases, small multiples and use of explicit encoding of relationships should be

considered.

2.7.3 Lack of Emphasis vs Inefficiency

This trade-off was observed in cases where scientists’ intent of keeping charts

free of clutter, for achieving more efficiency, came at the cost of a lack of emphasis.

Charts should be self-contained by use of proper labelling, grids and annotations if

necessary, which help emphasize the intended message. Improper use of these auxiliary

information however can clutter charts and make the decoding process inefficient. This

trade-off is also echoed my Few’s mantra of minimizing non-data ink [10].

2.8 Guidelines for Avoiding Design Problems

The design problems and consequences enable a visualization expert to reflect on

design-trade-offs and formulate solutions based on the intents that consider those

trade-offs. Climate scientists are not familiar with all visualization best practices,

which we demonstrated in Section 2.5.3. It was thus necessary to abstract the
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problems, consequences and their solutions in the form of guidelines, that are more

comprehensible from a scientist’s perspective. Our objective was to distill the general

problem trends and provide guidelines that can enable climate scientists to avoid those

problems. The following guidelines should be understood in the context of the classes

of visualizations we collected, which were maps, scatter plots, and line charts; and

the scientific intents, which mainly centered around understanding and expressing

similarity of climate models in those visualizations. The following guidelines are

discussed with the context of the related design problems, so that scientists are able

to bridge the gap between the design recommendations and current practices, and

embrace the best practices in visualization.

2.8.1 Keep Audience in Mind

A recurring issue cutting across different design problems was the tendency of

scientists to use the visualizations designed for their own analysis, for publication and

dissemination of their results as well. This was triggered by an implicit assumption

about the familiarity of the audience with what to look for in the data. On the other

hand, to cater to a broad audience, whether internal or external to the climate science

community, the visualization itself should be expressive enough to convey the intent,

without overwhelming the audience with the details.

In those cases, rather than representing all the data (level-of-detail problem), it is

more important to show and highlight the trends by abstracting or aggregating some

of the data. As we had pointed out in Section 2.5.3, the problem of loss aversion was

a leading cause of problems in maps and line charts. There were many cases where

the old adage of ‘less is more’ held true for the visualization designs. For example, if

a line chart is too jagged because all time-steps are represented, it can obscure the

message. In cases where the intent is to visually express similarity of multiple models,

scientists can choose to represent the data at a coarser granularity by choosing a visual

variable (choice of visual variable problem) other than color, like orientation of lines

or glyphs which have been successfully adopted in the geographical data visualization

domain [37].

2.8.2 Guide Users Attention to Salient Visual Objects

A critical requirement of any visualization design is to explicitly guide user’s

attention to the salient patterns. Enabling visual comparison of similar and dissimilar

models was the underlying intent of the images we collected. To facilitate such
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comparison, key elements of the visual representations should serve as indexes for

visual search for finding models that are similar or dissimilar.

We did not find effective use of Gestalt laws of grouping, which can be an effective

visual cue in these cases. This led to the comparison complexity problem (Figure 2.7).

For example, as we had shown in Figure 2.11 absence of explicit encoding the message

about similar or dissimilar models is not fully expressed. Another examples is the

problem of superposition overload (Figure 2.12). This causes clutter which can either

disinterest the audience or cause trouble in finding the patterns. Scientists should

avoid relying on the audience’s mental operations to make those visual comparisons,

which can be both inefficient and ineffective in absence of any visual cue. As we had

elaborated in Section 2.4.3, explicit encoding of relationships and emphasis of the key

message can alleviate these problems.

2.8.3 Focus on the Message and Make it Self-Contained

In many cases, the scientists’ intents were not fully conveyed as the message of a

chart was incomplete due to either lack of emphasis of the take-away message or a lack

of synergy between the auxiliary information and visual representation. In complex

visualizations, it is often necessary not just showing the data, but also explaining what

the visualization conveys through highlights and texts. To make the message clear,

scientists can use size, color or orientation, that is substantially different from that of

the other objects in the visualization, than the one which is most important. This is

especially true of outlier objects.

The design problems related to this category were mostly those associated with a

lack of emphasis. Although auxiliary information about charts only help when a chart

is effective in the first place, they can help focus human attention very quickly to the

salient portions of a chart. In cases of complex charts with multiple messages, this

aids the user in decoding the intended message very efficiently. Charts should also be

self-contained, without the audience having to search for the meaning of the legends

in some other table or graph, which was true of some examples we collected from the

research papers.

2.8.4 Tie Color Selection with Data Semantics

We observed in Figure 2.9 that choice of color was one of the problem categories

where there was a lot of disagreement between visualization experts and climate

scientists. We found that our collaborators generally considered the use of color as
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more of an aesthetic issue than it being tied to the data semantics. While there were

some good examples of choice of color maps, in majority of the cases we found that

the choice of color map was not appropriate.

Apart from color maps, we also found some other inappropriate choices of colors.

For example, in some cases, we found the most important visual object, such as the

mean or the trend line being encoded in gray, in which case it would be hidden in

clutter and not be emphasized. Apart from different color scales for different data

types, we also recommend the effective use of color in emphasizing certain objects (e.g.,

red can create a pop-out effect) or muting certain aspects of the data, like using gray

to de-emphasize points in a scatter plot that create noise and use color only to encode

certain salient points.

2.8.5 Be Mindful of Defaults

For several design problems we had assessed, one of the precursors for the prob-

lems was the defaults of the tool that the scientists were using for creating those

visualizations. One of the infamous defaults in many tools is the rainbow color map.

The other one is the selection of random symbols for showing discrete data. In our

taxonomy, these led to the color map choice and visual variable problems (Figure 2.5).

The consequences of these problems can be as severe as misinterpretation, or lead

to lack of emphasis for salient patterns (Table 2.1). In these cases, it is necessary

for the scientists to look beyond the defaults and introspect if the defaults impede

data analysis and visual communication. Such introspection might ultimately require

scientists to manually configure visualizations for overcoming the problems with the

default settings.

2.9 Scope and Impact

In this section we discuss the scope of our work and the impact in terms of the

generalizability and utility of mapping design principles to domain-specific, static

visualization designs.

2.9.1 Limitations

Our work has some important limitations to take into account; first of all is

its subjective nature due to the qualitative methodology, While use of grounded

theory and bottom-up approach to building visualization usage models are gaining
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ground [23, 29], it is an acknowledged fact that subsequent research needs to be done to

develop prescriptive solutions to the problems. Accordingly, our focus in this work has

been to reflect on the design problems through the descriptive taxonomy, which can be

expanded in scope through further research to build prescriptive, broadly applicable

solutions. Moreover, there are multiple ways of describing the design problems we

found. We are not claiming that this is the only way to classify visualization design

problems we found. However, we are confident that through our collaboration with

a broad group of climate scientists and our understanding of the state-of-the-art in

visualization practices, our classification provides a good starting point for bridging the

gap between visualization best practices and existing climate data visualizations. The

guidelines should be understood in the context of the sample of images we collected.

These guidelines still need to be validated through empirical evaluations.

2.9.2 Generalizability

Although the sample of visualizations we collected was limited by their type (maps,

line charts, and scatter plots) for us to build prescriptive solutions, we believe many

aspects of our study are generalizable. First, although we used only three types

of visualizations, they represent a broad set of usage scenarios in climate science:

understanding spatial patterns, temporal patterns and looking at bivariate relationships

among variables. The tasks mainly involved visual comparison of distributions,

correlations, and variability, which are common analysis tasks cutting across climate

science and even other domains. From that perspective, we are confident that the

problem classification will be applicable to different domains and usage scenarios.

Second, the problem classification itself follows a mapping between general design

principles and visualization examples from a domain. Even if some of the problems

we found in the climate science domain do not exist in other domains, the same

principles and classification scheme based on encoding and decoding problem stages

would still apply. The same would apply for the problem type level, only the causes of

the problems might be different. For example, there can be different causes for a level

of detail problem, or the problem or clutter or distortion, but these problem types

are still applicable for judging the quality of visualizations. As mentioned before, to

the best of our knowledge, our work is a first step towards bridging the gap between

general design principles and how they are realized in practice.

Third, from a visualization perspective, some problems we found are symptomatic

of general gaps in research involving static visualizations. First, while much research
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has focus on judging effectiveness of interactive visualizations, many mediums such

as publications and presentations are constrained by their static nature. We found

that representing multivariate or multi-model relationships and effectively visually

communicating their relationships have non-trivial challenges. Second, use of bad

defaults has been widely talked about, but rarely addressed in the tools available

today, with a few exceptions, like the Paraview tool where the rainbow color map was

changed to the perceptually effective divergent color map [56]. Our findings should

encourage such changes in the visualization tools, which will ensure better designs by

domain experts.

2.9.3 Utility

A large body of research focuses on interactive visualization and it is a general

assumption that good interactive visualization design can be easily and directly turned

into good visual presentation design. But our work points to the fact there are different

challenges and gaps and we need to better understand and research this difference.

Visual presentation is not just taking pictures from our interactive tools and placing

them into our papers and presentations. The design has to tell a compelling story about

the findings of the scientists to the non-technical stakeholders, and in visualization,

the presentation and story-telling aspect has received much less attention till date [57].

Some well-defined best practices like harmfulness of rainbow color maps [43] need

more empirical validation, especially in the science community [44] for establishing

the objective reasons behind recommendation of perceptually motivated color maps.

A survey of existing visualization tools, investigating the quality of the defaults, will

be helpful in identifying these issues [58] and will enable visualization non-experts like

domain scientists design visualizations more efficiently.

2.10 Summary

In this chapter, we have presented a comprehensive study of visualizations designed

by climate scientists and classified their shortcomings by categorizing the causes and

consequences of design problems in the form of a taxonomy. In the process, we have

investigated the cross-domain agreement and disagreement about design problems and

highlighted their reasons. Further, we have demonstrated the utility of our taxonomy

by getting feedback on redesigned solutions, which the scientists found to be beneficial

for their practical use.
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During our interactions with the scientists we found multiple mismatches between

visualization best practices and the state-of-the-art in the climate science domain. For

instance, we noticed that the rainbow colormap, despite ample research advocating

against its use, is considered the de-facto standard for encoding scalars on geographical

maps. To study this phenomenon we set up a user study which will be explained in

the next chapter.
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Chapter 3

Perceptual Evaluation of Color

Scales for Climate Model

Comparison

Color-coded geographical maps are an integral part of geospatial data analysis. In

many domains, different color scales are used to represent the magnitude of continuous

variables (e.g.,, amount of rainfall, population density) on these maps.

Based on the study presented on Chapter 2, we found that the rainbow color

scale is de-facto standard for geospatial data analysis tasks related to climate model

comparison. However, ample research evidence [42, 59, 43] has demonstrated the

perceptual limitations of the rainbow color scale for making quantitative judgments.

Given this mismatch between the visualization best practices and the state-of-the-art

in the climate science domain, the goal on this work was to compare the analytical

effectiveness of rainbow color scales with that of perceptually-guided color scales on

climate data analysis tasks.

Our study addresses certain gaps in the field. First, we observed that perceptual

experiments that tested theoretical hypotheses usually involved artificial laboratory

tasks and stimuli, and were conducted on untrained undergraduate students or col-

leagues. Studies that focused on tasks tended to select tasks that were artificial

distillations of real-world analyses. And, even in studies where real-world practitioners

performed real-world tasks, the task was domain specific, and not easy to generalize

to other analysis environments. To address these limitations, we designed a study

using real-world climate-model data, analyzed by practicing climatologists, performing

tasks that not only captured their everyday analysis problems, but could be used to

generalize to other situations involving the analysis of spatial data.
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(a) (b)

Figure 3.1: Pairwise comparison of color-coded geographical maps represent-
ing climate model outputs encoded with the rainbow color scale Climate
scientists use geographical maps for visually comparing the magnitude (e.g., average
temperature) and the continuous spatial distributions of model output variables.

To approach these problems, we developed a long-term collaboration with climate

scientists, and used this collaboration to characterize their tasks. Typically, this

involves comparing pairs of color-coded geographical maps, each containing the output

of a different model or time step (Figure 3.1). The climate scientists study these

pairs, to understand the underlying reasons for agreement or disagreement among

the models. Our first contribution was to characterize their work into three tasks:

(i) making quantitative visual estimations about the differences in overall magnitude,

(ii) estimating the spatial variation of model outputs, and (iii) identifying regions of

maximal magnitude difference. Once we had identified a set of representative tasks,

our second contribution was to evaluate performance of scientists on these tasks using

different color scales (Figure 3.2). We compared performance on the rainbow color

scale and systematically selected two other color scales which had been shown to have

perceptual advantages over rainbow color scales. To create a set of stimuli that would

allow us to generalize our results to results to other domains where similar tasks are

performed using color-coded geographical maps. Since much of the scientific evidence

demonstrating drawbacks of the rainbow color scale stems from experiments using

artificial stimuli, we generated experimental stimuli that controlled the spatial and

magnitude characteristics of the real-world geospatial maps. We used these stimuli to

measure the performance of climate scientists in the the three different tasks.

At the end of the study we also conducted a survey, where we asked the study

participants to record their preference, confidence level, and perceived accuracy of

their judgments using the different color scales. Our third contribution is a comparison

of the scientists’ quantitative performance against their perceived performances and

preferences. This is especially important as the use of rainbow color scale is nearly
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ubiquitous in climate modeling. Differences between scientists’ perceived and actual

performance could help create greater awareness about perceptual principles of visual-

ization, which could potentially lead to the adoption of visualization best practices in

real-world tasks such as those reported in this study.

3.1 Related Work

We discuss the related work with respect to three main threads of research which

are relevant in the context of our work: i) theoretical principles of color perception

in visualization; ii) color scales for different visualization tasks and (ii) the empirical

evaluation of color scales for synthetic and real-world tasks. Many of these principles

are reviewed by Silva et al. [60].

3.1.1 Theoretical principles of color perception

Human color perception is three-dimensional, which means that any color a human

can see can be represented by three independent dimensions. A color scale can be

represented as a trajectory in a 3-dimensional color space. The Rainbow color scale

(RBW ), for example, is a linear interpolation from (0,0,255) to (255,0,0) in an RGB

color space. Several researchers have explored different trajectories in different color

spaces in an effort to identify effective color scales, taking advantage of knowledge

about human color perception. For example, Robertson [61] explored the idea of

creating color scales that spanned the greatest range of discrimination steps in a

3-D color space. Important advances have been made by focusing on color scales

that are based on the three perceptual dimensions of hue, luminance and saturation.

Rogowitz et al. [62] pointed to earlier psychophysical scaling work by Stevens [63]

which had shown that monotonic variations in luminance and saturation produced

monotonic perception of variations in perceived magnitude. Stevens had also found

that monotonic differences in hue did not produce monotonic differences in perceived

magnitude, which led them to predict that spectral hue-based color scales (like the

Rainbow color scale) would not faithfully represent changes in data magnitude. To

test these hypotheses, this group [64] conducted psychophysical increment detection

experiments using hue, luminance, and saturation scales, constructed in several color

spaces. They found that with luminance and saturation-varying color scales, increment

detection for Gabor patches produced consistent, and sensitive, increment detection

for luminance and saturation color scales, however for the rainbow color scale equal
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steps along the color scale did not produce equal steps in perceived magnitude.

Other characteristics of human vision are also important in considering the con-

struction of color scales. For example, Rogowitz and Treinish [42, 59] observed that the

human luminance system has higher spatial-frequency sensitivity than the opponent

color system, suggesting that color scales designed to represent the magnitude of fine

resolution detail should contain a monotonic luminance component. Using a novel

technique, Rogowitz and Kalvin [65] tested rainbow, luminance, iso-luminant and

heated-body color scales, and found that magnitude perception was driven by the

luminance component. Based on this research, Kindlmann et al. [66] developed a

luminance-matching technique which could be used to create color scales that con-

tained a range of hues, with monotonically varying luminance. Since hue provides

categorical information, it was posited that such color scales could both effectively

carry magnitude information while also providing segmentation information.

3.1.2 Adapting Color Scales to Different Visualization Tasks

The selection of an appropriate color scale depends on the visualization task.

Brewer [67, 45] has proposed three classes of color scales for spatial data representation,

with a focus on representing data in choropleth maps for geospatial analysis [68, 69, 37].

The “sequential” color scale has a monotonically varying luminance component, as

described in previous section. The “qualitative” color scale, developed for categorical

and ordinal data, uses a fixed number of hue steps. The “diverging” scale has one hue

component transitioning to another by passing through an unsaturated value in the

middle. For scientific data visualization, Moreland [56] has developed a version of the

diverging color scheme, which has recently been accepted as the default color scale

in ParaView [70]. Bergman et al. [71] introduced a rule-based system that suggested

appropriate color scales based on the data type (ordinal, interval, ratio), spatial

frequency, and on the task. For “isomorphic” tasks, color scales with a monotonic

luminance or saturation are suggested; for segmentation tasks, binned color scales

are offered; for highlighting tasks, color scales with highlighted ranges are proposed.

Tominski et al. [72] extended these ideas by proposing a task taxonomy and appropriate

color scales comparison, localization, and data value identification tasks.
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3.1.3 Empirical evaluation of color scales for synthetic and

real-world tasks

In order to isolate and study specific experimental variables, many empirical studies

in this field have relied on using synthetic stimuli. This involved the detection of Gabor

patches [64]. Ware [73] used artificial stimuli to explore users’ ability to read magnitude

information from a region on a visualization and map it onto a value on a color scale

for five different color scales. To emulate real-world medical imaging situations,

Tajima et al. [74] and Levkowitz and Herman [75] used the detection of artificial

phantom “blobs” in medical images to reveal advantages of the luminance grayscale

over other color scales, including the heated-body scale. Recently, Borkin et al. [44]

studied visual performance using the rainbow and a heated-body color scale in a

real-world setting, with cardiologists. In a task involved identifying arterial blockages,

they found a very large and significant advantage of the heated body color scale

(monotonic luminance and a small hue variation) over the rainbow color scale.

Although these task-based experiments make significant contributions to our

knowledge, most of them were either performed with artificial stimuli or were performed

using a very specific domain-based task. In the experiments reported here, we study

the performance of working climatologists on three real-world tasks, using three color

scales. Unlike previous studies, like the one reported by Borkin et al. [44], where they

let participants look a single image and judge regions of highest magnitude, we explore

the situation where scientists make judgments based on comparing pairs of color-coded

map. We study three different tasks, which are representative of their analysis process:

detecting relative magnitude difference, judging similarity, and identifying regions of

maximum difference. Also, to increase the generalizability of our results, we develop a

method for selecting pairs of maps for comparison that characterizes their differences

parametrically. Our comparison stimuli vary in overall magnitude and in spatial

similarity. This allows us to extend our conclusions beyond the domain of climate

science, to other domains where analysts judge magnitude differences, evaluate spatial

similarity, and identify regions of maximal difference between spatial representations

of interval data.

3.2 Task Analysis

We interacted with our direct collaborators over a period of six months for collecting

examples of maps and their corresponding analysis goals. Through in-person and
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online semi-structured interviews, we refined and iterated upon our understanding of

these goals. We organized several face-to-face meetings (and many remote follow-up

meetings) with our collaborators to understand in details what specific questions they

ask and judgments they make using color-coded geographical maps. During these

meetings we presented examples taken from the scientists’ work and asked to describe

what kind of questions and visual operations they would perform when looking at

them.

Climate Model Comparison Tasks. For comparing model outputs, climate sci-

entists typically produce color-coded geographical maps representing distribution of

model outputs (Figure 3.1). Scientists generally use these maps for visually estimating

the variation in model outputs and testing their hypotheses. In this study, we focus

on an important output variable in climate modeling, which is Gross Primary Produc-

tivity (GPP). GPP is arguably the most important health indicator of the eco-system as

it captures the relationship between the carbon cycle and impact of climate change.

Scientists generally perform visual comparison tasks through juxtaposition of these

maps [48] in a small multiple setting [9]. While there have been previous attempt to

build a general model of visualization tasks [76, 77] and apply those models in climate

science [6], we look at much narrower analysis scenarios and formulate tasks that take

into account specific and relevant scientific intents.

Task Types. The geospatial data analysis goals therefore fall into two main classes:

comparing magnitude of the encoded variable (like GPP) and comparing spatial distri-

butions. We finally narrowed down the list of tasks to two types of judgments and

three relevant task the scientists identified as frequent and important.

What and How Much Judgments. We iteratively refined our task set and real-

ized most of their judgments fall into two categories: what and how much judgments,

cross-cutting magnitude and similarity of distributions. For the what category, sci-

entists are generally interested in identifying the areas with similar and dissimilar

spatial distributions. For the how much category, scientists usually make a quanti-

tative judgment of the differences and degree of similarity or dissimilarity between

the models. Making quantitative judgments from maps are usually expensive visual

operations, since they involve an elementary reading level [35], that is, at a pixel level.

Scientists can overcome this difficulty using their experience. Moreover, generally they

perform this operation when there is a table depicting the total. In that case they
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visually estimate the magnitude for building confidence into the numbers and also for

looking at the spatial patterns.

Task 1 - Magnitude Estimation. In this task the scientist aims at estimating

the difference in terms of global mean GPP between a pair of color-coded geographical

maps (A and B). In these maps GPP is encoded through color so that one can see how

GPP values are distributed across the globe. The task requires the scientist to look at

the distribution of GPP values across the map and mentally estimate the mean and

the compare this value between two maps.

Task 2 - Similarity Estimation. In this task the scientist aims at comparing the

distribution of values across two maps and provide an estimate of how similar they

are on a range [1, 5]. Note that similarity estimation depends both on the magnitude

of values as well their spatial distribution.

Task 3 - Identification of Regions of Maximum Difference. In this task

the scientist aims at identifying areas of the two maps where the two models differ

considerably. Which in turn translate into identifying corresponding areas of the two

maps where the color values differ considerably.

3.3 Choice of Color Scales

In addition to the rainbow color scale we chose two color scales based on our goal

correcting the luminance and variation of hues.

3.3.1 Rainbow Scale (RBW)

This color scale is shown in Figure 3.2. It is the default colormap in many

prominent systems, such as Matlab. It is created by linearly interpolating between

(0,0,255) and (255,0,0) in RGB Colorspace. This colormap provides highly-saturated

colors, from blue, through cyan, green, yellow, and orange to red. Luminance is not

monotonic, so that equal steps in the data are not perceived to be equal perceptual

steps, and for this reason, it is not a good candidate for representing magnitude

information [44, 43, 42]. However, the luminance of RBW is monotonic at the lower

end of its range, so magnitude information would be expected to be successfully

carried over this range [65]. Although the scale is colorful, the colors are not perceived

as a smooth variation from hue to hue. Instead, we see bands of colors of unequal
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Figure 3.2: Three different color scales used in our study and the correspond-
ing luminance plots. The RBW (top) has a non-monotically varying luminance
which is overcome by the KIN (middle) and the BLU scales (bottom). We describe
the selection of these color scales in Section 3.3.

sizes. Magnitude variations within a color band will not be easily discriminated [42],

and since the bands are of unequal sizes, these regions of low discriminability will be

unevenly spaced over the data range.

3.3.2 Blue Scale (BLU)

If accurate quantitative information has to be extracted out of color, a popular

alternative choice is a scale that maps data values to the luminance parameter without

changing other parameters. The BLU (Figure 3.2) is a popular selection from the

Brewer Library [45], and has its roots in geographical map design. It is one hue (blue),

and its luminance increases monotonically over its whole range. One problem of

single-hue color scales however is that the single hue representation makes it hard to

segment, and thus label, areas of uniform color intensity. For instance, while in a map

that uses the RBW it is possible to identify the red or green or blue areas as areas
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with uniform or similar values, the same is not possible with single-hue color scale.

From our interactions we learn that climate scientists prefer the RBW as it is easier

to name the different regions based on the different hues.

3.3.3 Kindlmann Scale (KIN)

One solution to this problem which does not compromise on perceptual orderability

of the values in the color scale is to use a multi-hue color scale that also has a uniform

increase of luminance. The KIN (Figure 3.2) is one such color scale which was

suggested by Kindlmann [66] as an alternative to the RBW . It uses vibrant, saturated

colors, while also providing a monotonic luminance. The scale runs from dark violet,

through blue, to green, to yellow to white. Since the hue variations cover a small

range of hues, with monotonic increases in luminance, the color banding effect present

in the RBW is eliminated. It has also been posited that color scales that add a hue

component to the luminance variation would provide additional discrimination steps,

owing to the hue variations [78, 65] .

3.3.4 Other Considerations

We also decided not to modify the color scales we selected. Based on perceptual

principles, it would be possible to modify these scales to potentially achieve better

magnitude and similarity judgments. For example, attempts have been made to modify

the RBW to reduce the color banding. The KIN could be modified to explicitly vary

the saturation along the scale, and the BLU could start at lower luminance levels to

increase its dynamic range. We also decided not transform the data from its original

form that is used by climate modelers. In particular, the data values for GPP are

densely distributed at the low end, and a logarithmic transform would help spread the

data values more evenly over their range. However, modelers mostly visualize the data

in its original scale, and in a comparative setting, they do not prefer transforming the

data.

We also considered testing a divergent color scale [56]: a scale in which the mean

value in the color scale is a neutral color, and hue increases in saturation, and often

decreases in luminance, as the values move to the extrema. We did not test this color

scale because the data we are representing are interval data, ranging monotonically

from the low end of the scale to the highest values. The climate scientists we worked

with felt that the divergent color scale would imply that there was a neutral “zero”

with variations above and below this imputed “mean”, which did not match the



60

structure of the data.

3.4 Hypotheses Generation

The numerous interactions we had with our collaborators and the subsequent task

analysis process allowed us to generate a number of hypotheses that we tested in our

experiments. For mapping the performance on these tasks using the color scales, our

first aim was to detect if color scales have any effect on the three tasks at all.

Based on the established principles, we evaluate if luminance correction of the

rainbow scale will affect the performance. Luminance is not monotonic, so equal steps

in the data are not perceived to be equal perceptual steps, and for this reason, it is not

a good candidate for representing magnitude information [44, 43, 42]. However, the

luminance of the RBW is monotonic at the lower end of its range, so magnitude infor-

mation would be expected to be successfully carried over this range [65]. Luminance

monotonicity is critical for representing equal steps in the data as equal perceptual

steps, so we expect the KIN and BLU to afford better judgments than the RBW in

general for both tasks. The KIN has the highest luminance dynamic range, which

we expect will provide the user with more discrimination steps, and, combined with

luminance monotonicity, will provide higher accuracy for fine spatial variations.

For the judgment about spatial distributions, we hypothesized the color scales

which provide higher discriminability by helping in the segmentation of the map, will

be beneficial. Although the rainbow scale is colorful, the colors are not perceived

as a smooth variation from hue to hue. Instead, we see bands of colors of unequal

sizes. Magnitude variations within a color band will not be easily discriminated [42],

and since the bands are of unequal sizes, these regions of low discriminability will be

unevenly spaced over the data range.

In judgment of magnitude, if the hypothesis about hue variations providing

additional information is correct [73], we expect the KIN to lead to better performance

than the BLU , which provides no hue variations. The RBW also has a high dynamic

range, but it is not monotonic therefore we expect it to perform worse than both

scales.

As for judgment about spatial distributions, since the RBW does not provide

smooth transitions in perceived hue across the range, we predict that this will limit the

observers’ ability to make magnitude discriminations within ranges of equal perceived

hue. We predict that the color banding will have particularly deleterious effects in the

similarity judgment, where the observer is comparing spatial structures across models.
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The color banding may create apparent regions of similarity which may not be present

in the data. We also predict the BLU will perform worse than the KIN in this task

due the lack of hues, which can clearly segment areas of uniform values and also due

to the lower dynamic range.

As mentioned before we were also interested in comparing objective performance

to subjective assessment, therefore here we also hypothesize that despite the RBW

will perform worse than the BLU and KIN in all tasks, it will be perceived, after

using all color scales multiple times in the study, as more effective and accurate by

our group of collaborators.

3.5 Methodology

In this section we present the details of our methodology for the study, namely,

data generation, the choice of stimuli, participants, settings, and evaluation metrics.

3.5.1 Data Generation

Based on our general hypotheses, we aimed to design the stimuli based on two main

principles: (1) testing variabilities in the data that may have an effect on performance

and (2) using the real data our collaborators use in their research and are familiar with

to make the task as realistic as possible. Since all our tasks are comparisons we aimed

at generating pairs of maps that differ along two main dimensions: magnitude and

spatial distribution. In our data generation process, we ensured that there is sufficient

variability and coverage across the possible conditions.

Ensuring Variability and Coverage. Our maps pairs are generated using the

GPP variable from 6 models (BIOME, GTEC, SIB3, CLM, CLM4VIC, LPJ). Each model

has a spatial resolution of 360 × 720 and monthly temporal resolution of 360 time

steps (20 years). The greatest variability in the model outputs is generally found

across different seasons be it a same or different year. However we did not want to

pick and choose the data from seasons of a particular year, as some events might affect

that GPP for a region in a particular year, and we would not be able to account for

that. Instead, to ensure variability we selected 10 random time steps for each model

and compare against all the time steps of all the other models. Thus, we have in

total 108000 pairs (6 models × 5 models × 10 random time steps × 360 time steps).

This not only ensured variability in the data, but also a coverage of the data points.
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Figure 3.3: Selection of trials based on data bins: For each bin in the data we
randomly chose 2 sample map pairs which were represented using 3 different color
scales. For each of the four bins we show examples of map pairs in Figure 3.4.

Eventually the map pairs for our study were selected from these pairs, based on our

definition of stimuli as described below.

Controlling the Parameters. The parameters for representing the model output

using geographical maps are the following: data range, projection type, weights to

different areas, etc. In many cases, depending on the data range, analysts would

choose a non-linear (like a log transform) mapping between the data and the visual

variable, which is color in this case. However, in course of our discussion with the

scientists, we found that transformation of the data in terms of aggregation or using a

different scale is not something they prefer during their analysis. There is obvious

information loss (in case of aggregation) or different representation of the data (in

case of log transform), which they want to avoid. Therefore, we assume a linear

mapping between the data and the color scale. In the tasks we selected, since they

were performed in a comparative setting, projection errors would not affect the results.

3.5.2 Selection of Stimuli

As shown in Figure 3.3 and illustrated later in Figure 3.4, we selected stimuli for

the experiment by grouping pairs of maps into four bins according to the scheme:

low/high difference in magnitude and low/high difference in spatial distribution. For

instance, two maps can have a similar distribution of values across the maps but
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Figure 3.4: Examples of map pairs generated based on similar and dissimilar
magnitude, and similar and dissimilar spatial distribution. In our study we
controlled for these two factors and aimed at finding how these variations in the data
affect visual comparison tasks of climate scientists using different color scales.

different overall magnitude. As show in Figure 3.4, it is possible to have maps with

similar spatial distribution but different magnitude (top right) as well as maps with

different spatial distributions but similar magnitude (bottom left). It is important

to notice that while these differences may seem hard to understand by a non-expert,

climate scientists are highly trained to derive this information from the color-coded

maps.

In order to automatically generate map pairs that fall into the four groups outlined

above, we had to devise metrics that capture the amount of difference between two

maps in terms of magnitude and spatial distribution. For this purpose, we asked

the scientists to assist us with this problem and subsequently derived two measures:

Root Mean-Squared Difference (RMSD) to quantify the difference between two spatial

distributions and Absolute Magnitude Difference (AMD) to quantify the difference

between two global mean GPP.

RMSD is obtained comparing corresponding intensity values pixel-by-pixel between

the two maps using Euclidean distance. Both of these metrics were area-weighted as

equatorial regions have higher climatological weight than tropical regions. Maps A

and B have similar global mean GPP when AMD is low and similar spatial distributions

when RMSD is low.

Figure 3.5 shows the distribution of these two metrics in the data that we generated.

In order to create effective stimuli we selected, for both measures, map pairs in the

lower quartile, to generate cases of high similarity, and those in the upper quartile to

generate case with low similarity. Accordingly we have four bins in the data: similar

global mean GPP and similar spatial distribution (Figure 3.4(a)), similar global mean

GPP and dissimilar spatial distribution (Figure 3.4(b)), dissimilar global mean GPP
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Figure 3.5: Data Generation: The histogram for Root Mean-Squared Differ-
ence (RMSD) is shown that quantifies the distance between the spatial distributions.
On the right, histogram for the absolute value in magnitude difference is shown, where
magnitudes are the global mean GPP values for maps A and B.

and similar spatial distribution (Figure 3.4(c)), and dissimilar global mean GPP and

dissimilar spatial distribution (Figure 3.4(d)).

3.5.3 Trials and Participants

In order to allow all participants to be exposed to all color scales, we decided to

design the experiment as a repeated measures design. For all tasks we selected 2

samples from each of the 4 combinations discussed above with a total of 24 trials for

each task.

Each participant was exposed to all tasks and trials. The tasks where ordered

sequentially and the trials where randomized to get rid of learning effects.

• For Task 1 the participants were asked to answer the following: “Given the

global mean GPP based on one map (A), what is the global mean GPP of map (B)?”.

For providing their answer, participants had to adjust a slider, the range of

which was set from the overall minimum to the overall maximum of mean GPP.

• For Task 2, they were given two maps and asked the question: “how similar

are the spatial distributions of the two maps?” They were provided with a Likert

scale, the range of which was 1 (most dissimilar) to 5 (most similar).

• For Task 3, they were given the same pair of maps as in Task 2 and asked to

answer the question:“ identify the region with maximum difference between the

two maps”. In this case, they had to select a particular point on the map which

they thought was the roughly the center of the region.
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Since both Task 2 and Task 3 deal with the problem of identifying spatial distribu-

tions we decided to share the same trials between the two tasks, that is, the questions

were asked based on the same map-pair. Since Task 2 and Task 3 were executed on

the same trial, each participant had to answer questions for a total of 48 trials.

We selected our participants anonymously through mailing lists of climate scientists,

and 39 participants completed the study. Among the 24 were male and 15 were female.

Since 3 of them reported for color-blindness, we included the responses of the rest 36

in our study. The participants were from 24 to 65, with the median experience being

10 years in climate science and 6 years in using color scales with maps.The range of

their overall experience was between 0 and 33 years. The total number of trials was

thus 48× 36 = 1728.

3.5.4 Study Setting

The experiments reported in this study were all web-based. This setting was

necessary as all our participants in the study are climate scientists spread across

different academic institutions and research labs across United States and Europe,

implying the necessity to conduct this study remotely. One of the critical issues

with our study is to ensure reliability and minimization bias in the results. In our

experimental set-up we took several measures to address these. First, we took care of

the case if a participant did not understand the question or if he/she is ready for the

test. To this effect, we showed them example questions and let them quit the study if

they did not understand the question. They could not go back to check the answers or

get a feedback on the correctness of their responses. The IP address of the participants

are recorded, so we know if the same participant has responded twice. Even if they

stopped the study and took a break, they would not be allowed to start from the

beginning. They had to start from where they left off. This prevented unintentional

repetition of the tasks by a participant.

3.5.5 Metric for Correctness of Magnitude Judgment (Task 1)

In case of Task 1 our ground truth is the true value of global mean GPP. However,

this judgment was made based on the reference map. To capture the comparative

nature of the task, where the subjects had to judge a value relative to one, we needed

a metric which treated the judged magnitude as a fraction of the given value. For

computing the relative error we take inspiration from metric proposed by Cleveland

and McGill [38], which can be formulated as:
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Judged Per Cent =
Estimated GPPB

GPPA

× 100

True Per Cent =
True GPPB

GPPA

× 100

Relative Error = |Judged Per Cent− True Per Cent|

By normalizing with respect to the true GPP value, we are accounting for the

different ranges in the data which can affect the amount of difference in the GPP values,

that can be overestimated and underestimated.

3.5.6 Metric for Correctness of Similarity Judgment (Tasks 2)

The ground truth for similarity is computed using the RMS distance between two

maps as we had discussed before. However, this is a computed measure of similarity

which might be different from the perceived similarity. Determining correctness based

on precise classification can be problematic as there can be individual differences

in perceiving the degree of similarity. For a more adaptive metric to participants’

performance, we wanted to select a similarity threshold based on the distribution of

the responses.

Similarity Threshold. For measuring the error in judgment, we split the responses

into two parts: those responses which are greater than 3 for pairs with dissimilar

magnitude and those which are less than 3 for similar magnitude. These are the cases

with errors.

3.5.7 Metric for Correctness of Identification of Most Dis-

similar Regions (Tasks 3)

For evaluating the correctness of the responses we compute the precision of the

scientists’ click by counting the number of clicks in a dissimilar region divided by

the total number of clicks. However, dissimilarity between two maps is a continuous

function, and we need to define a dissimilarity value (d) for which regions are most

different in those maps. At d=0, every click is correct as maps are totally different as

all differences are greater than 0. When we increase d, maps gradually become less

and less different and the precision of clicks become less and less. Accordingly we plot

the precision function and select our threshold to be at the 50 percent level, which is
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Figure 3.6: Overall Relative Error in Task 1. We can observe that for Task 1,
accuracy was higher on average in the BLU than the KIN or the RBW color scales.

a measure of central tendency, as half the scores are above and half are below. Based

on this threshold, we select the corresponding dissimilarity value (d) and evaluate the

performance of the color scales for that value of dissimilarity between a pair of maps.

3.6 Results

In this section we report the significant results (p < 0.05) for all three tasks. For

all our results we computed the 95% confidence intervals using the bootstrapping

method.

3.6.1 Task 1: Judgment of Magnitude

As described in Section 3.2, Task 1 was about magnitude judgment: judging the

global mean GPP from one map, where the same was given for another map.

3.6.1.1 Overall Effect

Figure 3.6 plots overall performance , across all four conditions, using the three

color scales, RBW , KIN and BLU . The dependent measure is the relative metric

which we had described earlier in Section 3.5.5. Across all conditions, users had a

significantly higher error rate with the RBW (37%), and significantly fewer errors

with KIN (32%) and the BLU (24%). That is, the two monotonic luminance scales

were more effective in helping the analysts make correct judgments about the global

mean GPP than the RBW , and the BLU was superior to the hue-enhanced KIN scale.

These results were significant at the p < .001 level (Friedman (χ2(2) = 39.38). A

post-hoc Nemenyi pairwise test (p = .05) revealed that performance with the BLU was
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Figure 3.7: Effect of Spatial Distribution on Task 1. One of the surprising
findings in Task 1 was that scientists committed more errors across color scale when
spatial distributions were similar (on the left) than when they were dissimilar. Also
color scales have less effect on the judgment.

significantly better than RBW (p < .001), and KIN (p < .001), and that performance

with the KIN map was significantly better than with the RBW (p < .001).

3.6.1.2 Effect of Spatial Distribution

Figure 3.7 drills down to examine relative error for pairs of maps that are either

similar (left panel) or dissimilar (right panel) in their spatial distribution. The

ordering of results for the three color scales is the same in both conditions, that is,

RBW produces the highest relative error, followed by KIN , followed by BLU . All

these differences are significant when the maps being compared are spatially similar.

Friedman (χ2(2) = 46.4, p < .001), with all differences between color scales significant

(p < .001) in the Nemenyi pairwise test (p = .05). There was a significant, but weaker,

main effect of color scales when the maps being compared were spatially dissimilar,

Friedman(χ2(2) = 8.72, p < .05), with only the difference between the RBW and

the BLU scale being significant in the Nemenyi pairwise test (p = .05). Thus, the

RBW color scale affords less accurate comparisons of magnitude, whether the spatial

distributions are similar or dissimilar, but the degree to which the monotonic luminance

scales outperform is much greater when the maps are similar. These statistical results

are summarized in Table 3.1. This also shows clearly that the task of judging GPP

is much harder when the maps have similar spatial distributions. The relative error

using the RBW is almost twice that when using the BLU , and it is only that BLU

that is in the same range as the dissimilar comparisons.
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Relative Error Mean and 95% C.I.
Rainbow Kindlmann Blues p-value

overall* 37.0 [33.7, 40.3] 31.9 [28.9, 34.9] 24.3 [21.8, 26.7] <0.0001

distribution
similar * 49.6 [44.7, 54.5] 42.9 [38.7, 47.1] 29.0 [25.2, 32.7] <0.0001
dissimilar* 24.9 [21.3, 28.5] 21.6 [17.8, 25.4] 19.5 [16.7, 22.3] <0.05

magnitude
similar* 31.5 [26.3, 36.6] 22.4 [18.9, 25.8] 16.1 [13.7, 18.6] <0.0001
dissimilar* 43.7 [39.2, 48.3] 41.6 [37.1, 45.9] 32.2 [28.5, 35.8] <0.0001

Table 3.1: Relative Error Mean and 95% C.I. in Task 1: Significant results are
indicated by *. Higher accuracy is indicated in bold. Overall error and those for
similar and dissimilar distribution are shown in each row.

Figure 3.8: Effect of Magnitude on Task 1. There was a consistent trend of
less errors with BLU for both similar and dissimilar magnitude cases. As expected,
scientists commit higher errors when magnitudes are dissimilar.

3.6.1.3 Effect of Magnitude

Figure 3.8 drills down to examine relative error rates for pairs of maps that are

either similar (left panel) or dissimilar (right panel) in their magnitude, that is the

global mean GPP. For similar magnitude, there is a significant difference in performance

between RBW and both the color scales. Friedman (χ2(2) = 25.7, p < .001), with

all differences between color scales significant (p < .001) in the Nemenyi pairwise

test (p = .05), p < .001. A post-hoc Nemenyi pairwise test (p = .05) revealed

that performance with the BLU was significantly better than RBW (p < .001), and

KIN (p < .01), and that performance with the KIN map was significantly better than

with the RBW (p < .01). The variability in the estimates also much higher in case of

RBW .

However, for dissimilar magnitude the errors are higher across all color scales, and

the difference between RBW and KIN is less pronounced. These results are also

significant. Friedman (χ2(2) = 36.22, p < .001), with all differences between color

scales significant (p < .001) in the Nemenyi pairwise test (p = .05), p < .001. A

post-hoc Nemenyi pairwise test (p = .05) revealed that performance with the Blue
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scale was significantly better than RBW (p < .001), and KIN (p < .001), and that

performance with the KIN map was significantly better than with the RBW (p < .01).

3.6.1.4 Analyzing the Effects by Drilling Down

A full breakdown of the data is shown in Figure 3.9. In this case, instead of

representing the errors, we show the comparison between the judged magnitude and

the true magnitude. The rows in this 2× 2 quadrant represent data for maps that

were either spatially similar (top row) or spatially dissimilar (bottom row). The

columns show the conditions where the maps were either similar (left column) or

dissimilar (right column) in overall magnitude. There are two sets of data within each

quadrant, which show the results for the two test cases. Unlike Figures 3.7 and 3.8,

we are plotting the judged percent difference between the comparison map and the

standard, not the relative error. Ground truth, rather than being a normalizer, is

shown explicitly as a short vertical line associated with each data set. The figure of

merit in this graph is the degree to which the judged GPP value approximates the value

of the vertical line (the ground truth). The closer the data points to the ground-truth

line, the better the performance.

As we saw in Figure 3.7, the biggest difference between color scales occurred when

the spatial distribution between the comparison map and the standard was similar.

These results are broken out in the two top quadrants of Figure 3.9. When the

magnitude of the GPP difference is low (top left quadrant), the ordering of the color

maps observed in Figure 3.7 is maintained in all trials. RBW is farthest from ground

truth, with KIN second, and BLU providing the best vehicle for capturing ground

truth. This effect is stronger in the first trial (left set). The top right quadrant shows

the case where the maps had similar spatial distributions but dissimilar magnitudes.

In one trial, the real percentage difference in GPP was low (right set); in the other, the

real percentage difference in GPP was high (left set). In both cases, performance using

BLU is closest to the ground truth, with greatest departure from ground truth with

the RBW .

We also learned in Figure 3.7 that the differences between color scales was weaker

when the two maps being compared had dissimilar spatial distributions. These are

broken out in the two bottom quadrants in Figure 3.9. When the spatial distributions

of the two maps were dissimilar, but the magnitudes were similar, the observers were

able to judge ground truth accurately, independent of the color scale. When the

spatial distributions were dissimilar and the magnitude was also dissimilar, there were

significant departures from ground truth, and in one of the trials, the lowest level of
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Figure 3.9: Task 1: Confidence intervals showing estimates of GPP B with
respect to the four quadrants: Participants were much more consistent for dissim-
ilar spatial distribution across similar and dissimilar magnitudes. On the other hand,
the performance was the worst for similar distribution and dissimilar magnitude.

performance was afforded by RBW .

Another interesting result in Figure 3.9 comes from looking at the individual trials

within each quadrant. When GPP is low, (e.g., the ground truth line is toward the

bottom of the quadrant), the observers tended to overestimate the GPP level of the

comparison stimulus. When GPP was high, (e.g., the ground truth line is to the top),

the observers tended to underestimate the level. This effect is seen in three of the

four quadrants. In the fourth quadrant (dissimilar spatial/similar magnitude) the

observers’ judgments were very accurate.

3.6.1.5 Confidence vs. Relative Error

First we analyzed if confidence levels vary across color scales. We found that

there are significant differences in confidence levels as revealed under a Friedman test:

(χ2(2) = 13.5, p < 0.01). We found that scientists were more confident on average

with the RBW than the BLU , and more confident on average with the KIN than
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Figure 3.10: Confidence vs Error for Task 1. We can observe that even with high
confidence the error was less in the BLU as compared to the RBW .

the BLU . A posthoc Nemenyi pairwise test (p = 0.05) revealed these differences were

significant with p < 0.001. We expected the scientists to be more confident with the

RBW as compared to the other ones.

However, we found that regardless of the confidence level, they were more likely to

be more inaccurate with the RBW as opposed to the BLU as observed in Figure 3.10.

Whether they were low on confidence or high on confidence, they committed more

errors with the RBW color scale.

3.6.1.6 Summary of Findings

For the magnitude judgment task, one of our hypotheses as we had described in

Section 3.4 was that accuracy with multi-hue color scales would be higher due to

greater discriminability among the hues. This was also hypothesized by Ware [73].

However, based on the task and conditions of our study, we did not get an evidence to

support this hypothesis. The most interesting finding was the fact that similar spatial

distributions not only showed greater error in judgment, but also a greater variability in

the effect of the color scales on the task. We had expected scientists to perform better

in magnitude judgment tasks when the distributions were similar. On the contrary, we

found that color scales did not affect the performance significantly when the spatial

distributions were different. This finding needs further research for diagnosis of the

cause. Possibly, the what judgment is made easier by dissimilar distributions, where

it is easy to distinguish between different shapes at different locations on the map.

But in case of similar distributions, the what judgment is difficult as most shapes

are similar. The magnitude judgment then occurs at an elementary level [35] and

hence is error-prone. Another interesting finding was the case of similar magnitude
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Figure 3.11: Task 2 Results: For the task on comparison of pairwise similarity of
maps, we failed to detect any effect of the color scales. Even after drilling down by
differences in distribution and magnitude, there was no significant effect detected.

and dissimilar spatial distribution, which was the only condition under which not only

error of judgment was low, but the effect of the color scales was also not significant.

A major finding was that although scientists were confident with their judgments,

they consistently commit more errors with that color scale. Also, when they were not

confident the error with the BLU was not only low, but they agree more, as given by

the small confidence interval was also low.

3.6.2 Task 2: Judgment of Spatial Distribution

As described in Section 3.2, Task 2 was about judging the degree of similarity

between a pair of maps. We evaluate the performance on Task 2 based on the similarity

threshold we set, as described earlier in Section 3.5.6. The similarity threshold was

necessary for comparing the measured similarity in the data to the degree of perceived

similarity as indicated on the Likert scale. As observed in Figure 3.11 we failed to

detect significant difference in performance across all the color scales. These results

were not significant under a Friedman test: (χ2(2) = 0.97, p = 0.6). We found similar

results while drilling down into similar and dissimilar spatial distribution. This was a

surprising finding as we expected at least KIN to perform significantly better than

RBW or BLU .

3.6.3 Task 3: Identification of Most Dissimilar Region

As described in Section 3.2, Task 3 was about identifying the region of maximal

difference, and as explained in Section 3.5.7, we evaluate the scientists’ performance on

identification of dissimilar region based on computing the precision of their judgments.

In 3.12 we show an example of the variance in the clicked regions across different color
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scales.

We can observe in Figure 3.13(a) that the precision of a correct click for the KIN

is higher than that of the BLU or the RBW . Based on the chosen threshold = 6.6e−8,

we observe that the KIN performed the best in helping the scientists identify the most

dissimilar regions, as shown in Figure 3.13(b). Although this trend was found for a

particular dissimilarity threshold, we found the results to be consistent across any

chosen threshold. Using the Friedman’s test we get statistical differences across the

color scales (χ2(2) = 15.75, p < 0.001 ), a pairwise analysis revels that there were

differences across the three color scales. The largest difference was between the BLU

and the KIN with a difference of 11% (p < 0.001), followed by the KIN and the RBW

with 8% (p < 0.05) and finally the BLU and the RBW with a difference of 3% in

their correctness (p < 0.05).

There was a statistical difference in confidence across the color scales (χ2(2) = 6.15,

p < 0.05). A pairwise comparison shows that the difference was between the BLU

and the KIN (p < 0.05) and the KIN with the RBW (p < 0.05). In average the less

confident color scale was the BLU with an average of 3.5.

3.6.3.1 Summary of Findings

To our surprise we failed to get support for our hypothesis that a multi-hue color

scale would let better performance on Task 2, that is judging the degree of similarity

between two maps. This is an interesting finding which could mean that the domain

knowledge of the scientists are able to overcome the shortcomings of the RBW , but we

need to conduct more experiments to test this hypothesis. Our hypothesis that RBW

would perform worse than KIN in the what judgment of identifying regions of highest

dissimilarity was proved correct as the KIN performed better for selection of dissimilar

regions. Surprisingly, scientists were equally confident with all color scales in both

Rainbow Kindlmann Blue scale

Figure 3.12: For Task 3, difference maps showing click spots at a dissimilarity
value=6.6e−8 selected based on the 50 per cent threshold as shown in Figure 3.13(a).
We can observe that for the marked region, the number of clicks in South America is
far less in the BLU as compared to the RBW or the KIN .
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(a) Precision curves for different color scales
showing the probability of a click to be in a dissim-
ilar region and the confidence intervals for correct
responses above the selected dissimilarity value.

(b) Performance of color
scales As observed, the KIN
is the most accurate in identi-
fying most dissimilar regions
and BLU is the least accurate.

Figure 3.13: Task 3 Results: We found the KIN was more effective in letting
scientists identify the most dissimilar regions between maps.

Tasks 2 and 3, although their post study reveals they were much more confident on

average with the RBW .

3.6.4 Survey of Participants’ Perceived Performance

One of the goals of our study was to compare the perceived accuracy and confidence

of the scientists with the objective measures from the study. To this effect, we collected

subjective feedback from our participants in the last section of the study. We collected

feedback about their familiarity, preference, confidence, perceived accuracy and ease

of use of the color scales, by asking questions such as: “which color scale did you

prefer the most”, “which color scale were you most confident with”, etc. The results

are shown in Figure 3.14.

3.6.4.1 Perceived Accuracy and Confidence vs. Familiarity

Since the RBW is the de facto standard in climate science, it was not surprising

that over 90% rated that they were most familiar with it. Despite the familiarity with

the RBW among an overwhelming majority of them, nearly 25% of the participants

felt more accurate or confident with ether the KIN or the BLU .

3.6.4.2 Familiarity vs. Preference

Second, comparing familiarity to preference, we observe a drop of nearly 40% for

the RBW , which is compensated by more participants preferring either the BLU or
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Figure 3.14: Participant ratings in per cent based on different subjective categories
revealed despite their over all familiarity with the RBW , about 43% of the participants
preferred the KIN or the BLU and 33% felt they were more accurate with them.

the KIN . As a corollary of these two findings, we can comment that despite the long

history of the RBW usage, the study convinced many climate scientists about the

efficacy of perceptually motivated color scales for their tasks.

Following are some of their comments that highlight their higher preference for

the KIN :

“Kindlmann works best because it has both good tone contrast AND value

contrast across the spectrum, whereas rainbow has good tone contrast but

little value contrast and blues has little color contrast and not great value

contrast.”

Another participant remarked:

“It was easier to see magnitude of change with rainbow, and especially

hotspots in red. My concern was that I was overestimating the red areas and

not paying enough attention to changes at the other end of the spectrum. I

thought my first sense of overall global pattern change was easier with blues

but it was much harder to compare changes in spatial pattern or magnitude

between different regions. Kindlmann was therefore a compromise for

me...not as dramatic, did not highlight the hotspots as much, but allowed

me to compare differences more easily across regions.”
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3.6.4.3 Perceived vs. Actual Accuracy

Comparing the accuracy of the responses of the scientists to their preferences

from the subjective feedback, we observe a big disparity between their preferences

and performance. Majority of them were familiar with the RBW and also preferred

that scale for the study, thinking they are more accurate. But this is in contrast

to their performance, where the average correctness for the RBW and the KIN are

much greater. Also, their high confidence with the RBW did not translate into higher

accuracy. Their introspection about how well they performed were out of sync with

their performance.

3.6.4.4 Perceived Accuracy vs. Agreement

We would expect scientists to agree more on their estimations for rainbow color

scale than any other color scale because of their familiarity and preference. However,

as we had shown in Figure 3.10, there was surprisingly high variability in error in case

of rainbow color scale, as opposed to the blue color scale, which they preferred the least,

across all confidence levels. This further demonstrates that there is a clear discrepancy

between what the scientists believe they are more accurate and comfortable with, and

what they are actually accurate with on a given task.

3.7 Discussion

In this section, we reflect on the key findings in the context of the experimental

settings and implications for future work. The goal of these experiments was to

examine the effectiveness of different color scales in performing complex real-world

analytical tasks. A major focus of our study was to develop test stimuli that spanned

a wide range of climatological conditions and capture commonly performed tasks

with color-coded geographical maps. To this effect, we constructed maps with the

color scale representing the magnitude of the scalar variable, i.e., GPP. We expect that

our results would generalize to the representation of any scalar variable on across a

geographical map, at least at the spatial resolutions we studied.

3.7.1 Effect of Color Scales on Judgment of Magnitude

Across most of the tasks, the BLU outperformed the others. A simple grayscale

ramp, consisting of one hue, enabled the best decisions about the magnitude and

spatial variations between maps, and where the maps most differed. We believe this
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result owes largely to the monotonic luminance profile for the BLU , since luminance

has been shown to be an effective “carrier” of magnitude information, especially for

high spatial-frequency information. The KIN was also more successful than the RBW ,

and also includes a monotonic luminance component.

3.7.2 Effect of Multiple Hues

The KIN provides a variation in hue as the luminance increases along its range. It

has been posited that these additional hue variations would provide additional levels

of discriminability, and it has even been suggested that hue changes are a requirement

for judging magnitude [73]. We found, to the contrary, that these additional hue

variations detracted from performance in magnitude judgment and had little effect on

similarity judgment.

3.7.3 Effect of Color Scales on Judgment about Spatial Dis-

tributions

The additional hue variations in the KIN as compared to the BLU were helpful

when the scientists had to identify most dissimilar regions. Like the RBW , the KIN has

ranges of highly saturated colors, and although luminance is monotonically increasing,

there are still distinct hue regions within the scale. We think that these ranges may

interfere with the observers’ ability to judge smooth variations in magnitude, if they

occur within one of these color bands.

3.7.4 Need for Color Scales that are Adaptive to the Tasks

For these experiments we selected color scales that not only embody important

perceptual variations, but which are also commonly used. Based on our current results,

we are eager to develop color scales that best exemplify the characteristics we feel

are most important. For example, a BLU with an even greater dynamic range may

be provide even greater advantage, and a KIN that has less saturated colors, and

therefore less banding, may provide all the advantages of a monotonic luminance

profile plus the extra advantage of a subtle hue variation.
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3.8 Summary

The study presented in this chapter showed that despite preference and familiarity

with the rainbow color scale, of a large group of domain scientists, their performance

was almost always consistently better with perceptually motivated color scales.

The most important contribution of this study is that it identifies analytical tasks

that scientists perform, and explores how to augment that analysis and decision-

making process with appropriate color scales. We helped the scientists understand the

phenomena under study, to appreciate differences in magnitude and spatial variation

across models. We believe the outcome of this study will inspire further experiments

related to effects of color scales in the domain of climate science and beyond, which in

turn can lead to greater and wider adoption of visualization best practices.

As result of the studies from this chapter and Chapter 2, we understood the

common problems on visualization created by domain experts. Moreover, by reflecting

on the inadequacies of the static visualizations, we decided to continue our work by

designing a novel Visual Exploration Tool to interactively analyze similarities and

differences among climate models which will be explained in the next chapter.
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Chapter 4

SimilarityExplorer: A Visual

Intercomparison Tool for

Multifaceted Climate Data

As a result of our study presented on Chapter 2, we noticed the limitations of

static-visualization in model comparison tasks. An insightful analysis in climate science

depends on using software tools to discover, access, manipulate, and visualize the

datasets of interest. These data exploration tasks can be complex and time-consuming,

and they frequently involve many resources from both the modeling and observational

climate communities.

Consensus among model results is an important metric used for judging model

performance. Analysis of model output similarity and dissimilarity is a complex

problem because of the multiple facets involved in such comparisons: space, time,

output variables, and model similarity.

The goal of this work is to provide an interactive visualization tool that integrates

space, time, and similarity, making it easier for climate scientists to explore model

relationships from multiple perspectives.

The output of our chapter is a result of a six-month-long interaction between

visualization researchers and climate scientists. Modelers generally perform their

analyses by looking at spatial and temporal aspects in isolation, by running scripts,

such as MATLAB and R on the data and by manually setting parameters. The first

step during the iterative development of our tool was to provide the scientists with

an interactive interface for selecting parameters and filtering the data. This was not

sufficient as our interactions revealed that modelers needed a tool for analyzing both

space and time within a single interface in order to judge multi-model similarity.
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Existing visualization tools are only capable of integrating one or two facets as

pointed out by Kehrer and Hauser [79]. Multifaceted data analysis is inherently

challenging on two counts: i) preserving the mental model about the different facets,

like space, time, and model similarity, necessitates an encoding strategy that preserves

visual symmetry, and ii) exploring these facets at multiple levels of granularity and

understanding their relationships necessitates a systematic interaction strategy. To

address these challenges, in this chapter we present SimilarityExplorer tool which

enables mutifaceted visual analysis of climate models, specifically, Terrestrial Biosphere

Models (TBMs). Using our tool, climate scientists were able to get an overview of

model similarity across space and time, and then drill down to further explore where,

when, and by how much models were similar or different. A seamless integration and

exploration of these facets in SimilarityExplorer let them generate and explore new

hypotheses about model similarity which was not possible before.

This chapter consists of three key contributions: i) As part of the domain charac-

terization [80] of climate model intercomparison, we present a systematic classification

of the domain-specific intents of climate scientists, and that of the underlying data

facets (Section 4.3), ii) we bridge the intents and facets with the visualization tasks

and design through a classification scheme (Section 4.4); and iii) SimilarityExplorer is

a tool that implements this classification. Our interactions with climate scientists were

conducted before, during, and after the implementation phase for iterative refinement

of the tool based on their feedback. In light of this, we present two case studies

which helped elucidate and validate the benefits that scientists obtained when using

SimilarityExplorer (Section 4.5).

4.1 Related Work

In this section we discuss the relevant related work with respect to spatiotemporal

and multifaceted data visualization and tools available for climate data.

4.1.1 Simultaneous Encoding of Spatial and Temporal Rela-

tionships

Visualization of spatiotemporal data has witnessed a lot of research over the years.

Peuquet [81] had introduced the popular triad representation framework which is

a general formalization of temporal dynamics in geographic information systems.

In our tool we imbibe the concepts of when, where, and by how much models are
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similar. The need to integrate space and time through an exploratory analysis tool

was also proposed by Andrienko et al. [82]. They devised a visual analytics [83]

framework for exploring spatiotemporal data through spatially referenced time series.

Similarly, visual analytics approaches for event detection [84, 85, 86] have been

proposed where spatial representation of the data is provided in conjunction with

features for observing temporal trends and anomalies. While most of this work

focused on direct encoding of the data, either spatially or temporally, Andrienko et

al. applied self-organizing maps [87], for providing complementary perspectives on

spatial and temporal relationships which is the guiding principle in SimilarityExplorer.

The complexity in our work evolves from the fact that the scientists needed to

understand the evolution of both spatial and temporal relationships simultaneously.

This necessitated that the visualization provided an overview of spatial and temporal

relationships, and then also allowed flexible interaction for exploring these relationships

over both space and time.

4.1.2 Integration of Spatial and Non Spatial Data

There exists other approaches towards building visualizations for integrating spatial

and non-spatial data [88]. Guo et al. [89] proposed a generalizable visual analytics

approach for integrating techniques from cartographic, visualization techniques and

machine learning. That methodology is general and can be applied to spatiotemporal

data. Most of the existing tools only integrate one or two different facets [79]. In the

SimilarityExplorer we integrate four different facets: space, time, multiple variables,

and model similarity, which are crucial for visual comparison of the different properties

of models. Our technique is similar in principle with Kehrer et al.’s work on visual

analysis of heterogeneous data, multi-model scientific data with examples from climate

research data [90]. Kehrer et al. focus on providing multiple perspectives into statistical

relationships between multi-run and spatially aggregated simulation data through

different interactive views. In SimilarityExplorer, similar to multi-run data, we focus

on multi-model data; and in addition to spatial relationships and patterns, we consider

time, multiple variables and different visual approaches towards encoding similarity

and facilitating visual comparison through the use of small multiples [9].

4.1.3 Visualization solutions for climate data

For addressing the needs of the climate research community, there has been some

work on hypothesis generation [91], task characterization [92], and tool develop-
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ment [93]. Steed et al. introduced EDEN [94], a tool based on visualizing correlations

in an interactive parallel coordinates plot. Their focus is on a single model and analysis

of the interdependence among variables. There also exists some general visualization

tools such as Paraview [70], Visit [95] and VisTrails [96] which offer some specialized

climate visualizations but almost all of them only present the data without supporting

any analysis. Those specialized packages were integrated in a provenance-enabled

climate visualization tool UV-CDAT [97]. However, like most other tools, UV-CDAT

does not support multi-model analysis. It also does not support multivariate analysis

and dynamic linking between the views. Through a closely-knit collaboration with

climate scientists we were able to address the need for tools that emerge from genuine

and interdisciplinary collaboration [98, 99], for solving the problems with such complex

data.

4.2 Background of Model Intercomparison

We collaborated with 3 climate scientists from the Oak Ridge National Lab as

part of the MsTMIP 1 Project. Each of them have at least ten years of experience in

climate modeling and model intercomparison.

4.2.1 Data

The data consist of simulations from 7 different TBMs for over 20 years at monthly

temporal resolution, collected over a spatial resolution of 0.5 degree. Each produces

multiple output variables, of which three are relevant for the analysis presented here.

For segmenting the globe, the scientists use 11 different eco-regions. The temporal

granularity of interest to them were annual, seasonal, and monthly. As shown in

Figure 4.1 each model can be represented by a spatiotemporal volume over latitude,

longitude, and time. Since each model is associated with multiple output variables,

each model can be thought of as being a vector of such volumes. The basic goal of

climate scientists is to efficiently subset this array of cubes along multiple dimensions,

in order to understand model similarity based on multiple facets: when are models

similar, with respect to seasons and months, where are models similar, with respect

to regions, why are models similar, with respect to the output variables.

1MsTMIP: Multi-Scale Synthesis and Terrestrial Model Intercomparison Project
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Figure 4.1: Visualizing the complexity of multifaceted climate data in terms
of models, regions, time and variables.

4.2.2 Model Similarity

As a first step in our design study [100], we discussed with the climate scientists

about their existing approaches for understanding model similarity. To reduce com-

plexity of the data, they are used to compressing space and time. It emerged that,

from a temporal aspect they are mostly interested in comparing model behavior for

seasons or months aggregated across all years. In this context, they perform two

distinct operations on the data for analyzing similarity from the spatial and temporal

perspectives. These operations are sketched in Figure 4.2 and described below.

Spatial Correlation. For this step, as shown in Figure 4.2(a) the data is pre-

processed in such a way that temporal information is aggregated but spatial granularity

is preserved. For each point on the map, the average value for a time period is computed.

Temporal granularity can range from long-term mean (value at one point is the average

for all months and all years within the time period), long-term monthly mean (12

monthly maps, with each map representing an average month for the time period),

and seasonal mean (four maps with each map representing an average season for the
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Figure 4.2: Similarity computation. Illustration of spatial and temporal corre-
lations are computed between models M1 and M2 after aggregating the temporal
information. The spatial granularity is preserved at the cost of temporal information,
and vice versa.

time period). Next, correlation between maps of two models is computed using the

Pearson correlation coefficient.

Temporal Correlation. In this case, the data pre-processing helps aggregate spatial

information but preserves temporal granularity (Figure 4.2(b)). For the map at each

time step, a spatially averaged or summed value is computed. Next we compute a time

series, which varies based on the temporal granularity: one value for long-term mean,

12 values for long-term monthly mean and four for seasonal mean. At the end the

models are represented by their time-series signatures. While there are multiple ways

for comparing time-series signatures of two models, in discussion with the scientists,

we chose correlation as the measure for temporal similarity.

4.3 Domain Characterization

The initial discussion about the data characteristics was followed by an analysis of

the domain-specific intents through face-to-face interactions and conference calls. In

this section, we present the first contribution of our work, which is a characterization

of the domain-specific intents of the climate scientists and the underlying data facets.

4.3.1 Domain Specific Intents

We identified four major intents of the climate scientists in the context of model

intercomparison, which are as follows:
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Questions Tasks Facets Visualization Design
Space Time Variables Similarity Views Comparison method

Q1

identify(p)
g/r a/s/m single

pairwise matrix (maps)
explicit encoding

identify(t) pairwise matrix (area graph)
identify(p, t) multi-way projection

Q2

compare(p, v)
g, r a, s,m multiple pairwise

matrices (map)

juxtaposition
smlt: maps

compare(t, v)
matrices (area graph)
smlt: area graph

Q3
associate(p)

r s,m single
multi-way, pairwise parcoords, matrix juxtaposition

associate(t) pair-wise time-series, matrix superposition

Q4
distribution(p, v)

r s,m multiple
multi-way, pairwise parcoords juxtaposition

distribution(t, v) pairwise time-series superposition

p: Space t : Time v : Variables g : global r : regional a: annual s : seasonal
m: monthly smlt : small multiples

Table 4.1: Translating tasks into visualization design through a classification
scheme. The visualization design is based on the different views and comparison
methods required for reflecting the tasks that can be performed on the multifaceted
data. Note that space and time have different levels of granularity. The symbol ‘/’
reflects an OR operation and ‘,’ reflects an AND operation.

Q1: In general, modelers would like to know the degree of spatial and temporal

correlation of models with respect to any output variable.

Q2: With multiple models, they would additionally like to know which models are

similar, and when, where, and why they are similar.

Q3: They would want to understand if different sub-regions agree or disagree with

the global temporal or spatial correlations, or with the same for other sub-regions.

Q4: Scientists do not always trust the level of abstraction at which similarity is

deduced, as there can always be anomalies that are not captured. Thus they wanted

to look at the original distribution of the data to verify their hypotheses and validate

their findings.

4.3.2 Facets: Space, Time, Variables, Similarity

The inherent complexity involving intercomparison of climate models stems from

the multifaceted data underlying the climate models. The facets [79] relevant for the

climate model data are space, time, variables, and similarity as shown in Table 4.1.

Space and time also involve different levels of granularity. The different levels gran-

ularity for spatial data are global (g) and regional (r) and that for temporal data

are annual (a), seasonal(s), and monthly (m), as shown in Table 4.1. Additionally,

there are three output variables for each model. Similarity among models is the other

facet which can be classified based on the following perspectives: i) pairwise: in this

case scientists are interested in observing similarity between each pair of models and



87

ii) multi-way: in this case scientists are interested in observing similarity among all

models taken together, and iii) one-to-many: in this case scientists might choose one

model as a reference. Our collaborators revealed that the third option is rarely used in

comparison of TBMs, since no model is known a priori to be any better as a “reference”

than any other. As a result we did not implement this option in the tool.

4.4 Visualization Tasks and Design

The next step in our study was to connect the intents and facets though concrete

visualization tasks and subsequently translate the tasks to visualization design. This

led to our second contribution: a classification scheme for integrating tasks, facets,

and design (Table 4.1).

4.4.1 Tasks

For identifying the tasks, we took inspiration from Zhou and Feiner’s taxon-

omy [101], among which identify, compare, associate, and distribution are relevant

here. Notably, the transition from Q1 to Q4 also indicates increasing complexity of

the visualization tasks, which we describe below. In Table 4.1 the abbreviation after

task name indicates the facet they operate upon.

4.4.1.1 Identify

The intent Q1, that is understanding model-model similarity is reflected in Similar-

ityExplorer by three variants of the identification tasks: finding the degree of spatial

correlations among models (identify(p)), finding the degree of temporal correlation

among them (identify(t)), and also finding the degree of overall spatiotemporal corre-

lation (identify(p, t)). While the first two tasks reflect pairwise similarity, the last one

expresses multi-way similarity. In Table 4.1, the symbol / reflects an OR operation.

So in case of the identification tasks any granularity of space (g/r) and time (a/m/s)

can be selected using different filters.

4.4.1.2 Compare

The intent Q2, that is understanding output-output similarity is reflected in

SimilarityExplorer by the comparison tasks: comparing the degree of spatial correla-

tion (compare(p, v)) and temporal correlation (compare(t, v)) among multiple output

variables. These tasks can involve multiple selections of granularity of space and time
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indicating an AND operation as shown by the comma (g,r and a,s,m). For example,

global correlation of models with respect to one output variable can be compared with

the regional correlation.

4.4.1.3 Associate

The intent Q3 involves combining the understanding of similarity by analyzing

the region-wise anomalies and trends for the models. This task applies to both

spatial (associate(p)) and temporal correlation (associate(t)) for which different views

are instantiated. These involve mainly drill-down and brushing operations and are

performed at the regional granularity of space and monthly or seasonal granularity of

time.

4.4.1.4 Distribution

The intent Q4 is reflected by the distribution task that helps provide a multi-way

perspective on behavior of regions with respect to multiple models (distribution(p, v)),

and on pairwise model-model relationships for all regions. Scientists could also get

additional information about outlying regions and models using this task, which allows

exploration at a greater level of detail than the other tasks. This task also involves

drilling down to the temporal distribution of a pair of models (associate(t, v)).

4.4.2 Visual Encoding Challenges

The challenges in translating the tasks to different aspects of visual encoding were

met by integrating the iterative feedback from the scientists’ on our intermediate

prototypes. We justify our key design choices with respect to the following aspects.

4.4.2.1 Separating Space and Time

The tasks described above required us to separate as much as possible, the facets of

space and time, although in the final analysis, they are inextricably linked. A climate

scientist remarked that he wanted no time in his analysis, but wanted to see only

space. Upon reflection, we realized that what this user really wanted was more like all

time, i.e., spatial correlations which had been composited over the entire time interval,

with no temporal subsetting. In this sense, then, the spatial correlations shown are

composited over time, and the temporal correlations are composited over space. This

had to be reflected in the visual representation by having a separation between spatial

and temporal encodings.
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4.4.2.2 Facilitating Systematic Interaction

Both spatial and temporal relationships could vary over space (e.g., regions) and

time (e.g., seasons). This decomposition needed to be reflected through brushing

over space and time and selections of regions and time-steps. These operations also

had to be associative: any spatial operation could adapt the temporal similarity to

reflect the selected region and any temporal operation could adapt the spatial side to

represent the correlation for a particular time step. Another role of interaction was to

allow scientists explore different granularity of space and time. This was facilitated

by interaction operations such as filtering and drill-down to additional views showing

different levels-of-detail.

Figure 4.3: Preserving the mental model and symmetry about spatial and
temporal similarity through use of maps for representing space and use of area
graphs for representing time, and by reflecting the change in granularity on both sides.

4.4.2.3 Preserving the Mental Model

This was a critical design issue due to the interplay between space and time, and the

need to associate them in a holistic view [87]. Both geographical maps and time-series

could be used to represent variation of either the spatial or temporal correlation. In

one of the interactive sessions we presented mock-ups that used time-series to represent

the variation of both spatial and temporal correlation. But without consistent visual

cues linking the representation to space or time, they were confused:

“I like this but I have to wrap my head around what the visualization is

telling me: is it space or is it time? It will be much better if I don’t have

to process this in my mind.”
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We resolved this issue by collectively taking a design decision: for temporal correlation

we would display the variation of the correlation over time by displaying a time-series

that adapts to the temporal granularity (annual, months, seasons). On the spatial

side, we would display maps showing spatial correlation for the selected time step.

Thus we use consistent spatial cues in the form of maps and temporal cues in the form

of time series (Figure 4.4(b)(d)). By brushing over time, we would see the change in

spatial correlation as the displayed map adapts to the selected time step.

4.4.2.4 Retaining symmetry while drilling down

Preserving a symmetrical relationship among the different granularity of space

and time through consistent visual representation was essential for scientists to keep

track of any change that occurred. The change of spatial granularity is reflected by

transforming the maps to represent the selected regions. The change of temporal

granularity is reflected by transforming the number of steps in a time series (Figure 4.3).

4.4.3 Comparison methods

Facilitating visual comparison among the models and output variables is one of

the main goals of this work. We followed Gleicher et al.’s taxonomy [48] of visual

comparison methods for guiding the representation of the different aspects of similarity

and the eventual placement of the different views. As shown in Table 4.1, the

three comparison methods that are used are explicit encoding, juxtaposition and

superposition. Explicit encoding is used to encode the degree of similarity among the

different views with the help of correlation metrics. For comparison tasks multiple views

are juxtaposed next to each other. We represent multiple time series by superposing

them in the same view (Figure 4.4(f)). Different interaction mechanisms like filtering,

brushing, linking, and drilling-down allow scientists to browse through the multiple

perspectives of similarity.

4.5 SimilarityExplorer

Our third contribution is the design of the SimilarityExplorer, an exploratory

visualization tool for analyzing multifaceted, multi-granularity, climate model similarity.

This design was guided by: the domain characterization presented in Section 4, and the

classification scheme described in Section 5. The scientists’ analysis needs motivated

our design decision of using multiple linked views [102], a visualization approach
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Figure 4.4: SimilarityExplorer is composed of a set of filters (a), similarity
views (b, c, d) and data views (e, f). The similarity views are (b) a matrix view
for showing pairwise similarity, (c) a projection view for showing multi-way similarity,
and (d) a small multiples view for showing region-wise spatiotemporal similarity. The
data views are: (e) a parallel coordinates view for showing multi-model distribution
of each variable, and (f) a time series for showing temporal distribution of any pair of
models.

that is appropriate for flexible analysis of multifaceted data. There is an implicit

hierarchy [103] in the type of views in SimilarityExplorer, which are similarity views

and data views.

4.5.1 Similarity Views

With the help of similarity views, we explicitly encoded spatial and temporal

correlation between models, based on the computation we had described in Section 4.2.2.

The different similarity views are described below:

4.5.1.1 Matrix View

A model is a primary unit of comparison. Our collaborators needed a view that

would show both spatial and temporal correlation for the models in one integrated view,
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that would be flexible enough to adapt to different granularity of space and time. We

took inspiration from the multi-form matrix [104] designed by MacEachren et al. and

designed a matrix view that reflects pairwise similarity between models (Figure 4.3).

In keeping with the idea of preserving the mental model about space and time, it is

divided into two halves across the diagonal: the cells in the lower triangle represent

the pairwise spatial correlation through color-coded maps and the cells in the upper

triangle represents the temporal correlation between two models. The color coding

uses a continuous color map [45] and reflects the degree of correlation, with orange for

correlations on the spatial side and purple for correlations on the temporal side. The

color map adapts to the range of correlation values: if there are negative correlations,

a divergent color map is used.

Scientists can perform the following tasks using the matrix as shown in Table 4.1: i)

identification tasks by filtering the view by different regions or time and ii) comparison

tasks launching multiple matrices of different variables (Figure 4.6). For the latter case,

we could have encoded a derived statistic that would explicitly encode the average

correlation based on multiple variables, in a single matrix. However, the scientists

were interested in analyzing the high or low correlations for the individual variables.

Thus we use the option of juxtaposing multiple matrices for the different variables.

The effect of changing spatial and temporal granularity are shown in Figure 4.3.

The initial view is for showing global, annual correlation. On selection of a sub-region,

i.e., Europe, maps for Europe are shown on the spatial side, while the temporal side

gets updated to show the annual average correlation for Europe. On selection of

seasonal granularity, the area graph gets updated to a time-series representing the

four seasons and shows the maps for the selected season. Thus spatial and temporal

operations are symmetrical: they affect both sides of the matrix and the color-coding

reflects the correlation for the selected time step.

4.5.1.2 Projection View

After presenting the matrix view to our collaborators, they felt the need for

representation which gave a high-level overview of all models with respect to each

other. This prompted us to design the projection view (Figure 4.4(c)) that shows

multi-way similarity among models. Thus, it overcomes the limitation of the matrix

view, which is only able to show pairwise patterns. As mentioned in Table 4.1, the

projection view is used to mainly identify which models are more similar, triggering

the subsequent analysis steps for exploring the reason for similarity. The projection

view is generated by using the spatial or temporal correlation between models as
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the distance metric and then using multidimensional scaling (MDS) for mapping the

data points onto a two-dimensional scatter plot. The physical proximity of models

encodes their overall similarity. Initially, some of our collaborators were confused

by the projection view but on seeing the merits of getting a multi-way overview of

similarity they became more appreciative of its utility. One of them commented:

“The axes have no meaning here and we are not used to seeing this, but I

really like the all-way comparison we can perform which we could not do

before.”

This view adapts to different selections of time steps or regions.

4.5.1.3 Small Multiples View

The small multiples [49, 9] view as shown in Figure 4.4(d) supports drilling down

into the correlation patterns for each individual region. The drill down operation

can be initiated from both the spatial and temporal sides of the matrix: drill down

from the spatial side shows a map representing spatial correlation for a region and a

selected time step; and that from the temporal side shows time series representing

variation of temporal correlation for a region. One of the design options was to show

a global map for the spatial drill down, with individual regions being color-coded

based on spatial correlation between two models. However, this would not have been

symmetrical with the temporal side, as there would be a map for each time-step and

it is visually complex to represent so many maps, and still preserve the mental model

about the relationships.

Using this small multiples view, scientists can perform several comparisons: i) by

selecting a cell within a matrix the region-wise spatial and temporal correlation for

that pair is shown, which lets them compare anomalies between global and regional

patterns, ii) by comparing across space and time, scientists can understand the cause

of anomalies , and iii) by comparing these small multiples for different variables,

scientists can hypothesize about which output variables affect similarity of models

across different regions.

4.5.2 Data Views

Using the data view scientists can drill down to the distributions of different

variables and gain information about outliers which the similarity views might not

show. Below we describe the data views:
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Figure 4.5: Data View: Parallel Coordinates. The ability to examine the region-
wise range and distribution of variables enables climate scientists to relate the meta
views to the patterns in the data view, i.e., parallel coordinates, and additionally, find
clusters and outliers. For NPP, we can see a cluster of polylines for the regions South
American Tropical and Tropical Asia for all models, indicating multi-model similarity
for those regions.

4.5.2.1 Parallel Coordinates

For each output variable, we use parallel coordinates (Figure 4.5) for enabling

scientists to analyze the multi-model similarity based on the region-wise distribution of

the variable. In discussion with the scientists, we found that multivariate relationships

among the different output variables are not of interest in their analysis. Instead of

modeling parallel coordinates conventionally, where variables are mapped on to the

vertical axes and data objects are mapped to polylines, we use one parallel coordinates

plot per variable. We use each vertical axis to represent a model and a polyline

connecting the different axes represents the value of a variable for a given region. We

compute a global scale across all models, for mapping the values so that they are

comparable. The regions are represented by a categorical color scale. The number

of data points, that is the number of polylines, depends on the temporal granularity

selected. For annual correlation, there is only one polyline per region, for seasons

there are four, and in the case of the lowest level of temporal granularity, months,

there are twelve polylines for each region.

Brushing by time and region allows the scientists to look at only specific instants of

time, a few regions, or both. By observing the trajectory of polylines, scientists could

perform a multiway comparison of region-wise distribution across models. By linking

the parallel coordinates with the matrix view, they can also associate the degree of

correlation among models with the data distribution across the different regions. In
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Figure 4.6: Comparing multiple output variables for different months and ana-
lyzing their distribution (Q2, Q4).

case of comparison of multiple variables, multiple parallel coordinates plots can be

instantiated.

4.5.2.2 Time Series

The temporal correlation represented by the area graph in the matrix is based on

a pair of time-series for each time-step. Since correlation is just one of the ways of

representing the relationship between two time-series, the scientists were also interested

in looking at the original time-series to find any additional information, like the high or

low temporal distribution, or any anomalies. Based on this requirement, we designed

a time series view that shows the temporal distribution of any variable for a pair of

models. The view is instantiated when any cell on the temporal side of the matrix is

selected (Figure 4.4(f)).

4.6 Case Studies

We describe the features of the SimilarityExplorer with two different scenarios

that our climate scientist collaborators used for analyzing model similarity.

4.6.1 Understanding Output-Output Similarity (Q2,Q4)

The climate scientists wanted to compare how models behave with respect to

two output variables: Net Primary Productivity (NPP) and Net Ecosystem Exchange



96

(NEE) for the month of September. Considered to be two of the most important “vital

statistics” of ecosystems, NPP represents the amount of productivity that is available

for growth, while NEE reflects the input/output balance of carbon to and from the

ecosystem. Both output variables are critical for understanding the atmospheric

carbon cycle. As shown in Figure 4.6, all the models seemed to be more spatially

correlated with respect to NPP (on the top) than NEE (on the bottom). This prompted

the scientists to look at the region-wise distribution of the variables for confirming this.

The parallel coordinates plot for NPP (Figure 4.5, on the left) showed a high number of

parallel lines between highly correlated models like BIOME-DLEM and DLEM-CLM. But

the high correlation for BIOME-DLEM is absent for NEE (Figure 4.5, on the right), where

lines are more scattered in different directions, reflecting the different input/output

balance points for carbon across ecosystems in different regions. By using parallel

coordinates plot, the scientists found that NPP (Figure 4.5, on the left) shows higher

spread among the values than NEE (Figure 4.5, on the right). The high spread and

high values of NPP for the Visit model appear to be outliers. The scientists concluded

that these outlying regions were causing the Visit model to be quite different from

the rest. This can also be seen in the matrix plots, by the consistently low spatial

correlation between Visit and most of the other models, for both variables. However,

for NEE, the distribution for Visit is identical to the distribution for the other models:

in this case the lack of correlation causes Visit to be different from the rest.

The outlier regions, Tropical Asia and South American Tropical, appeared to

be similar for all the models, as shown by the clustered polylines for NPP. The scientists

confirmed that this was an expected pattern for tropical regions for NPP; such a

pattern was expected to be absent for NEE, which was also confirmed by observing the

parallel coordinates plot.

By using SimilarityExplorer the climate scientists were thus able to discover that

the models had better agreement for tropical areas where there is little seasonality in

growing conditions, like temperature. The models had lower agreement for temperate

and boreal ecosystems that have distinct and more variability in growing conditions.

One of our collaborators commented that:

“This would allow them to develop hypotheses on performing additional

experiments.”

and that:

“The free-style nature of the exploration lends well to shift from one variable

to another and support root-cause analysis.”
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Figure 4.7: Comparing model similarity for GPP and analyzing spatiotem-
poral anomalies for winter and summer (Q1, Q3). Using the projection view,
scientists were able to select similar models; using the matrix view they could compare
spatial and temporal correlation (indicated by the numbers); and identify anomalies
using the small multiples view.

4.6.2 Exploring Model-Model similarity (Q1, Q3)

Gross Primary Productivity (GPP) is arguably the most important ecosystem

variable, indicating the total amount of energy that is fixed from sunlight, before

respiration and decomposition. Climate scientists need to understand patterns of

GPP in order to predict rates of carbon dioxide increases and changes in atmospheric

temperature. The motivation for this scenario was to compare multiple models with

respect to GPP by exploring model similarity for the Europe and Eurasia sub-regions;

for the summer and winter seasons, and compare those trends with the correlations

for tropical and temperate regions. As shown in the summer view in Figure 4.7,

the model pairs of CLM-CLM4VIC and BIOME-LPJ appear to be similar, based on their

relative proximity in the projection view. They selected these models and instantiated

the matrix view (Figure 4.7). This showed high spatial correlation but low temporal

correlation for the CLM-CLM4VIC model pair for summer, as well as for winter season.

For comparing the trends with the temperate and tropical regions, they used the

small multiples view. The notable deviations were i) SA tropical which showed

higher temporal correlation across summer and winter for this model pair, and ii)

Tropical Asia which showed higher temporal correlation than Europe and Eurasia

sub-regions for the winter season. For the BIOME-LPJ pair, the models appeared to be

more similar during summer than winter based on the projection view. The drop in
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spatial correlation during winter was confirmed by the matrix views. However, the

temporal correlation was higher in winter than during summer. From the small multi-

ples view, the scientists found that during summer the SA Tropical, Tropical Asia

and SA Temperate regions had lower spatial correlation than Europe and Eurasia

sub-regions; while Tropical Asia and SA Temperate had lower temporal correlation

compared to the same. Both spatial and temporal correlation for this model pair

seemed to increase for the winter season for the SA Tropical, Tropical Asia and

SA temperate region. This trend was contrary to the pattern for the Europe-Eurasia

region.

By using SimilarityExplorer the climate scientists were able to visualize the interde-

pendency between seasonality, region, and model. The fact that the SimilarityExplorer

made their analysis more streamlined and efficient was validated from one of their

comments:

“Without this tool scientists would literally print hundreds of plots and pin

them on the wall, this tool solves this problem.”

They also appreciated the fact that the tool can be easily extended for more models,

the benefit is being able to do this with 20 models.

4.7 Summary

In this chapter, we have presented SimilarityExplorer, a visual analysis tool for

comparison of multifaceted climate models. Climate scientists are naturally more

familiar and comfortable working in one of the two facets of space and time than

the other. Most of their exploratory thinking, tools and analyses tend to be biased

toward one of them, at the expense of investigations into the other. Because of the

relative ease with which users can ‘cross the diagonal’ from one realm of analysis to the

other, the scientists found that “the SimilarityExplorer offset such natural prejudices

and facilitated commensurate symmetry, resulting in more complete exploration and

understanding”.

Even with the SimilarityExplorer tool, it requires a lot of time to explore the

complete parameter space or perform the analysis from multiple perspectives. Given

those limitations, in the next chapters we present two Visual Analytics Approaches to

detect patterns more efficiently and guide the users in the exploration process.
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Chapter 5

Visual Reconciliation of

Alternative Similarity Spaces in

Climate Modeling

As we mentioned in Chapter 4, the SimilarityExplorer tool makes easier for climate

scientists to explore model relationships from multiple perspectives. However, it is

cumbersome and often impractical to explore all the options/parameters in order

to identify patterns. To deal with this problem, we need to make use of Visual

Analytics Approaches to automatically identify potential patterns and make use of

user’s expertise to refine and filter the most interesting patterns. In this chapter we

deal with the problem of making sense of alternative ways to create groups based on

different descriptors of climate model.

Grouping of data objects based on similarity criteria is a common analysis task.

In different application domains, computational methods such as clustering, dimen-

sionality reduction, are used for extracting groupings from data. However, in the real

world, with the growing variety of collected and available data, group characterization

is no longer restricted to a single set of criteria; it usually involves alternative sets.

Exploring the inter-relationship among groups defined by such alternative similarity

criteria is a challenging problem. For example, in health care, an emerging area

of research is to reconcile patient similarity based on their demographics with that

based on their disease history, for targeted drug development [105]. In climate science,

an open problem is to analyze how similar outputs from model simulations can be

linked with similarity in the model structures, characterized by diverse sets of criteria.

Analyzing features of model structures and their impact on model output, can throw

light into important global climate change indicators [106].
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Redescription mining algorithms have been developed for quantifying and exploring

relationships among multiple data descriptors [107]. These techniques have focused on

mining algorithms for binary data, where objects are characterized by the presence or

absence of certain features. Group extraction based on such computational methods

are heavily influenced by parameter settings. Also, it usually takes multiple iterations

to find an adequate solution; and in most cases, only approximate solutions can be

found. Domain experts need to be involved in this iterative process, utilizing their

expertise for controlling the parameters. This necessitates a visual analytics approach

towards user-driven group extraction and communication of relationships among the

groups, which are characterized by diverse descriptive parameters.

To achieve this goal, we introduce a novel visual analytics paradigm: visual recon-

ciliation, which is an iterative, human-in-the-loop refinement strategy for reconciling

alternative similarity spaces. The reconciliation technique involves synergy among

computational methods, adaptive visual representations, and a flexible interaction

model, for communicating the relationships among the similarity spaces. While itera-

tive refinement strategies are not new in visual analytics [108, 109], sense-making of

diverse characterization of data spaces is still an emerging area of research [110]. In

this context, we introduce the problem of reconciling the characteristics of any data

object with respect to alternative similarity spaces, which in this case comprise of

boolean and time-varying attributes. The strength of the reconciliation model stems

from transparency in presentation and communication of the similarity relationships

among diverse data descriptors, with minimal abstraction, and effective visual guidance

through visual cues and direct manipulation of the data. The design and interactions

are motivated by domain experts’ need for visual representations with high fidelity,

and a simple yet effective interaction mechanism for browsing through the parameters.

Our concept of visual reconciliation is grounded in our experience of collaborating

with climate scientists as part of the MsTMIP 1 project. An open problem in climate

science research is to analyze the effect that similarity and differences in climate model

structures have on the temporal variance in model outputs. Recent research has

shown model structures can have significant impact on variability of outputs [111],

and that, some of these findings need to be further investigated in details for exploring

different hypotheses. To facilitate the scientific analysis process, we propose an

analysis paradigm for reconciling alternative similarity spaces, that leverages the

high bandwidth of human perception system and exploits the pattern detection and

optimization capabilities of computing models [112, 113].

1MsTMIP: Multi-Scale Synthesis and Terrestrial Model Intercomparison Project
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Figure 5.1: Conceptual model of visual reconciliation between binary model
structure data and time-varying model output data. Iterative creation of groups and
derivations of relationship between output similarity and importance of the different
model structure criteria. Blue and orange indicate different groups of models.

The key contributions of this work stems from a visual reconciliation technique (Fig-

ure 5.1) that i) helps climate scientists understand the dependency between alternative

similarity spaces for climate models, ii) facilitates iterative refinement of groups with

the help of a feedback loop, and iii) allows flexible multi-way interaction and explo-

ration of the parameter space for reconciling the importance of the model parameters

with the model groupings.

5.1 Motivation

Why do we need a new visual analytics technique? Reconciling alternative similarity

spaces is challenging on several counts: i) Data descriptors can comprise of different

attribute types. From a human cognition point-of-view, reconciling the similarity of

climate models across two different visual representations is challenging. There needs

to be explicit encoding of similarity [48] that helps in efficient visual comparison and

preserve the mental model about similarity. Adaptation of similarity needs to be

reflected by dynamic linking between views without causing change blindness; ii) For

aligning two different similarity spaces, say computed by two clustering algorithms,

we will in most cases get an approximate result. The result will need to be iterated

upon with subsequent parameter tuning to achieve higher accuracy. This necessitates

iteration, and therefore a human-in-the-loop approach; iii) Domain experts need

to trust the methodology working at the back-end and interact with parameters for

understanding their importance. Fully automated methods do not allow that flexibility.

Thereby, a transparent representation with minimal abstraction is necessary where
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parameters in similarity computation can be influenced by user selections and filters.

As mentioned before, the technique is not restricted to climate models, but for

simplifying our discussion in this chapter we specifically discuss the applicability of

the visual reconciliation technique in the context of climate modeling.

5.1.1 Problem Characterization

Each TBM is defined by the different input parameters for characterizing ecosystem

processes and outputs that quantify the dependency between the carbon cycle and

the ecosystem processes. In the context of this chapter, each model has a dual

representation of a weighted collection of criteria or descriptive parameters, and

time-series for different outputs, for different regions.

Model Structure. Model structure refers to the types of processes considered (e.g.,

nutrient cycling, lateral transport of carbon), and how these processes are represented

through different criteria (e.g., photosynthetic formulation, temperature sensitivity,

etc.) in the models. A model simulation algorithm can have different implementations

of these processes. These implementations are different from each other due to the

presence or absence of the different criteria, that control the specific process. For

example, if a model simulates photosynthesis, a group of criteria like simulating

carbon pools, influence of soil moisture, and stomatal conductance can be ei-

ther present or absent. Currently, climate scientists do not have an objective way of

choosing one set of criteria over other, that can influence the output. A model structure

is a function of these criteria. If there are n criteria, there can be 2n combinations of

this function. In our data, there are 4 different classes of criteria, for energy, carbon,

vegetation, and respiration; with each class comprising of criteria, which are about 20

to 30 in number.

Model Output. Model simulation outputs are ecosystem variables that help climate

scientists predict the rates of carbon dioxide increases and changes in the atmosphere

(e.g., GPP, NPP, NEE).

Relationship Between Model Structure and Output. In the previous chap-

ter, we introduced the SimilarityExplorer (Chapter 4) for analyzing similarity and

differences among multifaceted model outputs. Despite the standardized protocol used

to derive initial conditions, models show a high degree of variation for GPP, which can

be attributed to differences in model structural information [111].
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Therefore, one of the open research questions in the TBM domain is how similarity

or differences in model output can be correlated with that in model structures. The

heterogeneity of model structure and model output data makes it complex to derive

one-to-one relationships among them. Currently, in absence of an effective analysis

technique, scientists manually browse through the theoretically exponential number of

model structure combinations, and analyze their output. This process is inefficient

and also ineffective due to the large parameter space which can easily cause important

patterns to be missed.

In the visual reconciliation technique, we provide a conceptual framework that

enable scientists to reconcile model structural similarity with output similarity. We

focus on using visual analytics methods for addressing the following high-level analysis

questions: i) given all other factors are constant, analyze how different combination of

parameters within model structure cause similarity or difference in model output, and

ii) by examining time-varying model outputs at different regions, understand which

combination of parameters cause the same clusters or groups in model structure.

5.1.2 Visual Reconciliation Goals

As illustrated in Figure 5.1, the visual reconciliation technique enables climate

scientists to: i) analyze model structure and use that as feedback for reconciling

similarity or differences in model output, and ii) analyze model output and use

that as a feedback for comparing similarity or differences in model structure. The

reconciliation model focuses on three key goals:

Similarity Encoding and Linking. For providing guidance on choosing the start-

ing points of analysis, the visual representations of both structure and output encode

similarity functions. Subsequently, scientists can use those initial seed points for

reconciling structure characteristics with output data, or conversely, for reconciling

output data with structure characteristics.

Flexible Exploration of Parameters. The visual feedback and interaction model

adapts to the analysts’ workflow. Scientists can choose different combinations of pa-

rameters, customize clusters on model structure and model output side and accordingly

the visual representations change, different indicators of similarity are highlighted.

Iterative Refinement of Groups. By incorporating user feedback in conjunction

with a computation model, the reconciliation technique allows users to explore different
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group parameters in both data spaces and iteratively refine the groupings. The key

goal here is to understand, which criteria in model structures are most important in

determining how the outputs are similar or different over time.

5.2 Related Work

We discuss the related work in the context of the following threads of research:

i) automated clustering methods for handling different data descriptors, and visual

analytics approaches towards user-driven clustering, ii) integration of user feedback

for handling distance functions in the context of high-dimensional data, and iii) visual

analytics solutions for similarity analysis of climate models.

5.2.1 Clustering Methods

Different clustering methods have been proposed for dealing with alternative

similarity spaces. Pfitzner et al. proposed a theoretical framework for evaluating the

quality of clusterings through pairwise estimation of similarity [114]. The area of

multi-view clustering [115] analyzes cases when data can be split into two independent

subsets. In that case either subset is conditionally independent of each other and can

be used for learning. Similarly, authors have proposed approaches towards combining

multiple clustering results into one clustered output, using similarity graphs [116].

Although we are also dealing with multiple similarity functions, the goal is to reconcile

one with respect to the other.

In this context, the most relevant research in data mining community looks into

learning the relationship between different data descriptor sets. The reconciliation idea

is similar, in principle, to redescription mining which looks at binary feature spaces and

uses automated algorithms for reconciling those spaces [117, 107]. While redescriptions

mostly deal with binary data, we handle both binary data and time-varying data in

our technique.

Our work is also inspired by the consensus clustering concept, which attempts to

find the consensus among multiple clustering algorithms [118] in the context of gene

expression data. Consensus clustering has also been applied in other applications

in biology and chemistry [119, 120]. In our case, while we are interested in the

consensus between similarity of model structure and model output, we also aim at

quantifying and communicating the contribution of the different parameters towards

that consensus or the lack thereof.
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We adopt a human-in-the-loop approach, as automated methods do not provide

adequate transparency with respect to the clustering parameters, and also in most cases,

iteration is necessary to present reconciliation results. Iterative refinement strategies

for user-driven clustering have been proposed for interacting with the intermediate

clustering results [108] for tuning parameters of the underlying algorithms [109], and

for making sense of dimension space and item space of data [110]. Dealing with diverse

similarity functions and at the same time providing a high fidelity visual representation

to domain experts which can be interactively refined, are the key differentiators of our

work. The reconciliation workflow follows an adaptive process, where the groupings

on the model output side are used as an input to the model structure side for: i)

providing guidance to the scientists towards finding similar groups with respect to

diverse descriptors or criteria, and ii) understanding the importance of criteria, which

is handled by an underlying optimization algorithm.

5.2.2 User Feedback for Adaptive Distance Functions

Recently, there has been a lot of interest in the visual analytics community for

investigating how computation and tuning of distance functions can be steered by user

interaction and feedback. Gleicher proposed a system called Explainers that attempts

to alleviate the problem of multidimensional projection, where the axes have no

semantics, by providing named axes based on experts’ input [121]. Eli et al. presented

a system that allows an expert to interact directly with a visual representation of the

data to define an appropriate distance function, without having to modify different

parameters [122]. In our case, the parameter space is of key interest to the user;

therefore we create a visual representation of the parameters, and allow direct user

interaction with them. Our user feedback mechanism based weighted optimization

method is inspired by the work on manipulating distance functions by Hu et al. [123].

However, the interactivity and conceptual implementation is different, since we are

working with two different data spaces, without using multidimensional projections.

The modification of distance functions have also been used for spatial clustering, where

user selected groups are given as input to the algorithm [124]. Our reconciliation

method is similar, in principle to this approach, where the system suggests grouping in

one data space, based on the same in other space, by a combination of user selection

and computation.
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5.2.3 Visual Analytics for Climate Modeling

Similarity analysis of model simulations is an emerging problem in climate science.

While visual analysis of simulation models and their spatiotemporal variance have

received attention in other domains[125, 126], current visual analytics solutions for

climate model analysis [93] mostly focus on xaddressing the problem at the level of a

single model and understanding its spatiotemporal characteristics. For example, Steed

et al. introduced EDEN [94], a tool based on visualizing correlations in an interactive

parallel coordinates plot, focused on multivariate analysis. Recently, UV-CDAT [97]

has been developed which is a provenance-enabled framework for climate data analysis.

However, like most other tools, UV-CDAT does not support multi-model analysis [127].

To fill this gap, in Chapter 4 we described the SimilarityExplorer tool which was

developed to analyze multi-model similarity with respect to model outputs. In this

case, we are not only comparing multiple models, but also comparing two different

data spaces: model structure and model output. Climate scientists have found that

different combinations of model structure criteria can potentially throw light into

different simulation output behavior [111]. However, to the best of our knowledge, no

visual analytics solution currently exists in climate science to address this problem.

For developing a solution, formulating an analysis paradigm precedes tool development

because of the complexities involved in handling multiple descriptor spaces. Although

there has been some work on hypothesis generation [91] and task characterization [92]

for climate science, they are not sufficient for handling the reconciliation problem

involving alternative similarity spaces.

5.3 Coordinated Multiple Views

An important component of the visual reconciliation technique is the interaction

between multiple views [102] of similarity spaces. In this case we have binary model

structure data and time-varying model output data. As we had shown in Figure 5.1,

the goal is to let domain scientists create and visualize groups on both sides, and

understand the importance of the different criteria in creating those groups. In this

section we provide an overview of the different views and describe the basic interactions

between those.
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Figure 5.2: Matrix view for model structure data: Rows represent models and
columns represent criteria. The variation of average implementation of a criterion for
all models is shown by a color gradient from light yellow to red, with red signifying
higher implementation. In the default view, all criteria have equal importance or
weights, indicated by the heights of the bars. Connectors help visually link the columns
and bars when they are reordered independently.

5.3.1 Matrix View

To display the model structure data, which is a two-dimensional matrix of 0’s

and 1’s, we use a color-coded matrix Figure 5.2, which serves as a presence/absence

representation of the different criteria for the model structure. This is inspired

from Bertin’s reorderable matrix [35] and the subsequent interactive versions of the

matrix [128].

Since the data is binary, we use two color hues: purple for denoting presence and

gray for absence. Visual salience of a matrix depends on the order of the rows and

columns and numerous techniques have been developed till data fore reordering [129,

130] and seriation [131]. In this case, the main motivation is to let the scientists

visually separate the criteria which have high average non-implementation (indicated

by 0’s) and those with high average implementation. For providing visual cues on

potential groups within the data, we reorder the rows and columns, based on a function
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that puts the criteria, that are present, to the upper left of the matrix; and pushes

those that are absent, to the bottom right.

The colored bars on top of the matrix serve a dual purpose. The heights of the

bars indicate the importance or weight of each criteria for creating groups in model

structure. The colors of the bars, with a light yellow to red gradient indicate the

average implementation of a criterion. For example, as indicated in Figure 5.2, the

yellow bar indicates that only three models have implemented that criterion. This

gives a quick overview of which criteria are most implemented, and which ones, the

least. The grey connectors preserve link among bars and columns during reordering.

This is important, especially when criteria bars and the data columns in the matrix

are reordered independently.

Groups can be created by selecting the different criteria. For a single criterion,

there can be two groups of models: those which do not implement the criteria and

have a value 0, and those which implement criteria, and have a value 1. With multiple

selections, there can be 2c combinations, with c being a criterion. In most practical

cases, only a subset of these combinations exist in the data.

5.3.2 Time Series View

The model output data, which comprises of a time series for each model, is displayed

using a line chart comprising of multiple time series (Figure 5.4(a)). But effective

visual comparison of similarity among multiple groups is difficult using this view

because of two reasons. First, due to similar trajectory of the series, there is a a lot of

overlap, leading to clutter. Second, we are unable to show the degree of clustering

using this approach. To resolve these design problems, we use small multiples. Small

multiples [9] have been used extensively in visualization, one problem with them is

when there are a large number of them, it becomes difficult to group them visually

without any additional cues. To prevent this, we create a small multiple for each

group. When there are time series for different region, a small multiple can also be

created for each region to compare groupings across different regions.

5.3.3 Interaction

An overview of the steps in the interactive workflows between the matrix view

and the time series view are shown in Figure 5.1. These actions and operations are

described below:
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Create Groups. While reconciling model structure with model output, scientists

can first observe similarity among the models based on their criteria, and accordingly

create groups. This is part of the reconciliation workflow described in Section 5.4.1. In

the matrix view, groups can be created on interaction. In the time-series view, groups

are either suggested by the system or selected by the user through direct manipulation.

This is part of the reconciliation workflow described in Section 5.4.2.

Reflect. Creation of groups triggers reflection of the groups in both views. On the

matrix side, this is through grouping of the rows. On the time series side, this is done

by color coding the lines.

Split. In the time series view, groups can be reflected by splitting the models into

small multiples of model groups.

Optimize. While reconciling model output with structure, to handle the variable

importance of the criteria, an optimization step is necessary. This workflow starts with

the scientist selecting groups in the output, which get reflected in the matrix view. Next

they can choose to optimize the importance or the weights, which leads to subsequent

iteration. This reconciliation workflow is described in detail in Section 5.4.2.

5.4 Reconciliation Workflows

In this section we describe how we instantiate the conceptual model of visual

reconciliation described in Figure 5.3 by incorporating the coordinated multiple views,

user interaction and an underlying computational model. The following workflows

provide a step-by-step analysis of how the views and interactions can be leveraged by

climate scientists for getting insight into structure similarity and output similarity.

5.4.1 Reconcile Structure Similarity with Output Similarity

In Figure 5.4 we show the different steps in the workflow when the starting point of

analysis is the model structure. This workflow relies on visual inspection of structure

similarity by using matrix manipulation, and observing the corresponding patterns in

output by creation of small multiples. The steps are described as follows:

Create groups. For reconciling model structure with output, it is necessary to

first provide visual cues about which models are more similar with respect to the
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Figure 5.3: Iterative visual reconciliation of groupings based on climate model
structure and model output. Visual inspection of similarity coupled with an underlying
computation model facilitates iterative refinement of the groups and flexible exploration
of the importance of the different parameters.

different criteria. For this the default layout of the matrix is sorted from left to right,

by high to low average implementation of the different criteria. This is indicated in

Figure 5.4(b) by the transition of the importance bars from red to yellow. This gives

the scientists an idea of which criteria create more evenly sized groups with 0’s and

1’s. The criteria which are colored dark red and light yellow will create groups which

are skewed: either too many models implement the criteria or they do not. Selecting

criteria which are deep yellow and orange, gives more balanced clusters, with around

50 per cent implementation. The highlighted column indicates the criterion with the

highest percentage of implementation.

The selected columns are indicated in Figure 5.4(c). These two criteria create

four groups. For showing groups of models within the matrix, we introduce vertical

gaps between groups, and then draw colored borders around each group. Reordering

by columns is also allowed for each group independently as shown in Figure 5.4(c).

In that case, the weighted ordering of the bars is kept fixed. For visually indicating

the change in ordering we link the criteria by lines. Lines that are parallel indicate

that those criteria have not moved due to reordering and share the same position for

different groups. Since too many crossing lines can cause clutter, we render the lines

with varying opacity. For indicating movement of criteria, we render those lines with

higher opacity. To highlight where a certain criterion is within a group, on selection

we highlight the line by coloring it red as shown in the figure.

If columns in each group are reordered independently, that shows the average

implementation patterns for each group clearly. But it becomes difficult to compare
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Figure 5.4: Workflow for reconciling model structure with model output:
This linear workflow relies on matrix manipulation techniques and visual inspection of
similarity patterns in the matrix view and the small multiple view.

the implementations of a set of criteria across the different groups. To enable this

comparison, user can select a specific group which will be reordered column-wise,

and the columns in other groups will be sorted by that order. This is shown in

Figure 5.4(d), where the first group from the top is reordered based on the columns,

and other groups are aligned relative to that group. As observed, this enables more

efficient comparison relative all the implemented and non-implemented criteria in

the first group. For example, we can easily find that the rightmost criteria are not

implemented by the first group of models, but is implemented by all other groups.

Reflect. The creation of groups in the structure is reflected in the output by the

color of the groups. Users can see the names of the models on interaction.

Split. Small multiples can be created for each group (Figure 5.4(d)). The range

of variability of models in each small multiple group reflects how similar or different

they are. This comparison is difficult to achieve in a time series overloaded with too

many lines. This also enables a direct reconciliation of the quality of grouping in

model structure with that of the output. For example, as shown in the figure, only

the orange group has low variability across models, denoting that the groups based

on the criteria in model structure do not create groups where models produce similar

output behavior.

5.4.2 Reconcile Output Similarity with Structure Similarity

To reconcile output with structure and complete the loop, we need to account

for the fact that different criteria can have different weights or importance in the
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creation of groups. One of the goals of the reconciliation models is to enable scientists

explore different combinations of these criteria that can create groups similar to those

in the corresponding model output. However, naive visual inspection is inefficient to

analyze all possible combinations without any guidance from the system. For this, we

developed a weighted optimization algorithm that complements the human interaction.

We describe the algorithm, provide an outline of its validation, and the corresponding

workflow, as follows.

5.4.2.1 Weighted Optimization

Using the model structure data and the model output data, we can create two

distance matrices. The eventual goal is to learn a similarity function from the output

distance matrix and modify the weights of the criteria in the structure distance function

for adapting to the output similarity matrix. We describe the problem formulation

below.

Let M̂ be a matrix representing the model output with size n×p and M̃ represents

the model structure with size n× q. Similarity in model output is computed by the

function d̂ : Rp × Rp → R. This function can be any specialized distance function

such as Euclidean, Cosine, etc. For the model structure we use weighted euclidean

distance d̃w : Rq × Rq → R =
∑q

k=1

√
wk(yki − ykj )2, where wk is a weight assigned to

each dimension on M̃ .

Using d̂ we encode the similarity information of the model output in a distance

matrix D̂. Our goal would be to find the weights’ vector w = {w1, ..., wq} which could

create a distance matrix for the model structure D̃ containing approximately the same

similarity information as the model output. This problem can be formulated as the

minimization of the square error of the two distance functions:

minimize
w

n∑
i=1

n∑
j=1

‖d̃w(xi, xj)
2 − d̂(yi, yj)

2‖2

subject to wk ≥ 0, k = 1, . . . , q.

(5.1)

where ‖.‖ is the L2 norm.

Using this vector w we can define which criteria are important in the model

structure to recreate the same similarity information from the model output. Note that

in the previous formulation we have not taken into account the user’s feedback. The

weights computation step is similar to the one used in weighted metric multidimensional

scaling [132] technique.
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If we want to incorporate user’s feedback into our formulation we can multiply

the square errors in Equation 5.1 by a coefficient ri,j. This number represents the

importance of each pair of elements in the minimization problem. In our approach we

allow the user to define groups on the model output, then ri,j will be almost zero or

zero for all the elements i, j in a group. Now, we need to minimize:

minimize
w

n∑
i=1

n∑
j=1

ri,j‖d̃w(xi, xj)
2 − d̂(yi, yj)

2‖2

subject to wk ≥ 0, k = 1, . . . , q.

(5.2)

Both equations above can be converted into quadratic problems and solved using

any quadratic programming solvers, such as JOptimizer [133] for Java or quadprog in

MATLAB.

Our approach of incorporating user feedback for computation of the weights is

similar to the cognitive feedback model, namely V2PI-MDS [123]. Mathematically

the approaches are similar but conceptually they are different on two counts. First,

in V2PI-MDS, the high-dimensional data space is represented by the projected data

space, and the algorithm attempts to reconcile the two spaces. In our case however,

the underlying data spaces are entirely different. We handle this problem by using

interactive visualization as a means to preserve the mental model of the scientists

about the characteristics of the different data spaces. We could also have used

multidimensional projections. But as found in previous work, domain scientists tend

not to trust the information loss caused by the dimensionality reduction and prefer

transparent visualizations, where the raw data is represented instead [134].

Second, the interaction mechanism for providing feedback to the computation

model in the reconciliation model is also different than the V2PI-MDS model. We

allow users to define groups within the data, as opposed to direct manipulation and

movement of data points in a projection; which is not applicable in our case. Our

focus is on the relationship between the weights of the dimensions and the similarity

perception they induce. As a result, we let users explore different groupings by using

the sorted weights and let them modify the views accordingly. This results in a rich

iterative analysis for reconciling the two similarity spaces.

5.4.2.2 Validation

To validate our optimization, we use two synthetic datasets, one for model output

and the other one for model structure. The purpose of this validation is to demonstrate
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(a) Model Output (b) Model Structure

Figure 5.5: Synthetic data for validating weighted optimization. Using the
model output data in (a) and model structure data in (b), we validate the accuracy
of the optimization algorithm.

the accuracy of the algorithm in the best case scenario, i.e., when a perfect grouping

based on some criteria exists in the data. In most real-world cases, however the

optimization will only create an approximation of the input groups.

Our model output is a two-dimensional dataset and we use a scatter plot to

visualize it (Figure 5.5(a)). We can notice that we have three well defined groups

{m1,m2,m3,m4}, {m5,m6,m7,m8} and {m9,m10}. Figure 5.5(b) shows our synthetic

model structure data which contains boolean values. Each row represents a different

model (mi) and each column a different criterion. The first two criteria were chosen

specifically to split the dataset into the same three groups as the model output.

For instance when criterion1 = 0 and criterion2 = 0 we can create the group

{m1,m2,m3,m4}.The next three columns are random values (zero or one).

First, we solve the Equation 5.1 using our synthetic dataset and Euclidean distance

for the model output; and we get w = {1.00, 0.14, 0.06, 0.08, 0.10}. We use the classical

multidimensional scaling algorithm to project the model structure data using the

Weighted Euclidean distance. We normalized the weights between zero and one for

visualization purpose, but the weighted Euclidean distance uses the unnormalized

weights. Figure 5.6(a) shows the two-dimensional data. Our vector w was able to cap-

ture the similarity information from the model output. For example, {m1,m2,m3,m4}
is a well defined group. Even though {m5,m6,m7,m8} and {m9,m10} are not mixed,

they are not well defined groups.

Next, we incorporate user feedback and set the coefficient ri,j to zero for all
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(a) Automatic optimization (b) Optimization based on user feedback

Figure 5.6: Validation of user feedback based optimization in the MDS plots.
As we can observe in (b), optimization based on user’s feedback gives highest weights
to the two criteria which are splitting the models into three groups.

pair combinations in the groups {m1,m2,m3,m4}, {m5,m6,m7,m8} and {m9,m10}.
Solving Equation 5.2 we get the vector w = {1.00, 0.77, 0.07, 0.08, 0.10}. Figure 5.6(b)

shows the two-dimensional projection of the model structure using the weighted

Euclidean distance and w. We notice that now the three groups are well defined.

Our algorithm gave the highest weights to the first two criteria (criterion1 = 1.0 and

criterion2 = 0.7) which we already knew to have the best combination to split the

model structure in the same groups as the model output.

These two experiments show that our formulation accurately gives the highest

weights to the most relevant criteria for splitting models into groups, and this can be

used to guide the user during the exploration process. In Section 5.5 we will show

how this approach works with real data; where in most cases, an approximation of

the output group is produced by the algorithm.

5.4.2.3 Workflow

In Figure 5.7 we show how the complete loop starting from output to structure, and

back, is executed by user interaction and the optimization algorithm described above.

This workflow relies on human inspection of structure similarity through manipulation

of the matrix view and observation of the corresponding output in the small multiples

of time series. The steps are described as follows:

Create Groups in Output. For suggesting groups of similar outputs, the system

uses clustering of time series by Euclidean distance or correlation (Figure 5.7(a)).



116

Figure 5.7: Workflow for reconciling output with structure through feedback:
This iterative workflow relies on weighted optimization based on Equations 5.1 and 5.2,
and human initiated parameter tuning and selection for reconciling model structure
similarity with model output similarity and vice versa.

While other metrics are available for clustering time series, for this case scientists were

only interested in these two. Accordingly, the clusters are updated in the output view.

Reflect in Structure. These clusters are reflected in the model structure side by

reordering the matrix based on the groups (Figure 5.7(b)). All the criteria are given

equal weights by default, as indicated by the uniform height of the bars. The two

views are linked by the color of the groups. Users can also select groups through direct

manipulation of the time series in the output view.

Optimize Weights. Next on observing the system-defined clusters, one can choose

to optimize the weights for the criteria on the structure side. As shown in Figure 5.7(c),

the columns are reordered from left to right based on weights. These weights serve

as hints to the user for creating groups on the structure side. The groups are not

immediately created to prevent change blindness. The system needs the user to

intervene to select the criteria, based on which the groups can be created.

The underlying optimization algorithm as described earlier creates an approximate
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grouping based on the input. In many cases, as shown in the figure, the highest weight

may not give a perfect grouping. By perfect grouping we mean, the optimization

algorithm is able to create the exact same groups as the input from the output side.

In most cases, the weights for an exact solution might not even exist. By using the

optimization, all we get is a group of structure clusters which are as closely aligned

with the output as possible.

Create Groups in Structure. Based on the suggested weights, a user can select

the two highest weights and create groups, as shown in Figure 5.7(d). There are four

possible combinations of these two criteria (with 0’s and 1’s) and all of them are shown

in their own group. In many cases all possible combinations might not exist.

Reflect/Split in Output. The creation of the groups are also reflected on the

output side by indicating the group membership of each model by color-coding or by

creation of small multiples (Figure 5.7(e)), the output groups created are not perfect,

as they do not exactly match with the output groups in the previous step. From this

however, the scientists can judge the effect of the two criteria on model output. For

example, if for the selected criteria, the presence or absence does not have an impact

on the output, that will be reflected in the time series, by their spread or lack of

any significant correlation. For inspecting if combining other criteria can give a more

perfect grouping on the structure side, that matches with the output, scientists need

to continue the iteration and repeat the previous steps.

5.5 Case Studies

We collaborated with 3 climate scientists from the Oak Ridge National Laboratory

and from the USDA Forest Service, as part of the Multi-Scale Synthesis and Terrestrial

Model Inter-comparison Project (MsTMIP). Each of them have at least ten years of

experience in climate modeling and model inter-comparison. MsTMIP is a formal

multi-scale synthesis, with prescribed environmental and meteorological drivers shared

among model teams, and simulations standardized to facilitate comparison with other

model results and observations through an integrated evaluation framework [111]. One

key goal of MsTMIP is to understand the sources and sinks of the greenhouse gas

carbon dioxide, the evolution of those fluxes with time, and their interaction with

climate change. To accomplish these goals, inter-annual and seasonal variability of

models need to be examined using multiple time-series. Early results from MsTMIP
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Figure 5.8: Reconciling seasonal cycle with model structure similarity using
the workflow described in Section 5.4.1. (a) Initial user selection in Polar region
output. (b) Weighted optimization. (c) Corresponding output. (d) Initial user
selection in North American Temperate region. (e) Creating groups based on the first
three criteria after optimization. (f) Small multiple groups of models.

have shown that variation in model outputs could be traced to the same in model

structure. Using visual reconciliation, climate scientists wanted to further understand

whether similarity or differences in model structure play a role in the inter-annual

variability of Gross Primary Productivity (GPP) for different regions. Inclusion of

particular combinations of simulated processes may exaggerate GPP or its timing more

than any component in isolation. Inclusion of a patently incorrect model structure

could dramatically sour model output by itself.

We provided our collaborators with an executable, which they used for a month

and reported back to us on their findings, as reported below. Then we conducted face-

to-face interviews about the usage of the technique and got positive feedback on how

the technique is a first step towards solving the problem of reconciling model structure

with output. We describe two cases where our collaborators could find relationships

between model structure and model output using a prototype implementation of the

visual reconciliation technique. The model structure data is segmented into four

classes: energy, carbon, vegetation, and respiration. In this case the scientists wanted

to understand the relationship between criteria belonging to energy and vegetation,

and their GPP variability in Polar and North American Temperate regions. Each of

the model structure datasets consist of about 15 models and about 20 to 30 criteria.
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5.5.1 Reconciling Seasonal Cycle Similarity with Structural

Similarity

The seasonal cycle of a climate model is given by the trajectory of the time series

and the peaks and crests for the different months in a year. Exploring the impact

of seasonal cycles for different models with respect to GPP is an important goal in

climate science, since the amount and timing of energy fixation provides a baseline for

almost all other ecosystem functions. Models must accurately capture this behavior

for all regions and conditions before other, more subtle ecosystem processes, can

be accurately modeled. The motivation for this scenario was to find if there is any

dependency between regional seasonal cycles of models and included model structures

with respect to the overarching energy criteria.

The scientists started their analysis in the Polar region by selecting the M9 and

M10 models which appeared to be similar with respect to both their GPP values and

the timing of their seasonal cycles, as shown in Figure 5.8(a). Their intent was to

observe which energy parameter causes M9 and M10 to behave similarly in one group,

and the rest in another. They optimized the matrix view to find the most important

criterion, which was found to be Stomatal conductance. After this step they chose

to select this criterion to split the models into two groups, shown in Figure 5.8(b) and

reflected in Figure 5.8(c). The underlying optimization algorithm thus gave a perfect

grouping, with the models that implement Stomatal conductance in the orange group,

while the rest are in another group. The climate scientists were already able to infer

that Stomatal conductance has strong impact on the seasonal cycles of M9 and M10.

Next the scientists selected the M6 and M7 models in the North American Temperate

(NAT) region, which appear to be similar with respect to their seasonal cycle and GPP

output (Figure 5.8(d)). This grouping is already intuitive and inspires confidence,

because of its consistency with the known genealogical relationship of these two models

as siblings. With the same goal as the previous case, they optimized the matrix view,

and found that Prognostic change was the most important structural criterion to

approximately create the two groups. This structural criterion provided a near-perfect

segmentation, except for the M1 model, which also implements this parameter, as shown

in Figure 5.8(e). In an attempt to get the exact segmentation, they selected the next

two most important criteria, which are prescribed leaf index and RTS2-stream.

M6 and M7 implement both of these criteria and are in one output group, while the

other green output group is split into three sub-groups based on their implementation

of these three criteria. The implementation of these three criteria thus has a significant



120

effect on the grouping of these two models with respect to their GPP. The scientists

could continue in this way to find more inferences from the implementation or non-

implementation of these three structural criteria, by further observing their output in

small multiples, as shown in Figure 5.8(f). This shows that the blue group, none of

which implement Prognostic change, but all of which implemented the other two,

show a greater spread of GPP output values than any other group. In this way, the

scientists could reconcile the impact of different energy criteria on the seasonal cycle

and regional variability of GPP.

Figure 5.9: Iterative exploration of structure-output dependency using a
combination of the two workflows for reconciliation. (a) Initial user creation of groups;
(b,c) Corresponding groups in regions; (d,e,f) workflow for verifying user-defined
groups; (g,h,i) workflow for finding the criteria that can potentially cause M1 to be
an outlier, and then looking at range of variability in small multiple outputs.

5.5.2 Iterative Exploration of Structure-Output Dependency

In this case, the scientists started by looking at the model structure data for discov-

ering structure criteria that could explain model groups having high and low GPP values
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across both Polar and NAT regions. A simple sequential search for criteria is inefficient

for reconciliation. To start their analysis, as shown in Figure 5.9(a), the matrix view is

first sorted from left to right by the columns having high numbers of implementations.

The sorting enabled the scientists to group using a criterion that would cause balanced

clusters, i.e., divide the models into equal groups. In this view, these criteria would lie

in the center, having orange or deep yellow color. In course of this exploration, they

found that the canopy/stomatal conductance whole canopy structural criterion

splits the group into nearly equal halves. These clusters are represented in the output

by green, i.e., not implementing that criterion, and orange, i.e., implementing that

criterion. Further, looking at the output, as shown in Figure 5.9(b), scientists found

that the orange group has higher GPP values and the green group has lower values. In

other words, the models that have implemented stomatal conductance have higher

GPP values than the ones that have not implemented this criterion. This grouping is

consistent for the North American Temperate region, with the exception of the M1

model, as shown in Figure 5.9(c).

Next, the scientists wanted to verify whether by performing optimization, they

can get the same criterion to be the most important for the behavior of GPP within

the Polar region, which represents a different, extreme combination of ecological

conditions. They selected the green group, as shown in Figure 5.9(d), and then

chose to optimize the matrix view. They found the same criterion (canopy/stomatal

conductance whole canopy) to have the highest weight, reinforcing the reconciling

power of this same group of model structures for explaining differences in GPP across

two extreme eco-regions. Thus, the criterion that they discovered interactively could

be verified algorithmically. Note that, as shown in Figure 5.9(d), only one of the

models is classified in a different group than the user-selected group.

For the NAT region, the scientists wanted to drill-down to determine what was

causing M1 to behave differently, as was found during the initial exploration. They

defined two groups, with one of them only having M1 as shown in Figure 5.9(g). Once

they chose to optimize the matrix, they found that no single criterion could produce the

same output groups. However, by combining the two most important criteria, which

are vegetation heat and canopy-stomatal sunlit shaded (Figure 5.9(h)), M1 was

put in a separate group by itself. It was the only model that implemented both of these

criteria. Additionally, the scientists also saw that the models in the green group, which

did not implement any of these criteria, had a larger range of GPP variability than the

other model groups (Figure 5.9(i)). They concluded that,by allowing both more- and

less-productive sunlit and shaded canopy leaves, respectively, models which
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implement these differential processes seem to stabilize the production of GPP, even

across extremely different eco-regions, possibly accurately reflecting the actual effect

of these processes in nature.

5.6 Summary

In this chapter, we have presented a novel visual reconciliation technique, using

which climate scientists can understand the relationships between model structure

similarity and model output similarity.

By exploiting visual linking and user-steered optimization, we are able to com-

municate to the scientists, the effects of different groups of criteria on the variability

of model output. Using this technique, scientists could form and explore hypotheses

about reconciling the two different similarity spaces, which was not possible before,

yet which is crucial for refining climate models; which is reflected in the following

comment by one of our collaborators:

“Due to imperfect knowledge, understanding, and modeling, correlations in

the climate modeling domain may be weakly exhibited at best. This inherent

weakness poses the greatest challenge to recognition and reconciliation

of such correlations; yet, it is only through the reconciliation of such

correlations upon which progress in improving climate models rests.”

Regarding the effectiveness of the reconciliation technique, another collaborator ob-

served that:

“One of the most valuable functions of the technique is to effectively remove

from consideration the complications created from model structures, that

have little to no effect on outputs, and to effortlessly show and rank the

differential effects on output created by seemingly related or unrelated model

structures.”
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Chapter 6

Using Maximum Topology

Matching to Explore Differences In

Climate Models

In this chapter, we work with Species distribution models (SDM). SDMs are used

to help understand what drives the distribution of various plant and animal species.

These models are typically high dimensional scalar functions, where the dimensions

correspond to different model algorithms and environment variables, also known as

predictors. Ecologists are interested in studying the behavior of these models over

its parameter space comprising of its predictors. However, their current approach

resorts to visualizing one-dimensional slices of the models. That is, in considering the

influence of one specific predictor, the common technique is to select a predictor of

interest and fix the values of the other predictors to their mean values, and compare

the variation of the models with respect to the selected predictor. This results in

a one-dimensional curve known as response curve (see Figure 6.11(c)). The main

shortcoming of restricting the analysis to considering only one predictor at a time

is that it is not possible to obtain an accurate view of the model. This is because,

the features resulting from the interactions between the other predictors are lost

through such dimensionality reduction. More importantly, even when looking at

one-dimensional slices, the response curves are restricted to the fixed value of the other

predictors. While there has been some work where ecologists analyze two-dimensional

slices of the models [135, 136], the above problems still hold.

The goal of this work is to help ecologists understand the interactions between the

predictors in SDMs, and thus have a better understanding of what drives the various

species. To this end, we propose a Visual Analytics Approach that use computational



124

(a) (b) (c)

Figure 6.1: Topology of scalar functions. (a) Height function f1 defined on a
2-dimensional manifold having 4 maxima. πi represents the persistence of a maximum
xi. (b) The join tree tracks the connectivity of the super-level sets of a scalar function.
(c) Each branch in the branch decomposition of the join tree corresponds to the path
between a creator-destroyer critical point pair.

topology to help explore and compare SDMs directly in the high dimensional space.

In particular, we use the extrema of the corresponding scalar functions to guide the

users towards interesting features of the SDM.

While such exploration of the SDMs will provide more flexibility to the ecologists,

manual comparison between the two models is still a time consuming and often

impractical process. To overcome this, we propose a novel technique that can be

used to compare two scalar functions in a locality-aware manner. We do this by first

creating a bipartite graph where the edges correspond to possible correspondence

between the extrema of the two functions. The edge weights are defined such that

they reflect both the spatial locality of the extrema, as well as the likeness in terms

of their function values. The maximum weight matching of the bipartite graph is

then computed to obtain the correspondences between the set of extrema. These

correspondences are then used to compute a topological similarity measure between

the two functions. We also show through experiments the robustness of the matching

and the resulting topological similarity measure.

We design a visualization interface which uses the above techniques to help ecol-

ogists explore SDMs and analyze the differences between them. Finally, working

together with ecologists we demonstrate the effectiveness of our technique and the

user interface through several use case scenarios involving SDMs of different species.
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6.1 Background

In this section, we provide the necessary background on concepts from compu-

tational topology that form the mathematical and algorithmic basis of this work.

We refer the reader to the following textbooks [137, 138, 139] for a comprehensive

discussions on these concepts.

6.1.1 Morse functions and Species Distribution Models

Let M denote a d-manifold with or without boundary. Given a smooth, real-valued

function f : M → R defined on M, the critical points of f are exactly where the

gradient becomes zero. The function f is called a Morse function if it satisfies the

following conditions [140]:

1. All critical points of f are non-degenerate and lie in the interior of M.

2. All critical points of the restriction of f to the boundary of M are non-degenerate.

3. All critical values are distinct i.e., f(p) 6= f(q) for all critical points p 6= q.

For a Morse function f defined on a d-manifold M, there are d+ 1 types of critical

points indexed from 0 to d. In this work, we are interested in the two most familiar

types – minimum (with index 0) and maximum (with index d), corresponding to

a point p whose function value is smaller, or larger, than all other points within

a sufficiently small neighborhood of p, respectively. Figure 6.1(a) shows a height

function, f1, defined on a 2-manifold. This function consists of 4 maxima – x1,x2,x3,

and x4.

A species distribution model (SDM) is a d-dimensional function m : Rd → C,

where C = [0, 1] denotes the unit interval. It assigns a probability for the presence of

a given species based on the values of its d predicates. In the remaining discussion,

we assume that the input SDMs are Morse functions. In case the above conditions do

not hold, simulated perturbation of the function [141, Section 1.4] ensures that no

two critical values are equal.

6.1.2 Topological Persistence

A sub-level set of a function f , M(−∞,a] := {x ∈ M | f(x) ≤ a}, is the set of all

points having function value less than or equal to a. A super-level set is similarly

defined as the preimage of the interval M[a,+∞).
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Consider the sweep of the function f in increasing order of function value. The

topology of the sub-level sets changes when this sweep passes a critical point. In

particular, at a critical point, either new topology is generated or some topology

is destroyed, where topology is quantified by a class of ‘cycles’. For example, a

0-dimensional cycle represents a connected component, a 1-dimensional cycle is a loop

that represents a tunnel, and a 2-dimensional cycle bounds a void. A critical point is

a creator if new topology appears and a destroyer otherwise. It turns out that one

can pair up each creator v1 uniquely with a destroyer v2 that destroys the topology

created at v1. The persistence value of v1 and v2 is defined as f(v2)− f(v1), which

intuitively indicates the lifetime of the feature created at v1, and thus the importance

of v1 and v2.

The function in Figure 6.1(a) consists of three creator-destroyer pairs – (x2, s1),(x3, s2),

and (x4, s3). While the global maximum x1 has a persistence value of ∞, we use

a notion of extended persistence where in addition to the above pairs, the global

maximum is paired with the global minimum [142]. The persistence values of the set

of maxima xi of the function in Figure 6.1(a) is highlighted as πi.

Topological persistence of a feature measures the amount of simplification required

to smooth the input function in order to remove that feature. This property is later

used to define a distance measure between two SDMs.

As mentioned above, in this paper we only consider extreme points of the input

function as features. Given an input domain of size n, the persistence of such features

can be computed efficiently in O(n log n + nα(n)) time using the union-find data

structure1, versus the usual cubic-time algorithm to compute general topological

persistence [143, 144].

6.1.3 Merge Trees

A join tree tracks the topology of the super-level sets of the input function, while

the split tree tracks the topology of the sub-level sets [145]. The join tree and split tree

are together known as merge trees. Figure 6.1(b) shows the join tree of the function

shown in Figure 6.1(a).

The join / split tree is computed using the union-find data structure to keep track of

the connected components of the super-level set (or the sub-level set). This procedure

also returns the set of creator-destroyer pairs corresponding to the topological features.

1The persistence algorithm works for more general topological spaces than manifolds. We only
describe the case when it is induced by a function defined on a manifold.
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A merge tree can be decomposed into a set of branches using the obtained critical

point pairs [146]. Each branch corresponds to the path in the merge tree between

a creator-destroyer critical point pair. Thus, the height of a branch represents the

persistence of the corresponding critical points. Figure 6.1(c) shows the branch

decomposition of the join tree in Figure 6.1(b). The smoothing of a function obtained

by removing an extremum can be represented abstractly by removing the branch

corresponding to that extremum together with all its sub-branches. This observation

is key in our algorithm that computes the topological similarity measure between two

SDMs.

6.2 Related Work

In this section, we first briefly discuss related work that are used to explore high

dimensional functions. Next, we survey topology based techniques that are used for

comparing two scalar functions.

6.2.1 Exploring High Dimensional Functions

There are multiple visual analytic techniques to explore the parameter space

of high dimensional scalar functions (also referred to as models). Most of these

methods are based on sampling the parameter space or using regression algorithms

to approximate / predict output from unknown configurations. Matkovic et al. [147]

proposed to visualize multirun data as families of data surfaces (with respect to pairs

of independent dimensions) in combination with projections and aggregation of the

data surfaces at different levels. The same authors [148] also proposed to generate

new sample points by interactively narrowing down the control parameters in the

visualization via brushing to support visual steering of a simulation. Along the same

lines HyperMoVal [149] was designed to visually relate one or more high-dimensional

scalar functions with validation data. Later, Berger et al. [150] extended HyperMoVal

using regression models for a continuous exploration of the sample parameter space.

Similarly, we can find applications of parameter exploration in other domains such

as image segmentation [151]. Other approaches partitioned the input space and

provided visual analytics strategies for exploration of the input space using one or

two parameters at the time [152, 153]. However, all of these approaches require users

to manually explore the space in order to identify interesting regions.

Topological abstractions have also been used to create visual representations of
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high dimensional functions. Topological Landscapes [154, 155] provide a 2D terrain

representation having the same contour tree as the input high-dimensional scalar

function. When the input are point clouds Oesterling et al. [156] propose to reconstruct

the scalar function using density kernels and use topological landscapes to visualize the

density of points using a 2D terrain. Geber et al. [157] segment the input domain using

an approximate Morse-Scale complex on a cloud of point samples. Then each segment

is represented by a curve using a regression. Finally those curves are visualized in 2D

space using dimensionality reduction algorithms. While these techniques help users

understand the topology of the involved function, it is difficult to use these methods to

compare scalar functions as the neighborhood information is lost in the transformation

to a 2D representation.

In the ecology domain, while there has been some work on trying to study two-

dimensional slices of SDMs [135, 136], ecologists mostly use the SAHM package [158]

for VisTrails [96] which supports exploration through one-dimensional response curves.

6.2.2 Comparing Scalar Functions

Early methods of comparing scalar functions directly used the persistence of the

critical points of the functions to do so. A distance function, usually bottleneck distance,

between the persistence diagrams [159] of two functions are used to compare them.

Using an alternate representation, called barcode, Carlsson et al. [160] represented

the persistence of the features as intervals on a real line. They then defined a metric

to compute the similarity between two barcodes. A disadvantage of using a pure

persistence based measure is that they do not capture the neighborhoods of the

features.

More recent methods for comparing scalar functions used some form of topological

abstraction of the scalar functions to compare them. Morozov et al. [161] defined the

interleaving distance between two merge trees as the minimum cost of shifting points

in one tree to obtain a mapping of one tree to the other. Beketayev et al. [162] defined

a distance between two merge trees by comparing all possible branch decompositions

of the two trees. Bauer et al. [163] extended the interleaving distance between two

merge trees to Reeb graphs and proposed the functional distortion distance to compare

two Reeb graphs, where a Reeb graph is a topological structure which tracks the

connectivity of level sets of a scalar function with increasing function value. More

recently Narayanan et al. [164] proposed a distance measure between two scalar

functions based on the maximum common subgraph between complete extremum
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Figure 6.2: f1 and f2 are two functions defined on the same domain. Existing
techniques identify peak C to be similar to A instead of B even though B and C are
in the same neighborhood of the domain.

graphs, where an extremum graph is a topological data structure that captures

proximity between extreme points in a scalar field [165]. Alternative to computing

distance measures, topological structures have also been used to structurally compare

two functions. Multi-resolution Reeb graphs have been used for comparing two

shapes [166]. Saikia et al. [167] introduced a data structure called extended branch

decomposition graphs using which they could compare between all sub-trees of two

merge trees. Toplogical abstractions have also been used to identify similar structures

within a scalar function [168, 169].

While the above methods capture adjacency based on the connectivity between

level sets, they still suffer from two shortcomings. First, it is possible for two adjacent

features (adjacent edges) to actually be far from each other. Second and more

importantly, the actual locality of the features identified as similar need not be located

in the same locality of the domain. For example, consider the two functions shown in

Figure 6.2. the above techniques would identify maximum A in f1 with C in f2 even

though the two maxima are far from each other. However, given that B and C are in

a similar locality of the domain, we are interesting in identifying B with C.

Instead of an abstraction, level sets and their properties have also been used for

comparing scalar functions [170, 171, 172]. Since these techniques require computing

the level sets, extending them to work for high dimensional functions is non-trivial.

6.3 Scalar Function Similarity

We now describe our technique to compare two scalar functions that are defined

on the same domain. The main idea is to identify the best match, in terms of the



130

(a) (b) (c) (d)

Figure 6.3: Computing the maximum topology matching. (a) 2-dimensional
scalar function f2 that is compared with the function f1 in Figure 6.1(a). (b) Join tree
of f2. (c) The constructed bipartite graph between the maxima of the two functions.
(d) The computed matching between the maxima.

location and function value, between the set of extrema (of the same type) of the two

functions. This matching is then used to compute the similarity measures between

the functions.

In this section, we first describe the procedure to identify the correspondence

between the set of extrema of two functions. Next we define two similarity measures

between the functions and describe how they are computed using the found correspon-

dences. Without loss of generality, the techniques in this section are described with

respect to the set of maxima of the functions. The same procedures apply to the set

of minima as well.

6.3.1 Maximum Topology Matching

The first stage in identifying the similarity between two scalar functions f1 and f2

is to identify the correspondence between the extrema of the functions. Without loss

of generality, we assume that the two functions are normalized between 0 and 1.

Let M+
1 and M+

2 be the set of maxima of f1 and f2 respectively. We first create

a complete weighted bi-partite graph GT (M+
1 ,M

+
2 , E

+) in which the two partitions

corresponds to the maxima of the two functions respectively. Consider a pair of

maxima a ∈ M+
1 and b ∈ M+

2 . Let the difference between their function values be

δa,b = |f1(a) − f2(b)|. Let dg(a, b) denote the distance between the pair of maxima.

Since the SDM is defined on Rd, we use the Euclidean distance for this purpose. We

assign a weight wa,b to the edge corresponding to the pair of maxima a and b as

follows:

wa,b = (1− δa,b)× e
dg(a,b)

2

r2
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Here, r is a cut-off radius, which acts as a knob to define the neighborhood sensitivity.

The weight wa,b essentially consists of two parts. A high value of (1− δa,b) implies

a high similarity between the two maxima in terms of their function value. The

weighting term e
dg(a,b)

2

r2 ensures that importance is given to pairs of maxima that are

closer to each other, thus preserving the neighborhood locality. Thus a high weight

between a pair of maxima implies that they are similar not only in terms of their

function value, but are also within the same locality of the domain. For example, in

order to compare the function f2 shown in Figure 6.3(a) with the function f1 from

Figure 6.1(a), we create the bipartite graph shown in Figure 6.3(c). The thickness of

the edges represents their weights. Note that the edges corresponding to maxima pair

that are nearby in the function domain have weight higher than those that are further

away.

We next compute the maximum weighted matching [173] on the graph G. A

matching is defined as a set of pairwise non-adjacent edges. A maximum weighted

matching is defined as a matching where the sum of values of the edges in the matching

has maximum value. The resultant matching provides the correspondence between

the set of maxima of the two functions. For the example of functions f1 and f2, the

obtained matching is shown in Figure 6.3(d). Note that our technique matches the

maxima x1 to y2 and x2 to y1 due to their proximity. This is unlike existing techniques

that do not use the locality information to match features, which would have matched

x1 to y1 and x2 to y2. Also, these techniques would have matched x3 to y3 since they

use the relative persistence of features when computing similarity.

6.3.2 Topological Similarity

The topological similarity between f1 and f2 is defined as the effort required to

make the two functions have the same number of maxima in the same neighborhood

of the domain. Such similar functions will produce a perfect matching in G. A perfect

matching is a matching that matches all vertices of the bipartite graph. This quantity

is measured as the minimum amount of simplification that is to be performed to attain

such a perfect matching.

Consider the function f1 having the set M+
1 as its maxima. Let C ⊆M+

1 be the

set of maxima that have a corresponding match in M+
2 . Then C = M+

1 \ C is the

set of maxima that have to be simplified. The join tree and the appropriate branch

decomposition is used to compute, τ1, the amount of simplification required as follows.

Let r be the root of the join tree TS. That is, r is the global minimum of the
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(a) (b) (c)

Figure 6.4: Computing the topological similarity. (a) Example join tree of a
function that is being compared. Let maxima A, B and C be matched to maxima of
the other function. (b) The first step of the algorithm computes the matching tree
T ′S, a connected sub-tree of the join tree TSinduced by the matched maxima. (c) The
connected components of TS \ T ′S corresponds to the regions of the function that has
to be simplified to obtain a perfect matching. The minimum amount of simplification
required to do so measures the topological similarity between the two models.

function f1. In the first step, we construct the matching tree T ′S, the join tree of f ′1

which is the function f1 in which the set of maxima C are removed (simplified). This

tree is constructed as follows:

1. For each maximum m ∈ C, construct the path Lm, which is the unique path

from the leaf corresponding to m to the root r.

2. the matching tree T ′S ⊂ TS is the tree induced by the paths Lm computed above,

i.e., {T ′S =
⋃

m∈C Lm}

Figure 6.4(b) illustrates the matching tree corresponding to the join tree in Fig-

ure 6.4(a) when three of its maxima have a matching in the bipartite graph.

Let TS = TS \ T ′S. Consider the connected components K of TS. Simplifying the

set of maxima in C is equivalent to removing each of these connected components from

TS. Each of these components corresponds to a connected sub-tree of TS. The effort

τk required for simplifying a given component k is equal to the height of the largest

branch of the corresponding sub-tree. Figure 6.4(c) shows the different components

that have to be simplified for the example in Figure 6.4(a).

τ1 is then computed as the maximum value of τk over all components k ∈ K. τ2,

the minimum amount of simplification required for function f2 is computed in a similar
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manner. The topological similarity τ = max(τ1, τ2) is the minimum simplification

required to obtain a perfect matching between the two functions.

6.3.3 Functional Similarity

Given a perfect matching between the maxima of the two topologically similar

functions, it is still possible that the matched maxima could differ in their function

values. The functional similarity measures this difference. Formally, the functional

similarity φ is the maximum δa,b over all edges (a, b) that are part of the matching.

Intuitively, this quantity is used to measure the maximum amount of change required

to construct functionally similar functions from topologically similar functions.

6.4 Implementation

In this section, we first provide implementation details describing the adaptation

of our similarity technique for the high dimensional SDMs. Next, for completeness

we briefly describe the algorithm to compute merge trees [145]. Finally, we discuss

the time complexity of our technique and how noise in the input effects the similarity

measure.

6.4.1 Discretizing SDMs

In order to efficiently compute the topology of a species distribution model m :

Rd → C, the high-dimensional domain of m is approximated as a nearest-neighbor

graph, denoted by G, of a set of points sampled uniformly from the domain of Rd. m is

then represented by a piece-wise linear (PL) function defined on G. Thus, m : G→ C.

The function is defined on the vertices of the graph and linearly interpolated within

each edge.

6.4.2 Computing Merge Trees

Given a PL function m defined on a graph G, the upper link of a vertex v is defined

as the graph induced by adjacent vertices of v having functional value greater than v.

Similarly, the lower link of v is defined as the graph induced by adjacent vertices of v

having function value less than v. The join tree of m is computed by first sorting the

vertices of the G in decreasing order of function value. Next, for each vertex u in this

sorted list, the algorithm performs the following operations:
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• If u is a maximum (its upper link is empty), create a new component containing

u and set u as its head.

• If the upper link is not empty, find the components that contain the vertices

in the upper link of u. These correspond to the components of the super-level

set at m(u). Add an arc between u and the head of each of the components.

Merge these components and set u as the head of the merged component. If the

number of components is greater than one then u is a join saddle.

Similarly, the split tree is computed by traversing the vertices in increasing order

of function values.

6.4.3 Analysis

6.4.3.1 Time complexity

Let n be the number of vertices, and m be the number of edges in the graph G

that is used to represent the domain of the SDM. Its merge trees can be computed in

time O(n log n + mα(m)) [145] using the union-find data structure to maintain the

components of the super-level set (sub-level set). Here α is the inverse Ackermann

function.

Let the number of extrema in the two functions (leaf nodes of the merge tree), f1

and f2, be t1 = O(n1) and t2 = O(n2) respectively. The created bipartite graph has

nv = t1 + t2 nodes and ne = t1 × t2 edges. Computing the maximum weight matching

can be accomplished in O(n2
v log nv +nvne) using Dijkstra’s algorithm with a fibonacci

heap [173].

6.4.3.2 Effect of noise

Noise-based artifacts are common in real world data sets. It is therefore important

to consider the effect of noise to the stability of the matching, and the resulting

similarity measures. If the original matching remains even with noise, then given the

low persistence of the noisy extrema that are added, there is no significant change

to the similarity measures. So let us assume that the matching is different from the

original. Consider a matched pair of maxima (xi, yj) between functions f1 and f2.

Without loss of generality, assume that there was noise introduced into the function

f2. This would potentially create additional maxima in the neighborhood of yj. Let

the effect on the function value variation due to the noise be bounded by εf .

Depending on the changes in the weights, there are three scenarios that are possible.
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(a) (b)

Figure 6.5: Effect of noise in the neighborhood of a maximum. (a) Presence
of noise could potentially introduce multiple extraneous extrema in the neighborhood
of a relevant maximum yj . (b) In case one of the noisy maximum y′j is matched in the
maximum matching, then the amount of simplification needed to perform to remove
yj is bounded by ε, while the simplification needed for other extraneous maxima is
bounded by 2ε.

1. The matching (xi, yj) does not change due to noise.

2. The matching algorithm pairs xi with a maximum y′j in the neighborhood of yj.

In this case, both the topological similarity and functional similarity change by a

maximum of εf . This is because, y′j is in the resulting matching tree, and yj has

to be simplified. The persistence of yj in the new configuration is then bounded

by the change in function value (See Figure 6.5), which in the worst case is 2εf .

3. The matching pairs xi with a maximum yk not in the neighborhood of yj. This

implies that weight of the edge (xi, yk) managed to increase past the weight of

edge (xi, yj), i.e., the weights wxi,yj ≈ wxi,yk . While the weight of the matching

in this case would not significantly change, the values of topological similarity

and functional similarity could be affected.

We are interested in further exploring Case 3 above when yj and every other

maxima y′j that was created in the neighborhood of yj due to noise remains unmatched.

If at least one of them is matched to another maximum x′i, then the change to the

topological similarity would be similar to Case 2 above.

Given that the function values are normalized between 0 and 1, the weights of the

edges of the bipartite graph is always between 0 and 1. When the weights of the edges

under consideration are low, then there are three possibilities:

1. Both yj and yk are far away from xi; or
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2. One of the maxima, say yj is far from xi but has δ ≈ 0, and for yk, δ is high

while it is within the neighborhood of xi; or

3. Both maxima are in the neighborhood of xi, but have very high δ (close to 1).

All the above three cases produce an uneven match, i.e., the matched pair sig-

nificantly differ in function values, or are not in the neighborhood of each other. In

order to avoid such matches, we perform an additional pruning step to remove such

low weight edges from the bipartite graph. Thus this step ensures that there is no

significant change in the similarity measures in such cases. Note that we use a value

of 10−6 in this filtration step, thus ensuring that significant matched pairs are not

removed.

On the other hand, let the weights of the edges under consideration be high. Given

the exponential decrease in the weights with respect to distance between the maxima,

we can safely assume that the two maxima are in the neighborhood of xi. Assuming

that the neighborhood size r is not large (we use 0.1 in our experiments), we can

safely infer that the two function values are similar (and high). Thus, there is no

effect on the functional similarity. Let s be a saddle that can be reached through

a descending path from both yj and yk. If there are no other matches in both the

sub-trees, from yj to s and from yk to s, then there is no change to the topological

similarity measure. In case there are other matches, then the persistence of the two

maxima in their respective sub-trees decides the maximum change in the topological

similarity, which is bounded by |πyk − πyj |. As we show in Section 6.6, we found that

in practice the changes to topological similarity was indeed small due to noise.

6.5 Exploration Framework

We design a visual interface to help ecologists explore multiple SDMs. We ac-

complish this through the use of multiple visualizations. The interface consists of 4

views.

6.5.1 Properties View

A matrix is used to represent various properties of different models, as well as

the difference pairs of models. The diagonal of this matrix represents the properties

of the individual models. The functional distance φ between the pairs of models

is represented in the upper triangular matrix, while the topological distance τ is
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Figure 6.6: We compare three functions – f1, f2, and f3, and use this comparison
to demonstrate the visualization interface. f1 and f2 are the same functions as used
in the earlier examples.

Figure 6.7: The properties view summarizes the topological similarity and func-
tional similarity between the three sample functions. Note that a lower value is
better.

represented in the lower triangular matrix. Figure 6.7 shows the properties view

for the three sample functions shown in Figure 6.6. In case of functions f1 and f2,

the difference is the presence of peak x3 in f1, which contributes to the topological

similarity. In case of f2 and f3, peak equivalent to z3 is missing in f2, while a peak

equivalent to y1 is missing in f3. However, the simplification required to remove z3 is

greater than that required for y1, which is denoted by their topological similarity.

In order to explore a single SDM, the user can select the diagonal element of this

matrix. On the other hand, to compare the given pair of models, the user can select

the corresponding cell of the matrix. During this comparison, the user can select to

view either the similarities between the models, or the differences.

6.5.2 Features View

This view visualizes the topological features of the selected model(s) as a scatter

plot. Each point in the scatter plot corresponds to a topological feature (maximum or
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(a) (b) (c)

Figure 6.8: The features view is a scatter plot denoting the various extrema of
the functions. (a) When exploring a single function, each point corresponds to the
extrema of the function. Here, we show the set of maxima of f1. (b) When exploring
the similarities between two functions, each point corresponds to a pair of extrema
that are matched. The figure shows the matching between the maxima of f1 and f2.
(c) When exploring differences between two functions, each point corresponds to an
extremum that is present in one function, but not in the other. When comparing f1
and f2, the maximum x3 is absent from f2.

minimum). The axes of the scatter plot are defined based on what the user wants to

explore.

Explore single model. In this case, the x-axis of the model corresponds to the

persistence (topological significance) of the extrema, while the y-axis corresponds to

its function value. This allows the user to choose features during the exploration. For

example, in case users are not interested in extrema with a small function value, then

they can focus at the appropriate portion of the plot. The extrema of the function f1

is shown in Figure 6.8(a).

Explore similarities between two models. In this case, each point in the scatter

plot corresponds to a pair of extrema that are similar, that is, the pair of extrema that

match. The axes corresponds to the function values of the two extrema. This view

also provides the intuition for the functional similarity. A functionally similar pair of

functions should have all points along the diagonal in this plot. Divergence from the

diagonal denotes a disparity in the function values between the two functions in the

parameter space in the neighborhood of the extreme point. Figure 6.8(b) illustrates

the different matches found between f1 and f2 (also see Figure 6.3(d)).
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(a) (b) (c)

Figure 6.9: Parallel coordinates view is used to view the location of extrema of
interest in the high dimensional predictor space. (a) The set of maxima of f1. (b) The
matched set of maxima between f1 and f2. (c) The maximum that is absent in f2.
We also show the corresponding critical point pair (saddle s2) when exploring the
differences.

Explore differences between two models. In this case, each point in the scatter

plot corresponds to an extremum that is present in one function but absent in the

other. The point is color coded to denote the function it is part of. The x-axis in this

case corresponding to the topological similarity measure, while the y-axis corresponds

to the function value. Figure 6.8(c) shows the difference between functions f1 and f2.

In this view, the maxima are represented as upward pointing triangles, while the

minima are represented as downward pointing triangles.

6.5.3 Parallel Coordinates View

Once features of interest are chosen, the spatial region in the domain correspond-

ing to the selected features are visualized using the parallel coordinates view. This

view provides information on the location of the selected extrema in the high dimen-

sional space. Figure 6.9(a) illustrates the locations of all maxima of the function

f1. Figure 6.9(b) and 6.9(c) show the matched maxima and the differing maximum

respectively.

6.5.4 Response Curve View

A response curve represents a one dimensional slice of the function. We include

this view in our interface since it helps the ecologists understand the different features

as they are familiar with this representation. By selecting a feature and predicate
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# vertices # edges
Running time (ms)

Merge Trees Matching
10,000 249,716 206 8

100,000 2,420,083 1,811 13
1,000,000 23,642,201 129,576 44

Table 6.1: Time taken to compute the similarity between two models.

of interest from the parallel coordinate view, the user can view the response curves

with respect to the selected predicate. The values of the other predicates are set to

those corresponding to the selected extremum. We also show the response curve of the

critical point pair corresponding to an extremum. This helps users understand how

the function changes. For example, when viewing a minimum-saddle pair, the upward

movement of the response curve indicates the approximate shape of the corresponding

“valley” in the high dimensional space.

6.6 Experiments

We implemented both the similarity computation and the visualization interface

using Java. We used the lemon [174] library for computing the maximum weight

bipartite matching. All experiments were run on a MacBook Pro with 2.3 GHz Intel

Core i7 processor and 16 GB of memory. In this section, we first report running

times for computing the similarity between two function. Next, we demonstrate the

robustness of the similarity measure with respect to noise. All our experiments were

conducted over three different species data sets, where four models were used for each

data set.

6.6.1 Efficiency

In order to test the efficiency of our model comparison technique, we created PL

functions by varying the number of sample points. Table 6.1 shows the computation

times for each step of our algorithm. Note that computing the initial set of merge

trees is a one time operation per model. By pre-computing this, we can accomplish

interactive performance even for large graphs having a million sample points and over

23 million edges.

We perform an additional optimization of removing small weighted edges prior to

computing the matching instead of a post removal to handle noise (see Section 6.4.3).

Thus, given the small number of critical points (compared to the input size) and the

above filtering step, the size of the resulting bipartite graph is relatively small. We
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therefore achieve fast computation of the matching, even though the algorithm has a

cubic running time on the number of nodes in the bipartite graph.

6.6.2 Robustness to Noise

In order to test the robustness to noise, we perform two types of experiments. In

the first experiment, we fix a function f1, and artificially induce noise to f1 to obtain

a noisy function f ∗1 . The amount of noise induced was bounded by ε = 10−4. We then

compute the similarity measures between f1 and f ∗1 . Ideally the topological similarity

should be zero. We performed this experiment for the different models across three

data sets. The mean and standard deviation of the topological similarity across these

tests were 1.18× 10−4 and 4.05× 10−5 respectively. Note that this is less than the 2ε

bound (see Section 6.4.3).

In the second experiment, we consider pairs of functions, f1 and f2. We induce

noise into one of the functions, say f ∗2 = f2 + noise. We then computed the similarity

between f1 and f ∗2 . Ideally, the topological similarity between f1 and f2 should be the

same as f1 and f ∗2 (i.e., the difference should be 0). In this scenario, we found the

mean difference in the topological similarity to be 6.42× 10−5 and standard deviation

to be 6.29× 10−5. When looking at individual errors, we found that in several cases,

there was no change in the topological similarity demonstrating the robustness of the

measure to noise.

6.7 Case Studies

In this section we describe two use case scenarios that are of interest to ecologists.

The first case shows how the extrema in the different models can be used to guide

ecologists towards interesting features of the model. The second case demonstrates

how our similarity comparison technique can be used to identify differences between

the models that are otherwise difficult to find.

6.7.1 Exploring an SDM

In this use case, the user is interested in exploring the properties of a single SDM.

Using the visual interface, the user first selects the species and model algorithm of

interest. Details on the modeling techniques and data are given in [158].

In the first experiment, the user chooses the Brewers Sparrow model for the

Brewers Sparrow species. Figure 6.10(a) shows the set of extrema of this model. An
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Figure 6.10: Exploring the features of the MARS model for the Brewers Sparrow

data set. (a) Given the set of all extrema, the user simplifies to remove all those
extrema having persistence less than 0.2. Note that this removes all maxima except
the global maximum (at location (1, 1) in the scatter plot). (b) The locations of the
selected set of minima of the MARS model are shown using the parallel coordinates
view. (c) Note that it is difficult to grasp the presence of high persistent minima
(deep valleys) using the default response curves that is common in the analysis of this
data.

Figure 6.11: Exploring the GLM model for the Spruce Fir species data. Note
that the response curves corresponding to the global maximum and minimum of this
function is significantly different from the default response curves.

initial simplification is performed to remove noise / less significant extrema. Note that

for the MARS model, there is a high number of significant minima. Figure 6.10(b) shows

the different predictors corresponding to the set of selected minima. It is interesting

to note that all of these minima occur when combination of values of mix 18km is low

and tri 18km is high. Such a behavior is clearly not visible using the default response

curves [136] shown in Figure 6.10(c).

In the next experiment, the user is interested in exploring the GLM model for
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the Spruce Fir species. The user selects the global maximum to locate the region

corresponding to this maximum. The parallel coordinates view, shown in Figure 6.11,

shows the coordinates of the maximum together with its critical point pair, which in

this case is the global minimum. Note that the response curves at these locations are

significantly different from the default response curve.

6.7.2 Exploring differences between given pair of models of

a fixed Species

In this experiment, the user first selects the pair of models that are to be compared

from the Properties view. The user can now view either the non-matched features or

the matched features.

The first experiment considers the differences between MARS and other models

for the Brewers Sparrow species. Users can filter features (extrema) having low

topological similarity. As shown in the previous use case, the MARS model for Brewers

Sparrow contains a large number of significant minima. It can be seen than these

minima do not match with any minima of the other models, i.e., there exists no

minima in the other models in the corresponding locations. This is illustrated in

Figure 6.12 where we look at the different extrema in the features view.

Let us now select a significant difference between GLM and MARS (having high value

of τ). Figure 6.13 shows the coordinates of the minimum-saddle pair (intuitively the

lowest and highest point of the valley corresponding to the minimum) that is present

in MARS, but absent in GLM. The response curves varying the predictor ndvi 270 at

the minimum and saddle points shows a significant increase in the shape of the curve

indicating a “valley”-like structure in MARS. However, we see a slight decrease in the

response curve for GLM indicating the absence of a minimum in that region (and thus

Figure 6.12: Comparing MARS with other models for the Brewers Sparrow

species. Note that multiple significant minima that are present in MARS are not
present in the other models. Also, these constitute the significant differences between
these models.



144

Figure 6.13: Locations of a significant minimum-saddle pair in MARS is shown
using parallel coordinates. Note the moving up of the response curves of MARS

from the minimum to the saddle. At the same location, we see a different behavior
for the GLM model.

a difference in the function).

Figure 6.14: The response curves corresponding to a minimum-saddle pair
of a minimum present in MARS but absent in BRT for the Brewers Sparrow species.

We can notice a similar pattern when comparing MARS with BRT for Brewers

Sparrow. Again, one of the significant minimum that is absent in BRT is chosen.

Figure 6.14 shows the response curves corresponding to the minimum and saddle for

this difference with respect to the predictor tri 18km.

In the next experiment, the user compares the differences between MARS and BRT

for Sage Brush. In particular, the user selects the set of significant maxima (having

topological similarity > 0.15) in BRT that are not present in MARS (Figure 6.15(a)).

Figure 6.15(b) shows the coordinates corresponding to these maxima. Note that all of

these differences occur when the value of mean summer is low. This is counter intuitive

when one looks at the default response curves of these two models (Figure 6.15(d)).

6.7.3 Feedback from Ecologists

When we initially provided our tool to the ecologists, they found the results to

be a little too abstract and had difficulty in comprehending them. To help them get

familiar and better understand the utility of working directly in the high dimensional
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Figure 6.15: Comparing MARS and BRT for the Sage Brush species data. (a) Se-
lecting all the significant maxima that are present in BRT but not in MARS. (b) Note
that such difference mainly occurs at a relatively low value of the mean summer pre-
dictor. (c) The response curve at one of the maximum. (d) Note that this behavior
is counter intuitive to the default response curve, in which we see both MARS and BRT

having the same pattern.

space, we used a two dimensional slice of the different models, and setup the software

to work with this data. Their familiarity with the features in low dimensions allowed

them to relate to the results from our tool. Also, since they could easily visualize the

2D data, the different features were directly apparent.

The examples presented in the previous section highlight the complexity of the

response surface when considering an eight dimensional space (that is, using eight

predictor variables) and clearly provide new information about the various models

used by the ecologists. However, the implications of some of these results was not

immediately apparent, which we plan to explore further in the future. As an ecologist

collaborator mentioned during one of our interactions:

They also found utility in using our tool as the following response indicates:

“The default partial dependence plots show the model prediction for one
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variable when all other variables are collapsed to their mean value. However,

the models are not applied in this collapsed space but rather in the full

n-dimensional space and therefore it is suitable to use tools that allow the

user to evaluate the response in the full n-dimensional space.”

In some cases when there is a difference between two models, it is possible that

this is due to missing data. In such cases ecologists would have to collect additional

data from regions having the differences. So, such a tool can also help in identifying

these regions of discrepancies.

6.8 Discussions

6.8.1 Discretization of a High Dimensional Function

Identifying an ideal sample size to represent a high dimensional function is a

difficult problem. For all the experiments in this paper, we used a sample size of

100,000 points. We chose this size since we found that the similarity measure computed

did not significantly change even on increasing the sample size to above 100,000. This

is because increasing the sample size only created noisy extrema which did not affect

the similarity measures.

6.8.2 Neighborhood Radius

The neighborhood radius used for weighing the edge weights of the bipartite graph

is largely dependent on the application and domain expertise. We used a neighborhood

radius r = 0.1 for this purpose, and was based on discussions with the ecologists, who

did not want the matching features to be far away. It would however be interesting to

study the performance of the similarity with varying radius. Patterns from such an

experiment could not only help understand the behavior of the functions, but could

also help automatically identify the radius.

6.9 Summary

In this chapter, we introduced a topology-based framework that helps ecologist to

better understand SDMs and guide them towards interesting features of the model.

We also proposed the concept of maximum topology matching that can be used to

identify similarities and differences between a given pair of SDMs. Even though the
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focus was on the ecology domain, our technique is general and can be applied in cases

requiring a locality-aware way of comparing scalar functions.



148

Chapter 7

Conclusion and Future Work

Analyzing multifaceted data presents several challenges for data analysis, cutting

across different domains. In this dissertation, by focusing on the specific area of climate

model intercomparison, we conducted a thorough investigation of the problem from

different perspectives. Through a qualitative study of visualization usage by climate

scientists, we were able to reflect on the state-of-the-art in climate data visualization,

and identify complex analysis scenarios which require novel visualization solutions [4].

This led to the development of visual analytics techniques for similarity analysis of

climate models [6], reconciliation of multiple similarity spaces [7], and maximum

topology matching for exploring differences in various climate models directly in the

high dimensional domain [8]. Based on the findings and recommendations of our

qualitative study, we also conducted a quantitative study for looking at how color

maps affect climate model analysis tasks [5]. The concepts, techniques, and studies

discussed in this dissertation present new opportunities for research in visualization

and visual analytics along different directions, which we discuss below.

The taxonomy of design problems proposed in this dissertation is a first attempt

towards understanding how visualization design problems are instantiated in practice.

By scaling this approach to multiple domains, we can not only aim to provide improved

visualization solutions to domain experts, but also reflect upon the theoretical principles

of visualization. An eventual goal is to build a system which extends the best of

UV-CDAT [97] and Tableau [175] features: a visualization recommendation system,

which adapts to domain experts analytical tasks and provides provenance at the

back-end for reproducing the steps which led to the creation of the plots. Especially in

scientific disciplines like climate science, biology, etc., where domain experts need to

trust what they see on screen, such a provenance-enabled system which helps produce

optimal visualizations will fill a gap in the existing data analysis practices.
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The results of the study on usage of color maps reveals that appreciation of

visualization of best practices is imperative for accuracy of tasks. We believe our

study will provide further incentive for conducting more studies on other aspects of

effects visualization parameters on real-world data analysis tasks. Further, the results

of both the studies also demonstrate the need to rethink the evaluation criteria of

visualizations in terms of the high-level goal: whether they are used for analysis or for

communication of insights. In visualization, while a lot of research has been addressed

for establishing criteria for analysis purposes [9, 33], much less attention has been

given to scenarios when domain experts need to convey their insights to a broader

audience through visualizations. One of the recent developments in this direction has

been the research on storytelling in visualization [57]. An open area of research is to

know what levels of abstracts and criteria for effectiveness we should use for visual

communication of scientific insights. The findings of our studies can provide a starting

point in that respect.

In SimilarityExplorer, the approach of providing multiple perspectives on oc-

currence and causality of similarity is generalizable to other domains that involve

spatiotemporal data, like urban data. We are looking forward to add more features to,

and apply SimilarityExplorer for solving problems related to such different domains.

The visual reconciliation technique is not restricted to the climate science do-

main. One potential application can be in the in the healthcare domain, where the

goal is to reconcile patient similarity with drug similarity for personalized medicine

development [105]. Another potential application is in the product design domain.

For example in the automotive market, car models can be qualified by multitude

of features. It will be of interest to automotive companies to reconcile similarity of

car models based on their descriptors, with the similarity based on transaction data.

In short, we posit that visual reconciliation can potentially serve as an important

analytics paradigm for making sense of the ever-growing variety of available data and

their diverse similarity criteria. However, we identified multiple challenges that need

to be addressed before being a general technique. For instance, make it more scalable,

extent the framework to more complex models of time, and increasing diversity of

descriptors.

Even though the focus of out maximum topology matching technique was on the

climate domain, our technique is general and can be applied in cases requiring a

locality-aware way of comparing scalar functions. In addition, because all the climate

data sets used in this dissertation are spatiotemporal. Then, techniques and concepts

presented in this dissertation can be used to analyze similarities in spatiotemporal
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data and further problem areas can be addressed through extension of our work.
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