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ABSTRACT

Shape analysis is a well-established tool for processing surfaces. It is often a first step in

performing tasks such as segmentation, symmetry detection, and finding correspondences

between shapes. Shape analysis is traditionally employed on well-sampled surfaces where the

geometry and topology is precisely known. When the form of the surface is that of a point

cloud containing nonuniform sampling, noise, and incomplete measurements, traditional

shape analysis methods perform poorly. Although one may first perform reconstruction on

such a point cloud prior to performing shape analysis, if the geometry and topology is far

from the true surface, then this can have an adverse impact on the subsequent analysis.

Furthermore, for triangulated surfaces containing noise, thin sheets, and poorly shaped

triangles, existing shape analysis methods can be highly unstable. This thesis explores

methods of shape analysis applied directly to such defect-laden shapes.

We first study the problem of surface reconstruction, in order to obtain a better under-

standing of the types of point clouds for which reconstruction methods contain di�culties.

To this end, we have devised a benchmark for surface reconstruction, establishing a standard

for measuring error in reconstruction. We then develop a new method for consistently ori-

enting normals of such challenging point clouds by using a collection of harmonic functions,

intrinsically defined on the point cloud. Next, we develop a new shape analysis tool which

is tolerant to imperfections, by constructing distances directly on the point cloud defined

as the likelihood of two points belonging to a mutually common medial ball, and apply this

for segmentation and reconstruction. We extend this distance measure to define a di↵usion

process on the point cloud, tolerant to missing data, which is used for the purposes of

matching incomplete shapes undergoing a nonrigid deformation. Lastly, we have developed

an intrinsic method for multiresolution remeshing of a poor-quality triangulated surface via

spectral bisection.
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CHAPTER 1

INTRODUCTION

Shape analysis is a fundamental tool in geometry processing. It is the process of extract-

ing higher-level information from raw geometric representations. This form of information

has use in a large number of applications, ranging from segmentation, shape classification,

object retrieval, and semantic object modeling.

At its core, shape analysis relies on extracting surface properties, and then mapping

these properties to higher-level objectives. Ideally, these properties satisfy certain levels of

invariance which represent the semantics of the problem in which we are interested. For

instance, if we are interested in categorizing objects which are all invariant to isometries,

then some properties we may want to measure include Gaussian curvature, geodesics, and

the heat kernel – all measures which are isometry-invariant.

Often, there are strict assumptions on the type of geometric representation for which

shape analysis is employed. Namely, for the aforementioned applications, the typical surface

representation required is a triangulated surface mesh which contains good-quality triangles.

The requirement is necessary so that the properties we wish to measure can be reliably done.

For instance, if we are concerned with extracting the conformal structure of a surface,

then most existing approaches require a triangulated surface where we precisely know the

geometry and topology. Indeed, the range of useful information one can extract from

a triangulated surface is vast [Meyer et al. 2002; Coifman and Lafon 2006; Lipman and

Funkhouser 2009; Sun et al. 2009; Ben-Chen et al. 2010].

Quite often, however, the data on which we are interested in performing shape analysis

fail to meet the requirements of a good-quality triangulated surface. This is a simple

consequence of the data of interest: acquired real-world data. Shape analysis is most useful

when applied on real shapes, as it is desirable to model and understand the physical world.

The reason for this discrepancy is the acquisition process. For a given shape, most

geometry acquisition methods produce a set of range images, where each range image

contains the sensed depth, and the range images are organized to produce an unstructured
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set of points. Three-dimensional acquisition is quite often highly imperfect, where the

acquired geometry is defect-laden. These defects can range from nonuniform sampling, noisy

measurements, misalignment in the consolidation of scans, and incomplete measurements.

This form of the geometry is typically unsuitable on which to perform shape analysis.

The process of reconstruction is to take this set of points and produce a continuous

surface representation, often a triangulated surface, which best approximates the sensed

shape in both geometry and topology, and best handles such defects. One can use the output

of reconstruction for the purposes of shape analysis, but if the geometry and topology of the

reconstructed surface is far away from the original shape, this can be highly problematic

for further processing. Furthermore, assuming that the reconstructed surface is correct, it

may still be ill-suited for analysis as the triangles may be of poor quality, where remeshing

the given surface mesh is necessary.

1.1 Thesis Contributions
The key point of this dissertation is to employ shape analysis directly on such defect-laden

data, in order to produce good-quality, reconstructed surface meshes from acquired data.

We approach shape analysis on defect-laden data from two di↵erent perspectives. First,

we consider existing analysis methods for the purposes of reconstruction and remeshing.

Secondly, we develop new shape analysis methods specifically designed for the purposes of

imperfect data, and their applications.

Figure 1.1 demonstrates the contributions of this work. Our goal in this scenario is to

take the point cloud on the left, reconstruct the surface as shown in the middle, and remesh

the reconstructed surface in a multiresolution and hierarchical fashion, as shown on the

right. To reconstruct a topologically and geometrically accurate surface, a key challenge

is the presence of missing data on the arm and body, due to occlusion in the acquisition

process. To remesh the surface at multiple resolutions, a key challenge is the right hand’s

close proximity to the shoulder. The novel shape analysis approaches developed in this

thesis are at the core of solving these challenging problems.

1.2 Thesis Outline
The first part of the thesis deals with a systematic understanding of surface reconstruc-

tion, via the development of a benchmark for surface reconstruction. We develop a method

for modeling shapes, sampling shapes, and evaluating reconstruction algorithms, in order to

depict the broad range of behavior in surface reconstruction. This provides us with insight

into the types of defects which most impact reconstruction, and consequently, informs how
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Fig. 1.1. We illustrate the contributions of employing shape analysis methods on raw,
defect-laden data. From the point cloud on the left, we develop novel shape analysis methods
to correctly infer its geometry and topology, shown in the middle. From this reconstructed
surface, we use existing shape analysis methods to produce a hierarchy of quality surface
meshes, shown on the right.

we devise shape analysis methods for this type of data. This work has been accepted with

minor revisions in Berger et al. [2013].

Next, we consider the problem of normal orientation from the perspective of shape

analysis. Normal orientation is the problem of classifying normal directions as being inside

or outside over a point cloud, and is a necessary first step for many surface reconstruction

algorithms. Our approach is to construct harmonic functions directly on the point cloud,

and utilize their global smoothness property to consistently assign normal orientation – we

term this process harmonic point cloud orientation, published in Seversky et al. [2011].

The challenge lies in remaining robust to imperfections such as nonuniform sampling, noise,

and missing data.

From a point cloud containing properly oriented normals, we next consider the problem

of constructing meaningful distances in the presence of missing data. Indeed, a measure as

common as geodesic distances can prove to be quite misleading in the presence of missing

data, and so we seek distances which are tolerant to the undersampling. We use the medial

axis as a shape prior, and define distance as the likelihood of two points mutually belonging

to a medial ball. We term this association measure the medial kernel, and consider its

applications for segmentation and reconstruction. This work has been published in Berger

and Silva [2012a].
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We next extend the medial kernel for the purposes of computing correspondences be-

tween pairs of scanned and incomplete shapes. Computing correspondences between incom-

plete shapes undergoing a nonrigid deformation is quite a challenge, where reconstruction

may be too impractical due to the substantial missing data. In such cases, we use the

medial kernel to construct a di↵usion process on the point cloud, and use the resulting heat

di↵usion for matching the medial regions of point clouds. We term this di↵usion process

medial di↵usion. This work has been published in Berger and Silva [2012b].

Last, we consider the problem of taking a poor-quality surface mesh and constructing

a set of good-quality, nested surface meshes, via shape analysis. We illustrate how spectral

methods may be used to hierarchically decompose a surface mesh so that uniform quality

meshes, and feature adaptive meshes via wavelet methods, may both be produced. We term

this decomposition the Fiedler tree, published in Berger et al. [2010].



CHAPTER 2

BACKGROUND

The focus of this dissertation is on surface reconstruction, shape matching, and surface

remeshing of defect-laden data. In particular, our focus is on shape analysis and how it

benefits these problems. In this chapter, we discuss the various aspects of shape analysis for

when the input surface representation is best suited – either a well-sampled point cloud or

a triangulated surface mesh. We then discuss the problems of reconstruction and matching,

and in particular, the issues involved when dealing with nonuniform sampling, noise, and

missing data. Last, we discuss the problem of remeshing from poor-quality triangles.

2.1 Shape Analysis
Shape analysis deals with the extraction of high-level information from the raw geometry

of a surface. It can roughly be broken down into two forms: analysis of extrinsic geometry

and analysis of intrinsic geometry.

2.1.1 Intrinsic Geometry

The intrinsic geometry of the surface refers to its geometry which is independent of the

ambient space for which the surface may lie. In this context, shape analysis typically refers

to the extraction of measures which are unique to the intrinsic geometry. Put another way,

these are measures which are isometry-invariant. For instance, if a surface living in R3 is

isometrically deformed, then although its embedding may be di↵erent, its intrinsic geometry

remains the same. Common intrinsic measures of a surface are its surface area, geodesics,

Gaussian curvature, and its Laplace-Beltrami operator.

Harmonic functions of a surface refer to those which lie in the kernel of the Laplace-

Beltrami operator. These functions are globally smooth, as the Laplace-Beltrami operator

when applied to a function can be seen as a measure of smoothness. This construction of

smooth functions has a number of benefits, ranging from mesh parameterization [Desbrun

et al. 2002], deformation [Au et al. 2007], and segmentation [Zheng and Tai 2010].
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The eigenfunctions of the Laplace-Beltrami operator underscore a large number of

applications. Taken in isolation, the eigenfunctions can be looked at as modes of varying

frequencies, where the corresponding eigenvalue represents the frequency for an individual

eigenfunction [Vallet and Levy 2008]. This is analogous to the complex exponentials

associated with the Fourier transform for linear spaces.

The heat kernel of a surface is the fundamental solution to the heat equation, which

governs how heat di↵uses over the surface. As it may be computed from the eigenfunctions

of the Laplace-Beltrami operator, it is also isometry-invariant. The heat kernel has use

in a large number of applications, ranging from feature point detection [Sun et al. 2009],

segmentation [Gebal et al. 2009], shape retrieval [Dey et al. 2010], and intrinsic symmetry

detection [Ovsjanikov et al. 2010].

Di↵usion distances [Coifman and Lafon 2006] are closely related to the heat kernel, as

these distances are a measure of connectedness of random walks defined by the Laplace-

Beltrami operator. As such, these distances have greater tolerance to topological defects

than geodesic distances, and have proven useful for pose-invariant segmentation [De Goes

et al. 2008].

2.1.2 Extrinsic Geometry

The extrinsic geometry of a surface refers to the ambient space in which the surface lives.

In this context, shape analysis traditionally takes the form of analyzing the volume which

encloses the surface. Note that the extrinsic geometry can di↵er from the intrinsic geometry,

in that there may exist an isometric deformation of a surface which can drastically change

the shape’s underlying volume. Nonetheless, analyzing the extrinsic geometry of a surface

can nicely complement the intrinsic analysis of a surface.

The medial axis is a very common method for extracting extrinsic measures. It is the

set of points in the volume in which the number of closest points to the surface is larger

than one. In particular, the medial axis transform is the subset of these points interior

to the surface which, along with taking the distances as ball radii, can be used to exactly

represent the volume of the surface by taking the union of balls.

For triangulated surfaces, one may extract the medial axis by computing the distance

field of the surface, and taking all of the points where its gradient is discontinuous [Sud et al.

2005]. Alternatively, for well-sampled point clouds, Voronoi-based methods such as Amenta

et al. [2001] and Dey and Zhao [2004] may be used, where Voronoi vertices far from the

point cloud, known as “poles”, are identified as points on the medial axis.
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Once extracted, the medial axis has a large number of applications. One can simplify

the medial axis transform itself, wherein its resulting surface is also simplified [Tam and

Heidrich 2003; Miklos et al. 2010]. The simplified representation of the medial axis, and

its invariance to pose, may be used for shape retrieval [Zhang et al. 2005]. The medial

axis is also suitable for volumetric segmentation [Chang and Kimia 2008], by separating the

individual medial sheets and identifying points on the surface to which the sheets belong.

Although quite descriptive, the medial axis can be somewhat di�cult to handle, as it

is composed of a set of curves and surface sheets nontrivially intersecting. Hence, another

line of work focuses on extracting skeleton curves, a simpler representation than the medial

axis. Various approaches exist for skeleton extraction, ranging from contouring Reeb graphs

of scalar fields [Hilaga et al. 2001], growing deformable models in the volume [Sharf et al.

2006], thinning the medial axis [Dey and Sun 2006a], and surface contraction via mean

curvature smoothing [Au et al. 2008].

The advantage of the medial axis and curve skeleton approaches is their compact repre-

sentation of the volume. Another set of approaches capture the volume by computing mea-

sures directly on the surface, rather than operating on an explicity geometric representation.

The shape diameter function [Shapira et al. 2008] focuses on measuring the overall thickness

of the volume at a given point by sampling a cone of rays in the direction of a point’s

normal. The method of Liu et al. [2009] extends this by constructing a volume-dependent

metric on the faces of a mesh. These approaches support several applications, ranging from

segmentation, salient feature point detection, as well as skeletonization itself.

2.1.3 Discussion

A drawback to the above approaches is the requirement of either a triangulated surface,

or a surface which has been well-sampled. Hence, one faces a challenge in applying such

intrinsic and extrinsic shape analyses to a surface which has been acquired, where the

requirements of a well-sampled surface are often violated. A common approach is to first

perform surface reconstruction prior to running these methods on acquired data, which we

next discuss.

2.2 Surface Reconstruction
Surface reconstruction is the process of taking a set of points and recovering the original

surface from which those points were measured. In particular, the representation of the

recovered surface is typically one in which the geometry and topology is precisely known
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and faithful to the measured surface. Triangulated surfaces, as used in the majority of the

above approaches, is quite commonly the target representation.

The challenges involved in producing a triangulated surface from a set of measured

points stem from the acquisition process. There exists a large number of acquisition

modalities, ranging from passive methods such as multiview stereo, to active methods such

as laser-based optical triangulation and structured lighting. Most of these methods produce

range scans which contain measurement noise, nonuniform sampling, as well as missing

measurements, which can be due to the surface reflectance, occlusion, and the grazing angle

at which the surface is measured. Furthermore, misalignment errors can arise from the

process of registering individual range scans into a single surface. The ability to handle

these imperfections is what distinguishes the various surface reconstruction algorithms.

2.2.1 Interpolating Methods

One class of reconstruction methods focuses on producing a triangulated surface which

interpolates a subset of the data, that is, a subset of the input point cloud is preserved

in the output. These methods are typically based on extracting a subset of the Delaunay

triangulation of the point cloud, such that for every triangle retained, its dual Voronoi edge

meets at the medial axis [Amenta and Bern 1999]. A variety of methods have been proposed

in this vein for noise-free methods, such as the power crust algorithm [Amenta and Bern

1999] and cocone [Amenta et al. 2002]. These methods have been extended to support noisy

data by using the size of medial balls as a measure of stability [Dey and Sun 2006b].

The above methods are provably good, in the sense that so long as certain sampling

conditions are satisfied with respect to the medial axis, these algorithms will correctly

reconstruct the surface. However, in practice, it is extremely di�cult to verify these

sampling conditions, and as the level of data imperfection increases, these methods tend to

not degrade gracefully.

2.2.2 Approximating Methods

Another line of reconstruction algorithms relax the interpolation assumption, such that

the reconstruction need only approximate the input point cloud. This provides for robust

algorithms in the presence of noise, nonuniform sampling, and missing data, albeit at the

expense of guarantees. These algorithms typically require a set of normals accompanying

the points, such that the normals are consistently oriented according to the inside and

outside of the surface.
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One of the first approaches to orienting normals is that of Hoppe et al. [1992]. Unoriented

normal directions are first found via PCA, while orientation is found by first fixing a single

normal’s orientation, and propagating it to normals of close position and direction via a

minimal spanning tree. This form of orientation propagation has been extended to handle

sharp features [Xie et al. 2003], as well as thin surface sheets and missing data [Huang

et al. 2009]. The above methods of orientation are local, in that the propagation decision is

determined only via local information. Hence, a single incorrect orientation can erroneously

propagate over large regions of the point cloud.

Other methods approach normal orientation from a global perspective. The method

of Liu and Wang [2010] performs a coarse, bounding reconstruction [Ohtake et al. 2005b]

of the point cloud to drive a more refined normal orientation estimator. The works of Chen

et al. [2010] and Chen et al. [2011] utilize point set visibility [Katz et al. 2007] in order to

determine the orientation of a normal by considering whether or not a point is visible on the

bounding volume of the surface. These methods make sampling assumptions on the point

cloud, wherein the presence of nonuniform sampling and missing data, visibility [Katz et al.

2007] and coarse reconstruction [Ohtake et al. 2005b] can perform poorly, and consequently

so does the orientation approach.

Once equipped with normals, most approximating methods aim to construct an implicit

function over the volume whose zero level-set is the surface. A common approach is to

employ regularized shape fitting to the point cloud. This can be performed globally in

the case of RBFs [Carr et al. 2001] and locally for Multiresolution Partition of Unity

methods [Ohtake et al. 2003; Nagai et al. 2009], Moving Least Squares [Alexa et al. 2003;

Guennebaud and Gross 2007], and compact RBFs [Ohtake et al. 2005a]. For these methods,

there is often a tradeo↵ between smoothness in the output and faithfulness to the input,

where it can be challenging to strike the right balance.

Other approximation methods frame the problem of reconstruction as finding an indica-

tor function over the volume, where points inside of the volume of the surface are assigned a

value of one and all other points zero. These approaches transform this volumetric problem

to one on the surface via Stokes theorem, and consequently solving for the indicator function

amounts to solving the Poisson equation. The method of Kazhdan [2005] inverts the gradient

operator via Fourier methods, while Kazhdan et al. [2006] directly solves the Poisson

equation in the spatial domain through a hierarchical solver. This was extended in Alliez

et al. [2007] to provide for a better domain decomposition via Delaunay refinement and a

more robust estimation of normals. The method of Manson et al. [2008] adapted Kazhdan
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[2005] in using Wavelets as the basis of choice for which to invert the gradient operator.

Although approximating methods tend to be more robust to data imperfections com-

pared to interpolating methods, there exists situations where regularizing the problem can

produce poor surface reconstructions. For instance, if one is interested in capturing the

topology of the original surface, approximating methods can erroneously fill in or attach

tunnels and produce extraneous components under smoothness priors.

As an alternative to smoothness priors, similar to the goals of this dissertation, other

methods have employed shape analysis to properly steer surface reconstruction. The key

challenge is operating on raw point clouds containing various imperfections. The method

of Tagliasacchi et al. [2009] extracts a skeleton from an incomplete point cloud by employing

a cylindrical prior on the output shape, associating for each point a rotationally-invariant

symmetry axis in order to find its accompanying skeletal point. Resampling of the surface

may be performed by sampling these cylindrical regions. Regions of the point cloud

which violate the cylindrical prior can result in a poor embedding; hence, substantial

postprocessing is necessary to obtain a clean skeleton. This work was extended in Li

et al. [2010] by strictly enforcing cylindrical shapes through a snake deformation model,

hence making their method highly robust to larger gaps of data. The work of Cao et al.

[2010] supports a broader class of shapes by extending the contraction approach of Au

et al. [2008] to the case of point clouds. In the presence of missing data, however, the

constructed Laplacian may respect the boundary components, potentially resulting in a

poor contraction.

2.3 Shape Matching
Shape matching refers to finding correspondences between a pair of shapes. It can

take on many forms, depending on assumptions in the types of shapes being matched, the

underlying deformation space of the shapes, and how the shapes are sampled. Here, we

discuss prior work most relevant to the goals of the thesis: a single shape undergoing a

nonrigid deformation, containing missing data.

In the area of nonrigid registration, computing correspondence is a key component in

the process of registering scans of a deforming shape. In these scenarios, missing data

frequently arise, and in order for the particular deformation model to adequately converge,

it is essential to construct meaningful correspondences in the presence of imperfections.

For time-varying capture, a number of approaches exist for computing correspondences,

where they tend to rely on the coherence in motion between scan frames. Most of these

approaches make assumptions either on templates, the acquisition process, or initialization.



11

The approaches of Süßmuth et al. [2008] and Li et al. [2009] rely on apriori defined templates

to construct correspondences, since one can reliably construct geodesics on the template,

which should remain invariant across the scanning sequence. The methods of Popa et al.

[2010] and Li et al. [2012] rely on stereo matches to initialize the dense matching of corre-

spondences. Other approaches [Wand et al. 2009; Sharf et al. 2008] rely on point-to-plane

distance correspondences, which implicitly assumes that the motion between frames is small.

For a general collection of shapes, where frame-to-frame motion coherence is lost, cor-

respondence becomes a much harder problem. The approach of Chang and Zwicker [2008]

relies on local features to extract a set of candidate correspondences. In the presence

of missing data, however, it can be challenging to reliably construct local features. The

methods of Li et al. [2008] and Chang and Zwicker [2009] instead rely on an initial overlap

between point clouds, and consequently point-to-plane distance correspondences. A more

sophisticated approach is the method of Huang et al. [2008], where local features and

geodesics are used to drive spectral matching. They use a k-nearest neighbor graph to

construct geodesics; hence, it is only reliable when the lack of data is consistent across

scans.

There are a large number of techniques for finding correspondences between well-sampled

shapes; see van Kaick et al. [2011] for an overview. The approach of Bronstein et al. [2006]

applies generalized multidimensional scaling to find correspondences which best preserve

geodesic distances. A deformation model is used in Zhang et al. [2008] to measure the

quality of correspondences, where quality is defined in terms of deformation distortion.

Möbius voting [Lipman and Funkhouser 2009] seeks to find correspondences which best

preserve the conformal structure, thus allowing for a large space of deformations.

It is nontrivial to generalize the above approaches to point clouds, as they typically re-

quire a continuous surface representation. A notable exception is the method of Ovsjanikov

et al. [2010], where they show how the heat kernel can be used to match nonrigid shapes,

as the heat kernel is invariant to isometries. They demonstrate how their approach can be

used for partial matching, as well as its insensitivity to small topological changes. Although

used for meshes, the approach of Ovsjanikov et al. [2010] only requires a discretization of

the Laplace-Beltrami operator, and numerous such discretizations exist for point clouds;

see Belkin et al. [2009] and Luo et al. [2009].

Little work has addressed the correspondence problem in the presence of large missing

data. The work of Tevs et al. [2009] and Tevs et al. [2012] uses geodesic distances and

a RANSAC-like approach to find landmark correspondences, which subsequently drives a
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dense correspondence matcher. They employ a k-nearest neighbor graph construction to

approximate geodesics; hence, they still require some coherence in the missing data for an

accurate correspondence. Perhaps most similar to our work is Zheng et al. [2010], where

they employ the method of Tagliasacchi et al. [2009] to build a set of skeletons, and perform

correspondence on the skeleton graphs. The challenge in this work is that the skeletons

might be of widely varying topology, depending on the e↵ectiveness of Tagliasacchi et al.

[2009]; hence, partial matching must be employed to bring the skeletons into correspondence.

2.4 Surface Remeshing
Surface remeshing is the problem of converting a poor-quality surface mesh into one

of better quality, while still closely approximating the original surface. Quality can refer

to a number of di↵erent measures, ranging from minimum angle in a triangle, the ratio

between the inradius and circumradius (commonly known as the radius ratio), and the

ratio between the circumradius and the shortest edge length. Our approach is focused on

remeshing surfaces which contain poor-quality triangles, and potentially high levels of noise,

in a multiresolution manner; hence, we limit the discussion of remeshing algorithms to such

relevant works.

A common approach for generating multiresolution methods is via mesh simplification.

QSlim [Garland and Heckbert 1997] is a well-known method for simplifying a mesh via

edge collapses, from which a hierarchy of meshes may be generated, using a progressive

mesh [Hoppe 1996] approach. Other methods operate in the ambient space of the mesh

through spatial subdivision, performing simplification by collapsing vertices which belong

to common grid cells [Rossignac and Borrel 1993; Schaefer and Warren 2003], or through

a hybrid approach of 3D-2D spatial decomposition [Boubekeur et al. 2006]. However, such

methods tend to produce poor-quality triangles as part of the simplification.

Surface parameterization is a common approach to constructing quality meshes. There

exists global parameterization methods [Alliez et al. 2003] and methods which construct

multiple local overlapping parameterizations [Surazhsky and Gotsman 2003], where once

a parameterization is known, remeshing the surface amounts to the simpler problem of

resampling a 2D domain. Although one may obtain quality multiresolution from a global

parameterization via subdivision schemes, it is highly nontrivial and expensive to construct

a global parameterization.

Other methods use the concept of the centroidal Voronoi diagram to remesh surfaces

directly, either approximately [Valette et al. 2008] or exactly [Yan et al. 2009]. Such methods

require quite expensive optimization procedures, needing many iterations to adequately
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converge to a quality triangulation. Furthermore, to construct a multiresolution mesh, it is

necessary to run these algorithms from scratch each time for every resolution.

Delaunay refinement is a popular approach for producing provably good-quality triangle

meshes. For surface meshes, the approach of Boissonnat and Oudot [2005] maintains the

restricted Delaunay triangulation of a surface, where appropriate sizing functions can be

used to produce quality meshes. This was extended in Cheng et al. [2007] to the case

of sharp features and nonmanifold configurations. Although these approaches are greedy,

in that the mesh is constructed by incremental sampling, it still remains nontrivial to

extend these methods to produce multiresolution meshes. Another disadvantage of these

approaches is the requirement of operating in the ambient space of the surface, where nearby

surface sheets may impose strict sampling requirements.



CHAPTER 3

A BENCHMARK FOR SURFACE

RECONSTRUCTION

In this chapter, we consider the establishment of a benchmark for surface reconstruction.

Surface reconstruction is motivated by a large number of applications. For instance, it is a

crucial first step in the recovery of nonrigid motion of time-varying geometry [Sharf et al.

2008; Li et al. 2009], and used as “ground-truth” data for multiview stereo reconstruction

evaluation [Seitz et al. 2006].

There has been a vast amount of work dedicated to surface reconstruction, but to date,

there lacks a su�cient means of evaluating and comparing these methods. Part of this

problem stems from the data on which most approaches operate: scanned point clouds of

the real world. Hence, there is a noticeable absence of ground truth in these scenarios, and

it is unclear how to perform evaluation with respect to raw range data.

There are some existing approaches which produce synthetically generated point clouds

from triangle meshes; hence, in these scenarios, it becomes possible to perform evaluation.

Existing approaches such as Kazhdan [2005] and Manson et al. [2008] randomly sample

triangle meshes to produce point clouds, while the methods of Hoppe et al. [1992] and ter

Haar et al. [2005] obtain synthetic scans of a triangle mesh from ray tracing or z-bu↵ering the

mesh. While these methods may produce realistic data under the assumption of completely

clean data, these approaches are insu�cient for replicating common scan artifacts. Indeed,

to compare reconstruction algorithms, it is essential to work with data which is, if not

scanned real-world data, as-realistic-as-possible.

Evaluation methodology aside, part of the di�culty in establishing a benchmark is

the large variability in point clouds. Under triangulation-based scanning, a surface may

be sampled under a wide variety of conditions, producing point clouds containing many

di↵erent characteristics such as noise, outliers, nonuniform sampling, and missing data.

This variability is further enhanced when scan data are processed to produce an oriented

point cloud, where registration and normal orientation must be performed. With all of these
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factors considered, it is di�cult to determine the e↵ectiveness of a surface reconstruction

algorithm operating on an arbitrary point cloud; see Figure 3.1 for an illustration.

To this end, we propose a benchmark for surface reconstruction for approximating meth-

ods. In particular, we operate in a synthetic environment in order to provide quantitative

results, but provide realistic data by simulating a laser-based optical triangulation scanner.

Our benchmark is broken up into three main phases: surface modeling, sampling, and

evaluation. See Figure 3.2 for the full pipeline.

We start o↵ with an implicit surface. In order to minimize any potential bias inherit in

our implicit surface representation, we use integrated polygonal constraints, and approximate

an implicit surface from a triangle mesh, as detailed in Section 3.1.

We then sample this implicit surface to obtain an oriented point cloud. We simulate the

process of an optical triangulation scanner in order to produce range scans. We then slightly

overlap the range scans and register them via a rigid-body registration algorithm. From the

registered point cloud, we then compute and orient normals for each point, producing an

oriented point cloud suitable for the class of algorithms under consideration. These steps

are described in more detail in Section 3.2.

From the oriented point cloud, we now run a surface reconstruction algorithm on the

input. This gives us a triangle mesh, which we evaluate by comparing to the implicit surface

and a dense uniformly sampled point cloud of the implicit surface. We then construct

Fig. 3.1. Here, we have synthetically sampled the Gargoyle model, and ran eight separate
reconstruction algorithms on this point cloud. Note the di↵erences between the algorithms
on the claw, where some algorithms over-smooth the data, while others result in spurious
holes being produced. Our benchmark aims to generate such imperfect point cloud data
and study these various forms of error.
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positional and normal error metrics, demonstrated in Figure 3.2 as individual distributions

of point-to-point correspondences. This is explained in more detail in Section 3.3.

In summary, we make the following contributions:

– Realistic data. We utilize a collection of both simple and complex shapes, where an

implicit surface is used as the computational representation. We then synthetically

scan the implicit surface to provide a collection of point clouds, where our scanning

simulation is validated against real data.

– Accuracy. By employing implicit surfaces, we have a precise means of performing

evaluation, in both positional and di↵erential measures. We utilize particle systems

to uniformly sample both the implicit surface and the reconstructed surface mesh,

thereby minimizing any potential bias of measure from the corresponding triangula-

tion.

– Comprehensiveness. The set of experiments comprise a broad range of behavior

across surface reconstruction algorithms.

3.1 Surface Modeling
For modeling ground-truth data, care must be taken in the surface representation, as it

impacts the rest of our pipeline. Although triangulated surfaces are popular and easy to

work with, we use smooth and piecewise-smooth surfaces as ground-truth, as it benefits the

sampling and evaluation phases as follows:

– Sampling. Our laser-based scanning simulator requires a surface equipped with a

smooth normal field in order to best model an optical laser scanner. As the normal

field of a triangulated surface is discontinuous between triangle faces, this surface

representation can adversely impact our scanning simulator.

– Evaluation. The surface reconstruction algorithms under consideration assume a

point cloud sampled from a smooth surface, so using a smooth surface for quantitative

evaluation respects an algorithm’s assumptions. Moreover, a smooth normal field

permits us to reliably evaluate di↵erential quantities in the reconstruction.

We use implicit surfaces to model smooth and piecewise-smooth surfaces, where we

introduce integrated polygonal constraints as a mechanism for shape modeling. Namely,

we create smooth and piecewise-smooth implicit surfaces by approximating triangulated

surface meshes, or more generally polygon soups, through weight functions integrated over
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polygons. The advantages of using polygonal constraints over point constraints are twofold.

First, approximation from a point cloud may produce specific forms of surface features in

the presence of missing data; under polygon soup, we can ensure there is no such missing

data. Secondly, identification and preservation of sharp features of a polygonal mesh is

far more robust than a point cloud. This allows us to easily model smooth surfaces which

contain sharp features.

3.1.1 Polygonal MPU

Our implicit representation is a straightforward extension of Multilevel Partition of

Unity (MPU) [Ohtake et al. 2003] applied to polygon soup, with the main distinction of

integrating weight functions over polygons. We use the weight function of Shen et al. [2004],

defined for a given point x 2 R3 and for an arbitrary point on a triangle t, p 2 t:

w(x,p) =
1

(|x� p|2 + ✏2)
2

(3.1)

Here, ✏ is a smoothing parameter used to ensure that w is bound above when x lies on t –

we have set it to 0.1% of the bounding box diagonal for each shape. We may now integrate

this weight function over the entire triangle t:

w(x, t) =

Z

p2t
w(x,p)dp (3.2)

The quartic fallo↵ in distance results in points which are far away from a triangle contain-

ing a low contribution to the implicit function. This fallo↵ is necessary since the shape

functions we use are roughly linear in distance; hence, w will dominate the shape function’s

contribution.

For evaluating Equation 3.2, Shen et al. [2004] propose a method for numerical in-

tegration. However, we derive a closed form solution for this expression. This prevents

potential numerical inaccuracies caused by a quadrature scheme, which could be particularly

detrimental to having a reliable benchmark. We outline the derivation in Appendix A.1.

Equipped with a mechanism for integrating weights over polygons, we proceed with

MPU by fitting shape functions to a triangle soup T = {t
1

, ..., tn}. We adaptively build an

octree over T , where for each octree cell, we associate with it a sphere whose radius is the

length of the diagonal of the cell. We then gather all triangles which are contained in, or

overlap the sphere, and fit a shape function to those triangles.
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In practice, we use linear functions for our shape functions, where for each cell i, we

associate the function gi(x) = xTni+ bi. For all triangles which belong to the sphere of cell

i, Ti ⇢ T , we fit the shape function as follows:

ni =

P

t2Ti
nt

R

p2tw(si,p) dp
P

t2Ti

R

p2tw(si,p) dp
(3.3)

bi = �
⌧

P

t2Ti

R

p2t pw(si,p) dp
P

t2Ti

R

p2tw(si,p) dp
,ni

�

(3.4)

where nt is the triangle normal of t and si is the center of the sphere for cell i. Although

one may use higher order shape functions under polygonal constraints, such as quadrics, we

found the di↵erence to be negligible, where the main di↵erence is that for linear functions

we require a larger number of shape functions to adequately approximate T .

The octree is built such that each cell is subdivided only if the zero set of its shape

function deviates su�ciently from the sphere’s triangles. If the octree cell’s sphere is empty

to start, then we grow the radius of the sphere out until we encompass a su�cient number

of triangles (set to six in our experiments), and terminate the subdivision with its shape

function. Once the octree construction is complete, we have a spherical covering of the space.

We may then evaluate the implicit function at a point by blending all shape functions whose

spheres contain that point:

f(x) =

P

i qi(x)gi(x)
P

i qi(x)
(3.5)

where qi is a quadratic b-spline function centered at s
i

.

To preserve sharp features, we follow Ohtake et al. [2003] in detecting sharp features

within a leaf cell and consequently applying CSG operations for exact feature preservation.

In these cases, rather than using polygon soup, we instead use a manifold triangle mesh,

so that sharp features can be easily identified by observing dihedral angles. We then apply

union and intersection operations on overlapping shape functions to exactly preserve the

sharp feature, where we support edges and corners containing a maximum degree of four.

3.1.2 Benchmark Shapes

We have modeled shapes specific to our two sets of experiments. Our first set of

experiments consists of complex shapes, and so we have modeled five shapes containing

di↵erent types of complexities. See Figure 3.3 for these shapes. The Gargoyle model

contains details of various feature sizes, ranging from the bumps on the bottom to the

ridges on its wings. The Dancing Children model is of nontrivial topology, containing

tunnels of di↵erent sizes, in addition to having many varying features such as the rim of
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Fig. 3.3. Complex shapes created via our Polygonal MPU scheme. In our experiments, these
shapes are utilized by performing synthetic range scanning under a wide variety of typical
use-case scan parameters. This class of shapes contains many interesting characteristics for
scanning, such as multiple scales of detail, nontrivial topology, and sharp features.

the hat on the left child and wrinkles in the cloth. The Quasimoto model is representative

of a shape containing articulated parts, such as arms, legs, and head. The Anchor model

contains sharp features, moderately-sized tunnels, as well as a single deep concavity. Lastly,

the Daratech model contains sharp features, small tunnels, as well as thin surface sheets.

We note that the origin of these triangulated surfaces has a slight implication on the

rest of the benchmark. That is, some of these models were scanned and consequently

reconstructed to produce a triangle mesh. This has two consequences: the models must

be visible from the perspective of a scanner, and polygonal MPU may inherit some of

the smoothness properties of the particular reconstruction algorithm. While we did not

notice any particular bias due to the latter, the visibility requirement is consistent with

how we synthetically sample the models, namely through an optical scanner. Hence, it is

still possible to sample all parts of a surface with our scanning simulator.

The second set of experiments utilizes simple shapes which may be sampled in a con-

trolled manner. See Figure 3.4 for these shapes. The Bumpy Sphere contains smooth

features at varying scales. The Spiral shape is primarily composed of a thin cylindrical

Fig. 3.4. Simple shapes created via our Polygonal MPU scheme. In our experiments, these
shapes are scanned in a precise a manner in order to replicate specific scanning di�culties,
such as sparsity, missing data, and noise.
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feature. Lastly, the Mailbox consists of straight and curved sharp features alike, while also

remaining simple enough to sample in a controlled setting.

3.2 Sampling
The intent of our sampling scheme is to replicate the acquisition process of a triangulation-

based scanner, in order to produce realistic point clouds. To this end, sampling is composed

of three intermediate stages: synthetic range scanning, registration, and orientation. See

Figure 3.5 for an illustration of our synthetic scanner’s capability in replicating such prop-

erties.

3.2.1 Synthetic Range Scans

We simulate the acquisition of range scans by modeling a basic optical laser-based trian-

gulation scanning system. Such scanning systems su↵er from random error and systematic

error. Random error is due to physical constraints, such as noise in the laser, variations in

the reflectance due to surface materials, and nonlinear camera warping. Systematic error is

the result of imprecise range measurement due to the peak detection algorithm. Our range

scans are generated by synthesizing random error, while reproducing systematic error by

(a) Uniform sampling (b) Nonuniform sampling

(c) Noisy data (d) Misaligned scans

Fig. 3.5. Common characteristics of 3D scans. These point clouds were generated using
our synthetic scanner, illustrating our capability to replicate common scan properties. In
the noise and misalignment insets, we have color mapped the points by their distance away
from the implicit shape, with yellow being far and green being close.
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performing standard peak detection.

3.2.1.1 Random Error Synthesis

We synthesize random errors by generating a series of radiance images, where each image

is the result of a single laser stripe projection onto the implicit surface. To this end, given

a pinhole camera at position c and a baseline configuration, we first generate the exact

range data by ray tracing the implicit surface. We reject all points that are not visible

from the laser position, which is a function of the baseline distance. This provides us with

a set of pixels containing geometry P = {p
1

,p
2

, ...,pn} and their corresponding points

X = {x
1

,x
2

, ...,xn}.

We now project laser stripes onto the range geometry. We model each laser stripe

projection according to a cylindrical projection, parameterized by laser position l, field of

view of the laser stripe ↵, and triangulation angle ✓. The triangulation angle is defined

with respect to an initial laser stripe plane. We may then define the laser stripe frustum as

the volume enclosed by the two planes {l, ✓ � ↵
2

} and {l, ✓ + ↵
2

}. A point is considered to

be contained within the frustum if it is within positive distance to both planes. Figure 3.6

depicts a 2D illustration of this configuration, where the red points of the green curve are

considered to be within the laser’s frustum.

For a single laser stripe, we gather all range geometry which is contained within the

stripe. This consequently defines the set of “active” pixels to which the laser stripe con-

tributes. We then determine the noise-free radiance at pixel pi due to a laser stripe at

triangulation angle ✓ by Curless and Levoy [1995]:

L✓(pi) = |ni · !|e
�2.0(d(xi))

2

�2 (3.6)

where ni is the normal of the implicit surface at xi, ! is the unit vector pointing towards the

laser position from xi, d : R3 ! R is the closest distance to the center of the laser frustum,

and � is the width of the frustum at xi. Here, we assume that the surface is purely di↵use;

hence, the BRDF is reduced to a constant factor which we omit.

Fig. 3.6. Baseline configuration for determining points which are visible to the laser.
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In practice, di↵use surfaces su↵er from noise in the form of laser speckle, where surface

roughness contributes to variations in the reflectance [Baribeau and Rioux 1991]. We

observe that this form of noise is more significant further away from the center of the

laser stripe frustum. We model this as additive noise sampled under a normal distribution,

where the variance is the distance away from the center of the laser stripe:

L̃✓(pi) = L✓(pi) + ⌘✏�(xi) (3.7)

Here, ⌘ is a user-specified noise magnitude, while ✏ is a random variable normally distributed

with variance �, the distance away from the center stripe. In addition, we also allow

for smoothing of the noisy radiance image by convolving L̃✓ with a Gaussian kernel of a

user-specified bandwidth.

3.2.1.2 Systematic Error

For each corrupted radiance image L̃✓, we next perform peak detection in order to

find each pixel’s laser stripe plane. From the laser stripe plane, depth is obtained simply by

triangulation. A common assumption in many peak detection algorithms is for the radiance

profile, either over space or time (triangulation angle), to be Gaussian [Curless and Levoy

1995]. However, in the presence of depth discontinuities, curved surfaces, and noise, this

assumption is violated, resulting in range containing systematic errors.

To this end, we consider all radiance images L̃✓ defined for each triangulation angle

✓ 2 {✓
1

, ✓
2

, ...✓m}, where m is the number of laser stripes. For each pixel, we consider its

radiance profile as ✓ increases. We fit a Gaussian to this radiance profile via the Levenberg-

Marquardt method. This Gaussian provides us with a mean, which determines the stripe

plane, as well as a peak magnitude and variance, both of which are used for rejecting

unconfident range data.

Please see Appendix A.2 for the full list of scanning parameters and common parameter

settings.

3.2.2 Validation

It is important to verify that the range scans we are producing contain artifacts found

in real scans. To this end, we validate the manner in which we generate range scans

by comparing them to data acquired by commercial scanning systems. We illustrate our

capability of replicating noise and missing data artifacts, which arguably have the greatest

impact on surface reconstruction. We are not interested in exactly reproducing scans

produced by commercial scanning systems. Most systems perform postprocessing which
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is far beyond the scope of our scanning simulation. Instead, we show that our scanning

simulation is expressive enough to generate a range of scan artifacts, while still capable of

generating artifacts of a commercial scanner under proper scan parameters. To perform

validation, we use the following pipeline: model implicit surface! 3D print surface! scan

printed model ! register scan to implicit surface ! compare to our synthetic scan.

We have manufactured the Gargoyle model via 3D printing, through the company

Shapeways [Shapeways 2011]. The minimum detail at which models may be manufactured

through Shapeways is 0.2mm. From this physical model, we then scan it via an optical

triangulation-based scanner, namely the NextEngine scanner [NextEngine 2011]. In its

finest resolution mode, termed macro mode, the scanner has a maximum accuracy of

0.127mm. For shapes in which the distance from the camera is at a specified optimum, and

whose normal is approximately aligned with the camera’s optical axis, we found this to be

true. However, for a complex shape like the Gargoyle, as we will demonstrate, the accuracy

can indeed vary and the noise magnitude becomes greater than the shape’s resolution.

To compare a real scan to a synthetic scan, we first register the real scan to the implicit

surface. We perform ICP under a rigid-body deformation in order to best align the real

scan to the implicit surface. As the NextEngine does not provide specifics on their CCD

sensor, we take the depth image and utilize the camera calibration toolbox [Bouguet 2010]

to obtain the intrinsic and extrinsic camera parameters. We feed these camera parameters

in to our synthetic scanning system to obtain a comparable range scan. We note that a small

nonrigid deformation might be preferable to a rigid-body deformation for registration due

to small nonlinear camera deformation artifacts [Brown and Rusinkiewicz 2007]. However,

this adversely impacts camera calibration and hence is unsuitable for our purposes.

3.2.2.1 Noise Validation

In our scanning simulation, noise is strongly dependent on laser stripe resolution, laser

stripe field of view, noise magnitude, and image smoothing bandwidth. As NextEngine does

not provide these parameters for their system, to compare noise against the NextEngine

scanner, we have best estimated the stripe resolution, field of view, and smoothing band-

width, while varying the noise magnitude. See Figure 3.7 for the comparison. Note that

real scanner noise is in fact anisotropic - a function of the baseline [Abbasinejad et al. 2009].

Hence, we see “bumps” which are slightly aligned with the direction of the laser projection

in the NextEngine scan. Our synthetic scans demonstrate this anisotropy as well. We show

that by simply tuning the noise magnitude, we are capable of producing a variety of noise

profiles, wherein the NextEngine scanner is but a subset.
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Fig. 3.7. Comparison of noise profiles between our scanning simulation in increasing noise
magnitude (bottom), and a NextEngine scan (top-center). Note that real scanner noise takes
the form of bumps aligned in the direction of the laser scan projection (top-right), and our
synthetic noise is able to capture this anisotropic noise over varying noise magnitude.

3.2.2.2 Missing Data Validation

Missing data in a range scan are typically the result of the rejection of unconfident

range data. In our scanning simulation, this is related to the peak intensity threshold,

where a small peak may indicate a poor Gaussian fit. Hence, to compare missing data to

the NextEngine scanner, we vary the peak intensity threshold and observe where regions

of missing data exist; see Figure 3.8. As shown, the NextEngine scanner has a fixed

threshold at which to reject unconfident range, while in our scanning system, this is a

tunable parameter, producing varying degrees of missing data.

3.2.3 Scanning and Registration

Given that we have a means of acquiring range scans, next we must determine where

to scan, and register the scans. It is extremely di�cult to automate the process of po-

sitioning/orienting a scanner, as this is inherently a manual process. We assume an ideal

environment wherein we place the scanner at uniformly sampled positions over the bounding

sphere of the object, such that the camera is oriented to look at the object’s center of mass.

Note that such acquisition systems are starting to gain popularity [Vlasic et al. 2009].

From these individual range scans, we next register them into a single coordinate system.

First, we overlap the scans by a parameterized amount. We then run the registration
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Fig. 3.8. A comparison of missing data between our scanning simulation in increasing peak
threshold (bottom), and a NextEngine scan (top-center). Note the similarities in regions of
missing data between our scan (bottom-right) and the NextEngine scan, chiefly due to the
grazing angle at which laser strikes the surface, resulting in a low level of radiance.

algorithm of Brown and Rusinkiewicz [2007] to align the scans, which is a variant of ICP

wherein a rigid-body transformation is assumed to be su�cient to align all scans. Note

that the amount of overlap e↵ectively determines the quality of the alignment. Less overlap

means a poorer initialization, and the optimization process may hit an undesirable local

minimum causing misalignment errors.

3.2.4 Orientation

From the registered point cloud, we must assign a normal to each point. One option is to

simply use the analytical normal defined by the implicit function. However, for misaligned

and noisy data, it becomes unclear what the normal should be from the implicit function.

As a result, we also allow for normal orientation via the method of Hoppe et al. [1992].

Under this method, at every point, we estimate the local tangent plane via PCA, by

gathering the k-nearest neighbors and extracting the eigenvectors of the covariance matrix.

PCA, however, does not give orientation of the normals, and so we employ the minimum

spanning tree approach of Hoppe et al. [1992] to propagate normal directions.

We note that by using this method, we may end up with noisy tangent planes due to

a number of factors such as nonuniform sampling, noise, misalignment, and missing data.

Moreover, normals may be oriented in the opposite direction due to these factors. However,
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in certain scanning situations, we may have knowledge of the scanner positions, which can

be used to properly orient the normals. Hence, we allow for both options in our experiments.

3.3 Evaluation
In order to evaluate the quality of a surface meshM output by a reconstruction algorithm

against the input implicit surface ⌦, we take the view of discrete di↵erential geometry

for defining error measures. As illustrated in Hildebrandt et al. [2006], pointwise plus

normal convergence of a polyhedral surface to a smooth surface implies convergence in the

metric, surface area, and Laplace-Beltrami operator. In their context, pointwise convergence

is measured in terms of Hausdor↵ distance and normal convergence is measured as the

supremum of the infinity norm over all normals. We take their basic framework and expand

it to include other error measures, in order to provide a more informative evaluation.

3.3.1 Shortest Distance Map : ⌦!M

To construct error measures, we first define the shortest distance map, termed �. This

map defines, for each point on M , its closest point in Euclidean distance to ⌦. More

specifically, for a point ↵ 2 ⌦, the map � : ⌦!M associates ↵ 2 ⌦ as the closest point to

�(↵) 2M . We follow the approach of Hildebrandt et al. [2006] for the construction of the

map:

�(↵) = ↵+ �(↵)N
⌦

(↵) (3.8)

where N
⌦

is the normal field over ⌦ and � : ⌦! R is the signed distance along the normal

N
⌦

(↵). So long as the Hausdor↵ distance of ⌦ and M is bound by the reach of ⌦, or the

minimal radius of all medial balls, then this construction ensures that ↵ is the point on ⌦

closest in distance to �(↵) 2M [Federer 1959].

3.3.1.1 Sampling

The correspondences defined by the shortest distance map are used to construct error

measures for comparing the reconstructed surface and implicit shape [Hildebrandt et al.

2006]. To obtain this in practice, we must densely sample ⌦ in order to obtain discretized

yet precise error measures, in a similar manner to METRO [Cignoni et al. 1998]. However,

we depart from METRO by employing particle systems to sample ⌦, as we require not

only dense samplings, but uniform samplings. A uniform sampling is essential in achieving

accurate mean error measures, as a nonuniform sampling may bias certain regions of the

surface in the construction of the mean.
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We sample ⌦ by the method of Meyer et al. [2007], which minimizes an energy functional

based on interparticle distances. A uniform distribution of samples is achieved by prescrib-

ing a single interparticle distance for all particles. We have empirically set the interparticle

distance based on the complexity of each shape, such that all features of the shape are

su�ciently sampled. See Figure 3.9 for uniform samplings of our complex shapes. If we

denote P
⌦

as the set of samples chosen from ⌦, we build a set of ordered pairs representing

shortest distance correspondences:

C
⌦

= {(x,↵) | ↵ 2 P
⌦

,x = �(↵)} (3.9)

3.3.1.2 Correspondence Validation

If the Hausdor↵ distance between ⌦ and M exceeds the reach of ⌦, then there may exist

pairings in C
⌦

which are not shortest distance correspondences. Namely, this situation

implies that there may exist ↵ 2 ⌦ such that the line connecting ↵ and �(↵) crosses the

medial axis of M ; hence, � may no longer be bijective.

To handle such situations, we use the sample set P
⌦

to validate correspondences con-

structed through �. Since P
⌦

is a dense and uniformly distributed sampling of ⌦, closest

point queries through P
⌦

serve as an upper bound in any potential error in the � mapping.

More specifically, for a given correspondence ↵ and x = �(↵), we query the closest

point to x in P
⌦

, denoted as �. If |x� �| < |x�↵|, this implies an incorrect pairing;

Fig. 3.9. Complex shapes sampled under particle systems. Note the high density and
uniform distribution in the particles. Both of these properties are essential for obtaining
precise error measures.
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hence, we exclude the correspondence from C
⌦

and instead add the correspondence (x,�)

to C
⌦

. See Figure 3.10 for a 2D illustration of the validation procedure.

3.3.2 Dual Map : M ! ⌦

Expanding on the work of Hildebrandt et al. [2006], we also construct a shortest distance

map dual to � which we term  , which considers for each point on ⌦ its closest point to M .

There can exist points on the reconstructed mesh M which are not observed by the map �,

and hence not considered as part of the error measurements. The mapping  allows us to

capture these otherwise unseen shortest distance correspondences.

To this end, we follow the methodology established in the previous section to construct

 : M ! ⌦, for a given x 2M :

 (x) = x+  (x)NM (x) (3.10)

where NM is the normal field over M and  : M ! R is the signed distance along the

normal NM (x).

3.3.2.1 Sampling

Analogous to the � mapping, we sample M in order to construct a discrete set of

correspondences for the dual map. In sampling M , we have adapted the approach of Meyer

et al. [2007] to triangulated surfaces, though other methods such as Poisson disk sampling

may be employed to achieve a uniform sampling [Bowers et al. 2010]. Rather than specify

an interparticle distance for M in the optimization, we specify the number of particles, as

the output reconstructed mesh can be arbitrarily complicated. If we denote PM as the set

Fig. 3.10. A situation where the � mapping produces an incorrect shortest distance
correspondence. The dashed red line indicates the normal line from ↵ to x, giving us
an inaccurate correspondence since � is closer to x than ↵. So we instead take (x,�) as a
correspondence.
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of samples chosen from M , we build a set of ordered pairs representing shortest distance

correspondences defined by the dual map:

CM = {(↵,x) | x 2 PM ,↵ =  (x)} (3.11)

3.3.2.2 Correspondence Validation

If the Hausdor↵ distance between ⌦ and M is large, then similar to the � mapping,

the  mapping may result in pairs belonging to CM which are not shortest distance

correspondences. In addition, due to the reach of M being 0, even if the Hausdor↵ distance

is small, there may still exist incorrect pairings in CM . We note that this mostly occurs

near triangle edges where the dihedral angle is large; however, large dihedral angles are

a rare occurrence in our setting since the mesh M intends to closely approximate the

(piecewise-)smooth surface ⌦.

In either case, we can still employ a similar validation scheme to the �mapping to ensure

that the error in  is bounded. Since the sample set PM densely and uniformly samples

M , closest point queries in PM ensure an upper bound in the error. More specifically, for a

given correspondence x and ↵ =  (x), we query the closest point to ↵ in PM , denoted as y.

If |↵� y| < |↵� x|, this implies an incorrect pairing; hence, we exclude the correspondence

from CM and instead add the correspondence (↵,y) to CM .

3.3.3 Discrete Error Measures

From here, we may define a variety of discrete error measures between ⌦ and M .

Denoting |S| = |C
⌦

|+ |CM |, Hausdor↵ distance is approximated by:

H(⌦,M) = max
n

max
(x,↵)2C⌦

|x�↵|, max
(↵,x)2CM

|↵� x|
o

(3.12)

while mean distance is approximated by:

µ(⌦,M) =
1

|S|

⇣

X

(x,↵)2C⌦

|x�↵|+
X

(↵,x)2CM

|↵� x|
⌘

(3.13)

These measures depict error in very di↵erent ways; see Figure 3.11 for an illustration.

Here, the circle is the smooth shape, while the piecewise linear curve is the approximating

mesh. Hausdor↵ distance will be large for the pair of shapes on the left, while mean distance

will be rather small, whereas for the pair of shapes on the right, mean distance will be much

larger than the pair of shapes on the left, while Hausdor↵ distance will be less.

From these shortest distance correspondences, we have a method of measuring higher-

order geometric properties, by comparing di↵erential properties at the correspondences.
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Fig. 3.11. Di↵erent forms of surface reconstruction error. On the left, Hausdor↵ distance is
large while mean distance is small, while the opposite holds on the right.

This is analogous to defining pullbacks on � and  . We opt to measure normal angle devia-

tions in a similar manner to distance measures. If we denote �(↵,x) = \(N
⌦

(↵),NM (x)),

the maximum and mean angle deviation of point correspondences, respectively, are:

HN (⌦,M) = max
n

max
(x,↵)2C⌦

�(↵,x), max
(↵,x)2CM

�(↵,x)
o

(3.14)

µN (⌦,M) =
1

|S|

⇣

X

(x,↵)2C⌦

�(↵,x) +
X

(↵,x)2CM

�(↵,x)
⌘

(3.15)

In practice, we take NM to be triangle normals, as opposed to more sophisticated normal

estimation methods [Meyer et al. 2002]. Such methods are sensitive to the triangulation and

typically assume smoothness in the normal field, where in the presence of sharp features,

this can result in undesirable over-smoothing.

3.3.4 Algorithms

We have chosen a wide variety of publicly available surface reconstruction algorithms to

test our benchmark against. For the sake of fair comparison, we have only used algorithms

which take an oriented point cloud as input, and output an approximating surface. Here,

we provide a categorization and brief description of each algorithm, while also providing an

abbreviation of each to help identify them in the experiments to follow.

3.3.4.1 Indicator Function

This class of algorithms reconstructs a three-dimensional solid O by finding the scalar

function �, known as the indicator function, defined in R3 such that:

�(x) =

⇢

1 x 2 O
0 x /2 O

. (3.16)

where the surface ⌦ is then defined by @O. In practice, these approaches approximate � by

operating on a regular grid or an octree, and generate ⌦ by isosurfacing the grid.
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Poisson surface reconstruction (abbr. Poisson) [Kazhdan et al. 2006] solves for � by

noticing that r� should agree with the normal field N at @O. This amounts to inverting

the gradient operator; hence, � is found by solving the Poisson equation:

r ·r� = r ·V (3.17)

where V is the smoothed normal field defined throughout the volume. The Poisson equation

is e�ciently solved only near the surface by using an adaptive multigrid solver defined on the

octree built on the point cloud. Note that use of an octree may result in limited resolution

over regions of missing data.

An alternative method of constructing the indicator function is to solve for it indirectly

by projecting � onto a basis, and then performing an inverse transform to obtain �. By

invoking Stokes theorem, this projection need only be performed on @O:
Z

O
r · F(p)dp =

Z

@O
hF(p),N(p)i dp (3.18)

where F is a vector-valued function whose divergence r · F defines the basis.

Fourier surface reconstruction (abbr. Fourier) [Kazhdan 2005] employs the Fourier basis

as part of their solution. For e�ciency, they use the Fast Fourier transform (FFT), hence

requiring a regular grid and the grid resolution being a power of two. However, use of a

regular grid has its benefits when faced with missing data, as their is no loss of resolution.

Wavelet surface reconstruction (abbr. Wavelet) [Manson et al. 2008] employs a Wavelet

basis for the solution of Equation 3.18. They show how one may use a Haar or a Daubechies

(4-tap) basis, where in our experiments, we employ the 4-tap Daubechies basis. Due to the

multiresolution structure of wavelets, they use an octree for the basis projection; hence,

similar to Poisson, this method may result in limited resolution over regions of missing

data.

3.3.4.2 Point Set Surfaces

Point set surfaces (PSS) are defined based on moving least squares (MLS), where a

projection operator is used to define a surface by its collection of stationary points, or

where the output point of the projection operator is its input point. Originally defined

for unoriented points, its definition is greatly simplified when considering points equipped

with normals, and may be used for surface reconstruction by considering its implicit surface

definition, rather than its projection operator.

Basic PSS methods use a weighted combination of linear functions to locally define the

surface at every point. Borrowing terminology from Guennebaud and Gross [2007], we use
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two di↵erent definitions in our experiments: simple point set surfaces (abbr. SPSS) [Adam-

son and Alexa 2003] and implicit moving least squares (abbr. IMLS) [Kolluri 2005]. The

implicit surface definition of SPSS is:

f(x) = n(x)T (x� c(x)) (3.19)

where n is a weighted average of normals in a neighborhood of x, and c is the weighted

centroid in a neighborhood of x. The weights used in computing the normal and the centroid

are derived from a smooth, positive function w
x

defined with respect to x, which gives points

closer to x larger influence. IMLS is defined as the implicit function:

f(x) =

P

iwx

(pi)(x� pi)Tni
P

iwx

(pi)
(3.20)

We note that IMLS is a weighted average of linear functions, whereas SPSS is a single

linear function, whose centroid and normal is a weighted average of points and normals,

respectively.

Algebraic point set surfaces (abbr. APSS) [Guennebaud and Gross 2007] uses spheres

defined algebraically as the shape function. Rather than directly obtaining the implicit

function at a point, APSS fits a sphere to a neighborhood of points, requiring the solution

of a linear least squares system for every point. By using a higher-order function, the

method can be more robust to sparse data than SPSS and IMLS.

For our experiments, the software package provided by Gaël Guennebaud contains

implementations of SPSS, IMLS, and APSS. Each PSS is evaluated over a regular grid,

and the reconstructed surface is obtained by isosurfacing the zero level-set. In the software,

neighborhoods used to locally fit functions are estimated at each point based on the density

of the input point cloud. In the presence of missing data, this method may produce an

empty neighborhood, producing holes in the output. This has an impact on evaluation,

which we further discuss throughout the experiments sections.

3.3.4.3 Multilevel Partition of Unity

In our own implicit surface definition, we use a variant of Multilevel Partition of Unity

(MPU) applied to polygon soup, and so we refer to Section 3.1.1 for details about the

overall approach, noting that the construction of MPU with points is quite similar to that

of polygons. In our experiments, we use three variants. First, we use the original approach

of Ohtake et al. [2003] (abbr. MPU), where linear functions are used as low-order implicits.

We opted not to use the fitting of sharp features, as we found its sharp feature detection

to be rather sensitive and frequently produce erroneous fits. We also use the approach
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of Nagai et al. [2009] (abbr. MPUSm), which defines di↵erential operators directly on the

MPU function, though restricted to linear functions. In doing so, di↵usion of the MPU

function becomes possible, resulting in a more robust reconstruction method. Lastly, we

also use the method of Ohtake et al. [2005b] (abbr. RBF), which uses compactly-supported

radial basis functions for locally-defined implicit functions in the MPU construction. For

all MPU methods, a surface mesh is generated by first evaluating the MPU function over a

regular grid, and isosurfacing the zero level-set to obtain the surface.

3.3.4.4 Scattered Point Meshing

The method of Ohtake et al. [2005a] (abbr. Scattered) is a departure from the above

approaches. This method grows weighted spheres around points in order to determine the

connectivity in the output triangle mesh. Quadric error functions [Garland and Heckbert

1997] are used to position points in the output mesh, which can result in a small amount of

simplification in the output. Similar to the PSS methods, regions of absent data may result

in holes in the output.

3.3.5 Algorithm Parameters

We provide a brief description of the most relevant parameters for each algorithm.

3.3.5.1 Resolution

As all algorithms, except Scattered, contour a grid to obtain the surface, they must

contain su�cient grid resolution to adequately preserve all surface details. Our aim is to

provide each algorithm with such a su�cient resolution, while maintaining fairness across

algorithms which may define grids di↵erently. To achieve this, for each implicit surface, we

first determine the resolution which is necessary to extract the surface with minimal error.

We find that across all shapes, a resolution of 3503 provides for su�cient resolution to

preserve surface details; hence, for the PSS and MPU methods, we have set their resolution

to 350. For Fourier, the resolution at which to contour is also the resolution at which the

FFT is applied. As it must be a power of two, we set it to 512 in order to reduce any

smoothing resulting from the FFT.

Since Poisson and Wavelet build an octree over the point cloud, we must strike a balance

between resolution to where data exist, and where data do not exist due to incomplete

sampling. Although a maximum octree depth of 9 may appear most reasonable, in regions

of missing data, we found this resolution to be too coarse. Note that both methods refine

octree nodes if certain sampling conditions are not satisfied; hence, a larger depth can
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greatly improve the reconstruction in regions of missing data. For Poisson, for a given

sample point at an arbitrary depth, if neighboring nodes at that depth are not included in

the octree, then these nodes are refined in order to support subnode precision. Figure 3.12

illustrates Poisson for two di↵erent maximum depths, and how the additional resolution

shown on the bottom improves the reconstruction in regions of missing data. For Wavelet,

as we are using 4-tap Daubechies Wavelets, a local support of 43 samples is necessary, and

so neighboring nodes not already in the octree will similarly be refined. Hence, for both

methods, we set the maximum tree depth to 10, in order to strike a compromise between

resolution to where data exist, while providing su�cient resolution to where data do not

exist.

3.3.5.2 Noise

Algorithms tend to handle noise according to their categorization. For indicator func-

tions, noise may be combated by splatting the points in the grid under a large bandwidth,

as well as through lowering the grid resolution, e↵ectively serving as a low pass filter. PSS

methods all contain a bandwidth which determines the extent of neighborhood influence.

A large bandwidth results in more points for consideration in shape fitting and hence larger

data smoothing. MPU methods and Scattered all contain error thresholds for which to

determine the quality of a shape fit. In the presence of noise, the tolerance may simply be

increased to avoid overfitting. MPUSm also provides parameters specific to their di↵usion

method, for which we use author-suggested settings.

3.3.5.3 Discussion

In practice, we set an algorithm’s parameters based on the characteristics of the input

point cloud, namely the noise level. As the point clouds of experiments 7.1-7.3 contain a

constant level of noise, we have kept all algorithm parameters fixed throughout these exper-

iments. Though one may fine-tune an algorithm’s parameters to improve its performance

with respect to a particular error metric, parameter insensitivity is an important indication

Fig. 3.12. Poisson surface reconstruction for two di↵erent maximum depths. Note that the
additional resolution serves to refine regions of missing data.
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of algorithmic robustness. Only in experiment 7.4, where noise varies, do we set algorithm

parameters in accordance with the noise level.

3.4 Results
Our results are broken down into two main sets of experiments: one in which complex

shapes are sampled under a variety of sampling settings, and one in which simple shapes

are sampled under specific sampling settings. Please see Appendix A.2 for reference to the

types of units used throughout the results.

We have not used the maximum angle deviation as an error measure in our experiments.

By using triangle normals as the normal field over a surface mesh, this measure can be

quite high even when the mesh contains low error in all other measures. As a result, in

comparing algorithms, we found this error measure to be rather indistinguishable; hence,

we have omitted it.

Note that it is possible for these algorithms to produce surfaces containing multiple

connected components. We have decided to extract the largest connected component, in

terms of surface area, as the surface for evaluation rather than all components. Unfor-

tunately, this biases algorithms in which connected components are created far from the

ground truth surface over algorithms which create additional components near the surface.

Hence, in addition to the error metrics, we have provided additional information on the

algorithms including the number of connected components, as well as the length of the

boundary components, whether or not the surface is manifold, deviation from the true

genus, and computation time.

3.4.1 Error Distributions

Our first set of experiments focuses on the performance of surface reconstruction algo-

rithms restricted to a single shape. For a single shape, we sample it across a variety of

scanner parameter settings, run all reconstruction algorithms across all point clouds, and

compute error metrics for each point cloud. For each algorithm, we then aggregate the error

metrics across all point clouds to obtain what we term error distributions.

We argue that error distributions are more e↵ective for benchmarking reconstruction

algorithms, rather than comparing algorithms with respect to a single point cloud. Each

algorithm has its strengths and flaws for particular forms of data, and to sample a shape in

such a way that it caters towards the strengths of certain algorithms provides an incomplete

picture in the comparison of reconstruction algorithms.



37

To this end, we generate samples by varying scanning parameters across typical use-case

settings. Namely, we vary sampling resolution, the number of range scans, the distance the

camera resides from the object, peak threshold, and variance threshold. Please see Table 3.1

for the full range of parameters over all shapes. We have adapted certain parameter ranges

to the specific shapes in order to ensure adequate coverage in the point clouds, and to

su�ciently capture shape details. To reproduce small imperfections commonly found in

range data, we introduce a constant, modest amount of noise into the laser signal. We also

slightly overlap the scans and register them, causing small misalignment errors. For each

point cloud, we randomly distribute camera positions uniformly on the bounding sphere of

the object, rather than keeping their positions fixed.

See Figure 3.13 for the results of this experiment across all shapes, wherein the distri-

butions take the form of box plots. The three error measures, mean distance, Hausdor↵

distance, and mean angle deviation, illuminate the various strengths and weaknesses of the

algorithms.

3.4.1.1 Smooth Surfaces

The Gargoyle, Dancing Children, and Quasimoto shapes represent our class of shapes

containing entirely smooth surface features. We find that the algorithms generally perform

quite well on these shapes; however, the di↵erent error metrics point to subtle di↵erences in

performance. For instance, Wavelet tends to produce nonsmooth, rather bumpy surfaces,

yet the surface tends to stay close to the surface, which is likely due to the use of wavelet

bases in the presence of nonuniform or missing data. This nonsmoothness is depicted in the

mean distance and angle deviation plots, yet its Hausdor↵ distance performance is quite

Table 3.1. The range of scanning parameters used in the error distribution experiments.
Here, res represents the image resolution of a single range scan, scans is the number of
scans taken, camera dist is the camera distance away from the center of the object, peak is
the radiance threshold at which to reject depth, and variance is the variance threshold at
which to reject depth.

shape res scans camera dist peak variance
Gargoyle 250–350 7–11 75–115 0.2–0.4 0.5–0.75
DC 250–350 7–11 75–115 0.2–0.4 0.5–0.75
Quasimoto 250–350 7–11 75–115 0.2–0.4 0.5–0.75
Anchor 175–225 8–12 60–100 0.2–0.4 0.5–0.75
Daratech 250–350 8–12 75–115 0.2–0.4 0.5–0.75
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competitive, indicating it never strays too far from the surface.

It is well known that Poisson and Fourier tends to oversmooth the data, and in our

experiments, this is reflected in their rather large error in mean distance. However, in

terms of Hausdor↵ distance and mean angle deviation, they perform rather well, and are

fairly consistent in their performance. This indicates that these algorithms are reliable in

reconstructing surfaces which do not deviate too far from the original, while also remaining

close in di↵erential quantities. We note that Fourier is more consistent than Poisson, as

Poisson su↵ers from a lack of resolution in regions of missing data.

While RBF performed well on the Dancing Children and Quasimoto models, on the

Gargoyle model, we see that it performed poorly across all metrics. The Gargoyle model

is particularly di�cult to sample as it has many concavities, and as shown by the lower

quartile having large error across all metrics, RBF would tend to fill in the inside of the

surface.

3.4.1.2 Sharp Features

The Anchor and Daratech shapes are particularly di�cult to reconstruct. As these are

shapes with sharp features, algorithms which only model smooth surfaces will have di�culty

in reproducing sharp features. Additionally, these shapes have small topological features

which are di�cult to adequately scan due to occlusion. Hence, we do not necessarily expect

these algorithms to perform as well on these shapes as the others, and instead, we use these

shapes to measure robustness.

In observing MPU and MPUSm, we find instability in the presence of the Anchor and

Daratech point clouds, where large spurious surface sheets are produced as a result of

improperly fitting smooth shape functions to sharp features. However, note that the PSS

methods perform much better, despite also using smooth shape functions. PSS methods fit

shape functions at every point; hence, the error will be contained locally if there exists a

poor fit, whereas MPU fits shape functions to the entire shape, resulting in a potentially

unbounded error if a poor fit exists. Interestingly, RBF performs quite well in distance,

yet has rather large error in normals. We found the RBF interpolant to remain quite close

to the surface, at the expense of producing high-frequency details, hence the large normal

deviations.

3.4.1.3 Topology

Overall, we find that the PSS methods and Scattered tend to perform quite well in

the error metrics. However, these are also methods which produce holes in the presence
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of insu�cient data. To depict the performance of these algorithms in terms of topology,

we also show how these algorithms behave in their number of connected components, total

length of boundary components, whether or not the reconstructed mesh is manifold, and

the deviation from the true genus, averaged over all point clouds and shapes – see Table 3.2.

As shown, Fourier and Poisson tend to outperform these methods in all categories. With

respect to the PSS methods, this demonstrates that they tend not to produce topologically

clean implicit functions, likely due to their local nature. Additionally, we see that Scattered

produces large holes, yet all of the shapes are watertight.

3.4.2 Sparse Sampling

A common data characteristic of point clouds is sparsity. Namely, for range scan data,

it is common for certain areas of the surface to be sampled less densely than others. Here,

we investigate how reconstruction algorithms behave as data sparsity varies in a controlled

setting. We are interested in observing how these algorithms infer the surface between the

given input points.

In this experiment, we only vary the sampling resolution. We fix the number of scans

and camera positions such that the shape is su�ciently sampled. We use the analytical

normals of the surface, and no noise or misalignment. We use such clean input in order to

restrict the problem to only data inference. We use the bumpy sphere as the test shape, as

the coarse-scale features of the surface make data inference plausible.

Table 3.2. Additional information for experiment 1, averaged across all point clouds and
shapes. Here, comps refers to number of connected components, bndry is the length of
boundary components, manifold is whether or not a mesh is manifold, 1 being it is and 0
otherwise, genus refers to the amount which deviates from the actual genus, and time is in
seconds.

algorithm comps bndry manifold genus time
apss 47.37 140.86 0.50 1.82 36.02
fourier 1.54 0.00 1.00 0.49 28.70
imls 38.48 194.65 0.74 1.66 34.11
mpu 100.69 9.71 0.49 0.79 12.83
mpusmooth 2.88 2.93 0.91 0.67 17.83
poisson 1.54 0.44 1.00 0.63 36.83
rbf 51.73 6.30 0.82 13.55 34.78
scattered 1.90 214.21 1.00 7.47 4.48
spss 174.53 143.14 0.26 3.98 33.53
wavelet 1.35 0.04 1.00 0.71 2.13
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See Figure 3.14 for plots of the experiment. MPUSm was unable to smooth its spherical

covering on half of the point clouds due to the extreme sparsity, so we have omitted it from

this experiment. From the distance measures, we immediately see a partitioning of the

algorithms: IMLS, Poisson, SPSS, and Wavelet all tend to behave rather poorly, while the

other algorithms perform well. We should certainly expect this for Poisson and Wavelet, as

the resolution of the output is proportional to the input size. However, it is interesting to

observe the significant improvement of APSS over IMLS and SPSS, indicating that fitting

spheres under sparse data is more advantageous than trying to fit planes to the data.

We also see that Fourier demonstrates remarkable robustness to sparse data. Under

very sparse data, Fourier performs best, whereas APSS, MPU, RBF, and Scattered per-

form rather poorly under such data, though they perform better as resolution increases.

However, observe that as the sampling resolution becomes somewhat dense, the distance

error in APSS, MPU, and RBF steadily decreases while Fourier remains stagnant. This

is a consequence of Fourier’s inherent data smoothing, whereas those algorithms which fit

shape functions to the data only improve their fits as resolution increases.

3.4.3 Missing Data

Missing data will almost always be present in scanned data, simply due to concavities in

the shape which cannot be reached by the scanner or insu�cient scanning due to physical

restraints of the scanner. In order to have a controlled setting to replicate missing data, we

vary the peak threshold at which range may be rejected from consideration. We note that

this is quite common for scanners, since the accuracy of the scanner su↵ers when the angle

at which the laser line-of-sight and the normal becomes large, and the preferred option may

be to reject range rather than accept outliers.

Similar to the previous experiment, here, we fix the number of scans and camera

positions, and use no additive noise, in order to isolate missing data as the primary challenge

in the input. We then vary the peak threshold at which to reject samples from 0.8 to 0.4,

where 1 is the expected peak. We have used the bumpy sphere and mailbox shapes, in

order to observe the behavior of these algorithms in the presence of missing data on both

smooth and sharp features.

See Figure 3.15 for plots of the experiment. We find that all of the indicator function

methods perform quite well across both shapes, with the notable exception of Wavelet

failing to converge to the limit surface as missing data decreases. We credit the robustness

of indicator function methods to being global methods which do not attempt to fit shape

functions.
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Indeed, methods which fit shape functions have rather erratic behavior, particularly in

the mailbox shape. MPU, MPUSm, and RBF are quite unstable, producing spurious surface

sheets as missing data are introduced. When a neighborhood of a sharp feature, namely an

edge, is sampled on one side and not on the other, shape functions of this kind are expected

to be produced. As missing data increase, the samples used for shape fitting change, which

results in spurious surface sheets only occasionally appearing. This variability in the points

used for shape fitting is the cause of the inconsistencies found across MPU, MPUsm, RBF,

and the PSS methods as missing data increase.

Scattered and the PSS methods tend to produce holes in the presence of large missing

data, due to an insu�cient number of samples in these areas. These missing data are the

cause for their unstable behavior in the mailbox shape, as more missing data are introduced.

3.4.4 Noise

Finally, we consider how robust reconstruction algorithms are to noise in the range data.

We consider two scan parameters which have a significant impact on noise: noise magnitude

and laser frustum field of view. The e↵ect of noise magnitude is fairly clear; however, we

note that the thickness of the laser plays a significant impact on outliers. The thicker

the laser, the more di�cult peak detection becomes at depth discontinuities, resulting in

outliers.

To this end, we have taken the spiral shape and sampled it under varying noise magni-

tudes, and varying laser thickness. We su�ciently sample it so that missing data or sparsity

are not an issue, and compute normals directly from the points, allowing for improper

orientation if direction propagation is incorrect. For each algorithm and each point cloud,

we also manually set the parameters to perform best, considering the scale of the noise. For

the PSS and indicator function methods, such parameter settings are quite intuitive as they

are based on sampling density bandwidths. However, for all other methods, a maximum

error tolerance e↵ectively determines the amount of smoothing performed, which can be

quite sensitive.

See Figure 3.16 for plots of the noise experiments. Note that Fourier and Poisson, in

terms of all error metrics, are quite robust in the presence of noise. This is likely due to

the global nature of these methods, where smoothing the data is a natural consequence. As

observed by its large variance, RBF performs rather poorly in the presence of noise. Indeed,

the necessity to produce dipoles for RBF becomes especially problematic in the presence of

noise and outliers.
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We observe that MPU and MPUsm are somewhat robust in the presence of noise given

their small variance in Hausdor↵ distance, though interestingly, we see significant di↵erences

between them in the two di↵erent distance measures. The smoothing performed via MPUSm

tends to expand the surface outward, resulting in poor mean distance, yet it never strays

too far from the surface, hence its good behavior in terms of Hausdor↵ distance.

The PSS methods all tend to smooth out noise and remain robust to outliers. However,

far away from the surface, their behavior tends to be quite poor; see Table 3.3. They tend

to produce many extraneous connected components, as well as boundary components.

3.5 Discussion
Our small-scale experiments tend to correlate well with the results of the error distri-

bution experiments. For instance, the unstable behavior of RBF in the presence of sparse

and missing data manifests itself in its unstable behavior across the gargoyle model, which

is particularly di�cult to adequately sample due its numerous concavities. Likewise, the

behavior of MPU and to a lesser extent MPUSm in the presence of missing data on the

mailbox correlates with their large variance in the Anchor and Daratech, indicative of the

fact that they have trouble reconstructing sharp features. Conversely, we see that the stable

behavior of Fourier in the small-scale experiments correlates well with its relatively small

variance in the distribution plots.

Our experiments point toward a number of deficiencies in the state of surface reconstruc-

tion. Our results demonstrate the remarkable robustness of methods based on computation

of the indicator functions, yet these methods tend to oversmooth the data, reflected in

Table 3.3. Additional information for the noisy spiral experiments, averaged across all
point clouds.

algorithm comps bndry manifold genus time
apss 221.60 0.71 1.00 0.00 50.59
fourier 1.00 0.00 1.00 0.00 27.24
imls 193.16 4.76 1.00 0.00 48.62
mpu 1.20 0.00 1.00 0.00 7.13
mpusmooth 1.08 0.06 1.00 0.00 23.08
poisson 1.00 0.00 1.00 0.00 30.90
rbf 12.48 4.69 0.92 0.30 18.90
scattered 1.08 0.00 1.00 0.44 3.11
spss 257.20 1.13 1.00 0.00 48.18
wavelet 1.00 0.00 1.00 0.00 2.26
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their poor performance in mean distance across complex shapes. Developing an algorithm

based on the indicator function which does not oversmooth the data would be very useful.

Conversely, although MLS methods perform rather well in terms of mean and Hausdor↵

distance across the complex shapes, they demonstrate poor far-field behavior. We think

that combining MLS methods with global constraints of some nature may rectify these

issues.

Our benchmark should also prove to be useful for recent methods which resample point

clouds with large missing data [Tagliasacchi et al. 2009; Cao et al. 2010; Shalom et al.

2010]. Although we have produced such point clouds in order to test robustness, it would

be interesting to see how well these more recent resampling methods perform quantitatively.

All told, our benchmark consists of 351 point clouds across eight shapes, providing rich

data for surface reconstruction developers. For our first set of experiments, we have 48

point clouds for each shape. Over 10 algorithms, this amounts to a total of 2400 di↵erent

reconstruction outputs, and over both distance and normal correspondences, we have a

total of 4800 correspondence mappings. We think that this construction of a distribution of

point clouds for a given shape could be used in other areas, for instance potentially learning

surface reconstruction, by using the point clouds and ground truth data as training data.

3.5.1 Limitations

While the surfaces in our benchmark cover a broad range of shapes, they are by no means

exhaustive. As surface reconstruction becomes more specialized, such as the reconstruction

of large-scale architectural buildings [Nan et al. 2010], we envision our benchmark to expand

to these specific forms of surfaces. Our implicit shape representation should easily be able

to accommodate other types of shapes.

Although we have generated a large variety of point cloud data with our sampling

scheme, we are keeping fixed certain settings which may be worth further exploration. For

instance, we assume a di↵use BRDF in the scanning simulation, where it may be interesting

to consider di↵erent forms of surface reflectance, and even spatially-varying BRDFs.

Though laser-based optical triangulation scanners are quite popular, other forms of

scanning may be worth simulating in order to replicate di↵erent acquisition artifacts. For

instance, time-of-flight scanners contain a very distinct random noise profile and systematic

error due to the emission of infrared light into the scene. Multiview stereo methods

are known to produce geometry containing significant noise, as object texture, material,

and lighting tend to play a more significant role in such passive methods, compared to

active methods like laser-based scanning. An accurate simulation of multiview stereo
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would necessitate a highly photorealistic renderer, where the large space of parameters

(for instance, BRDF, subsurface scattering, and lack of texture) would be interesting to

explore, e↵ectively extending the rather controlled environment of Seitz et al. [2006].

3.6 Summary
We have presented a benchmark for surface reconstruction. We have proposed novel

methods for modeling and sampling smooth and piecewise-smooth shapes, as well as evalu-

ation of reconstruction algorithms. Our extensive experiments demonstrate the quantitative

behavior of many state-of-the-art surface reconstruction algorithms across a diverse range

of realistic point clouds. The experiments are useful in several ways: they illustrate which

algorithms are best suited for specific types of data, point out deficiencies in the current

state of surface reconstruction, and indicate future work for reconstruction.

In particular, the results of the benchmark have informed many of the subsequent

chapters in this thesis. The benchmark results highlight which relevant problems to focus

on in processing point clouds, namely noise and missing data. Since quite often the reason

for failure in existing reconstruction methods is the use of smoothness priors in the ambient

space of the point cloud, this has motivated the subsequent work in developing shape

analysis methods directly on the point cloud, rather than the ambient space. Lastly,

the benchmark provides for an easy mechanism of generating point clouds and obtaining

quantitative results, which we use throughout the thesis.



CHAPTER 4

HARMONIC POINT CLOUD

ORIENTATION

One of the key requirements of an approximating reconstruction method is the consistent

orientation of normals defined at every point. That is, for a given point cloud, at each point,

we must assign the direction which the normal should point – typically, we want to assign

this direction such that the normal points outside of the surface. This task is challenging

for the types of shapes and point clouds that we studied in our benchmark, namely point

clouds with sharp features, nearby surface sheets, noise, undersampling, and missing data.

Existing methods are sensitive to these imperfections, as the direction to choose for a

normal is based on local geometric properties. Typically, such approaches use measures

such as normal direction deviation [Hoppe et al. 1992; Huang et al. 2009] or curvature esti-

mation [Guennebaud and Gross 2007], coupled with normal direction propagation [Hoppe

et al. 1992] to determine orientation. An issue with these approaches is that if one or

several normal directions are incorrect, then the subsequent propagation will result in

large, contiguous regions of the point cloud containing the incorrect orientation. This is

particularly detrimental to surface reconstruction algorithms, as they will begin to interpret

the inside as the outside.

In this chapter, we propose a new method for normal orientation estimation which

instead considers the problem from a more global perspective. We use globally smooth

functions defined directly on the point cloud, which are inherently insensitive to data charac-

teristics and imperfections on the point cloud. Specifically, we consider harmonic functions

defined on point clouds – functions which lie in the kernel of the Laplace-Beltrami operator.

Such functions are well-known to be extremely insensitive to the data characterization

attributed to acquired 3D point clouds [Dey et al. 2010].

Harmonic functions are used for normal orientation by considering their gradient fields,

restricted to the local tangent plane of each point. From these gradient fields, we cast

the problem of normal orientation as an assignment of cross-product orderings between
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gradients locally at each point. Away from critical points, two functions are su�cient to

fully determine the orientation, if the functions never intersect [Edelsbrunner et al. 2004].

This is analogous to the construction of a global parameterization over the point cloud,

where for a pair of functions u : R3 ! R , v : R3 ! R, the orientation at a point pi is

simply defined as ru(pi)⌦rv(pi), where ⌦ denotes the vector cross product.

In practice, we are faced with point clouds with the aforementioned imperfections and

nontrivial topology, which results in harmonic functions containing critical points. The

presence of critical points, and in the discrete setting critical regions, changes how the

gradient behaves locally. In such cases, it is unsuitable to determine only two functions.

Instead, we produce a set of harmonic functions defined over the point cloud, resulting in

a set of gradient fields. In order to avoid regions where a critical point may exist and to

account for imperfections in the data, we assign a pair of gradient fields to each point. The

assigned pairing is the two most correlated functions with respect to the flow of the gradient

within the neighborhood of the point. Figure 4.1 shows how these local pairings of gradient

fields and harmonic functions are used to determine a normal’s orientation.

To summarize, the contributions of our method are as follows:

Fig. 4.1. Consistent normal orientation using the gradient fields of multiple harmonic
functions. Left: Four harmonic functions defined on a point cloud of a cube, color mapped
from blue to red to indicate increasing function value. Right: Paired gradient fields for four
points (denoted by a yellow ball) and their neighborhoods (bold vectors). The gradient
field of each function is denoted by a di↵erent colored vector. Given an ordered pairing, the
normal orientation for a point is simply: ru(pi) ⌦ rv(pi), where ru is indicated by the
longer of the two vectors.
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– We demonstrate the utility of harmonic functions for robust orientation of point

clouds.

– We frame the problem of orientation propagation as the assignment of cross-product

orderings across smooth gradient fields.

– We show the benefit of our method by applying it to the problem of surface recon-

struction for challenging point cloud data.

4.1 Harmonic Function Generation
Key to our approach is the generation of globally smooth functions defined directly

on the point cloud. Harmonic functions are a natural candidate, as these functions are

smooth by construction. Additionally, the formulation of the discrete Laplace-Beltrami

operator [Belkin et al. 2008 2009] allows for the construction of the operator for both

surface meshes and point clouds.

To this end, we employ the discretization of Luo et al. [2009] for defining the Laplace-

Beltrami operator directly on a point cloud P = {p
1

,p
2

, ...,pn}, such that the discrete

Laplace Operator L is an n⇥ n matrix

L[i][j] =

⇢

G(i, j) i 6= j
G(i, i)�

Pn
j=1

G(i, j) Otherwise
(4.1)

where G(i, j) = 1

4⇡h2 e
�

||pi�pj ||
2

4h and h determines the kernel support size. Note, we deviate

slightly from Luo et al. [2009] in the formulation of L and do not weight each entry by the

Voronoi area. For noisy, nonuniform sampled data, the Voronoi cell area for a given point

may not always be well-defined.

We determine h by estimating the average sample density over all points. At each point

pi, let r(pi) be the radius of the enclosing sphere of the k-nearest neighbors of pi, N(pi),

given by r(pi) = max
q2N(pi)

||pi�q|| [Pauly et al. 2008]. The average sample density over

all points, h, is then given by:

h =
1

|P |
X

i2P
r(pi) (4.2)

In order to ensure su�cient coverage in the presence of nonuniformly sampled data while

also ensuring that L remains sparse, values of G less than s are set to 0, where s is given

by s = min G(i, j) for all points pi and their k-nearest neighbors pj . In the presence of

outliers, however, s can be very small, leading to only a few nonzero entries in each row of

L. For these cases, we set s empirically.
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Given that L is positive semidefinite and symmetric, we generate harmonic functions by

first prescribing Dirichlet boundary conditions at two points pi and pj , and then solve for

the harmonic function u whose Laplacian is zero,

Lu = 0 (4.3)

u(pi) = �1 u(pj) = 1

We seek a collection of harmonic functions such that the following two conditions are

satisfied:

– Critical points are distributed throughout the point cloud.

– Gradient fields are as-orthogonal-as-possible.

In general, developing heuristics for the placement of Dirichlet boundary constraints such

that harmonic functions satisfy these conditions is highly nontrivial. Heuristics based on

maximizing L
2

distance in R3, farthest point sampling, or some intrinsic measure will be

sensitive to any noise and sampling artifacts in the point cloud data. This can introduce

significant bias in the generation of gradient fields, such that large regions of the point cloud

may contain near-coincident gradient fields, even if a large number of functions are used.

We instead solve for the harmonic function u by prescribing boundary constraints at

two random points such that one takes on the global minimum and the other the global

maximum. In this way, we can obtain a set of harmonic functions U = {u
1

, u
2

, ..., um} by

simply choosing the random placement for boundary constraints. Doing so minimizes any

such bias potentially introduced by some heuristic measure, whereby simply increasing the

number of functions to use increases the likelihood of satisfactory gradient fields. Figure

4.2 shows two harmonic functions with di↵erent boundary constraints.

Given that we must generate a potentially large number of harmonic functions, an e�-

cient means of solving for Equation 4.3 is essential. Thus, rather than solving Equation 4.3

exactly under hard constraints (for instance through Lagrange multipliers), we use the

method of Xu et al. [2009] and instead prescribe soft constraints,

(L+ P )u = Pb (4.4)

where P is a penalty matrix containing large values on the diagonal entries correspond-

ing to boundary constraints i and j and zero everywhere else. Similarly, we assign the

corresponding constraint values to the ith and jth entries of b.
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Fig. 4.2. Two di↵erent harmonic functions defined on a point cloud, and their resulting
gradient fields.

By constructing the Cholesky factorization L = GGT with respect to the boundary

constraints only once, we may then subsequently factorize L e�ciently following the ap-

proach of Xu et al. [2009]. Namely, we forego the need to repeatedly factorize L for each

new set of constraints. Instead, we use the Cholesky supernodal algorithm by updating

the factorization with new boundary constraints, followed by downdating with respect to

the previous boundary constraints. In this way, we have an e�cient means of generating

multiple harmonic functions.

4.2 Gradient Pairing
To determine normal orientation, we use the set of harmonic functions {u

1

, u
2

, ..., um}

and operate on their corresponding gradient fields G = {g
1

,g
2

, ...,gm}. Restricting the

gradient fields to lie in the tangent plane of each point p 2 P enables the consistent

comparison of di↵erent gradient fields at p. The normals are estimated for simplicity using

PCA. At first glance, the use of PCA may seem to restrict the robustness of our method as

in related approaches. However, we will later show that our method is extremely insensitive

to noise in the estimated tangent planes.

For a function ui and point p, its gradient gi is found numerically by using a first-order

Taylor series expansion of ui about p

ui(p+ s) ⇡ ui(p) + gi
T s. (4.5)

From this expansion, we take N to be the set of k-nearest neighbors of p and find the

gradient by minimizing
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argmin
gi

X

q2N
||ui (p) + gT

i (q̂� p)� ui (q) ||2 (4.6)

where q̂ is q projected to the tangent plane of p. The optimal gradient is found by solving

the normal equation associated with the least-squares system of (4.6). Each gradient is

then normalized. In Figure 4.2, we show the gradient fields associated with two harmonic

functions.

4.2.1 Order Assignment

Given the set of gradient fields defined at each point, we would like to obtain some

relationship or ordering between the respective functions locally at each point such that the

ordering can be used to propagate a given orientation to all points.

Key to propagating a consistent normal to all points is the assignment of gradient field

pairings for each point p 2 P . We seek an unordered pair of gradient fields (i, j) for p, where

gi,gj 2 G, such that the gradients in the neighborhood of p are as-orthogonal-as-possible

and su�ciently far away from critical points – locations where the gradient vanishes. The

inner product between gradient fields at a single point is a natural measure of orthogonality,

but is unreliable for several reasons. First, for noisy tangent planes, this can indeed be a

misleading measure. Secondly, in the vicinity of a critical point, the gradient field will

exhibit nonzero divergence and hence may be unsuitable for consistent pairing. Figure 4.3

illustrates the importance of proper pairing of gradient fields.

To robustly determine optimal pairings, we consider the statistics of inner products

of p and its local neighborhood. The following procedure is repeated for all points in

P . We define ⌘p, as the set of points which contains point p and its k-nearest neighbors,

{q
1

, . . . ,qK}. For a point q in ⌘p, we define

eij(q) = | < gi(q), gj(q) > | (4.7)

as our (absolute) inner product measure. The measure in (4.7) is defined for all points

in ⌘p to obtain a distribution of inner products. For each possible gradient pairing (i, j),

the mean µij(⌘p) and variance �2ij(⌘p) of our inner product measure is computed on the

distribution ⌘p.

The mean µij(⌘p) and variance �2ij(⌘p) of this distribution precisely measures the two

di↵erent quantities of interest. A small mean indicates orthogonality, whereas a small

variance is a robust measure of smoothness and small divergence since it indicates that the

two gradient fields agree in a local neighborhood.
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(a) Gradients (b) Large Variance (c) Dependent (d) Ideal Pairing

Fig. 4.3. Selection of gradient fields for consistent orientation. In (a) we show a set of four
gradient fields in a local neighborhood. In (b), the orange-colored field contains a saddle
point, while (c) shows nearly aligned gradients, both being rather unstable. In (d), the
proper fields are selected.

Using these local statistics, we define a metric indicating the quality of a gradient pairing

(i, j) at a point p:

Eij(⌘p) = ↵�2ij(⌘p) + �µij(⌘p) (4.8)

where ↵ and � define the importance of the variance and mean and are set to 0.1 and 0.9,

respectively. By favoring gradient field pairings which have a lower mean (more-orthogonal)

than those with a lower variance (smooth), we can increase the likelihood that two fields

do not cross in a neighborhood away from a critical point. Near a critical point, we observe

that such regions are typically associated with a high variance and low orthogonality, as

shown in Figure 4.3 (b). Using Equation 4.8, the optimal pairing (̂i, ĵ) is sought which

minimizes the metric over all possible combinations of gradient fields (i, j):

(̂i, ĵ) = argmin
i,j

Eij(⌘p). (4.9)

Our method of selecting gradient functions does not require that the tangent planes

between two points ever be compared directly. Instead, the normal orientation is estimated

by comparing paired gradients within a given tangent plane and computing vector cross

products. As a result, our method is robust to sharp features, missing data, nonuniform

sampling, etc., provided the gradients are smooth in the neighborhood. Thus, we obtain a

consistent metric that is decoupled from the geometric artifacts in a given local neighbor-

hood.

4.3 Gradient-Based Normal Propagation
From the optimal pairings, we must now determine the correct ordering for each un-

ordered pair of gradient functions for all points in the set. Once the ordering is found,

the normal vector can be assigned for each point in the set, without the need to explicitly

compare tangent planes. This assignment process is illustrated in Figure 4.4. Here, we
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show the propagation of a normal from p to q and r through the ordering of the optimal

gradient pairs, (gi,gj), (gs,gr), and (gt,gu), respectively.

We propagate the normal orientations over the point set by leveraging the global nature

of the gradient functions. Specifically, a point p is used as the initial starting point and

it is assumed its normal, np is correctly oriented. We then construct a minimum spanning

tree (MST) and traverse the edges in the tree to propagate the given normal direction. We

use the ordering of the paired gradients with respect to the known normal orientation at a

point p to transfer the orientation to a neighboring point q by transferring the ordering of

the gradients at p to q.

Let the optimal gradient pairings for p and neighbor q be denoted (i, j) and (s, r),

respectively. The cost of propagating a normal from p to q is evaluated in terms of the

quality of the gradient pairing (i, j) at q and similarly the quality of pairing (s, r) at p.

The cost of propagating a normal from p to neighbor q is then given by

cost (p,q) = Eij(⌘q) + Esr(⌘p) (4.10)

where Eij(⌘q) and Esr(⌘p) is the objective function of Equation 4.8 evaluated at the optimal

gradient pair (i, j) at the point q and gradient pair (s, r) at the point p, respectively. In

this way, low-cost edges correspond to neighboring points whose associated gradient pairings

vary smoothly with respect to the neighborhoods of both points.

Given the MST and cost function for traversing its edges, the normal is propagated from

p to q by ordering the gradients at q to be consistent with the gradients and normal at p.

The orientation of the normal vector at q is found by computing the vector cross product

of the gradient vectors gs and gr at p and then taking the dot product with the normal

vector at point p. If the dot product is one, then the ordering (gs, gr) at point q is correct;

otherwise, the ordering is switched. This criteria can be expressed as

nq =

⇢

gs (q)⌦ gr (q) < gs (p)⌦ gr (p) , np > = 1
gr (q)⌦ gs (q) otherwise

. (4.11)

This process is illustrated for three points in Figure 4.4.

4.4 Results
We demonstrate our algorithm’s ability to assign normal orientations under a wide

variety of di↵erent sampling characteristics, ranging from sharp features, thin surface sheets,

noise, misalignment, and missing data. In particular, we use the benchmark from Chap-

ter 3 to generate realistic point clouds. Since we have ground truth shapes, we have a
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means of obtaining quantitatitve comparisons, which we measure as the ratio of incorrect

normal assignments to the total number of sample points. In addition, we also perform

surface reconstruction using the estimated normal orientation information and compare the

reconstructed results. We have compared our algorithm (termed HARM) to the classic

orientation minimum spanning tree (MST) approach of Hoppe et al. [1992], herein termed

MST and to the recent work of Liu and Wang [2010], herein termed POT.

For all results, we used a fixed neighborhood of 15 point samples during all aspects of

the algorithm. This includes normal orientation using PCA, to the pairing and ordering of

gradient fields. In contrast, previous MST orientation tend to be sensitive to neighborhood

size. The number of functions to evaluate varies across objects. As a rule of thumb, we

chose to evaluate more randomly constrained functions than generally necessary to ensure

that the set of functions provided a su�cient gradient field covering. For the Quasimoto,

Anchor, and Daratech models, the total number of functions computed were 22, 15, and

15, respectively.

Figure 4.5 shows a comparison of our method with previous works for a smooth shape.

The left side contains misalignment artifacts and missing data. Observe that MST fails

in the region of misalignment as indicated by the string of inconsistent normals on the

left side. The POT method tends to fail in areas of missing data, where the lack of data

results in a poor spherical covering. In contrast, our algorithm succeeds in having the fewest

inconsistent normals, failing only in areas of critical regions. Perhaps even more drastic a

comparison is when noise is added to the model, shown on the right side. We introduce

Gaussian noise with a variance of 1% of the bounding box diagonal to the 3D point cloud

HARM MST POT HARM MST POT

(a) 15 (b) 435 (c) 40 (d) 171 (e) 12,509 (f) 13,181

Fig. 4.5. We compare normal orientation on the Quasimoto model for our method (termed
HARM), MST, and POT. A red splat marks an incorrect orientation. In (a), (b), and (c)
we compare against a synthetically scanned point cloud. In (d), (e), and (f), we have added
1% Gaussian noise to the point locations. The bottom row shows the number of incorrectly
oriented normals.
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while maintaining the original normal direction. Positional noise manifests itself in normal

noise, where local methods may easily fail. We see that our method is several orders of

magnitude better, illustrating our intrinsic resilience to noise in the normals.

Next, we compare to a shape containing sharp features and a modest amount of noise;

see Figure 4.6. While MST is competitive with our method, we see that POT has issues

in the presence of sharp features. Indeed, the control mesh generated via their spherical

covering may be problematic at noisy, sharp features. As harmonic functions are insensitive

to sharp features and noise, our method has little issue in handling them.

Finally, we consider a shape which contains sharp features and nearby surface sheets; see

Figure 4.7. The presence of thin surface sheets poses significant challenges for local methods,

as shown by the incorrect orientation by MST of entire surface patches. The harmonic

functions we generate remain robust to thin surface sheets, producing few inconsistencies.

To demonstrate the impact of improper orientation, we selected another scan of the

Daratech model, oriented the normals, and ran Poisson Surface Reconstruction [Kazhdan

et al. 2006] on the result. See Figure 4.8 for the results. We clearly see the impact of

inverting normals on a surface sheet, where MST and POT fail in di↵erent instances. Our

method produces proper normals, giving us a more accurate reconstruction.

HARM MST POT

(a) 416 (b) 377 (c) 964

(d) 270 (e) 428 (f) 1015

Fig. 4.6. Incorrect normal orientations for two synthetic scans of the Anchor model for the
HARM, POT, MST methods. Red splats mark incorrect orientations.
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HARM MST POT

(a) 88 (b) 2,358 (c) 320

Fig. 4.7. Incorrect normal orientations for two synthetic scans of the Daratech model for
the HARM, POT, MST methods. A red splat indicates an incorrect orientation.

HARM MST POT

(a) 139 (b) 7,062 (c) 11,562
Normal Assignment

Surface Reconstructions

Fig. 4.8. We show the impact of normal orientation on surface reconstruction. Top: Normal
estimation results for the Daratech model using the HARM, MST, and POT methods.
Bottom: Poisson surface reconstruction using the estimated oriented normals.
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4.5 Discussion and Limitations
The strength of our method lies in its ability to orient normals by considering the global

gradient flows of a set of harmonic functions. When errors do occur, they can often be

traced back to the construction of the randomly generated function set.

The set of Dirichlet functions should be constructed such that for each point, there exists

at least two gradients which vary smoothly and approach orthogonality in the neighborhood

of every point. While increasing the number of functions can mitigate bad pairings, for

certain surfaces such as highly tubular structures, some sample points may not fully satisfy

this requirement under the randomly generated Dirichlet constraints. However, this can

be addressed by ensuring satisfactory coverage through the placement of additional user

supplied constraints interactively, as in Xu et al. [2009]. Figure 4.9 shows how additional

variability can be added by placing constraints near the region of interest.

Alternatively, an automated approach may be developed by the observation that our

edge cost measure defined in Equation 4.10 is quite consistent. In other words, we rarely

encounter false positives or false negatives in our measure. Thus, for edges which are deemed

poor pairings, we may confidently augment the cost function for normal propagation with

other standard edge-cost measures, such as the work of König and Gumhold [2009].

Finally, constructing the Laplace-Beltrami operator for noisy and nonuniformly sampled

point clouds is still an active area of research. While our method is shown to be robust in

(a) Initial Results

(b) Initial Fields

(c) Modified

(d) Modified Fields

Fig. 4.9. Variation in estimation due to random function generation. (a) Results using four
randomly generated harmonic functions. (b) Results after adding an additional function.
(c) and (d) the gradient fields before and after the addition.
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the presence of noise and missing data, the construction of the Laplace-Beltrami operator

can be sensitive to outliers due to the fixed global bandwidth used and in the presence of

thin-surface sheets due to the k-nearest neighbor assumption.

4.6 Summary
The consistent orientation of point clouds is a critical preprocessing step for many

geometry processing tasks, and in particular is necessary for the faithful reconstruction

of a sampled surface in the presence of acquisition artifacts. We show how to use harmonic

functions defined directly on the point cloud to robustly estimate normal orientation. We

show that through the formulation of a propagation and flipping criterion, based on the

gradient fields of these harmonic functions, we can achieve consistent results for point

clouds exhibiting di↵erent acquisition artifacts.

The key insight of our approach is the use of globally smooth functions defined directly

on point clouds for normal orientation. Note that the gradient estimation and normal

propagation steps of our method only require a scalar field on the point cloud. Hence,

any other set of intrinsically-defined functions may be used, such as the Laplace-Beltrami

eigenfunctions, the heat kernel, and di↵usion distances.



CHAPTER 5

THE MEDIAL KERNEL

In the previous chapter, we saw how to utilize intrinsic, globally smooth functions defined

directly on the point cloud for normal estimation. A natural question to ask is whether we

can use similar intrinsically-defined quantities for the purposes of surface reconstruction,

particularly in the presence of nonuniformly sampled and incomplete data. However,

the Laplace-Beltrami operator defined for point clouds assumes rather strict sampling

criteria, where in the presence of missing data, quantities derived from this operator will

at best respect the boundary components stemming from incomplete data. Worse yet, for

undersampled nearby surface sheets, false connections may be made in the construction,

resulting in a topologically incorrect representation.

In this chapter, we focus on the problem of constructing an operator directly on the

point cloud which is tolerant to missing data, and useful for the purposes of reconstruction.

In particular, our main goal is the construction of distances defined on the point cloud,

wherein the distances are derived from such an operator.

To construct such a representation, we first need to find a more general invariant of a

surface which is resilient to missing data. The medial axis of the surface is such an object

– indeed, previous works [Tagliasacchi et al. 2009; Cao et al. 2010; Li et al. 2010] have

demonstrated how to extract skeletal representations, or medial representations strictly

consisting of a set of curves, in the presence of missing data. We take influence from these

methods by constructing distances which adhere to the medial axis, yet we depart from

the aforementioned approaches by constructing these distances algebraically, rather than

geometrically.

We introduce the medial kernel, an association measure which provides for a robust

construction of volume-aware distances. The kernel measure is simply the likelihood of

two points lying on a common interior medial ball. From the medial kernel, we construct

a random walk on the point cloud, where movement in the walk is restricted to regions

containing similar medial balls. In particular, if a subset of points exclusively has a large
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association according to the medial kernel, then for a su�ciently large time scale, the random

walk will only permit movement within this subset. Our distance construction follows as

the di↵usion distances [Coifman and Lafon 2006] of this random walk, where two points

contain low distance if they are highly connected in terms of walking along similar medial

balls.

We leverage the medial kernel for several applications – see Figure 5.1 for an overview.

The distances induced by the kernel provide for a simple method of segmenting the point

cloud into coherent volumetric parts. The medial kernel can be used to construct function

bases, where projection onto this basis serves to average function values along medial

regions. We use this for surface reconstruction in the presence of missing data. Lastly, we

combine these two methods to perform reconstruction-by-parts, a reconstruction method

which adheres to the volume indicated by the medial kernel.

5.1 Overview
Before going into the details of our approach, we present a brief 2D example illustrating

the intuition behind our method; see Figure 5.2.

Consider the sampled 2D curve on the left-hand side of Figure 5.2. In observing its set

of medial balls, we find that there exists a total of five – two medial balls capping the ends

of the shape, and three medial balls towards the center. This information may be encoded

as a correspondence matrix C, where Cij is 1 if points i and j belong to the same medial

ball, and 0 otherwise. Interpreting C as an adjacency graph, the block structure reveals

that we have a disconnected collection of cliques, one clique for every medial ball.

Note that the medial axis can be represented through the spectral properties of C. Under

a suitable orthogonal transformation, the eigenvectors of C serve as indicator functions for

each medial ball, where for a given eigenvector, its nonzero function values group points

which lie on the same medial ball. The nonzero eigenvalues of C represent the number of

points belonging to a medial ball. If we row-normalize C to obtain Ĉ, then the multiplicity

of eigenvalue with magnitude 1 is the number of medial balls, and consequently the rank of

C is the number of medial balls.

Now, consider a slight perturbation of this shape, composed of a set of points P =

{p
1

,p
2

, ...,pk} with accompanying normals N = {n
1

,n
2

, ...,nk}, where the structure of the

cliques is imprecise; see the middle of Figure 5.2. In this scenario, we would like to best

recover the cliques and group points which contain a similar medial structure. In other

words, we want to approximate the matrix C. Our approach for approximating C is to

construct, for a given pair of points in P , a similarity measure representing the likelihood of
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these two points lying on a medial ball. We call this similarity measure the medial kernel,

denoted � : P ⇥ P ! R.
Given a pair of points pi,pj 2 P with normals ni,nj , we construct the medial kernel

in two steps. First, we generate a candidate ball, a representative medial ball for (pi,pj)

being equidistant to pi and pj and whose normals at the points are similar to ni and nj .

Next, we define a measure of medial dissimilarity, or how far away the candidate ball is

from being medial. Following the definition of a medial ball, for a candidate ball, this is

decomposed into two measures: how far from tangential with respect to ni and nj , and

how empty. Emptiness is a function of the number of points residing inside of the ball, and

how close they are to the ball center. We then convert this dissimilarity measure into a

similarity measure to obtain the medial kernel; see the right side of Figure 5.2.

From the medial kernel �(·, ·), we arrive at our approximation to C, the matrix M :

Mij = �(pi,pj). Note that nonuniform sampling, positional noise, and normal noise

manifest as noise in M . However, similar to Lipman et al. [2010], we find that M ’s row

normalized matrix M̂ largely inherits the spectral properties of Ĉ. This can be seen in the

eigenvalues of M̂ where its top five eigenvalues reside near 1, and all others quickly converge

to 0 – a consequence of the rank deficiency of M . This indicates the existence of five medial

balls.

For any shape with a well-defined medial axis, M should exhibit rank deficiency, and we

seek to define distances which respect this low rank structure. Note that the medial kernel

induces a particular random walk on the point cloud, where for large time scales, points

walk along similar medial regions. Moreover, a set of points which exclusively contain high

associativity in the medial kernel will remain “stuck” in the walk, only moving between each

other. Our distance construction follows as the measure of connectedness in this random

walk: the di↵usion distances [Coifman and Lafon 2006] ofM ; see the right side of Figure 5.2.

Di↵usion distances are a natural tool for recovering such a low-rank structure, in our case

grouping together points which mutually contain a similar medial region. Note that unlike

the eigenvectors ofM , the di↵usion distances are invariant to any orthogonal transformation

of its eigenspaces [Lipman et al. 2010]. Observe on the far right that for t = 20, we recover

the original block structure of C, grouping points which contain similar medial balls.

5.2 Medial Kernel Construction
Here, we describe the details of the medial kernel construction. The medial kernel

associates similarity to a pair of points based on the likelihood of such points containing a
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medial ball. We construct this by first generating a candidate ball for the points, and then

measure how far away this ball is from being a medial ball.

Our construction requires oriented normals N , where we compute normal directions

from the input point set P via PCA. If P is obtained from a scanner, we use the individual

scans to best orient N ; otherwise, if scan information is unavailable, we propagate normal

orientation via a minimal spanning tree approach.

5.2.1 Candidate Ball Generation

For points pi and pj with normals ni and nj , we want its candidate ball to best represent

an interior medial ball. This implies that the center cij lies on the bisecting plane of the

points, while the normals of the ball at pi and pj respectively coincide with ni and nj .

To this end, we intersect the lines formed from the points and normals against the

bisecting plane to obtain intersection points xi and xj . We discard balls if either intersection

is along the positive direction of their normal, indicative of a ball lying in the exterior of

the shape, or if both lines fail to intersect the bisecting plane. We would like to have

the ball normals at pi and pj mutually satisfy ni and nj , but at sharp features, this can

produce balls of arbitrarily large radius. Figure 5.3 depicts such a situation, where the

bottom point’s normal line fails to intersect the bisecting plane, shown as the dashed black

line. Hence, we relax this requirement by additionally considering the balls formed by the

individual intersection points. This corresponds to the left point’s normal intersection with

the bisecting plane. So, from the points {xi,
xi+x

j

2

,xj}, we take the candidate ball center

cij as the one with minimal radius, which by construction is equidistant to pi and pj . Such

a hard constraint on point equidistance and soft constraint on normal agreement expresses

our precedence for point positions over point normals, since normal estimation is often

imperfect.

Fig. 5.3. An illustration of finding a candidate ball in the presence of sharp features. In
this case, both antinormal rays may fail to intersect the bisecting plane, so we choose the
antinormal ray which forms the ball of minimal radius.
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5.2.2 Medial Dissimilarity

From the candidate ball, we measure its deviation from a medial ball in two measures:

one measures emptiness, while the other measures how tangential.

�(pi,pj) =
X

p2P
µ(cij , rij ,p) (5.1)

⌧(pi,pj) = |ni � si|+ |nj � sj | (5.2)

Here, si and sj are the normals of the candidate ball at points pi and pj , and µ is the

ball distance measure, measuring how close a point p lies from the center of the candidate

ball cij . We would like µ to satisfy the following properties: scale-invariance, slow fallo↵,

and computational e�ciency. Scale-invariance implies that the distance measure is relative

to the radius of the candidate ball. We want to prescribe a fallo↵ to µ such that points

closer to the candidate ball center contribute more, indicative of the ball deeply penetrating

the surface. Lastly, µ should be defined such that its summation over all points may be

performed e�ciently and exactly.

To this end, we define µ as follows:

µ(c, r,p) =

(

1�
� |p�c|

r

�

4

if |p� c| < r
0 otherwise

(5.3)

We empirically found that this quartic fallo↵ is suitable for penalizing points which belong

in the deep interior of a candidate ball. We experimented with a quadratic fallo↵, but found

that it failed to su�ciently penalize points which are near the center of a candidate ball,

resulting in emptiness measures which erroneously indicated the potential of a medial ball.

Naively evaluating the dissimilarity measure, even using a spatial acceleration structure,

can still be linear in the number of points for balls with large radius. However, note that µ

can be expanded such that it is linear in c and powers of c. More specifically, assume that

Ps ✓ P is a set of points which reside within the candidate ball. We can thus safely rewrite

� as:

�(pi,pj) =
X

p2Ps

1�
� |p� c|

r

�

4

(5.4)

We will show that this can be written as a set of terms linear in c and a small set of powers

of c, thus resulting in the above summation to be constant time for any candidate ball in

which Ps is contained, by performing a small amount of preprocessing with little memory

overhead.
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Note that the factors of 1 and 1

r have no bearing on the expansion and can be ignored.

Consider the expansion of the quartic term |p� c|4:

|p� c|4 = |c|4 + |p|4 + 2|c|2|p|2 � 4hc,pi(�hc,pi+ |c|2 + |p|2) (5.5)

The first three terms are linear in |c|4, 1, and 2|c|2, respectively. Expanding the remaining

terms, we obtain:

�4(�cT (ppT )c+ h|c|2c,pi+ hc, |p|2pi) (5.6)

Hence, we have linearity in terms of c, and powers of c.

Returning to the original summation, due to linearity in c and its various powers, we

can precompute this summation with a small set of terms: |Ps|,
P

|p|4, 2
P

|p2|, 4
P

ppT ,

4
P

p, and 4
P

|p|2p. So, for a given c, we can compute its corresponding terms: |c|4, |c|2,

c, and |c|2c, and apply it to the precomputed summed terms to obtain the exact distance

measure.

For this to be e↵ective in practice, we must know a priori that Ps belongs to the candidate

ball. We achieve this speed up by constructing a kd-tree over P , and for each node, compute

the aforementioned distance measure terms, along with the bounding box of the points for

that node. Then, given c and r, as we traverse the kd-tree if the bounding box of a tree node

is entirely contained within the candidate ball, we apply the above precomputed summation

to obtain the emptiness measure.

5.2.3 Medial Kernel

From the measures � and ⌧ , we may now define the medial kernel �, e↵ectively converting

medial dissimilarity into a similarity measure:

�(pi,pj) = e
�
�

�(pi,pj)

�e

�2
�
�

⌧(pi,pj)

�t

�2

(5.7)

where �e and �t define bandwidths for the emptiness and tangential measures, respectively.

We have set �e = 2 and �t = 0.7 for all results in this chapter, unless otherwise specified.

We perform this measure over all point pairs to arrive at the similarity matrix M : Mij =

�(pi,pj), where each entry encodes how likely the point pair contains a medial ball.

In practice, we find most entries of M to have small magnitude – a function of the

complexity of the medial axis. Hence, we set Mij to 0 if Mij < 10�7, resulting in M

typically being quite sparse. We use this sparsity to employ an early termination in the

traversal of the kd-tree for computing the emptiness measure �, allowing us to quickly

discard point pairs which are highly dissimilar.
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The matrix M can be quite noisy. For instance, since we have a hard constraint on

equidistance in candidate ball generation, two adjacent points lying on a plane will result in

a ball with unbounded radius, and consequently low similarity. However, if two such points

mutually share other points which have a high similarity, then there is a strong likelihood

that these points belong to the same medial ball.

As discussed in Section 5.1, the di↵usion maps of M capture this similarity, in the form

of measuring the connectedness of random walks defined via the medial kernel. To this

end, consider the matrix M̂ taken as the row-normalization of M , as suggested by Coifman

and Lafon [2006] and Lipman et al. [2010]. It has an eigendecomposition of the form

M̂ = V ⌃UT , where its eigenvalues and left/right eigenvectors are real-valued. Letting

V = [ 
1

 
2

· · ·  k], the resulting di↵usion map at point pi under a time scale t is:

�t(pi) = {�t
1

 
1

(pi),�
t
2

 
2

(pi),�
t
3

 
3

(pi), ...} (5.8)

The di↵usion distances directly follow from �:

d2t (pi,pj) = |�t(pi)� �t(pj)|2 (5.9)

Unless otherwise specified, we used a time scale of t = 160 for all results, which we found to

be a conservative time scale as useful distances are typically achieved at smaller times. Due

to the large time scale used, we found it necessary to only retain the top 300 eigenvectors,

and since M is sparse, this can be computed e�ciently via ARPACK.

See Figure 5.4 for several examples of di↵usion distances of the medial kernel. Note how

the distances relate points which have high likelihood of belonging to an underlying medial

ball, for both well-sampled shapes and single range scans alike. Figure 5.5 illustrates our

ability to handle the case of two nearby planar surface sheets. Note that although adjacent

planar points are initially dissimilar, under a suitable time scale, we are able to capture the

similarity, indicative of a medial ball lying between the surface.

Figure 5.6 shows the kernel’s robustness to missing data and noise. Note that noise is

both positional and normal, since we compute normals from the points via PCA. This is

a particularly challenging model as the foot resides directly next to the leg of the dancer,

with missing data between the two parts. As noise increases, our method is still able to

associate similarity to points occupying similar volume, as points on the back of the leg

contain small distance to the source point.

We note that the distances of the medial kernel do not exactly correspond to di↵usion

distances measured along the medial axis, namely due to two properties. First, our kernel

construction results in fast di↵usion for a point on the surface whose corresponding medial
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Fig. 5.4. Di↵usion distances derived from the medial kernel from various source points for
a variety of point clouds, ranging from fully-sampled meshes to single range scans.





Fig. 5.5. Distances constructed on thin planar sheets. Although adjacent points to x are
initially dissimilar, di↵usion distances capture the association from the other side of the
surface for suitably large times.
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Fig. 5.6. The performance of our medial kernel under missing data and increasing noise.
Note that the source point contains low distance to points occupying similar volume.

axis point contains a large number of generating surface points. For instance, a portion

of a surface bounding a medial sheet contains fewer generating surface points compared

to a spherical part of a surface. Secondly, in regions of negative Gaussian curvature, the

medial kernel between two points can contain low similarity, regardless of how close they

are in Euclidean distance, as there does not exist a candidate ball which coincides with their

normals. This can result in a sharp decrease in distance between such points, and under

substantial missing data, it may disconnect parts of a surface.

To illustrate this behavior, we generate a sequence of shapes smoothly deforming as a

function of these two properties, and look at how the distances between two fixed points

change under a large set of time scales. We have taken a cylindrical shape generated via

a union of balls, and continuously deformed the shape by shrinking balls which are closer

to the center of the shape. We parameterize the set of shapes by the amount in which we

shrink the balls, and we uniformly sample each shape to produce a point cloud. Since we

uniformly sample each shape, there will be a smaller amount of points in regions where the

balls are of smaller radii. Moreover, by shrinking balls closer to the center of the cylinder,

this results in a “pinching” e↵ect, resulting in a region of negative curvature.

Figure 5.7 shows the set of shapes and the resulting distances. In order to quantitatively
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Fig. 5.7. We show how the distances between two points changes as we deform the cylinder
(top-left) by shrinking its center, according to the radius r of the shape’s center medial
ball. Note that even though the distances are sensitive to this deformation, we nonetheless
maintain connectivity between the highlighted points.
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compare across di↵erent shapes, we normalize the embedding of Equation 5.8 prior to taking

the distances, as suggested in Goldberg and Kim [2010]. As expected, we see that the

shrinking of the balls results in distances between the two points being larger, as a function

of the time scale. However, note that we are still able to retain connectivity between the

points even as we nearly pinch o↵ the surface at r = 0.08. As we will see in our applications,

the ability to retain connectivity where the surface should be, while separating di↵erent

nearby undersampled parts of a surface, permits us to robustly handle missing data.

5.3 Applications
We illustrate several applications of the medial kernel: segmenting a point cloud into

volumetric parts, “medializing” functions by deriving a function basis from the medial

kernel, and reconstruction-by-parts.

5.3.1 Volume-Aware Segmentation

For large time scales, the di↵usion distances of the medial kernel serve to associate

similarity to points which contain smoothly varying volumetric emptiness. Based on this

observation, we can easily perform point cloud segmentation using the medial kernel, where

points are segmented into clusters occupying similar volumes.

We achieve this segmentation by performing k-means on the di↵usion maps, defined

by Equation 5.8. We normalize the coordinates prior to clustering, similar to existing

methods [Zelnik-Manor and Perona 2004; Solomon et al. 2011]. The resulting segmentation

is not intended to be a semantic part decomposition, but rather a decomposition into simple

and coherent volumetric parts. In particular, the main contribution is segmentation in the

presence of missing data; see Figure 5.8 for an illustration. The segmentation properly

clusters the palm into separate parts, separating it from the two fingers despite the fact

that there exist no data underneath the fingers. In fact, the number of clusters has an

intuitive interpretation in the context of medial kernels: we achieve an adaptive sampling

of medial segments, producing more clusters for regions with smaller medial balls.

5.3.2 Medial Basis

In addition to constructing random walks, the medial kernel can also be used to define a

basis from which to project functions onto, in a similar manner to Lipman et al. [2010]. In

particular, powers of the matrix M̂ correspond to a family of such bases, where for a large

t, M̂ t serves to e↵ectively reduce the numerical rank of M̂ . Recall that the numerical rank

of M̂ t reflects the complexity of the shape’s medial axis. The linear subspace of functions
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 

Fig. 5.8. Segmentation results on a hand point cloud (left). Note that the knuckle of the
ring finger is properly associated with the palm, despite the lack of data on the palm.

spanned by M̂ t correspond to functions which are constant along medial balls. Hence, for

an arbitrary function f , its projection onto M̂ t serves to di↵use function values along medial

balls, in the process “medializing” f .

More specifically, from the diagonalization of M̂ = V ⌃UT , suppose we have the set of

right eigenvectors U = [⇥
1

⇥
2

· · · ⇥k]. Powers of M̂ may be expressed as:

M̂ t =
X

i

 i�
t
i⇥

T
i (5.10)

Then, the projection of f onto M̂ t is:

M̂ tf =
X

i

 i�
t
ih⇥T

i , fi (5.11)

In considering useful functions to medialize, we observe that one should choose functions

which are naturally invariant to the medial basis, yet are initially noisy. The union of

balls [Miklos et al. 2010], or the set of interior medial balls, is thus a natural candidate.

This provides us with a simple yet robust method for reconstruction, which we term the

Di↵usion of Union of Balls (DUB).

In our approximate scenario, we derive the initial set of balls from our construction of

the kernel. For a given point pi, we define its initial ball [ci, ri] as:

ci =

P

j cij�(pi,pj)
P

j �(pi,pj)
ri =

P

j rij�(pi,pj)
P

j �(pi,pj)
(5.12)
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Assuming that c and r refer to the set of ball centers and radii defined over the point set,

respectively, then its di↵usion over the medial basis is: ct = M̂ tc and rt = M̂ tr.

As long as there exists su�cient evidence of a volume, we find that DUB is quite e↵ective

at preserving the overall volume of the shape; see Figure 5.9 for an illustration. We note

that this method is similar to VASE [Tagliasacchi et al. 2011], in that we both rely on

smoothness in the volume to di↵use a medial representation. However, we define a di↵usion

operator on the point cloud, rather than an intermediate mesh representation.

5.3.3 Reconstruction by Parts

Although DUB is e↵ective when the initial set of balls is noisy, if the basis is also

noisy, then the di↵usion can produce undesirable results due to the contamination of

dissimilar balls. The mid-left image of Figure 5.10 depicts the situation, where false

positives exist between the hand and the body of the dancer, causing a tunnel to appear

in the reconstruction. However, this is precisely what our segmentation method resolves:

the clustering of the point cloud into coherent volumetric parts. Hence, it is natural to

combine the two methods, resulting in a surface reconstruction method which performs

reconstruction-by-parts. See Figure 5.10 for an illustration.

We first segment the point cloud into volumetric components via k-means. The number

of clusters should be large enough so that nearby parts are separated, yet not so big that

there exists an insu�cient number of points to represent a volume. For most shapes, this

range is typically quite large, however, and for all results in this chapter, we found 20� 30

segments to be su�cient. We next pad each segment out with points belonging to other



 

Fig. 5.9. We apply DUB to the point cloud on the top-left for times t = 0, t = 5, and t = 10.
Note how despite the missing data, by projecting onto M̂ , we are able to su�ciently smooth
out the noise.
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Fig. 5.10. From the point cloud on the left, we first show the reconstruction through
Di↵usion of Union of Balls (DUB) on the entire point cloud, followed by projection (mid-
left). Note the tunnel introduced due to false positives in our kernel. By segmenting
the point cloud (mid-right) and then performing reconstruction-by-parts, we produce a
topologically accurate reconstruction (right).

segments which are close in terms of our medial-factored distances. We achieve this by

performing a k-nearest neighbors query with respect to the di↵usion map across all of the

points in a segment, adding points which belong to di↵erent segments. We choose k = 25 in

our implementation, which we have found to provide for su�cient overlap between segments.

We then apply DUB to each segment, to obtain a collection of union of balls. Our

volumetric segmentation ensures that each DUB-reconstructed segment encompasses a

proper volume of the shape, where we found time scale t = 4 to provide for a smooth

yet geometrically faithful representation for each segment. We then take the union of the

union of balls as our reconstructed mesh. Namely, we treat all of the union of balls as an

implicit surface and isosurface to obtain the reconstructed mesh. Since we are padding each

segment with points in nearby segments (with respect to medial-factored distances), there

exists su�cient overlap between individual reconstructions to form a single component.

The resulting mesh is slightly shrunken due to the di↵usion process. We obtain the final

reconstruction by interleaving MLS projection (via Algebraic Point Set Surfaces [Guen-

nebaud and Gross 2007]) and least squares meshes [Sorkine et al. 2005], applied to the

vertices of the mesh, in a similar manner to Sharf et al. [2006]. Namely, in the first step,

we use APSS to project the mesh vertices onto the point cloud. Only vertices already close
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to the point cloud are projected, where mesh vertices in regions of missing data remain in

place. We depart from Sharf et al. [2006] by restricting the projection step to the individual

clusters, in order to prevent projection issues associated with undersampling of the point

cloud. More specifically, since each mesh vertex originated from a specific segment, we

can associate that vertex to a point cloud segment. In gathering an epsilon ball for the

projection step, we only use those points which belong to the segment. This has two

benefits: it prevents points from drifting to other regions, and it allows us to use a rather

large epsilon ball in the projection, hence rendering our method robust to highly nonuniform

sampling.

In the second step, we then minimize an energy over the mesh which simultaneously

satisfies smoothness via a Bi-Laplacian term, and a data term with respect to the original

mesh. Weights favoring smoothness are given to points which are far from the point cloud.

We alternate these two steps until convergence, where we found 5 iterations to be su�cient

in our experiments.

5.4 Results
We compare our approach to kernel methods regarding distances and segmentation, as

well as to reconstruction methods. Most point clouds used in our experiments have been

acquired either through NextEngine or Kreon scanners, and consequently downsampled

through farthest point sampling. No data smoothing is employed in the downsampling; we

use the original points and normals.

5.4.1 Kernel Methods

We first compare the di↵usion distances of our medial kernel to a more standard kernel,

namely the feature-preserving kernel of Öztireli et al. [2010] which approximates the heat

kernel for point clouds. Note that the heat kernel is well-known to be robust to missing data

and topological shortcuts, as demonstrated for segmentation of surface meshes in De Goes

et al. [2008]. For point clouds, the approach of Öztireli et al. [2010] constructs the kernel

as:

k(pi,pj) = e
�(

|pi�pj |
�p

)

2�(

|ni�nj |
�n

)

2

(5.13)

Originally used for its short-time behavior, we consider its long-time behavior in di↵usion

distances. We set �p to 0.02 of the bounding box diagonal, and �n to 0.5, a small bandwidth

which heavily penalizes normal di↵erences [Öztireli et al. 2010].

See Figure 5.11 for a comparison between distances. The Mannequin model highlights

the issues with thin sheets, where although both methods contain false positives, our method
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  

Fig. 5.11. A comparison of distances between our kernel (MK) and the kernel of Öztireli
et al. [2010] (HK), both under large-time di↵usion distances. Note that the kernel of Öztireli
et al. [2010] can leak into other parts of the shape (left) while not adequately covering distant
sheets (right). Our method properly handles both cases.

succesfully filters them out since the connectedness induced by medial balls is stronger.

The Bumpy Sphere model highlights the opposite issue: points which are outside of the

bandwidths of �p and �n are never connected; hence, the kernel of Öztireli et al. [2010]

retains the boundary components. Our method identifies the presence of a medial ball

connecting the three disparate sheets. Figure 5.12 shows how this type of identification

results in a volumetric segmentation, whereas k-means applied to Öztireli et al. [2010]

keeps these parts separate.

5.4.2 Comparison to Killing Vector Fields

Our method bears resemblance to the recent work on mesh segmentation via killing

vector fields (KVFs) [Solomon et al. 2011]. A KVF defines an isometric self-mapping,

where Solomon et al. [2011] show how the eigenfunctions of a suitable KVF energy can be

 

Fig. 5.12. K-means segmentation applied to our method (MK) and the kernel of Öztireli
et al. [2010] (HK). Note how our segmentation captures the body of the wolf, despite the
large missing data.
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used to localize self-isometries for segmentation. For large time scales, our method begins

to resemble local self-isometries, as the medial ball itself can be looked upon as a local

transformation. Indeed, our segmentation approach of clustering (weighted) eigenvectors of

a point cloud operator mirrors Solomon et al. [2011], and as Figure 5.13 shows, we obtain

nearly identical segmentations for the given model. It would be interesting future work to

extend Solomon et al. [2011] to the case of incomplete point clouds via our method.

5.4.3 Surface Reconstruction

We have run our reconstruction algorithm on a set of challenging acquired data, con-

taining missing data and thin surface sheets. In these scenarios, an explicit segmentation

of these regions substantially simplifies reconstruction. We show that our distances provide

for a robust means of achieving this segmentation and generating a faithful reconstruction.

See Figure 5.14 for a comparison of our method with that of Fourier surface reconstruc-

tion [Kazhdan 2005], adaptive RBFs [Ohtake et al. 2005b], and smoothed MPU [Nagai et al.

2009]. One potential issue with these methods is that they employ function fitting [Ohtake

et al. 2005b; Nagai et al. 2009] or variational reconstruction [Kazhdan 2005] independent

of the structure of the point cloud. Hence, for thin sheets with missing data, there are no

constraints on the surface produced. By segmenting the point cloud via the medial kernel,

we avoid issues related to missing data and undersampling. Table 5.1 shows the genus

of the resulting reconstructions. As shown, our method is able to preserve the topology

of the scanned objects, whereas the other methods demonstrate highly variable behavior.

Such erroneous tunnels can be quite detrimental to further processing of the reconstructed

objects.

Our method is also robust to the number of segments used for reconstruction. See

Figure 5.15 for an illustration of the hand point cloud reconstructed under di↵erent numbers

MK KVF

Fig. 5.13. Comparison of our method to killing vector field segmentation [Solomon et al.
2011]. Note that our method produces competitive results.
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Fig. 5.14. Comparison of surface reconstruction. We first show our reconstruction by way of
segmentation, and then a comparison of our method to FFT [Kazhdan 2005], CRBF [Ohtake
et al. 2005b], and SPU [Nagai et al. 2009]. Since our method explicitly segments parts of the
point cloud, we avoid issues related to missing data and thin surface sheets, where previous
methods contain di�culties.

Table 5.1. A comparison of the genus for the reconstruction algorithms and our method.

Alg Hand Mannequin Batter
MK 0 0 2
FFT 2 6 1
CRBF 8 14 2
SPU 1 9 2

of clusters. As shown, the reconstruction is largely una↵ected by the di↵erent number of

clusters.

5.5 Discussion and Limitations
Our medial kernel relies on su�cient evidence of a medial structure for success, so in

this absence, our method will result in either isolated points or false positives. The former

case does not pose much of a problem in the context of distances and segmentation, but

for reconstruction, it may be di�cult to construct an initial set of union-of-balls. In the
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Fig. 5.15. From the point cloud on the left, we show segmentations of di↵erent cluster sizes,
and the reconstructions. Note the insensitivity to the number of clusters.

latter case, false positives typically occur when neighboring parts have insu�cient data to

penalize candidate balls between the parts.

Our kernel construction requires oriented normals, where although it is quite robust to

normal directions (see Figure 5.6), it is somewhat sensitive to inverted orientation. Our

approach can tolerate a small amount of inverted orientation, but for large and continuous

regions of inverted normals, we begin to interpret exterior medial balls as being interior.

Perhaps the biggest drawback to our approach is its computational complexity. To

construct our measure of emptiness, we must consider, for every pair of points, the entire

point set. Hence, in the worst case, the complexity is cubic in the number of points. However

in practice, our acceleration scheme typically provides an order of magnitude improvement.

Figure 5.16 shows computational timings as a function of point cloud size, and as shown, the

kernel construction is generally quadratic. We find that our acceleration scheme is slowest

when dealing with spherical parts of a shape, since for these points, the kernel measure is

high and so we must sum over all other points on the part to obtain an accurate measure.

This is the cause of the Batter model being so time consuming, due to the head part.

However, a voting scheme analogous to Lipman et al. [2010] should considerably speed this

up.

5.6 Summary
We have presented a method for constructing distances directly on point clouds which

are insensitive to missing data. Our key insight is the connection between the medial

axis and the inherent rank-deficiency of the correspondence matrix which associates points

belonging to common medial balls. Even if there exists false positives and false negatives in
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Fig. 5.16. Timings for kernel construction on the shapes used in Figure 5.14, as a function
of point cloud size.

the medial kernel, the connectedness induced by the low-rank structure renders our distance

construction highly robust to incomplete point clouds.

We have demonstrated how the distances can be used for a number of applications,

ranging from segmentation, the construction of function bases, and surface reconstruction.

In particular, we have demonstrated these applications when point clouds simultaneously

contain large gaps of missing data and nearby surface sheets. In these cases, it is quite

di�cult to construct a notion of sampling density – indeed, our distance construction never

makes use of local neighborhoods such as an epsilon ball or k-nearest neighbors. This is in

part why our method is highly robust to missing data.



CHAPTER 6

MEDIAL DIFFUSION

In the previous chapter, we illustrated how to use the medial kernel for the purposes

of surface reconstruction, and its robustness to missing data. For shapes containing sub-

stantial missing data, however, reconstruction may simply be too impractical, as additional

information may be necessary. Indeed for certain tasks, reconstruction may not even be

necessary, where the information inherent in the medial kernel may be su�cient.

In this chapter, we consider the problem of matching incomplete shapes which are

undergoing a nonrigid deformation. The problem amounts to finding correspondences

between shapes which adhere to the underlying nonrigid deformation. Nonrigid motion

is fairly common in dynamic data capture scenarios, such as human and animal movement.

Although matching well-sampled shapes under nonrigid motion has been fairly well-

studied [Lipman and Funkhouser 2009; Ovsjanikov et al. 2010; Tevs et al. 2011], for un-

dersampled shapes, this is a highly nontrivial problem. For acquired point clouds, it is

necessary to construct quantities which are invariant to the motion and insensitive to the

lack of data for successfully matching shapes. As we have previously shown, the medial

kernel is insensitive to missing data, as the medial axis is a useful shape prior. Moreover,

previous work has shown [Zhang et al. 2005] that the medial axis is also invariant to pose.

In fact, the work of Zheng et al. [2010] used the method of Tagliasacchi et al. [2009] to

match a set of compact graph skeletons.

Our approach departs from Zheng et al. [2010] and the usage of such compact repre-

sentations by instead embracing the full point cloud, in conjunction with the medial axis

prior, for shape matching. Inspired by heat kernel matching [Ovsjanikov et al. 2010], we

introduce medial di↵usion for matching shapes, where matching amounts to finding points

which belong to similar medial regions; see Figure 6.1. We seek correspondences between

medial regions for such challenging point clouds, as there may exist a relatively small amount

of surface correspondences due to missing data, where for the left shapes in Figure 6.1, this

is due to the two shapes being scanned from opposing views.
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Fig. 6.1. Our approach is able to match shapes undergoing nonrigid motion which contain
significant missing data. Here, we show the landmark correspondences automatically found
by our algorithm, and the extrapolated dense mapping, color-mapped by the left shape’s
medial embedding.

Our main contribution is the construction of a Laplace operator defined with respect to

the medial axis, for which its resulting heat kernel is suitable for shape matching. Key to

our construction is that we define the operator directly on the point cloud, via the medial

kernel. This direct construction has a number of advantages:

– Our di↵usion more faithfully represents the shape compared to curve skeleton meth-

ods, as these are inherently lossy representations – for instance, we can capture medial

sheets.

– The di↵usion process is sensitive to the geometry of the surface compared to skeletal

representations – for example, cylindrical regions of di↵erent radii exhibit distinct

behavior.

– By working directly on the point cloud, we can easily combine other di↵usion pro-

cesses.

From medial di↵usion, we introduce a practical algorithm for finding landmark points

between shapes, and subsequently extrapolating the landmarks to a dense correspondence

of medial regions. Our approach also easily extends to detecting intrinsic symmetries, or

nonrigid self-transformations. We show how our method is tolerant to missing data, and

improves on standard heat kernel matching of incomplete shapes.
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6.1 Medial Di↵usion
Our approach to constructing a di↵usion process with respect to the medial axis of a

shape is determined via a Laplace operator. We first discuss such a Laplace operator on a

smooth surface, which we term the Medial Laplacian. We then detail its discretization on

a point cloud, and lastly the di↵usion process itself.

6.1.1 Medial Laplacian

Consider an open set O embedded in R3 whose boundary is the surface S. Every point

x 2 O is associated with a set of points in S which are at a smallest distance to x. We

denote this set by �(x). The set of points x 2 O for which |�(x)| � 2 comprises the medial

axis of O, which we denote by M .

The medial axis is a very descriptive object, as it carries the homotopy information of

O. However, it is a rather di�cult object to utilize, as it is composed of a set of adjoining

sheets and curves. To define a Laplace operator directly on the medial axis, one option is to

construct it piecewise for each sheet and curve, and handle special cases at junctions. One

issue with proceeding in this way is that we lose information with respect to the geometry of

S, for instance, spherical parts of varying radii are treated equally, as are cylindrical parts

of di↵erent radii.

To better capture the surface, we use � as a density measure. As |�| is nonsmooth over

M , denote |�̃| as its smoothed variant, defined as:

|�̃(x)| =
Z

S
exp

�

� d(z,⇧
x

(z))

�

�

dz (6.1)

where ⇧
x

(z) = min
y2�(x)

d(y, z), or the smallest geodesic distance d between the set �(x) and

z. We follow the approach of Belkin and Niyogi [2005] to define a functional approximation

to the Laplacian, in e↵ect using a local Gaussian as an approximation. For a given function

f defined on S, we define the Medial Laplacian �M over M as:

�Mf(p) = f(p)

Z

M
↵(p,q)|�̃(q)| dq�

Z

M
f(q)↵(p,q)|�̃(q)| dq (6.2)

where ↵(p,q) is a Gaussian parameterized by a su�ciently small time scale h:

↵(p,q) = e�
|p�q|2

h (6.3)

We note that this is in fact a weighted Laplacian [Belkin and Niyogi 2005], where |�̃|

is used to weight regions of the medial axis in which the number of closest points varies.

Hence, it is now sensitive to the surface area of S. Note that we can also approximate �M
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as an integral over S itself. If we denote for a given point x 2 S its corresponding point on

the medial axis by x̂, then we define the Medial Laplacian �S over S as:

�Sf(p) = f(p̂)

Z

S
↵(p̂, q̂) dq�

Z

S
f(q̂)↵(p̂, q̂) dq (6.4)

Note that the density measure |�̃| is implicitly included in the integration over S, since

|�̃(x)| is the smoothed surface area over all points �(x).

The Medial Laplacian is invariant to deformations on S which isometrically preserve its

medial axis, while also preserving each point’s ball radius. As demonstrated in previous

work [Zhang et al. 2005; Zheng et al. 2010], this property is often satisfied in real-world de-

formations, such as varying human pose. However, it is a smaller space of deformations than

isometric deformations of S permit, whereas if we denote the Laplace-Beltrami operator of

S by LS , it is well-known that LS is invariant to the space of all isometric deformations [Sun

et al. 2009]. For instance, consider taking a sphere and as-isometrically-as-possible squash-

ing it – the medial axes of these two shapes will clearly be very di↵erent. Nonetheless, in

the presence of missing data, LS can be very far from the Laplace-Beltrami operator of the

true shape, where as we will show, �S remains tolerant to missing data.

6.1.2 Point Cloud Medial Laplacian

We now illustrate our approach for discretizing the Medial Laplacian on a point cloud.

Consider a point cloud P = {p
1

,p
2

, ...,pn} accompanied with normals N = {n
1

,n
2

, ...,nn}.

Normals are either directly taken from the acquisition process, or if not available, then

estimated via PCA and oriented with a minimum spanning tree approach.

One option for discretizing the Medial Laplacian is to consider its form defined directly

on the medial axis – �M . Yet as previously discussed, there exists numerous approaches for

estimating the medial axis, and in the presence of missing data, each approach has various

strengths and drawbacks; hence, it is unclear which to choose. Moreover, given a medial

representation, it is highly nontrivial to estimate each point’s density |�̃|.

Hence, we discretize �S instead, for two main reasons. First, we do not need to define

�, as it is implicitly included in the integration. Secondly, we may interpret the distance

between points on the medial axis, |p̂� q̂|, as the dissimilarity in medial regions between p

and q. Hence, it is not necessary to explicitly measure this distance, but rather construct

the likelihood of two points belonging to a common medial ball – our so-called medial kernel

�, developed in the previous chapter.
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Recall that the medial kernel may be broken down into dissimilarity with respect to the

emptiness of a candidate ball and tangential agreement:

�(pi,pj) = e
�
�

�(pi,pj)

�e

�2
�
�

⌧(pi,pj)

�t

�2

(6.5)

where � is the emptiness measure and ⌧ is the tangential measure.

The measure of � serves as an approximation to ↵; see Figure 6.2 for an illustration.

The parameters of �e and �t are analogous to the time scale h, where by increasing �e and

�t, we begin to associate points whose corresponding medial axis points are further away.

We have found �e = 5 and �t = 0.7 to be suitable values, which we used for all results in

this chapter.

To discretize �S into the point cloud Medial Laplacian �P , we replace ↵ with � and

follow the integral estimation approach of Belkin et al. [2009]:

�P f(p) = f(p)
X

q2P
�(p,q)| ? q|�

X

q2P
f(q)�(p,q)| ? q| (6.6)

where | ? q| denotes the dual surface area which q occupies.

Crucial to an accurate discretization is an accurate estimation of the dual area at every

point. The approach of Belkin et al. [2009] defines the dual area at a point as the area formed

by its local Delaunay triangulation. In the presence of missing data, this will e↵ectively

lead to the preservation of the inferred boundary components. We depart from Belkin

et al. [2009] and derive a more nonlocal method, based on our candidate ball centers. The

basic idea is to find a neighborhood of points which belong to a similar medial region, and

construct a triangulation from these points in the spirit of Belkin et al. [2009], from which

the dual area follows; see Figure 6.3 for an illustration of the method.

Fig. 6.2. On the left, we depict the distance between medial points ↵ to define the Medial
Laplacian �S , while on the right, we show medial similarity �, as an approximation to ↵.
Note that � does not require those points’ corresponding medial axis points.
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Fig. 6.3. An illustration of dual area estimation for a point p: first we gather points which
belong to a similar medial neighborhood, take these points’ convex hull, and use the triangles
incident to p to estimate its dual area.

For each point pi 2 P , we estimate its corresponding medial axis point p̂i by taking a

weighted average of its candidate ball centers:

p̂i =

P

j cij�(pi,pj)
P

j �(pi,pj)
(6.7)

We may similarly estimate its medial ball radius:

ri =

P

j rij�(pi,pj)
P

j �(pi,pj)
(6.8)

We then gather all other points pj whose estimated medial axis points p̂j are within a small

✏:

Bi = {pj 2 P | |p̂i � p̂j | < ✏} (6.9)

where ✏ is fixed at 1.5 times the average sampling density of P . Intuitively, Bi consists of

points who belong to a similar medial region of pi.

Next, we take the convex hull of Bi, and extract the set of triangles incident to pi. For

concave regions, pi may not reside on the convex hull; in such situations, we project all of

the points to the ball formed by (p̂i, ri), and then take its convex hull’s triangles incident

to pi. The dual area | ? pi| follows as one-third of the area of all incident triangles.

6.1.3 Medial Di↵usion

We may now construct a di↵usion process from the Medial Laplacian �S . The di↵usion

process is governed by the heat equation for a given function f defined over S:

@f(x, t)

@t
��Sf(x, t) = 0 (6.10)

We may then define the operator Mt = et�S , where Mtf satisfies the heat equation for all

t. Note that Mtf has the e↵ect of di↵using f along the medial axis.
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We can now associate a function mt(x,y) with Mt such that the following is satisfied:

Mtf(x) =

Z

S
mt(x,y)f(y)dy (6.11)

Intuitively, for two points x and y, mt measures the amount of heat which has di↵used

between the two points in time t, where heat di↵usion is restricted over the medial axis;

hence, we term this medial di↵usion.

For a point cloud P , we approximate mt through �P , using the fact that mt can be

computed from the eigendecomposition of �P , with �P i = ��i i:

mt(x,y) =
X

i

e��it i(x) i(y) (6.12)

Analogous to the heat kernel kt associated with the Laplace-Beltrami operator [Sun

et al. 2009], mt inherits the properties of its defining Laplacian �P . For example, given

a point x, if y 2 �(x̂), then mt(x,y) will be large for any time t – heat will immediately

di↵use between the points. For regions containing varying ball radii, the medial di↵usion

will be sensitive to the surface area; see Figure 6.4 for an illustration. We see that for large

cylindrical regions, the larger surface area results in fast heat dissipation; hence, mt will be

low, whereas for smaller regions, mt will be larger.

More importantly, the di↵usion is tolerant to missing data. Note that our association

measure � captures nonlocal relationships. For regions of missing data where at least two

points indicate a medial structure, heat will di↵use in a nonlocal manner. Combined with

�P ’s insensitivity to nonrigid deformations, mt is a useful measure for identifying similar

medial regions in incomplete shapes. In Figure 6.5, we illustrate mt(x,x) as a signature

over a set of time scales t, similar to Sun et al. [2009]. Note that we are able to identify

medial regions which are invariant to the pose.

Returning to our area estimation scheme, we find that dual areas can be somewhat noisy

in regions which violate the medial axis prior. However, for our purposes, noisy areas are

not too problematic, as we can claim the perturbation results of Sun et al. [2009]. Namely,

we can write �P as �P = D�1W , where W is the symmetric weight matrix and D is the

diagonal matrix containing area weights. Now, suppose that �̃P = (D + F )�1(W + E),

where E and F are the noise weight and area matrices, respectively, with kEk < ✏ and

kFk < ↵ under a suitable matrix norm k·k. Denoting M̃t as the heat operator of �̃P , then

kMt � M̃tk = O(
p
↵+ ✏).

Intuitively, this means that the association measure between points, captured in W , has

a larger impact on error than the area weights D. In our experiments, we have found that
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Fig. 6.4. We illustrate the behavior of medial di↵usion on the shape at the top, whose
corresponding medial di↵usion is plotted over time. Note that the di↵usion is sensitive to
the volume formed by the medial balls, where at a heat di↵uses faster than x; hence, it has
a lower medial di↵usion.

even if the estimated total surface areas between shapes are o↵ by 10% – 15%, this has a

negligible impact on our shape matching approach.

6.1.4 Combining Laplacians

An issue with medial di↵usion is its behavior in regions of negative curvature, where

the heat will di↵use very slowly, due to the large change in distance between medial axis

points, as a function of small change in distance over the surface. This has an impact

on nonrigid motion which results in significant volume change, such as regions containing

negative curvature become zero or positive curvature. To address this, we can easily combine

the standard Gaussian weight ↵ with the medial similarity weight �, so that the di↵usion is

less sensitive to negative curvature regions. Combining Laplace weights is common in the
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Fig. 6.5. We illustrate medial di↵usion as a shape signature, similar to Sun et al. [2009],
where we depict the intrinsic symmetry of the shoulders. Note the lack of data on the
lower-right shoulder, whereas the lower-left shoulder contains data, yet is still recognized as
having a similar signature.

spectral clustering literature, where in our situation, one may view the intrinsic geometry

and the medial axis as multiple views of the same data [Zhou and Burges 2007].

To combine Laplacians, we adapt the approach of Zhou and Burges [2007]. As � and ↵

have widely varying densities, they must be suitably normalized prior to being combined.

To this end, consider the weighted summations for � and ↵:

d�(pi) =
X

j 6=i

| ? pj |�(pi,pj) d↵(pi) =
X

j 6=i

| ? pj |↵(pi,pj) (6.13)

For a given interpolation factor ⌘, we then combine the weights as [Belkin and Niyogi 2005]:

�(pi,pj) = (1� ⌘) �(pi,pj)
p

d�(pi)d�(pj)
+ ⌘

↵(pi,pj)
p

d↵(pi)d↵(pj)
(6.14)

We then replace � in the definition of �P with �.

We have used a value of ⌘ = 0.5 for all of our experiments. Using this setting, we find

that in most regions the medial similarity term � tends to dominate, and only in negative

curvature regions ↵ has an impact in the di↵usion. See Figure 6.6 for an illustration of

combining these weights, showing how ↵ provides a boost in regions of negative curvature.

6.2 Shape Matching
We now describe our approach in using mt for matching shapes. We have adapted

the approach of Ovsjanikov et al. [2010], which uses the observation that, given a single

landmark correspondence, kt can be used to infer all remaining correspondences. We apply

this same methodology to mt by finding a small set of landmark correspondences, and using

them to extrapolate a dense matching of medial regions. We depart from Ovsjanikov et al.
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Fig. 6.6. We illustrate the e↵ect of combining the surface-based di↵usion process ↵ with
medial-based di↵usion �. For ⌘ = 0, or strictly using �, we see that heat di↵usion slows
down in the region of the neck, where curvature is negative. By combining with ↵ for
⌘ = 0.5, heat di↵usion becomes less sensitive to the negative curvature.

[2010] in how we find candidate correspondence points, and how P is sampled in order to

evaluate the error of a potential matching. These modifications are necessary to handle

point clouds containing missing data.

Given two point clouds to be matched, P and Q, we first uniformly subsample each

with respect to the medial axis. We follow the approach of Berger and Silva [2012a] by

performing spectral clustering in the space of the di↵usion maps formed by �P ,and �Q,
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where we denote the resulting subsets as SP and SQ. We found 700 points to be a su�ciently

fine medial representation. This results in a set of points whose corresponding medial regions

are uniformly spaced.

We then choose a point pl 2 SP at random, and for all points in SQ, we choose the

q̄l 2 SQ whose medial di↵usion best matches pl over all points and time scales:

q̄l = argmin
ql2SQ

X

p2SP

min
q2SQ

|mP
� (pl,p)�mQ

� (ql,q)| (6.15)

where mP
� (p,q) represents P ’s medial di↵usion over all times, similarly for Q. To realize

this, we follow Sun et al. [2009] and logarithmically sample m over a discrete set of times,

where we found 25 time scales to be su�cient, and each entry of mt(p,q) is divided by the

heat trace at t. We may then embed mP
� (p,q) in a high dimensional space, and e�ciently

find ql’s minimum q 2 SQ through a kd-tree search, where we use the l
2

norm. To avoid

searching all of SQ for the corresponding landmark, we only consider the top 5% ql 2 SQ

whose signatures mt(ql,ql) are closest to mt(pl,pl). The found ql is unique up to the set

of points which generate the medial axis point q̂
l

. This redundancy is in part why our

approach is robust – if the exact corresponding surface point is missing, we can instead

assign a di↵erent point which generates the same medial axis point.

From this first landmark correspondence (pl,ql), we greedily find additional correspon-

dences via the same procedure, restricting the newly found correspondences to be consist

with the previous ones. This can easily be accomplished by appending the previously found

landmark coordinates to the new ones, as in Ovsjanikov et al. [2010]. We find new landmarks

in SP by performing a farthest-point sampling defined with respect to the di↵usion map

of �P . This has the e↵ect of sampling landmark points in P which are far apart in the

medial axis. We denote by L the set of landmark correspondences, where we found a total

of 5� 6 landmark correspondences to provide for su�ciently good results, corroborated by

matching approaches [Zhang et al. 2008; Kim et al. 2011] for well-sampled shapes.

We then use the |L| landmarks to extrapolate a dense set of correspondences between

medial regions. This is accomplished by finding, for each p 2 P , the point q̄ 2 Q in which

the medial di↵usion is consistent across the respective landmarks, as well as the signature

mt(x,x) [Ovsjanikov et al. 2010]:

q̄ = argmin
q2Q

L
X

l=1

|mP
� (pl,p)�mQ

� (ql,q)|+ |mP
� (p,p)�mQ(q,q)| (6.16)

The initial randomly chosen landmark from SP may be a rather nondescriptive feature with

respect to SQ, resulting in a poor matching. Hence, we repeat this process (10 times in
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our experiments), and choose the matching which gives the lowest error in Equation 6.16,

though a RANSAC-like approach [Tevs et al. 2009] could also be used.

6.3 Results
To evaluate our method, we have conducted two sets of experiments. First we measure

the tolerance of our di↵usion process to nonrigid motion and missing data. Secondly, we

have run our matching algorithm across a set of shapes, and compared it with other similar

shape matching methods.

We have used shapes in the SCAPE [Anguelov et al. 2005], TOSCA [Bronstein et al.

2008], and multiview photometric stereo (MVPS) datasets [Vlasic et al. 2009] in our exper-

iments. For the TOSCA and SCAPE datasets, we synthetically scan the shapes using the

scanner of our benchmark, as detailed in Chapter 3.

Regarding computational complexity, the largest amount of time spent in our method

is constructing �P . For point clouds ranging in size from 15,000�20,000, it typically takes

5-9 minutes per shape to construct the Laplacian. Hence, for all point clouds used, we have

subsampled them to within this range via farthest point sampling.

6.3.1 Tolerance to Missing Data

We first evaluate the quality of our method under varying pose and missing data. One

way of achieving this is to extract the medial axis of a shape, and measure the geodesic

distance distortion along the medial axis. However, the medial axis is well-known to be

rather unstable, and the specific medial axis simplification approach to take (see Chazal

and Lieutier [2005] and Miklos et al. [2010]) is unclear.

Instead, we measure the error in mt, in order to observe the consistency across pose and

missing data. We use the SCAPE dataset, as ground truth correspondences are known.

For a given SCAPE mesh, we synthetically scan it over a constant set of viewpoints. We

parameterize the peak threshold at which range is accepted based on the laser intensity,

giving us a controllable yet realistic means of generating missing data. For a given well-

sampled rest pose P , we measure the medial di↵usion error on an input point cloud Q

as:

E(P,Q) =
1

|C||T |
X

t2T

⇣

X

(x,y)2C

|mt(x,y)�mt(f(x), f(y))|2
⌘

1
2

(6.17)

where C is a set of pairs of points uniformly sampled over Q, T is the set of logarithmic

time scales, and f is the ground truth mapping function between Q and P .
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See Figure 6.7 for the results. As shown, mt remains quite stable as missing data are

introduced, over varying pose. Only when large gaps of data begin to appear does the error

in mt begin to increase. At these levels, the impact of the di↵erent poses becomes evident,

as the rest pose contains the lowest error.

6.3.2 Intrinsic Symmetries

The detection of intrinsic symmetries follows as a straightforward extension of the shape

matching method – rather than compare two shapes, we employ mt on the same point cloud.
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Fig. 6.7. We measure the error in medial di↵usion mt across varying missing data and pose.
We show the rest pose on the upper left, and on the upper right, a subset of the poses and
point clouds on which the rest pose is measured against.
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Note that intrinsic symmetries in our situation refer to points along medial regions being

invariant to a nonrigid self transformation. We visualize these correspondences by using

the estimated medial ball centers p̂i.

See Figure 6.8 for results on several shapes. Note that the front left leg of the cat point

cloud is a separated component from the body, yet due to our method’s nonlocal di↵usion,

we can still detect its symmetry with the front right leg.

6.3.3 Shape Matching

We now evaluate our matching approach across a set of shapes, compared with several

approaches. To visualize the correspondences, for each point pi on the left shape, we assign

it a color based on the position of its estimated medial ball center p̂i, and assign this same

color to its corresponding point on the right shape.

Figure 6.9 shows our matching results on several shapes from the SCAPE dataset. As

shown, our method is able to properly find landmark correspondences, and extrapolate a

dense mapping between the shapes, despite the lack of data. In particular, note that the

missing data are not consistent between the pairs of shapes as missing data occur in di↵erent

regions. Our method is shown to remain highly tolerant to these imperfections.

Figure 6.10 shows matching results across several di↵erent animal categories. In the

inset, we depict the similarities of the medial di↵usion signature mt(x,x) across the two

cat point clouds. Note that the head of the left cat is a separated component from the rest

of the body, yet we are still able to associate similarity to the neck of the right cat, despite

the neck noticeably absent on the left cat.

In Figure 6.11, we compare our method with the skeleton extraction approach of Tagliasac-

Fig. 6.8. We show detected intrinsic symmetries between medial regions for point clouds
containing missing data.
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Fig. 6.9. Correspondence results on the SCAPE dataset. On the top left pair, note the
absence of data on the left shape’s stomach – we are able to infer that the back of the left
shape and the stomach of the right shape share a medial region.

Fig. 6.10. Correspondence results across several di↵erent animal categories. In the inset,
we depict the di↵erences in the signature mt(x,x), color-mapped across the two shapes.
Note the signature’s insensitivity to the lack of data.

chi et al. [2009] – the skeleton graphs used in Zheng et al. [2010]. The compactness in

the representation theoretically makes matching easier, yet as shown in the left shape,

a node representing the head is absent, while an additional joint is introduced near the

elbow, which makes matching rather ill-posed – it is unclear which to keep and which to

prune. Our method incurs no such drawback by instead operating on the entire point

cloud. Furthermore, note our method’s ability to match medial sheets, shown across the
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Fig. 6.11. A comparison of our approach with skeletons extracted via Tagliasacchi et al.
[2009]. Note the inconsistencies in the graph skeletons, which renders such matching rather
ill-posed.

chest, where by construction this is lost in Tagliasacchi et al. [2009].

Last, we have compared our method to the heat kernel matching approach of Ovsjanikov

et al. [2010]. As Ovsjanikov et al. [2010] was originally designed for meshes, we instead use

our strategy for finding candidate landmark points. We use the color-mapped positions

pi to visualize their correspondences. See Figure 6.12 for the results. As shown, the

heat kernel matching approach faces di�culty in finding landmark points for the SCAPE

point clouds; hence, the extrapolated correspondences are rather inaccurate. Our approach

remains tolerant to the missing data. For the MVPS data, we see that Ovsjanikov et al.

[2010] is able to properly find landmark correspondences for the “Abhijeet” sequence, yet

the extrapolated correspondences are still imperfect. Our approach is able to properly

match the right shoulder and head.

6.4 Discussion and Limitations
Although our method can handle a large range of incomplete shapes, it can perform

poorly when the medial axis prior is not adequately satisfied. In particular, when the

missing data are large relative to the size of the medial balls, then we may infer two separate

connected components. In such situations, it is di�cult to construct a shape prior which

this resembles; hence, stronger priors such as templates may be necessary.

Our method is fairly robust to deformations resulting in small changes to volume, but

significant volume change can be problematic. For instance, substantial folding of cloth or

fluid motion can result in drastic, nonisometric changes to the medial axis. Constructing a

measure which is tolerant to such deformations, as well as incomplete data, is a challenging

and important area for future work.

As in most shape matching methods, our approach is vulnerable to symmetric flips. As
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Fig. 6.12. A comparison of our method with Ovsjanikov et al. [2010]. Note how we are
able to find landmarks and good-quality extrapolated correspondences, whereas significant
di↵erences in the intrinsic structures of the shapes can pose problems for Ovsjanikov et al.
[2010].

shown in Ovsjanikov et al. [2011], symmetries in a shape pose a substantial challenge to any

shape matching method, where there may exist multiple maps which contain equally low

distortion. In our case, we su↵er from confusing the symmetries in the medial axis, where

Figure 6.13 shows how our method can choose the wrong correspondence due to the inherent

bilateral symmetry. However, it should be possible to use either a deformation-driven

approach [Zhang et al. 2008], or combining a collection of matches [Kim et al. 2011], in

Fig. 6.13. A case where our method gives the wrong correspondence due to intrinsic
symmetries between the shapes.
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order to resolve this limitation.

6.5 Summary
In this chapter, we have presented a method for matching incomplete shapes undergoing

nonrigid motion. Our main contribution is the construction of a di↵usion process on the

point cloud which measures heat di↵usion along the medial axis. As the medial axis is

a strong prior for missing data, we have shown how heat di↵uses in a nonlocal manner,

insensitive to both nonrigid motion and missing data, and how this may be used for matching

incomplete shapes.



CHAPTER 7

MULTIRESOLUTION SURFACE

REMESHING

In previous chapters, we have considered surface reconstruction, and how shape analysis

may benefit the pursuit of geometrically and topologically accurate reconstruction. For

certain applications, the quality of the triangles in the reconstructed surface mesh can be

just as important as the faithfulness to the original surface. In particular, a hierarchy of

good-quality meshes has a large range of applications; for instance, in multigrid approaches

for solving PDEs, it is necessary for each mesh in the hierarchy to be of acceptable quality.

In this chapter, we introduce a novel method for multiresolution remeshing which is

intrinsic to the surface. We propose a top-down, binary, hierarchical surface decomposition

to generate well-formed surface patches at every scale. Namely, we utilize the first nontrivial

eigenfunction of the Laplace-Beltrami operator to drive the decomposition. This has a

natural analogue in the area of graph theory, a process known as spectral bisection [Biyikoglu

et al. 2007], where a combinatorial or weighted Laplacian is used. The first nontrivial

eigenvector used to drive the decomposition is known as the Fiedler vector. We adapt this

notation to coin our structure the Fiedler tree.

By utilizing the Laplace-Beltrami operator instead of the combinatorial Laplacian, we

obtain many nice properties: surface patches of uniform area, well-shaped surface patches,

mesh-independence, and noise robustness, among others. Moreover, we are able to generate

high-quality uniform meshes at multiple scales. Uniform in our case refers to uniform trian-

gle areas and consistently good-quality in the resulting triangles, measured by the triangle

radius ratio metric. As our approach is intrinsic to the surface, we completely avoid issues

related to operating in the ambient space of the mesh, where existing approaches [Cheng

et al. 2007; Yan et al. 2009] face di�culties.

Due to the properties of our construction, we argue that we have a well-defined notion

of scale on the surface. This provides for a natural means of constructing wavelets on a

surface, as scale is notoriously di�cult to define on a sampled manifold [Kobbelt et al. 1998;
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Guskov et al. 1999]. As an application, we illustrate the construction of a Haar wavelet

basis, and from this wavelet basis, a trivial means of producing feature-sensitive meshes.

Figure 7.1 illustrates such flexibility, showing from left to right three di↵erent resolutions

for the model on the left. Two di↵erent representations are presented for each resolution

level, illustrating the capability of generating high-quality uniform meshes (top) as well as

adaptive meshes capturing surface features (bottom).

Our contributions are summarized as follows:

– Quality Irregular Multiresolution: We are able to generate a hierarchy of quality

meshes, a task di�cult to achieve with respect to current remeshing and simplification

schemes.

– Embedding Independence: As our decomposition, and corresponding meshes, are com-

pletely determined by the Laplace-Beltrami operator, our meshes are intrinsic to the

surface.

– Noise Robustness: Utilizing the Fiedler vector, we are able to produce quality trian-

gulations even in the presence of high-frequency noise.

– Multiscale Analysis: The binary hierarchy permits a multiscale analysis very similar to

a Haar wavelet decomposition, making noise and feature identification quite natural.

Fig. 7.1. Overview of our Fiedler tree approach. From the original egea model on the left,
we are able to generate quality uniform meshes at di↵erent scales (top row). Due to the
hierarchical nature, feature-sensitive meshes are also easily generated (bottom row)
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7.1 Fiedler Binary Tree Decomposition
The proposed framework relies on a binary hierarchical structure to carry out the

multiscale decomposition. Once the hierarchical structure is established, a CW complex

is constructed from which a triangulation can be built. Details on how to accomplish the

tree construction follows in this section, while triangulation is handled in Section 7.2.

7.1.1 Tree Construction

In order to construct a binary decomposition of the surface mesh, we require a mechanism

to recursively split the mesh in two parts. Partitioning a surface into two surface patches

amounts to finding a cut along the surface, or equivalently, finding a series of curves which

splits the surface into two connected components. We utilize the nodal regions of the

Laplace-Beltrami eigenfunctions to make these splits. Namely, we use the first nontrivial

eigenfunction of the Laplace-Beltrami operator, which in graph theory circles is commonly

referred to as the Fiedler vector, when considering the more general Laplacian. Splitting

along the zero-set of the Fiedler vector ensures a split of the surface into exactly two

connected components from the Courant Nodal Domain theorem [Gebal et al. 2009], hence

ensuring a binary decomposition.

To this end, we employ the discrete Laplace-Beltrami operator of Vallet and Levy [2008],

utilizing dual barycenter areas. In the computation of the Fiedler vector we also use the

method of Vallet and Levy [2008] in performing a spectral shift, in order to ensure a faster

convergence in eigenvector computations.

Once we have computed the Fiedler vector on the original surface, we isocontour the

zero set, assuming linear interpolation, to split the mesh in two patches. From the two

newly created surface patches, we simply recurse this process until a user-defined level of

the tree is met. See Figure 7.2 for an illustration.

Note that we exactly isocontour the surface, rather than respect the original connectivity

of the surface. By exactly cutting along the zero set, we are not inhibited by highly irregular

meshes where portions of the surface may have large triangles, and others may have small

triangles. Therefore, we are able to keep the notion of scale on a surface mesh independent.

For numerical robustness, we take care of instances where the Fiedler vector contains

values approximately zero. If the value of the Fiedler vector in a vertex is very close

to zero, then the resulting submesh may contain very poor triangles, for instance skinny

triangles, posing numerical instability issues for the eigenvector computations. We assign

these vertices a small random value, within a range that will render the submesh numerically

stable.
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Fig. 7.2. Binary mesh decomposition: each patch (tree node) is recursively split on the
Fiedler nodal line.

When splitting the mesh, every triangle along the nodal line is split into three separate

triangles, where two triangles will be assigned to one of the submeshes, and the other triangle

to the other submesh. This results in a significant amount of triangles being created at finer

scales, though we suspect that symbolically cutting triangles similar to Yan et al. [2009] is

a viable alternative and would save much memory.

7.1.2 Fiedler Tree Properties

By splitting along the Fiedler vector, we inherit several attractive properties in our

decomposition. The Fiedler vector is known to be a good approximation to the normalized

min-cut [Shi and Malik 2000] in the segmentation literature. For the decomposition of a

surface ⌦ into ⌦ = ⌦
1

[ ⌦
2

, we recall the cut energy as:

Ncut(⌦
1

,⌦
2

) =
cut(⌦

1

,⌦
2

)

assoc(⌦
1

,⌦)
+

cut(⌦
1

,⌦
2

)

assoc(⌦
2

,⌦)
(7.1)

where assoc is a measure of similarity between two domains, and cut measures the dissim-

ilarity in the boundary between ⌦
1

and ⌦
2

.
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In contrast to segmentation approaches, our measure of similarity is entirely uniform, in

that by using the Laplace-Beltrami operator, we are only considering the intrinsic geometry

for the purposes of segmentation. Thus, if we denote ⇠ = ⌦
1

\ ⌦
2

as the nodal set, we in

fact have:

Ncut(⌦
1

,⌦
2

) =
l(⇠)

s(⌦
1

)
+

l(⇠)

s(⌦
2

)
(7.2)

where l represents the length of a curve, and s represents surface area. Thus, in our case,

the Fiedler vector approximates the minimization of the ratio of nodal set length to surface

area [Szlam et al. 2005]. As a result, for every split, we are likely to obtain surface patches

which are of similar surface area, while the split itself is of small length, and typically

of small Gaussian curvature magnitude on the boundary. We argue that both of these

properties give rise to a well-defined notion of scale in the decomposition.

Our tree construction is also mesh-independent. That is, for a given surface meshed in

two di↵erent ways, our construction will produce identical decompositions. Seeing as the

Laplace-Beltrami operator is isometry-invariant, this should come as no surprise. Only at

very fine scales does the decomposition begin to di↵er, due to using linear interpolation in

making the cuts. Figure 7.3 illustrates the mesh-independent property, showing patches in

three di↵erent levels of the hierarchy. Notice that patches are practically indentical in the

top and botton rows, even though the construction is performed with respect to completely

di↵erent meshings (the left-most models).

Last, it has been illustrated in previous works [Levy 2006; Gebal et al. 2009] that the

Fiedler vector, in some sense, follows the “shape” of the surface. For the purposes of our

construction, we find that for tubular and anisotropic surface patches, the zero set of the

Fiedler vector consistently aligns with the maximum principal curvature directions. In other

words, the cut tends to be along the minimum axis of the surface, and as a consequence,

e↵ectively removes the anisotropy of the surface. See Figure 7.4 for an illustration.

7.2 Triangle Mesh Generation
Producing a triangulation from the tree construction involves topological and geometric

considerations. We handle both in turn.

7.2.1 Topological Construction

At the end of the tree construction process, we are left with a set of surface patches at

all scales. At some scale, each surface patch will become homeomorphic to a topological

disk. At this scale, we have in fact constructed a cell complex, or CW-complex. For the

space of a 2-manifold, a CW-complex consists of a set of 0, 1, and 2-cells, where an n-cell
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(a) Original meshes (b) Patches in depths 4, 5, and 6

Fig. 7.3. Intrinsic nature of the hierarchical decomposition. Almost identical decompositions
are generated from meshes with varying refinement.

Fig. 7.4. Our decomposition tends to split along the minimum axis, and consequently along
maximum principal curvatures, as illustrated for an ellipsoid.

is homeomorphic to an n-ball, and the boundary of an n-cell strictly consists of cells of

dimension m < n [Munkres 1993]. In our context, 2-cells are the surface patches, 1-cells are

arcs on the boundary of the patches whose ends are the 0-cells, or vertices.

The significance of the CW-complex for our purposes lies in the fact that, under certain

circumstances, its dual complex is a valid triangulation. The dual complex of the CW-

complex takes every n-cell and maps it to a unique (2 � n)-cell, such that every 2-cell

becomes a point, every 1-cell becomes an edge, and a 0-cell becomes a facet. Each 0-cell

will map to a triangle if and only if the number of 1-cells which intersect to form the 0-cell

is exactly three. As our tree construction always cuts every edge the zero set crosses, open

zero sets along the surface will always start/end at unique points, and consequently, we are

always guaranteed triangle elements.

The only remaining issue is whether or not the dual complex is indeed a valid triangu-

lation. There are three cases where zero set cuts will result in invalid triangulations, which

correspond with violations of the closed ball property [Edelsbrunner and Shah 1997]:

– The zero set is closed.

– The zero set consists of multiple connected components.
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– The zero set starts and ends at the same 1-cell.

The first case results in a dangling edge, the second case results in a degenerate triangle, and

the third case results in the creation of duplicate triangles. Hierarchical space partitioning

approaches [Schaefer and Warren 2003; Boubekeur et al. 2006] su↵er from similar problems;

however, since we are partioning the surface directly, we may trivially detect these cases.

We find that the first two cases only occur in coarse levels of the tree, as when we approach

finer levels, the 2-cells begin to resemble developable, convex, topological disks, for which

the zero set is known to be open and of a single component [Melas 1992]. The third case,

however, may still occur at any level, although in practice, it is rare to occur at finer levels

of the tree. In all examples in this chapter, we have found that the closed ball property is

first satisfied at a rather coarse level, and is consistently satisfied at all finer levels.

Care must be taken in the implementation of this hierarchical CW-complex for the

purposes of memory e�ciency. To this end, we only store the triangles of the finest-scale

CW-complex; that is, we label the triangles in the finest level in accordance with patches in

that level. Moreover, ids are assigned such that the multiresolution structure is maintained.

In other words, if a triangle has a label k in the finest level, then it will be labeled in its

father node as bk
2

c, ensuring a consistent hierarchical labeling scheme. Therefore, a patch

with id k at level j is labeled as 2k or 2k + 1 at level j + 1 (the same being valid for the

triangles representing these patches). Hence, we are always able to process the CW-complex

at any scale, strictly from the finest scale.

We next illustrate two mechanisms for generating meshes: multiresolution uniform

meshes, and quadric error meshes.

7.2.1.1 Multiresolution Uniform Meshing

Generation of a uniform mesh amounts to reconstruction at a particular depth, or scale,

in the tree. Namely, for a prescribed resolution j, we identify the patches corresponding

to depth j using the scheme as described above. This e↵ectively corresponds to the CW-

complex at scale j. From here, we identify the 0-cells to be the triangles in the dual

triangulation, where a dual triangle’s vertices are determined by the intersecting three

2-cells. This construction guarantees an oriented simplicial complex decomposition of the

surface. Spatial partioning approaches [Rossignac and Borrel 1993; Schaefer and Warren

2003], on the other hand, encounter di�culty in ensuring a decomposition that guarantees

a well-defined simplicial complex as output, as issues may occur in clustering points which

are close in Euclidean distance yet far apart in geodesic distance.



110

7.2.1.2 Quadric Error Meshing

Similar to previous approaches [Schaefer and Warren 2003; Boubekeur et al. 2006], we

may utilize our spatial decomposition for the purposes of applying quadric error-based

decimation [Garland and Heckbert 1997]. The primary di↵erence here is that we have

well-defined surface patches, both in terms of shape and uniform area across all scales,

whereas spatial partitioning approaches greatly su↵er from nonuniformity as a result of

axis-aligned spatial decompositions.

We prioritize nodes of the tree starting from the finest level, where the priority is the

quadric error metric. When two neighboring nodes have both been removed, we may add

their parent to the queue for processing. When adding parent nodes to the queue, we may

simply add their child quadric error functions together; however, note that since we have

a binary tree structure, it is relatively inexpensive to compute the quadric error function

from scratch. In fact, it is O(|V |log|V |) in the number of vertices |V |, whereas Garland

and Heckbert [1997] rely on edge collapses, and consequently, it would be quadratic in their

approach.

Once we have selected the subset of nodes to be retained, we need to generate the dual

triangulation. We associate each 2-cell with its scale and id, and then generate a unique id

for each (scale, id) pairing. This gives us a consistent CW-complex representative of the

quadric error decimation. Generation of the dual triangulation then proceeds in exactly the

same manner as above.

See Figure 7.5 for a comparison between our approach and qslim. Note that the results

are quite similar; however, the order of complexity of our approach is |V |
2

, where |V | is the

number of vertices, whereas qslim works o↵ of edge collapses; hence, the complexity for a

typical mesh with qslim is of the order 3|V |, which is roughly the number of edges.

7.2.2 Geometric Embedding

In computing a representative vertex for every 2-cell, its center of mass is a logical choice.

That is, for every 2-cell, we may take the area-weighted coordinate as the vertex position.

A disadvantage to using the center of mass is that we may miss features on the surface.

If feature preservation is desired, we may position vertices according to the quadric error

metric, taken with respect to the 2-cell. By doing so, however, our mesh quality su↵ers. To

satisfy both ends, we opt to interpolate between the center of mass and the quadric error

vertex, by a user-defined parameter ↵. This way, the user may choose between high-quality

triangulations and feature preservation.
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Fig. 7.5. QSlim decimation (middle), compared to our quadric error meshing approach
(right). Eigenvector computation time: 14s. Qslim timing for 4K and 1K vertex decimation,
respectively: 44ms and 54ms. Our timing for 4K and 1K vertex decimation, respectively:
31ms and 57ms.

7.2.3 Triangulation Properties

If we are to use the center of mass for vertex positions, then our construction is able

to produce high-quality triangulations. This is a consequence of the tree construction

properties discussed in Section 7.1.2. The fact that the nodal curves tend to follow the

maximum principal curvature directions results in edges in the dual triangulation following

the minimum principal curvature directions. This also accounts for the “quad-like” structure

in our meshes, and consequently, our triangles are slightly anistropic in the principal

directions of the curvature tensor. As well, the property of surface patches being of almost

uniform area for each level results in triangles containing very similar areas in the dual

triangulation. See Figure 7.6 for an example illustrating these properties across several

scales.

Simultaneously satisfying small-length nodal curves and equi-areal surface patches is

rather di�cult, and occasionally, the Fiedler vector will favor one over the other. In the

former case, this will result in nonuniform surface areas, and hence, the dual triangulation

will have triangles of varying areas. In most cases, however, we have noticed this to be

desirable; for instance, the legs of the horse in Figure 7.6 should be meshed denser than the

stomach. In the latter case, nodal curves may result in surface patches being nonconvex, in

which case, skinny triangles and high-valence vertices are produced. In practice, we have

observed that this rarely occurs.

The property of mesh independent tree constructions in fact translates to near identical

triangulations. See Figure 7.7 for an example. Note that there are subtle di↵erences in the

meshes, as neighboring 2-cells may di↵er, corresponding to a di↵erence of an edge flip in

the triangulations.

Last, we note that our meshes are very robust to geometric noise. As pointed out in
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Fig. 7.6. The CW-complex and corresponding triangulations, for di↵erent scales. Note the
consistency in the quality of the decomposition, as we go to finer scales.

Fig. 7.7. Mesh generation for the eight model from two di↵erent meshings of the same
surface.

previous work [Rustamov 2007], the low-frequency eigenfunctions of the Laplace-Beltrami

operator are robust to even topological noise, in addition to geometric noise. The Fiedler

vector being the lowest frequency nontrivial eigenfunction, it is most robust. This is a

property inherited throughout our hierarchy, as Figure 7.8 illustrates. The noise in this

example is generated by perturbing the per-vertex normals, and displacing the vertices a

small amount along this perturbation. We are additionally able to produce high-quality

triangles in the presence of noise, as our triangle radius ratio histograms demonstrate.
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Fig. 7.8. Multiscale representation of half-noise Julius model (left most). Our approach
(bottom row) can robustly smooth noise out while still producing good-quality meshes
in every level of the hierarchy. The noise remains prevalent when QEM is used as a
simplification mechanism, thus preventing the generation of good meshes. Histograms on
the bottom right of each model show the triangle radius ratio quality for each model.

7.3 Fiedler Multiscale Analysis
Multiscale analysis usually relies on recursively decomposing a given signal into low-

frequency and high-frequency components. Although di↵erent approaches can be used to

compute low-frequency and high-frequency components of a signal in each resolution, such

as expansion in a set of basis functions or prediction/updating schemes [Jansen and Oonincx

2005], all multiscale methods demand a splitting mechanism (also called up-sampling) in

order to identify the subset of data that will be “shifted” to the next coarser level. E�cient

splitting schemes are particularly di�cult to be defined on unstructured data, as a biased

choice might introduce artifacts in the multiscale decomposition. Our hierarchical scheme,

however, provides for an intuitive notion of scale, and hence is an attractive starting point

for many multiresolution methods. We illustrate such functionality by implementing a

Haar-like multiscale analysis using our decomposition as a splitting mechanism.
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Let �jk be a surface patch with index k at scale j of the tree. Denoting by �j+1

2k and

�j+1

2k+1

the children nodes of �jk, we can compute scaling and detail coe�cients cjk, d
j
k in �jk by

simple averaging and di↵erencing from scaling coe�cients cj+1

2k and cj+1

2k+1

in �j+1

2k and �j+1

2k+1

.

More specifically, scaling and detail coe�cients in level j can be computed as [Jansen and

Oonincx 2005]:

cjk =
|�j+1

2k |
|�jk|

cj+1

2k +
|�j+1

2k+1

|
|�jk|

cj+1

2k+1

(7.3)

djk = cj+1

2k � cj+1

2k+1

(7.4)

where |�jk| is the area of the surface patch k at scale j. At the finest scale J , we take the cJk

to be the area-weighted average of the function values on that surface patch (assuming the

function is constant in each patch of the finest level). Similarly, an inverse transform may

be applied as follows:

cj+1

2k = cjk +
|�j+1

2k+1

|
|�jk|

djk (7.5)

cj+1

2k+1

= cjk �
|�j+1

2k |
|�jk|

djk (7.6)

The capability of computing scaling and detail coe�cients complements the binary

hierarchical decomposition with a natural mechanism to detect features and surface details.

In fact, we may utilize the Haar wavelet decomposition for the purposes of detecting

multiscale features in the mesh. To this end, we analyze the variation in per-vertex

normals. If we denote the components of normal vectors as functions nx, ny, nz over

the surface, we may run our Haar decomposition, as described in Equation 7.4, to obtain

wavelet (detail) coe�cients dx, dy, and dz for each coordinate function, respectively. By

setting dj
k = (dxjk, dy

j
k, dz

j
k) as a vector in every node k at scale j, we can take k dj

k k

as a feature measure at node k (and level j) of the tree. An example of such a Haar-like

decomposition can be seen in Figure 7.9, where the warmer colors in the bottom models

represent high values of detail coe�cients. Notice that by going from right to left, more

details are added in the model, characterizing the typical behavior of a multiscale scheme.

Scaling and detail coe�cients may also be exploited for the purposes of feature detection

and vertex positioning during the multiresolution process. In fact, we have exploited the

Haar-like multiscale analysis for feature-sensitive meshing. The feature measure described

above may be easily leveraged to produce adaptive meshes; that is, meshes where the

sampling density is a function of the features of the mesh. This is achieved by culling nodes

(2-cells) from the tree in a greedy manner prioritized by k dj
k k.
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Fig. 7.9. Illustration of the multiscale decomposition of the normals. From right to left, we
are adding more details to the model, until we get the original surface back.

Similar to the quadric error meshing, we first place all leaf nodes in the tree in a

priority queue. A tree node is added to the queue only if its children have been removed.

Additionally, in order to maintain nice triangulations and prevent high valence vertices, we

do not allow the merging of two nodes nj+1

2k , nj+1

2k+1

into nj
k if a child of the neighbor node

of nj
k still exists. Once all nodes have been removed, the triangulation is generated in the

exact same manner as Section 7.2.1. This adaptive mechanism was used to generate the

bottom models in Figure 7.1.

In Section 7.2.2, we demonstrated a means of computing the center of mass over every

surface patch. This is unfortunately of complexity O(|V |log|V |) to compute. However, we

may make the computation linear by noting that the projection of the coordinate functions

onto the Haar basis exactly corresponds to the center of masses at di↵erent scales. That

is, the scaling coe�cients of the coordinate functions at a particular scale correspond to

the center of masses computed at that scale. Only the finest scale integration needs to be

computed.
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7.4 Experimental Results
In this section, we present the results of applying the described methodology for the

purposes of generating multiresolution uniform meshes and feature-sensitive meshes. All

the models presented in the following applications were generated on a MacBook with a

dual-core processor of 2 GHz and 2 GB of memory.

While minimum angle in a triangle is a common quality measure in the remeshing

literature, we find that our meshes are slightly anisotropic in the curvature tensor; see

Section 7.2.3 for a discussion on this matter. Hence, minimum angle is not a fair measure

of quality for our meshes. For this reason, we measure mesh quality by the incircle to

circumcircle ratio, commonly referred to as the radius ratio.

Figure 7.10 demonstrates our results for a variety of surface meshes, uniform and

adaptive meshing alike. The rocker arm mesh demonstrates our method’s robustness to

meshes with highly irregular geometry and connectivity, where discrete variational methods

face problems [Valette et al. 2008].

Figure 7.11 shows our multiresolution scheme applied to the fertility model, decimated

to 16K and 8K vertices from 240K vertices. Note the drastic improvement in mesh quality

(top part), and our method’s resilience to the input triangulation. The mesh independence

of our construction ensures a high-quality triangulation, regardless of how the input surface

is meshed.

Table 7.1 shows quality statistics for these meshes, under the radius ratio measure. We

note that for the uniform meshes, and the other uniform meshing results shown throughout,

we obtain very consistent histograms, independent of the particular mesh, in a similar

manner to Schreiner et al. [2006]. Note that our approach often results in more than 99%

of good-quality triangles, where the notion of a good-quality triangle is such that its radius

ratio is greater than 0.5 [Schreiner et al. 2006].

Table 7.2 shows quality statistics in terms of the minimum angle in a triangle. Since our

method tends to produce anisotropic triangles, most triangles contain an angle of 90�, where

for such an angle, its adjacent edges are typically aligned with the principal curvatures. As

a result, the best we can expect the minimum angle to be in such a triangle is at most

45�. As shown in the table, we typically achieve an average minimum angle of around 40�,

indicative that we remain close to the best possible minimum angle. Moreover, even despite

the anisotropy, most of the triangles contain a minimum angle above 30�, while for most

meshes, the worst minimum angle is bound below reasonably well.

Table 7.3 shows the computational time involved in the Fiedler vector computation.

Times refer to the total time; that is, the 8 seconds shown in the column of the rocker arm
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Rocker Arm

Hand

Bimba

Dragon

Original
10k vert

Original
53k vert

Original
90k vert

Original
152k vert

Uniform
8k vert

Adaptive
4k vert

Uniform
2k vert

Adaptive
1k vert

Uniform
16k vert

Adaptive
8k vert

Uniform
4k vert

Adaptive
2k vert

Uniform
32k vert

Adaptive
16k vert

Uniform
8k vert

Adaptive
4k vert

Uniform
64k vert

Adaptive
32k vert

Uniform
16k vert

Adaptive
8k vert

Fig. 7.10. Uniform and adaptive meshing results for a variety of surface meshes.

Fig. 7.11. Fertility model, 240K vertices, uniformly decimated to 16K vertices, 8K vertices.
Our Fiedler approach is shown in the top-half image.
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Table 7.1. Radius ratio of multiresolution models presented in Figure 7.10. Numbers in
each entry correspond to average-quality, worst case, and percentage of triangles within the
interval [0.5, 1.0], which comprise the good-quality triangles.

Rocker Un 8K Ad 4K Un 2K Ad 1K
Av Wt [%] 0.84 0.06 99.0% 0.82 0.02 98% 0.84 0.15 99.3% 0.80 0.18 94.4%

Hand Un 32K Ad 16K Un 8K Ad 4K
Av Wt [%] 0.82 0.13 99.7% 0.82 0.15 98.8% 0.83 0.25 99.8% 0.81 0.01 96.2%

Bimba Un 64K Ad 32K Un 16K Ad 8K
Av Wt [%] 0.83 0.02 99.5% 0.83 0.01 98.5% 0.83 0.16 99.7% 0.80 0.05 95.2%

Dragon Un 64K Ad 32K Un 16K Ad 8K
Av Wt [%] 0.83 0.01 99.7% 0.83 0.01 98.5% 0.84 0.15 99.7% 0.81 0.04 95.3%

Fertility Un 16K Ad 8K Un 4K Ad 2K
Av Wt [%] 0.82 0.10 99.8% 0.82 0.10 98.2% 0.83 0.17 99.6% 0.80 0.11 95.1%

model is the time to carry out the eigen decomposion in the 213 � 1 = 8, 191 nodes (the

Fiedler vector is not computed in the tree leaves).

Figure 7.8 demonstrates qslim’s inherent limitation in mistaking noise as features. Space

decomposition-based methods tend to be more robust to noise, so we have compared our

approach to that of the VS-tree [Boubekeur et al. 2006] in Figure 7.12. Although the

VS-tree has the capability to construct a decomposition on the surface at a fine-enough

level, utilizing a height field indicator in the presence of high-frequency noise results in

unreliable analysis. The Fiedler tree, however, remains invariant to this high-frequency

noise, su�ciently smoothing the mesh. We note that the VS-tree and qslim have the

advantage of being computationally e�cient, whereas our method is significantly more time

consuming. However, our comparisons illustrate flaws in these approaches, resulting from

the lack of a proper analysis of the surface at multiple scales, which is precisely what our

method excels at.

Last, we have compared the quality of our meshes to that of a state of the art remeshing

algorithm, delpsc [Cheng et al. 2007]. See Figure 7.13 for a comparison of the egea model,
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Table 7.2. Minimum angle of multiresolution models presented in Figure 7.10. Numbers
in each entry correspond to average minimum angle, worst minimum angle, and percentage
of triangles whose minimum angle is greater than 30�.

Rocker Un 8K Ad 4K Un 2K Ad 1K
39.82� 9.19� 92.0% 39.41� 5.29� 88.3% 40.4� 13.82� 93.5% 37.79� 7.41� 80.0%

Hand Un 32K Ad 16K Un 8K Ad 4K
38.2� 12.64� 93.7% 39.19� 11.67� 90.4% 38.88� 18.12� 94.0% 38.37� 2.73� 83.7%

Bimba Un 64K Ad 32K Un 16K Ad 8K
39.09� 5.76� 94.6% 39.59� 4.1� 91.7% 39.24� 12.71� 94.8% 38.14� 3.66� 83.2%

Dragon Un 64K Ad 32K Un 16K Ad 8K
38.96� 2.59� 93.7% 39.65� 2.15� 90.0% 39.76� 11.29� 93.9% 38.37� 3.6� 81.9%

Fertility Un 16K Ad 8K Un 4K Ad 2K
38.52� 9.81� 90.7% 39.11� 4.91� 88.5% 39.54� 15.89� 92.2% 37.7� 7.32� 80.0%

Table 7.3. Computational times to compute the Fiedler vector during the tree construction.

Model Rocker Hand Bimba Dragon Fertility

Size 10K vert. 53K vert. 90K vert. 152K vert. 240K vert.

# Levels 13 15 16 16 14

Eigen Calc. 8s 49s 1m40s 2m48s 4m44s
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Fig. 7.12. Comparison of VS-tree [Boubekeur et al. 2006] (left) to our approach (right), for
simplification of a noisy surface. The original surface (135K vertices) is decimated to 21K
vertices for both approaches. Timing for VS-tree: 70ms, timing for our method: 2m30s for
eigenvector computations, and 900ms to generate the mesh

Fig. 7.13. Comparison of delpsc [Cheng et al. 2007] on the left, to our method on the right,
with corresponding triangle radius ratio histograms. Timing for delpsc: 7.4s, timing for our
method: 7.5s for eigenvector computations, and 109ms to generate the mesh
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remeshed to approximately 4K vertices. Our results are competitive in terms of triangle

radius ratio, albeit not quite as good; however, we are able to construct a multiresolution

hierarchy of quality meshes, whereas delpsc operates with respect to a target number of

vertices.

7.5 Discussion and Limitations
Examples and comparisons presented in Sections 7.1–7.4 support that our multireso-

lution scheme gathers a set of properties not present in any other approach devoted to

represent meshes in multiresolution. Table 7.4 exemplifies this fact, in comparing our

approach to the various methodologies. As can be observed (the symbolX means a property

is present), only the Fiedler tree endows the intrinsic properties of mesh independence, noise

robustness, mesh quality, feature detection, and multiresolution. The symbol • indicates a

property is not intrinsic, but can be somehow approximated through tuned implementation.

Table 7.4 also suggests that the proposed Fiedler tree represents a methodology that

stands between hierarchical space decomposition and remeshing approaches. Our approach

shares the conceptual simplicity of space decomposition techniques, as we are merely per-

forming a top-down hierarchical partitioning of the surface, instead of the volume in which

the surface resides. We are able to produce meshes which are of competitive quality to that

of remeshing schemes, yet at the same time, our approach is much simpler in comparison

to most remeshing schemes.

Another interesting aspect of our approach is the ability to analyze features at multiple

scales. The intrinsic hierarchical structure provided by the Fiedler tree makes multiscale

analysis quite natural. In fact, the Haar-like implementation described in Section 7.3 is

Table 7.4. Comparison of our approach to other methodologies. The symbol X means the
property is present while the symbol • indicates the property can be somehow incorporated.

Method / Mesh Noise Mesh Feature Multi- Comput.
Property Independence Robustness Quality Detection resolution E�ciency

Decimation X X •
Methods

Space/Tree • • X X
Partition
Fiedler X X X X X

Decomposition
Remeshing X X
Methods
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only the simplest mechanism in carrying out multiscale feature analysis. We believe that

more sophisticated and accurate schemes can be derived on top of our decomposition.

Our binary hierarchical mesh decomposition is only one way of decomposing a mesh,

and many hierarchical segmentation methods, including spectral methods, exist in the

literature [Liu and Zhang 2007; De Goes et al. 2008; Reuter et al. 2009; Reuter 2010].

However, recall that the advantage of utilizing the Fiedler vector is in generating patches

which have small boundary length, and consistent surface areas. As segmentation methods

assume some notion of part saliency, they are unlikely to satisfy these properties, especially

in the absence of saliency, which is common at finer depths in the decomposition. We note

that a possible extension to our decomposition is choosing a di↵erent eigenfunction which

still splits the mesh into two connected components, while satisfying other properties such

as reflectional symmetries [Ovsjanikov et al. 2008; Vallet and Lvy 2009]. This could lead to

a method for intrinsically symmetric remeshing, and we leave this for future work.

The main limitation of our approach is the computational burden, including processing

time and memory consumption. Althouth Table 7.3 shows our technique could be applied

to process fairly big meshes on a conventional laptop, massive meshes would demand

out-of-core eigenvector computation methods, especially in the first levels of the hierar-

chy, increasing computational times considerably. Moreover, by cutting exactly along the

surface, we are encumbered by an increasing number of triangles being produced at every

scale. This hinders the performance and memory e�ciency of our method.

7.6 Summary
In this chapter, we have presented a novel method for multiresolution remeshing by

utilizing spectral surface processing. In particular, we demonstrate the utility of the Fiedler

vector for generating a balanced hierarchy of well-formed surface patches which are intrinsic

to the surface. We have demonstrated applications to quality uniform mesh generation,

adaptive mesh generation in the spirit of Haar wavelets, and the inherent robustness to

noise.



CHAPTER 8

CONCLUSIONS

In this thesis, we have explored the use of shape analysis for imperfect, defect-laden data.

In order to first gain insight into the types of imperfections which should be considered for

point clouds, we established a benchmark for surface reconstruction, providing us with

a means of quantitatively comparing surface reconstruction algorithms and exploring the

impact of various data imperfections.

We then considered how existing shape analysis methods can benefit several tasks,

namely normal orientation and surface remeshing. We demonstrated how to use a set of

harmonic functions defined on the point cloud to orient normals, and how the Fiedler vector

can be used to produce a hierarchy of good-quality surface meshes. Both of these methods

use the Laplace-Beltrami operator of a surface: the former considers functions which lie in

the kernel of the Laplacian, while the latter considers the first nontrivial eigenfunction of

the Laplacian. As these functions have been shown to be robust to noise and nonuniform

sampling in di↵erent areas, we leveraged these properties for improving normal orientation

and multiresolution remeshing.

Last, we developed new shape analysis methods in order to process incomplete point

clouds. In particular, we used the medial axis as a prior in order to construct new distances,

and illustrated how these distances benefit segmentation and reconstruction. We then

extended this to the construction of a di↵usion process implicitly defined on the medial axis,

and how this may be used to compute correspondences and intrinsic symmetries. These

approaches demonstrate a unique blend of extrinsic and intrinsic shape analysis: they are

extrinsic in that we are considering the volume of the shape via the medial axis, while also

being intrinsic to the medial representation in that we employ di↵usion distances and heat

di↵usion.
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8.1 Future Work
The work established in this thesis should provide for many avenues of future work. In

particular, the processing of incomplete point clouds still remains a challenging task, and

the medial kernel provides but one way of handling this type of data.

8.1.1 New Kernels

The medial kernel is driven by the medial axis prior for incomplete point clouds. We

envision a family of like-minded kernels to be developed, each of which exploiting di↵erent

structures of missing data. The symmetry-factored kernel of Lipman et al. [2010] is another

existing example: symmetry is a redundant cue in shape analysis, in that incomplete data

may still exhibit partial symmetries.

Structure repetition [Li et al. 2011] is a useful prior in missing data, where the challenge

in developing such a kernel lies in constructing a smooth measure which represents the

association of repeating elements, and relationship between elements. If photometric and

reflectance information is available, then an analogous structure repetition kernel could

easily be developed for this type of information. Visibility priors are well-known to be robust

to missing data [Curless and Levoy 1996; Tagliasacchi et al. 2011], and so the construction

of a visibility kernel would be a natural extension.

8.1.2 Multiple Kernel Processing

With all of these kernels, and the various parameters each one will inevitably contain, a

principled method of combining these kernels is desirable, and which is ideally independent

of the type of task to perform. We think the multiple kernel learning literature [Bach et al.

2004] should prove extremely useful.

The goal in multiple kernel learning is to find the optimal linear combination of a set

of kernels for a given task, typically classification. In some sense, our combination of the

medial kernel with the standard Gaussian kernel in our shape matching approach represents

a rather crude approach to this. One possible future direction is to consider the optimal

linear combination of kernels for shape matching, based on a training set of incomplete

point clouds in correspondence, resulting in multiple kernel shape matching. For instance,

we may consider the aforementioned class of kernels over a set of di↵erent parameters, and

a class of shapes containing missing data, and consequently learn the important weights.

This may result in certain shape classes where the medial kernel is assigned a low weight

while the visibility and symmetry priors are assigned more larger weights, and hence higher

importance.
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8.1.3 Towards Minimal Acquisition

A motivating application for developing methods to process incomplete point clouds is

minimal geometry acquisition. Despite the numerous advances in 3D geometry acquisition,

it still remains quite challenging to fully acquire a surface. For instance, while multiview

stereo methods can produce rather complete geometry, they are rather cumbersome to setup

and calibrate. On the other hand, while structure-from-motion methods are convenient for

passively obtaining geometry from image collections, they often produce extremely sparse

data.

Methods which can strictly operate on incomplete point clouds are hence attractive

in these scenarios. In this thesis, we have developed a number of ways of processing

incomplete point clouds, ranging from segmentation to finding correspondences, but we

can see other methods developed strictly for incomplete data, such as shape deformation,

skeletonization, physically-based simulation, and shape modeling. In particular, we have

used our distances derived from the medial kernel for the purposes of skinning incomplete

point clouds, and have found preliminary results for animation to be promising. Being

able to process incomplete, defect-laden data in this manner relieves the burden from the

acquirer, resulting in simpler and cost-e↵ective ways of capturing and processing the real

world.



APPENDIX A

RECONSTRUCTION BENCHMARK

DETAILS

Here, we provide additional details regarding the surface reconstruction benchmark.

A.1 Polygonal Weight Functions
In this section, we detail the closed-form solution for Equation 3.2, used in the formation

of our implicit functions. The basic idea is to cast the integral into the local coordinate

system of the triangle, and perform integration in terms of polar coordinates, analogous to

the construction of Green coordinates [Lipman and Levin 2010].

For a given evaluation point x and triangle t composed of the vertices p
1

, p
2

, and p
3

,

and normal n, we project x onto the plane of t:

x̃ = x+
⌦

p
1

� x,n
↵

n (A.1)

Now, for a given p 2 t, |x� p|2 + ✏2 = |x̃� p|2 + |x� x̃|2 + ✏2 = |x̃� p|2 + �
1

, where

�
1

= |x� x̃|2 + ✏2 and is constant throughout the integration. We can now rewrite the

integral as:
Z

p2t
w(x,p)dp =

X

ti

sgn(ti)

Z

p2ti

dp

(|x̃� p|2 + �
1

)2
(A.2)

where t is broken up into t
1

, t
2

, t
3

, formed from the triangles composed of x̃ and p
1

,p
2

,p
3

,

and sgn represents the orientation of the triangle: positive if oriented properly, and negative

otherwise. See the left image of Figure A.1 for an illustration of this decomposition.

Without loss of generality, we consider a single triangle t
1

. We now convert this integral

into polar coordinates:
Z

p2t1

dp

(|x̃� p|2 + �
1

)2
=

Z ✓=�

✓=0

Z R(✓)

r=0

r dr d✓

(r2 + �
1

)2

= �1

2

Z �

0

d✓

R(✓)2 + �
1

+
�

2�
1

The integration is centered with respect to x̃, where � is the angle in t
1

opposite x̃, and

R(✓) is the length parameterized by ✓. See the middle image of Figure A.1.
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Fig. A.1. We illustrate the decomposition of the integration of polygonal weight functions.
We first decompose integration into three separate triangles (left), for such a single triangle
perform integration in polar coordinates (middle), followed by breaking up the integration
into simpler components through orthogonal projection onto the opposing edge (right).

In order to have a clean parameterization of the length R(✓), we break up the integral

into two parts by considering the orthogonal projection of the point x̃ onto its opposing

edge, x̂, and breaking t
1

into: t1
1

=< x̃,p
2

, x̂ > and t2
1

=< x̃, x̂,p
3

>. Without loss of

generality, we consider t1
1

, and we obtain: R(✓) = |x̃�x̂|
cos(✓) ; see the right image of Figure A.1.

Hence, the integral becomes:
Z �1

0

d✓

R2(✓) + �
1

= sgn(t1
1

)

Z �1

0

cos2(✓)

|x̃� x̂|2 + �
1

cos2(✓)

= sgn(t1
1

)

✓

�
1

�
1

� |x̃� x̂|2

�
1

Z �1

0

d✓

|x̃� x̂|2 + �
1

cos2(✓)

◆

where sgn(t1
1

) is the sign of the orientation of the triangle, which may be negative if x̂

projects outside of t
1

. Applying the double angle formula to the above integral we obtain:

=

Z �1

0

d✓

(|x̃� x̂|2 + �1
2

) + �1
2

cos(2✓)

Setting b = |x̃� x̂|2+ �1
2

and c = �1
2

, we may apply the relevant antiderivative [Abramowitz

and Stegun 1964] to obtain:

Z

d✓

b+ c cos(2✓)
=

1p
b2 � c2

tan�1

(

r

b� c

b+ c
tan ✓

)

+ C

A.2 Description of Synthetic Scanner
Here, we provide additional details on our synthetic scanner, as described in Sec-

tion 3.2.1. To clarify the following discussion, we note that for each shape in our benchmark,

we have set its maximum dimension to be 70mm. Hence, any scanning parameter based

on distance is defined with respect to the bound of 70mm. Additionally, we place an upper

bound on the radiance to be 1.
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Our synthetic scanner is controlled by the following parameters:

– Image resolution. The image resolution, in conjunction with the number of scans

used, e↵ectively defines the resolution of the point cloud.

– Baseline distance. A small baseline distance magnifies depth errors in triangulation,

while a large baseline results in greater occlusion. We have fixed our baseline to be

with respect to the x-axis of the camera, though this may easily be adjusted to the

y-axis by changing the laser sweep direction. We found that baseline distances ranging

from 10mm to 150mm provide good variety in triangulation accuracy and occlusions.

– Stripe frustum field of view. The thickness of the laser stripe has an impact on

peak detection, in appropriately fitting a Gaussian. By default, we set the field of view

such that the number of pixels visible within a distance of 50mm from the camera is

roughly 10, which is a function of the image resolution.

– Stripe resolution. The number of laser stripes to project impacts the resolution

of the depth. By default, we set this to be the x resolution of the camera, in order

to obtain su�cient coverage. Setting the stripe resolution to be lower than the x

resolution may result in some points not being a↵ected by the laser stripes. By

assigning a su�ciently large stripe frustum field of view, one may be able to obtain

su�cient coverage.

– Noise magnitude. The magnitude of the noise corrupts the laser projection, making

peak detection imprecise. Typical noise magnitudes we have used range from 0, or no

noise, to 0.6, which can greatly corrupt the radiance signal.

– Radiance smoothing bandwidth. Smoothing the radiance image reduces noise,

though at the potential cost of sacrificing the expected Gaussian laser profile. The

bandwidth to use is largely dependent on the stripe frustum field of view and noise

level. For instance, a thick laser under large noise magnitude will require a fairly

large bandwidth to su�ciently smooth out the noise. We note that smoothing, in

conjunction with additive noise, may result in a radiance signal with smaller peak

magnitudes, which can impact the peak magnitude threshold.

– Peak magnitude threshold. For large thresholds, this will reject parts of the

surface whose radiance signal is determined weak by a pixel’s corresponding Gaussian

fit. This is a major cause of missing data. For a laser containing little or no noise,
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typical thresholds range from 0.8, which will result in only highly confident range

data, to 0.1, which will result in the rejection of few points. Under noise and radiance

smoothing, the peak threshold must be adjusted to account for an expected reduction

in peak magnitude.

– Variance threshold. Range at depth discontinuities are likely to be rejected under

this threshold. We set the variance with respect to the width of the laser, where by

default we only reject range whose variance in the Gaussian fit is larger than twice that

of the laser width. Similar to the peak magnitude threshold, the variance threshold

is sensitive to the noise magnitude and smoothing bandwidth.

We note that in our experiments, although we have generated quite a large number of

point clouds, we have hardly explored the full parameter space of our scanner. By publicly

releasing our synthetic scanner software, surface reconstruction researchers and practitioners

will be able to replicate specific scanning conditions which they are interested in operating

on.



APPENDIX B

IMPLEMENTATION DETAILS

The algorithms developed in this thesis were designed with simplicity in mind, such that

the core implementation of each algorithm is closely tied with the novelty and contribution

of the method. This results in a rather straightforward implementation for each method,

so that our algorithms are easily reproducible. In this appendix, we provide more detailed

descriptions and pseudocode for an important subset of these methods. In conjunction with

standard numerical linear algebra libraries, this should serve as a set of recipes for one to

rapidly implement the methods described in this thesis.

B.1 Medial Kernel
We describe the construction of the medial kernel, and in particular distances, in this

section. The other applications of our approach, namely segmentation and reconstruction,

follow as straightforward extensions of the kernel and distance construction. The construc-

tion of the medial kernel can be broken up into two main components: generation of the

candidate ball, and deviation of the candidate ball from a medial ball.

The candidateball routine of Algorithm 1 takes a pair of points, along with their corre-

sponding normals, and returns a ball’s center and radius. We first perform ray-intersections

against the bisecting plane, where rays are formed for each point along the corresponding

normal. If one of these rays fails to intersect the bisecting plane, then we do not form a

candidate ball for these point pairs. We then take the corresponding bisecting points bi, bj ,

and the center of these points bk. Note that all lie on the bisecting plane – we consequently

take the candidate ball as the one with smallest radius.

The emptiness routine of Algorithm 2 takes a candidate ball and e�ciently computes

the emptiness term �. Here, we assume that a kd-tree has been built on the point cloud,

such that each node contains the precomputated expansion terms for all points inside of the

node, as described in Section 5.2.2. As we traverse the tree and construct the emptiness

measure, if the current measure is determined to exceed a maximum dissimilarity, resulting
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Algorithm 1 Candidate Ball Generation: candidateball(pi,pj ,ni,nj)

b = pi+pj

2

; nb =
pj�pi

kpj�pik

bi = pi +
hb�pi,nbi
hni,nbi ni ; yj = bj +

hb�pj ,nbi
hnj ,nbi nj ; bk = pi+pj

2

if bi =1 or bj =1 then
return no intersection

end if
B = {bi,bj ,bk}
cij = argmin

c

{kc� pik|c 2 B}

rij = kcij � pik
return (cij , rij)

in the medial kernel to be numerically zero, then we terminate the traversal early. This

results in a substantial speed-up, in that we can quickly discard pairs of points which are

clearly dissimilar.

The medial kernel � easily follows; see Algorithm 3: first, we construct a candidate ball

for the points, measure the tangential dissimilarity ⌧ and emptiness �, and convert this into

a similarity measure. In practice, if the medial kernel is su�ciently small for a pair of points

(pi,pj), then we do not store the value. In doing so, we obtain a fairly sparse number of

entries whose medial kernel is nonzero. Note that this is largely a function of the medial

axis – clean spherical parts, for instance, will result in many nonzero entries.

Our distances are a straightforward adaptation of di↵usion distances applied to �, as

shown in Algorithm 4. In order to properly apply di↵usion distances, we must make the

matrix M row-stochastic, so that it encodes a random walk. We use the normalization

of Coifman and Lafon [2006], where we divide every entry of each row by the row’s sum-

mation.

B.2 Medial Laplacian
We next describe the construction of the Medial Laplacian, used for the purposes of

shape matching in Section 6.1.3. We have omitted pseudocode for the matching process, as

it is a straightforward adaptation of Ovsjanikov et al. [2010]. Aside from the medial kernel,

as just described, there are two main components to the Medial Laplacian: area estimation

and combining kernels.

Estimating the area at a given point amounts to finding other points which belong to

a similar medial region, and taking the convex hull of these points, see Algorithm 5. Once

the convex hull is constructed, we then take the area as one-third of the area of all incident

triangles to the point. If the query point does not lie on the convex hull, then we project
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Algorithm 2 E�ciently Computing Emptiness: emptiness(c, r)

� = 0
L  root node of kd-tree containing precomputed emptiness expansions
while |L| > 0 do

node  dequeue(L)
if node.is leaf then
� = �+node.precomputed expansion(c, r)
if � exceeds maximum dissimilarity then

return �
end if

end if
if ¬ node.intersects sphere(c, r) then
continue

end if
if node.contained in sphere(c, r) then
� = �+node.precomputed expansion(c, r)
if � exceeds maximum dissimilarity then

return �
end if
continue

end if
left node  node.left child ; right node  node.right child
l =left node.center ; r =right node.center
if kl� ck < kr� ck then
L.enqueue(left node) ; L.enqueue(right node)

else
L.enqueue(right node) ; L.enqueue(left node)

end if
end while

the neighbor points onto the estimated medial ball of the query point, and use the convex

hull of this neighborhood instead.

The construction of the Medial Laplacian is a combination of two di↵erent kernels: a

local Gaussian ↵, and the medial kernel �. As both of these kernels can have widely varying

densities, they must be normalized prior to being combined – this is the purpose of the d↵

and d� arrays. Once constructed, then the weight entries of the Medial Laplacian are

simply a linear combination of the two kernels, normalized by their respective densities;

see Algorithm 6. Note that although the above construction is quadratic in the number

of points, as both � and ↵ are typically sparse, a more e�cient (albeit more notationally

cumbersome) implementation is to store each entry of � and ↵ in a hash, indexed by the

particular pair of points.
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Algorithm 3 Medial Kernel Computation: �(pi,pj ,ni,nj)

(cij , rij) = candidateball(pi,pj ,ni,nj)
if no intersection then

return 10�10 // arbitrarily small value indicating no similarity
end if
si =

pi�cij

kpi�cijk ; sj =
pj�cij

kpj�cijk
� =emptiness(cij , rij)
⌧ = kni � sik+ knj � sjk

return e
�
�

�
�e

�2
�
�

⌧
�t

�2

Algorithm 4 Distances: dt(i, j)

M : Mij = �(pi,pj ,ni,nj)
D =diag(M1) ; M̂ = D�1M ; M̂ k = �k k

�t(pi) = {�t
1

 
1

(pi),�t
2

 
2

(pi),�t
3

 
3

(pi), ...}
�t(pj) = {�t

1

 
1

(pj),�t
2

 
2

(pj),�t
3

 
3

(pj), ...}
return k�t(pi)� �t(pj)k

B.3 Fiedler Tree
Last, we describe the construction of the Fiedler Tree. In particular, we show how to

construct the hierarchy of surfaces via spectral bisection, followed by how to generate a

mesh at any level in the hierarchy. The multiresolution analysis, for instance adaptive mesh

generation, follows as a straightforward adaptation.

The Fiedler tree is constructed by performing spectral bisection with respect to the

Fiedler vector of the Laplace-Beltrami operator; see Algorithm 7. Starting from the input

mesh, we compute the Fiedler vector, and then construct two child meshes separated by the

Fiedler vector. Triangles in which all vertices are negative or positive are assigned to the

negative child mesh (2i) and the positive child mesh (2i+ 1), respectively. When the zero

set cuts through a triangle, we use linear interpolation (zero intersect) to split the triangle

into one triangle and one quad – though in practice, we triangulate the quad so that we

can still easily construct the Laplace-Beltrami operator and perform linear interpolation.

This process is recursively done until a user-specificed maximum depth, D, is specified,

giving us a collection of surface meshes at every depth. This is a slight departure from the

implementation described in Section 7.2.1, where the pseudocode presented is less memory-

e�cient. However, it is a faster construction, as it is not necessary to construct a level of

the hierarchy from scratch, as described in Section 7.2.1.

Once the Fiedler tree has been constructed, we may take an arbitrary depth d  D and

generate its dual triangulation from the CW complex; see Algorithm 8. The CW complex
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Algorithm 5 Area Estimation: area estimation(P, i)

for k = 1 to N do
p̂k =

P
j ckj�(pk,pj)P

j �(pk,pj)

end for
ri =

P
j rij�(pi,pj)P
j �(pi,pj)

Bi = {pj 2 P | |p̂i � p̂j | < ✏} // ✏ is 1.5 times average sampling density
C =convex hull(Bi)
area = 0
if pi 2 C then

for t 2 C and pi 2 t do
area=area+1

3

|t|
end for

else
B̄i = {sphere projection(pi, p̂i, ri) | |p̂i � p̂j | < ✏}
C̄ =convex hull(B̄i)
for t 2 C̄ and pi 2 t do
area=area+1

3

|t|
end for

end if
return area

is composed of a collection of surface patches, noted as Md
i , where we first generate a

triangulated mesh composed of all Md
i . The centroid method is simply the area-weighted

center of a surface patch. Then, for each vertex in Md, if it is incident to three unique cells,

we generate a triangle. Note that the number of unique incident cells will only range from

one – three, due to how we construct the Fiedler tree; hence, we are guaranteed a valid

triangulation so long as the closed ball property is satisfied, as discussed in Section 7.2.1.
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Algorithm 6 Medial Laplacian Construction: medial laplacian(P, ⌘)

for i = 1 to n do
ai =area estimation(i)
for j = 1 to i do

↵ij = e�
� kpi�pjk

�e

�2

�ij = �(pi,pj ,ni,nj)
end for

end for
init(d↵) ; init(d�) // arrays containing local densities, initially all entries are 0
for i = 1 to n do

for j = 1 to i do
d↵[i] = d↵[i] + ↵ijai ; d↵[j] = a↵[j] + ↵ijaj
d�[i] = d�[i] + �ijai ; d�[j] = a�[j] + �ijaj

end for
end for
for i = 1 to n do

D(i, i) = ai
for j = 1 to i do
W (i, j) = (1� ⌘) �ij

d�[i]d�[j]
+ ⌘ ↵ij

d↵[i]d↵[j]

end for
end for
return WD
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Algorithm 7 Fiedler Tree: fiedlersplit(M,d, i,D)

if d = D then
return

end if
Form Laplace-Beltrami operator �M

�Mf
2

= �
2

f
2

// f
2

is the Fiedler vector
Md+1

2i = ; ; Md+1

2i+1

= ; // child meshes initially empty
for t = {v

1

, v
2

, v
3

} 2M do
if f

2

(v
1

) < 0 and f
2

(v
2

) < 0 and f
2

(v
3

) < 0 then
Md+1

2i .add tri(t) ; continue
else if f

2

(v
1

) > 0 and f
2

(v
2

) > 0 and f
2

(v
3

) > 0 then
Md+1

2i+1

.add tri(t) ; continue
end if
if f

2

(v
1

) < 0 then
if f

2

(v
2

) < 0 then
Md+1

2i .add quad(v
1

,zero intersect(f
2

, v
1

, v
3

),zero intersect(f
2

, v
2

, v
3

), v
2

)
Md+1

2i+1

.add tri(v
3

,zero intersect(f
2

, v
2

, v
3

),zero intersect(f
2

, v
1

, v
3

))
else

Md+1

2i .add tri(v
1

,zero intersect(f
2

, v
1

, v
2

),zero intersect(f
2

, v
1

, v
3

))
Md+1

2i+1

.add quad(v
2

, v
3

,zero intersect(f
2

, v
1

, v
3

),zero intersect(f
2

, v
1

, v
2

))
end if

else
if f

2

(v
2

) > 0 then
Md+1

2i+1

.add quad(v
1

,zero intersect(f
2

, v
1

, v
3

),zero intersect(f
2

, v
2

, v
3

), v
2

)

Md+1

2i .add tri(v
3

,zero intersect(f
2

, v
2

, v
3

),zero intersect(f
2

, v
1

, v
3

))
else

Md+1

2i+1

.add tri(v
1

,zero intersect(f
2

, v
1

, v
2

),zero intersect(f
2

, v
1

, v
3

))

Md+1

2i .add quad(v
2

, v
3

,zero intersect(f
2

, v
1

, v
3

),zero intersect(f
2

, v
1

, v
2

))
end if

end if
end for
fiedlersplit(Md+1

2i , d+ 1, 2i,D) ; fiedlersplit(Md+1

2i+1

, d+ 1, 2i+ 1, D)
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Algorithm 8 Dual Triangulation: triangulate(d)

Md = ; ; C = []
for i = 0 to 2d � 1 do

for t 2Md
i do

t.id= i
end for
Md = Md [Md

i

C[i] =centroid(Md)
end for
U = ;
for v 2Md do

dual ids = ;
for t 2Md incident to v do
dual ids = dual ids [ t.id

end for
if |dual ids| 6= 3 then
continue

end if
U .add tri(C[dual ids[0]],C[dual ids[1]],C[dual ids[2]])

end for
return U
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