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Spatial and temporal interactions are central and fundamental in pretty much

all activities in our world and society. Everyday, people and goods travel around

the world at different speeds and scales; migratory animals engage in long-distance

travels that demonstrate the biological integration around the globe; weather

phenomena, like typhoons and hurricanes, form and move around the Earth and

may have large social-economic impact. In all these examples, proper understanding

of the underlying phenomena can produce insights with the potential to shape the

future development in those domains.

The rapid development of acquisition technology and the popularization of

GPS enabled mobile devices has resulted in spatiotemporal data being produced at

massive rates. These create opportunities for data-driven analysis that can highly

influence decision making in a diverse set of domains. In order to take advantage of
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all these data and realize their potential, it is crucial to be able to extract knowledge

from them.

Interactive visualization systems are acknowledged to be important tools in this

scenario: they leverage the human cognitive system and the power of interactive

graphics to enable quick hypothesis testing and exploration. However, the volume

and inherent complexity of spatiotemporal data makes designing such systems

a difficult problem. In fact, such complex data collections pose challenges in

both managing the data for interactive exploration as well as in designing visual

metaphors that enable effective data exploration. Also, such visual metaphors are

limited by constraints imposed by the display and data dimensions, often resulting

in extremely cluttered visualizations that are hard to interpret. While, filtering

and aggregation strategies are often applied to eliminate clutter, they might hide

interesting patterns. Therefore, purely visual/interaction methods need to be

complemented with techniques that help in the process of pattern discovery.

This dissertation presents novel visual analytics contributions for the analysis

of spatiotemporal data to attack the challenges aforementioned. Visual analytics

combine interactive visualization with efficient pattern mining techniques to enable

analysts to explore large amounts of complex data.

The first contribution is the design of the TaxiVis visual exploration system.

This system couples together a novel visual query model with an efficient custom-

built data layer. These two components enable easy query composition via visual

methods as well as interactive query response times. TaxiVis also makes use of

coordinated views and rendering strategies to generate informative visual summaries

for query results even when those are large.

The remaining of the contributions in this thesis consists of two pattern mining

techniques that help in the navigation through the data via pattern discovery.

These two techniques have the goal of enhancing the analytical power of tools such

as TaxiVis. Furthermore, these techniques have in common the of use concepts and

techniques widely applied in scientific visualization and computer graphics. This

approach allows us to have novel perspectives on the problems of finding patterns

in spatiotemporal data that, to the best of our knowledge, have not been considered

in the machine learning and data mining fields. The first technique consists of a

topology-based technique whose main objective is to help users to find the “needle
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in the hay stack”, i.e., guide users towards interesting slices (spatiotemporal regions)

of the data. We call this process event guided exploration. The overall idea behind

this technique is to treat topological features of time-varying scalar functions

derived from spatiotemporal data as treated as events. Via visual exploration of

the collection of extreme points extracted over time, important events of the data

can be found with relatively a small amount of work by the user.

The second pattern mining technique consists of a novel model based clustering

technique designed for trajectory datasets. This technique, called Vector field k-

means, models trajectories as streamlines of vector fields. One important feature

of this modeling strategy is that it tries to avoid overlapping trajectories to have

discrepant directions at their intersections. Clustering is achieved by using the

spatial component of trajectories to fit a collection of vector fields to the given

trajectories. This technique achieves richness and expressivity of features, simplicity

of implementation and analysis, and computational efficiency. Furthermore, the

obtained vector fields serve as a visual summary of the movement patterns in each

cluster. Finally, Vector field k-means can be naturally generalized to also consider

trajectories with attributes. This is achieved by using a different modeling strategy

based on scalar fields, which we call Attribute field k-means.
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Chapter 1

Introduction

This dissertation concerns the design of visual analytics techniques for the

exploration of spatiotemporal data.

1.1 Motivation

Spatial and temporal interactions are central and fundamental in pretty much

all activities in our world and society. Everyday, people and goods travel around

the world at different speeds and scales; migratory animals engage in long-distance

travels that demonstrate the biological integration around the globe; weather

phenomena, like typhoons and hurricanes, form and move around the earth and

may have large social-economic impact. In all these examples, proper understanding

of the underlying phenomena can produce insights with the potential to shape the

future development in those domains.

The rapid development of acquisition technology and the popularization of GPS

enabled mobile devices has resulted in the production of data with spatial and

temporal components (also known as spatiotemporal data) at massive rates and at

low cost. A famous assertion in the geoscience and geo-business communities claims

that “80% of all information contains some geospatial reference” [66]. While it is

hard to be precise on the exact proportion, recent studies claim that the amount

of spatial/spatiotemporal data is in the order of 50%-80% of all the produced

data [20, 66]. The availability of such large collections of data has given rise to

new opportunities for data-driven analysis that can 1) generate new insights; 2)
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new value creation; and 3) highly influence decision making in a diverse set of

domains. For example, it was estimated that the amount of personal location

data produced in the year of 2009 was 1 petabyte (with expected growth of 20

percent a year), and that over the following decade, new applications in sectors

such as telecommunications, retail, and media would bring revenues of the order of

hundreds of billions of dollars [88].

In order to take advantage of all these data and realize their potential for impact

in decision making and business, it is crucial to be able to extract knowledge from

them.

1.2 Spatiotemporal Data Types

Formally, spatiotemporal data are defined as high-dimensional data records

for which the different dimensions can be classified in three components: spatial

(e.g., geographical coordinates), temporal (e.g., timestamps), and attribute (e.g.,

temperature, pressure, etc.), Given the wide range of applications, it is not surprising

that there exists a number of distinct types of spatiotemporal data. Kisilevich et

al. [74] proposed the classification of spatiotemporal data summarized in Figure 1.1.

This classification is based on two main aspects namely the spatial dimension and

the temporal dimension. With respect to the spatial dimension, the data is classified

according to whether or not the spatial component of the data records is fixed

(such as information collected by sensors with fixed location) or not (GPS tracks of

moving vehicles). The temporal dimension is classified with respect of how much

of temporal evolution is recorded. In the simplest case, the data recorded does

not evolve, in which case only a single snapshot is available. A more complex case

corresponds to data that evolves with time, but only the most recent snapshot is

available, which is called updated snapshot. Finally, the most complex case, called

time series, corresponds to the case in which the full temporal history is kept.

As displayed in Figure 1.1, these different alternatives generate multiple types of

datasets. Furthermore, as also shown in Figure 1.1, the classification above can

be extended by considering the spatial extension or geometry of the objects under

consideration. In fact, in some scenarios, it is important to properly model the

geometry of the objects. For example, in applications that deal with road segments
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Figure 1.1: Spatiotemporal data classification by Kisilevich et al. [74].

or pieces of land one might consider line and area objects. However, this is rare

and the most common case corresponds to point objects, which do not consider the

spatial extension. Therefore, our focus is on point objects in the classification.

1.3 Visual Analysis of Spatiotemporal Data

Data visualization is a fundamental tool in the presentation and analysis of

spatiotemporal data. By definition, the goal in understanding this type of data

is to put the phenomena being studied in context with location and temporal

aspects. Visualization techniques attack this problem by leveraging the power

of the human visual system to interpret visual representations of the data to be

analyzed. The related field of cartography is a great example of the effectiveness of

the use of visualizations for spatiotemporal data. In fact, for centuries, cartography

techniques have been developed to produce maps to effectively present spatial and

spatiotemporal data, with the earliest maps dating from 4th millennium BC[114].

Figure 1.2 shows two famous and influential cases of the use of such techniques,

namely Minard’s visualization of Napoleon’s campaign (Figure 1.2(a)) and the

London cholera cases map by Dr. John Snow (Figure 1.2(b)). Minard’s visualization
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(a) (b)

Figure 1.2: Examples of the use of visualization of spatiotemporal data from the 19th

century. (a) Minard’s visualization of Napoleon’s campaign, which demonstrates
the use of visualization for communication or story telling. (b) Map produced by
Dr. John Snow in his investigation on the outbreak of Cholera that happened in
London in 1854. This demonstrates the use of visualization for data analysis.

is a typical case of the use of visualization for presentation, which was the concern

of most of the early works in cartography. On the other hand, John Snow’s map is

an example of the use of maps for data exploration and decision-making, which has

been the concern of most modern map design techniques [86] and is the focus of

this dissertation.

The popularization of powerful computers and interactive computer graphics

has widely changed the way visual exploration of spatiotemporal data is done. It

induced a major shift from manually produced visualizations (such as the ones in

Figure 1.2) to highly interactive visualization systems. In general, such systems

provide interactive tools to select portions of the data and browse through them.

This enables quick hypothesis making and confirmation, important stages of the

data exploration process. All these features make interactive systems essential in

the exploration of large collection of complex data such as spatiotemporal data [56].

However, there are many challenges in designing systems for the exploration

of spatiotemporal data, and these have been the focus of several recent research

efforts [6, 31, 53, 54, 83, 117, 127? ]. One of these challenges is providing inter-

activity while handling large datasets. This involves being able to process (e.g.,

query, filter, and aggregate) large amounts of data at interactive rates in real time

in order to visualize them. This is crucial since interactivity plays a major role
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(a) Map showing location types by Kruger et al. [75]

(b) Movement visualization
by Rinzivillo et al. [108]

(c) Multivariate trajectory visu-
alization by Tominski et al. [118]

Figure 1.3: Examples spatiotemporal data visualization of different types. (a) Show
the visualization of ST events (Figure 1.1), while (b) and (c) show visualizations
of trajectory datasets. Notice that due to the display limitations and positioning
constraints imposed by the space and time components of the data, these displays
get cluttered. In all these examples, interactive filtering and aggregation is used to
overcome/reduce the clutter.

in the data analysis process [56] and even small latency can drastically impact

the outcome of the analysis [84]. A second major challenge is how to effectively

provide visual representations and interactions of spatiotemporal [62, 109]. In

general lines, this is due to the fact that spatiotemporal data is by its nature

high-dimensional and that, different from abstract high-dimensional data, space

and time have contextual information which constrains how the data are placed in

a visualization. The consequence of this is that visualizations of spatiotemporal

data get cluttered even with small amounts of data. Figure 1.3 exemplifies this fact

for different types of spatiotemporal data. Filtering and aggregation strategies are

often applied to solve this problem [4, 54]. While this approach eliminates clutter,
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it might hide interesting patterns. Furthermore, deciding the right way to slice

the data through filtering and also the right level of aggregation in order to find

patterns are hard problems. In fact, interesting patterns in spatiotemporal data

might happen in different scales over different spatiotemporal regions. In order

to find these patterns one would need to examine a prohibitively large number

of spatiotemporal slices even when using sophisticated interactive tools. For this

reason it is widely acknowledged that purely visual/interaction methods are not

enough to allow an effective exploration and pattern discovery [14]. Therefore there

is a need for techniques that will enhance the analytical capabilities of interactive

visualization.

The study of such techniques is the goal visual analytics. As defined by Thomas

and Cook [34], visual analytics is the science of analytical reasoning facilitated by

interactive visual interfaces. The main overall premise of this research area is that

while techniques of the interactive visualization and pattern mining domains are

important and powerful on their own, they are limited if considered in isolation.

Therefore, in order to build more effective tools that support analytical reasoning

for data analysis it is necessary to combine the capabilities of these two domains.

1.4 Thesis Contributions

The goal of this thesis is to develop visual analytics techniques to attack the

challenges in the visual exploration of spatiotemporal data.

The first contribution of this thesis is the design of the TaxiVis visual exploration

system. TaxiVis brings together two main components: an expressive visual query

model for spatiotemporal data and a custom-built data layer. In spatiotemporal

data, querying is complex due to the many dimensions of the data. Being able

to easily express complex queries is key to an effective exploration process. The

proposed visual query model is able to express a wide range of spatiotemporal

queries. These queries can be easily composed and refined, which makes the process

of testing new hypothesis very simple. In TaxiVis, the query model is coupled with

an efficient data layer that enables query response at interactive rates even with

larges amount of data. In addition, TaxiVis makes use of coordinated views and

strategies based on aggregation and adaptive level-of-detail to generate informative
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visual summaries for query results even when these results are large. While a

particular example, TaxiVis can be seen as a representative of the class of systems

for visualization of spatiotemporal data in the sense that it employs many of the

visualization/interaction techniques generally used in this type of system.

As briefly discussed earlier (and exemplified later in this dissertation), while

systems like TaxiVis are very powerful and enable interactive exploration of large

spatiotemporal datasets, many patterns might remain undiscovered. Motivated by

this fact, in this thesis we propose two pattern mining techniques that help in the

navigation through the data via pattern discovery. The two techniques presented

have in common the of use concepts and techniques widely applied in scientific

visualization and computer graphics such as computational topology and vector

fields. As described later, this approach allows us to have novel perspectives on

the problems of finding patterns in spatiotemporal data that, to the best of our

knowledge, have not been considered in the machine learning and data mining

fields. Furthermore, in doing so we can leverage the extensive body of algorithmic

and visualization research on those concepts to propose mining techniques that are

mathematically well founded, computationally efficient, and the results of which

can be understood via previously proposed visual representations. On the other

hand, the two techniques differ in the type of spatiotemporal data they handle as

well as the type of pattern that they can unveil.

The first technique consists of a topology-based technique whose main objective

is to help users to find the “needle in the hay stack”, i.e., guide users towards

interesting slices (spatiotemporal regions) of the data. We call this process event

guided exploration. The overall idea behind this technique is to convert the data

to a time-varying scalar function (or geo-referenced time series, as described in

Figure 1.1). This scalar function models the phenomena under study. Extreme

points of this time-varying scalar functions treated as events and these are discovered

through the use of computational topology, which is not only computational efficient,

but also allows a diverse set spatiotemporal events to be mined. The discovered

events are then organized in an index data structure which allows both fast retrieval

and querying. As shown later, via visual exploration of the collection of extreme

points extracted over time, important events of the data can be found with relatively

a small amount of work by the user. By definition, extreme points are related to
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static patterns in the data, i.e., they do not explicitly model the notion of movement.

Unveiling movement patterns is the goal of the second pattern technique pro-

posed in this thesis. It consists of a clustering technique designed for pattern

finding in trajectory data. As described previously, this type of data is characterized

by the temporal evolution of spatial and attribute components in a continuous

manner, which causes of clutter in visual representations. Our technique attacks

this problem by, instead of visualizing the entire data, partitioning the data in a way

that each group in the partition avoid clutter and therefore reduce the complexity

of the data that is shown. Since clearer visualizations are produced, it becomes

easier to understand the visualizations and identify patterns. In order to achieve

this, we propose a novel clustering approach for trajectory data, called Vector field

k-means. In this approach, trajectories are modeled as streamlines of vector fields.

One important feature of this modeling strategy is that it tries to avoid overlap-

ping trajectories to have discrepant directions at their intersections. Clustering is

achieved by using the spatial component of trajectories to fit a collection of vector

fields to the given trajectories. This technique achieves richness and expressivity of

features, simplicity of implementation and analysis, and computational efficiency.

Furthermore, the obtained vector fields serve as a visual summary of the movement

patterns in each cluster. Therefore, techniques for vector field visualization can be

leveraged to display these movement patterns. Finally, Vector field k-means can be

naturally generalized to consider not only the spatial component of the trajectories,

but also their attribute components. This is achieved by using a different modeling

strategy based on scalar fields, which we call Attribute field k-means.

1.5 Thesis Outline

Chapter 2 describes the design of the TaxiVis system for the exploration of large

collections of taxi trip records. Chapter 3 presents the use computational topology

based technique for event guided exploration. Chapter 4 describes the Vector field

k-means technique and its Attribute field k-means generalization for trajectory

clustering. Finally, Chapter 5 concludes this thesis and presents directions for future

work. The work presented in this dissertation has been published in peer-reviewed

journals [38, 51, 54, 60].
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Chapter 2

The TaxiVis System for

Exploration of Taxi Trip Records

In this chapter we present the design of the interactive visualization system

TaxiVis. This system allows the exploration of large collections of spatiotemporal

data. The main motivation for the development of TaxiVis was the exploration of

one such dataset namely New York City’s taxi trip records.

In New York City, each day 13,000 taxis carry over one million passengers and

make, on average, 485,000 trips—totaling over 175 million trips a year. Studying

taxi trip records can reveal social and economic aspects of the city. For example,

consider the plot in Figure 2.1, which shows how the number of trips per day varies

over 2011 and 2012. There is a lot of regularity: the plot lines are very similar

for the two years. For example, on Thanksgiving, Christmas and New Year’s eve,

there is a substantial drop in the number of trips. But the plot also shows some

anomalies. There are big drops in August 2011 and October 2012, which correspond

to hurricanes Irene and Sandy, respectively. Looking at the data at a finer grain,

other interesting patterns emerge. The maps in Figure 2.1 show the density of taxis

across Manhattan from 7am to 11am, on May 1st, 2011. From 8am to 10am, taxis

disappear along 6th avenue, from Midtown to Downtown; and then, at 10am they

reappear. As it turns out, during this period, the streets were closed to traffic for

the NYC Five Boro Bike Tour.1 This example shows that taxi cabs can be seen as

valuable sensors of city life. Furthermore, this dataset (described in Section 2.2)

1http://www.nycbikemaps.com/spokes/five-boro-bike-tour-sunday-may-1st-2011
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presents multiple challenges not only to the current tools used by domain experts

interested in the data, but also to the most used visual data exploration system

such as Tableau and Spotfire. For this reason, while TaxiVis is general and its

components can be used in a variety of datasets, we base the discussion of this

chapter on the New York City’s taxi trip dataset.

We highlight two main challenging aspects in the exploration of this dataset

that are part of the general challenges discussed in Chapter 1.3. First, its size limits

the use of tools with in-memory storage such as R, MatLab, Stata, ArcGIS and

Excel. These tools are commonly used by traffic engineers, economists and urban

planners in their data analysis tasks. While some of these tools allow the use of

external database management systems, they do not provide the desired latency for

interactive analysis [49]. Second, the multiple attributes of the dataset along with

its spatiotemporal components makes data selection for exploration difficult. The

consequence of this is that domain experts often rely on intuition when selecting

portions of the data, which limits them to only perform confirmatory analysis.

These challenges prevent the domain experts from analyzing the whole data. In

fact, the usual analysis workflow when dealing with this dataset is to first select

small slices and then load them into these tools for analysis. This process is both

tedious and time consuming.

In order to overcome those challenges, an important goal in the TaxiVis design

was to unify the two phases of exploration: data selection and visual analysis. We

posit that by doing so, domain experts will be able to carry out both confirmatory

and exploratory analyses over the complete taxi data set. Since domain experts

often do not have computer science training, another desired feature of our system

was that it should be easily usable and not require knowledge of specialized

programming or query languages. Simplicity must be balanced with expressiveness:

the exploratory system has to be expressive enough to support spatiotemporal

selection and analysis at different scales both in space and time, selections over

the different trip parameters, and the ability to refine and generalize queries.

Furthermore, due to the scale of the data, the system should be able to provide

interactive selection response times as well as support result summarization. Besides

giving insights into the data, summaries can help guide the exploration, including

hints about potentially useful query refinements. Also, exploration must be flexible,
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Figure 2.1: Taxis as sensors of city life. The plot on the top shows how the number
of trips varies over 2011 and 2012. While some patterns are regular and appear on
both years, some anomalies are clear, e.g., the drops in August 2011 (Hurricane
Irene) and in October 2012 (Hurricane Sandy). In the bottom, we show pickups
(blue) and dropoffs (orange) in Manhattan on May 1st from 7am to 11am. Notice
that from 8-10am, there are virtually no trips along 6th Avenue, indicating the
traffic was blocked.

allowing users to go back and forth from aggregated summaries to individual

objects.

To address these needs we designed TaxiVis which is shown Figure 2.2. The

main features of this system are a custom-built data layer and a new visual query

model. This data layer is able to provide interactive query response times for the

queries supported by our query model. The proposed query model enables complex

spatiotemporal queries over all the components in the taxi dataset (Section 2.3).

The use of visual querying eleminates the need of the knowledge of a textual query

language: the data can be directly queried using visual operations. We show that

this model is able to express a wide range of queries, and in particular, the three

classes of queries in Peuquet’s typology [106]: identify a set of objects at a given

location and time; given a time and a set of objects, describe the locations occupied

by the objects; and describe the times a set of objects occupied a given set of

locations.
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Figure 2.2: Comparison of taxi trips from Lower Manhattan to JFK and LGA
airports in May 2011. The query on the left selects trips that occurred on Sundays,
while the one on the right selects trips that occurred on Mondays. Users specify
these queries by visually selecting regions on the map and connecting them. In
addition to inspecting the results depicted on the map, i.e., the dots corresponding
to pickups (blue) and dropoffs (orange) of the selected trips, they can also explore
the results through other visual representations. The scatter plots below the maps
show the relationship between hour of the day and trip duration. Points in the plots
are colored according to the spatial constraint represented by the arrows between
the regions: trips to JFK in blue, and trips to LGA in red. The plots show that
many of the trips on Monday between 3PM and 5PM take much longer than trips
on Sundays.

The ability to specify queries using graphical widgets and visualize their results

was in part inspired by the seminal work by Ahlberg et al. [3] on dynamic queries.

Our focus, however, is different: we aim to support the exploration of large,

spatiotemporal OD data, and provide visualization services that are both usable

and efficient. Another important feature of our model is that each query is

associated with a set of trips. As a result, not only can queries be composed and

refined, but also query results can be aggregated and different visual representations

can be applied while still maintaining the spatial and temporal contexts. Query

composition also enables the use of cross-filtered views [128], which is key in our

model to support the query classes in Peuquet’s typology.

TaxiVis combines a number of interaction capabilities that enable users to
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pose queries over all the dimensions of the data and flexibly explore the attributes

associated with the taxi trips. Another important feature of the system is the ability

to compare spatiotemporal slices through multiple coordinated views. Users can

interactively compose and refine queries as well as generalize them by performing

parameter sweeps. To avoid clutter, the system implements a number of strategies to

render a large number of graphical primitives on a map. As discussed in Section 2.4,

these include the use of aggregation and adaptive level-of-detail rendering.

TaxiVis has been deployed to a number of agencies in NYC such as the Taxi

and Limousine Commission (TLC) and Department of Transportation (DoT) and

has been in use since its release. In Section 2.5, we demonstrate the usefulness

of TaxiVis through a series of case studies motivated by traffic engineers and

economists whose needs have driven our design. These case studies show how our

model (and system) enable domain experts to perform tasks that were previously

unattainable for them.

2.1 Related Work

Analyzing Taxi Data. Recognizing the wealth of information that can be ob-

tained from taxi data, recently, several efforts have focused on their analysis. Ge et

al. [59] and Yuan et al. [132] proposed recommendation systems for taxi drivers to

optimize the cost of finding passengers (and therefore reduce gas emission). Pan

et al. [99] used pickup and dropoff information to classify location according to

land use. Veloso et al. [122, 123] used taxi data to study human mobility in Lisbon.

They explored patterns in distribution of pickup and dropoff locations and the

association with the city context. Liang et al. [81] studied the taxi data from

Beijing and reported that the displacement distribution of taxis follows a different

distribution than the majority of human mobility data. Peng et al. [105] analyzed

1.58 million taxi trips in Shanghai, and through the use of modeling algorithms, they

concluded that people travel on workdays mainly for three purposes: commuting

between home and workplace, traveling from workplace to workplace, and others

such as leisure activities. Liao et al. [82] designed a visual analytics system to

detect anomalies in GPS streams produced by taxis. They produce a visualization

of the stream, apply an anomaly detection model, and leverage the user interaction
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to incrementally improve their model. These works share an important requirement:

the need to perform exploratory analyses. The visual query model and scalable

system we propose have the potential to benefit such efforts by making it easier to

carry out these analyses.

Visualizing Movement. Movement data has recently received substantial at-

tention in the visualization community (see [16] for a survey). Much of the work

has focused on trajectory data, where the complete trace of the moving entities

is recorded. In contrast, the data we consider (Section 2.2) is multi-variate OD

data [131]: only the start and end positions are recorded, together with attributes

associated with the movement. Techniques have also been devised to visualize OD

data. Phan et al. [107] proposed a method to automatically generate flow maps

that show the movement between two locations. Wood et al. [131] proposed OD

maps, which encode trips as a set of spatially ordered small multiples to avoid

occlusion effects that occur when flow maps are applied to a large number of trips.

While these two techniques consider only space, Boyandin et al. [23] proposed

Flowstrates, which takes both space and time into account. These techniques are

orthogonal and could be combined with our model. For example, in addition to the

plots currently supported by the data summary view of our system (Section 2.4),

we could also display a Flowstrate visualization for users to explore the results of

origin-destination queries.

Visual Data Selection and Queries. Data selection is a fundamental task for

querying and visualization. A number of approaches have been proposed to simplify

this task. Ahlberg et al. [3] introduced the concept of dynamic queries, where

queries are specified through graphical widgets. VIQING [98] allowed users to

create selection queries by directly manipulating visualizations. Heer et al. [68] went

a step further and proposed the use of query relaxation to interactively generalize

selections. Our approach follows in the tradition of these systems: users can specify

selections visually as well as explore the results through direct manipulation of

visualizations; and they can also generalize queries. Shrinivasan and Van Wijk [113]

proposed the creation of a Select & Slice table during an exploration process

to help cross-tabulate semantic zones (i.e., user-defined data regions) and data

subsets. Using these tables, users can manipulate zones and explore the relationship

between zones and data slices. Another notable effort in this direction is the Polaris
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system [116] and its successor, Tableau. Polaris pioneered a visual model for users

to specify queries and visualizations by dragging database column names onto

shelves for visual variables. A distinguishing feature of our model is that the visual

operations were designed to support spatiotemporal queries over OD data. Note

that systems like Tableau were developed to manipulate tabular data, and thus,

they can also support spatiotemporal queries over data stored in tables. However,

specifying spatiotemporal selections and comparing them in these general systems

can be challenging. Another difference between our model and Tableau’s is that

the latter provides a visual interface for users to construct queries—it does not

support direct querying over the visualized data.

Visual query models have been proposed for spatiotemporal data [40, 47, 55].

They infer queries from the topology of query sketches specified by the users. Like

our model, these works aim to achieve expressiveness. However, they have important

limitations that make them unsuitable for our problem. First, they were designed

for continuous spatiotemporal data, i.e., when full trajectories are recorded. Second,

their “dictionary” of visual representations is very complex—users need to master

a number of logic operators and visual syntax, which negatively impacts usability.

2.2 Data and Design Requirements

The New York City Taxi Data. The data used in our study was provided by

Taxi and Limousine Commission of New York City and contains information about

all medallion taxi trips in 2009, 2011, and 2012. The raw data came in CSV files

with a total size of approximately 120 GB and contained over 540 million trips.

Each trip record consists of: trip id, taxi id, driver id, pickup location, dropoff

location, pickup date and time, dropoff date and time, traveled distance, fare

amount, tip amount and toll amount.

Taxi and driver ids were anonymized so as to avoid the linking of records to the

actual taxi medallion and taxi driver’s license. Note that the trajectory of a trip is

not recorded.

As just described, due to technological limitations, at the time of our collab-

oration only the start and end positions for each trip are recorded. This type of

spatiotemporal dataset is called origin-destination or OD dataset. This can be
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seen as a subtype of trajectory datasets (Chapter 1.2). The design of TaxiVis takes

this in consideration and focus on OD data. This simplifies the type of queries that

need to be performed and therefore the data layer used to process them. However,

as discussed in Section 2.6, it is easy to extended our system to support queries on

general trajectory datasets.

Desiderata for Visual Exploration. We have conducted interviews with a total

of five researchers from Economics and Traffic Engineering departments (2 engineers

and 3 economists) from New York University to better understand the questions

they want to investigate. We have identified different kinds of queries the experts

want to perform. They are interested in understanding the dynamics of the city,

how different aspects of the data vary over space and time. For example, “What is

the average trip time from Midtown to the airports during weekdays?” or “How

does the taxi fleet activity vary during weekdays?”. They also want to explore

particular events at a given time such as “How was the taxi activity in Midtown

affected during a presidential visit” or “How did the movement patterns change

during hurricane Irene?”; and how patterns differ across different neighborhoods,

for example “What is the frequency of taxis in Midtown and Harlem?”. As they

explore the data, they need to freely mix these queries and drill down from a

high-level summary to an individual event.

As in any longitudinal analysis, comparing different data slices is essential:

how patterns vary across space and time, and at different scales. For example,

“How the movement changes between Midtown and JFK throughout the day, and

over different days of the week”. In addition, they need the ability to quickly test

hypotheses. For example, starting with a query about a specific neighborhood

(“What are the movement patterns between the Midtown and JFK?”) and then

generalizing it to all neighborhoods in Manhattan.

Currently, the analyses carried out by the experts are mostly confirmatory. They

use general-purpose analysis tools such as R, MatLab, Stata, Excel, and use basic

filters and visual tools to verify their hypotheses. Since these tools have limited

scalability, the experts must select a (small) subset of the data to analyze. As

they identify patterns and explore hypotheses that need to be tested on other data

slices, they need to go back to the raw data. Not only is this process tedious and

error-prone, but it also prevents them from performing analyses over the whole data
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set, or even over a single year. Furthermore, it is hard to replicate the analyses, to

apply an analysis over different data subsets, and to compare different data slices.

To address these limitations, an important goal of our work is to unify the two

phases of exploration: data selection and visual analysis. We posit that by doing so,

domain experts will be able to carry out both confirmatory and exploratory analyses

over the complete taxi data set. Since these experts do not have computer science

training, the system should be usable and not require knowledge of specialized

programming or query languages. Simplicity must be balanced with expressiveness:

the exploratory system has to be expressive enough to support spatiotemporal

selection and analysis at different scales both in space and time, selections over the

different trip parameters, and the ability to refine and generalize queries.

Due to the large-scale of the data, the system should also support result sum-

marization. Besides giving insights into the data, summaries can help guide the

exploration, including hints about potentially useful query refinements. Further-

more, exploration must be flexible and allowing users to go back and forth from

aggregated summaries to individual objects.

The TaxiVis System. With these requirements in mind, we have built TaxiVis,

a system for exploring large OD and spatiotemporal data. A key component

of the system is a visual query model that is easy to use, yet expressive. As

we discuss in Section 2.3, the system supports the query types defined in the

Triad Framework [106]. The functional modules of the system are shown in

Figure 2.3. Users formulate queries visually, by interacting with maps and other

visual representations. Internally, a textual query is generated which is then

evaluated by the storage manager. To support spatiotemporal queries at interactive

rates, we have built a specialized index based on k-d trees [37] (Section 2.4.4). Once

the results are derived, the system renders them on the map and users can iteratively

refine their queries through visual interactions. Since result sets can be large, we

make use of adaptive level of detail and density heat maps. (Section 2.4.3). In

order to create these visualizations, additional information such as trip frequencies,

must be computed for each spatial region. TaxiVis makes use of data filters to

generalize this process. In Section 2.4, we describe the system in more detail.
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Figure 2.3: High-level architecture of TaxiVis.

2.3 Visual Query Model

Based on the requirements set forth in Section 2.2, we have designed a visual

query model that aims to achieve a balance between simplicity and expressiveness.

Users specify queries visually and they can iteratively refine their queries through

direct manipulation of the results. Below, we present the model and describe how it

simplifies the selection of spatiotemporal slices, and enables both query composition

and result exploration. We also discuss the different classes of queries it supports.

Note that, while this model was designed for taxi trips, it can be applied to other

similar OD and spatiotemporal data.

2.3.1 Defining and Composing Queries

A key challenge in formulating spatiotemporal queries is selecting (and refining)

the data slices through query constraints. In our model, queries follow the following

template:

SELECT ∗ FROM t r i p s

WHERE <constraints>

Instead of requiring users to write the constraints in the WHERE clause, they do

so through visual operations. In our model, there are three types of constraints:
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Figure 2.4: TaxiVis user interface components. (A) Time selection widget, (B)
Map, (C) Tool bar, and (D) Data summary. We can also see an example of three
distinct queries specified by colors. The orange query (orange border polygon)
represents an atomic query with a spatial single region start constraint. The red
query (red border polygon) represents an atomic query with a spatial single region
end constraint. The blue query is a complex query which is the union of two atomic
queries: the polygon with blue border (atomic single region start constraint) and a
directional query (blue arrow).

spatial, temporal, and attribute constraints. These constraints span all the variables

in the taxi dataset (in fact, any OD or spatiotemporal dataset). Furthermore, each

query is associated with the set of trips contained in its results. Since each trip is

uniquely identified by the trip id, queries can be composed : users can iteratively

refine queries and further explore results. This has two important implications: it

allows the creation of summaries and visualizations while maintaining the spatial

and temporal contexts, and enables queries to be applied directly to the derived

visualizations. To formalize the process of query composition and properly define

query semantics, we use two types of queries: atomic and complex queries, which

use atomic queries as building blocks.
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Atomic Queries. An atomic query consists of a set of temporal, attribute and

spatial constrains. Temporal constraints define intervals that bound the values

of the time range of the query. A temporal constraint is specified by an interval

[tMin, tMax]. A trip satisfies the constraint if trip.pickup time,trip.dropoff time

∈ [tMin, tMax]. It is also possible to have constraints that bound just the pickup or

just the dropoff time.

An attribute constraint can be expressed using equality conditions (for categorical

attributes) or interval conditions (for numerical attributes). A trip satisfies an

attribute equality constraint associated with a categorical attribute A if for the

given value a, trip.A = a. If the constraint is associated with a numerical attribute,

the trip satisfies the constraint for the interval [lA, rA] if trip.A ∈ [lA, rA].

Spatial constraints come in two flavors: single-region and directional constraints.

A single-region constraint is defined by a connected spatial region and is associated

either with the pickup location (start constraint) or the dropoff location (destination

constraint). A trip satisfies the constraint for region r if either trip.pickup region ∈
r (for start constraints) or trip.dropoff region ∈ r (for destination constraints).

Directional constraints are used to construct queries about origins and destinations.

A directional constraint bounds the regions associated with both pickup and dropoff

locations. Given source and destination regions, rsource and rdest, respectively, a trip

satisfies the constraint if trip.pickup location ∈ rsource and trip.dropoff location ∈
rdest.

We define a function called result which takes as input an atomic query and

returns the set of all trip records that satisfy the query constraints. The result

function determines how queries are evaluated. Atomic queries can be combined

to construct new atomic queries. Given two atomic queries Q1, Q2, a new query

Q3 can be constructed such that result(Q3) = result(Q1) ∩ result(Q2). This is

possible due to a basic property of the query constraints: they are closed under

intersection. This can be easily verified for interval and equality constraints, since

both are closed under intersection; of course, intersections can be empty.

For spatial constraints, if they are of the same type (start and destination single

regions, or directional constraints) or if one is a single region constraint and the

other is a directional constraint, they can be combined into a single constraint by

reducing (intersecting) the corresponding regions. Otherwise, one must be a single
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region start constraint and the other must be a single region destination constraint

in which case both can be combined in a directional constraint. As we describe in

Section 2.4, this forms the underpinning of the grouping operation in TaxiVis.

Complex Queries. A complex query is constructed by combining a set of atomic

queries through disjunction. We give meaning to these queries by extending

the result function inductively. Note that an atomic query is a special case of

a complex query, where the query set has a single element. Then, given two

complex queries, Q1 and Q2, result(Q1∪Q2) = result(Q1)∪result(Q2). In general,

given an atomic query Q it is not possible to find an atomic query Q′ such that

result(Q′) = result(Q)C (the complement of result(Q)). However, it is always

possible to define a complex query Q′ that satisfies this condition. Thus, set

theoretic operations can be performed on the result of complex queries to build

new complex queries.

Visual Representation. Figure 2.4 illustrates how atomic and complex queries

are visually represented in our system. Temporal constraints are specified using

time-selection widgets (A), and attribute constraints are defined in a separate view

(see Figure 2.6). We describe both of these, as well as constraints defined within the

tool bar (C), in Section 2.4. Here, to illustrate the semantics of the query model,

we focus on spatial views which are defined on the map view (B). Single-region

constraints are defined by polygons and directional constraints are defined by

arrows. The transparent color in the interior of the polygons define the type of

the constraint: blue means start constraint, red means destination constraint (see

Figure 2.4). The colors on polygon borders and arrows identify distinct queries

(there are 3 queries orange, red, and blue). The orange and red queries are atomic

queries, consisting of only atomic temporal and spatial constraints. The blue query

Q is a complex query, composed by the union of two atomic queries: a single-region

start query Q1 and a directional query Q2. In SQL-like textual notation, Q1 can

be represented as:

SELECT ∗ FROM t r i p s

WHERE trip.pickup time ∈ [05/01/2011, 05/07/2011]

AND trip.pickup location ∈ R1

where R1 denotes the blue region selected in the map. And Q2:
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SELECT ∗ FROM t r i p s

WHERE trip.pickup time,trip.dropoff time ∈ [05/01/2011, 05/07/2011]

AND trip.pickup location ∈ NYCNeighborhood(’Gramercy ’)

AND trip.dropoff location ∈ NYCRegion(’Times Square’)

where NYCNeighborhood and NYCRegion are functions that given a neighborhood

name or region name, respectively, returns the corresponding spatial region.

2.3.2 Exploring Query Results

As described above, atomic and complex queries return a set of trips. Thus,

given a set of queries, such as the ones shown in Figure 2.4, other queries can be

applied to their results and different visual representation can be used to explore

them. For example, in this figure, the plot below the map shows the number of trips

returned by each query—the lines in plot are linked to the queries by their color.

In Figure 2.2, a scatter plot is used to examine the duration of trips to the airports

at different times of the day. Other types of visual representations can be used,

including, for example, representations that are specific for OD data [23, 107, 131].

As we discuss later, these visualizations can be directly manipulated to visually

define attribute constraints and construct refined queries (see Figure 2.6). Last

but not least, through the use of multiple coordinated views, query results can be

compared side by side.

2.3.3 Query Expressiveness

The proposed query model is able to express a rich class of queries. In particular,

it supports queries types in Peuquet’s Triad Framework [106]. Peuquet considered

the different components of spatiotemporal data—space (where), time (when) and

objects (what), and classified the set of questions that are possible over these

components. Below, we describe these questions and how they are supported in

our model.

when + where → what. These queries describe objects that are present at a

given location or set of locations at a given time or set of times. In our model, they

can be constructed in a straightforward fashion, through the definition of spatial

and time constraints.
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Figure 2.5: Time selection widgets. The regular time selection widget (top) allows
the user to define an atomic temporal constraint. The recurrent time selection
widget (bottom) allows the user to easily define complex temporal constraints. In
this figure, the widget selects for the years of 2011 and 2012, the period between
9AM and noon in all Tuesdays and Fridays in the month of September.

when + what → where. Given a set of objects and a time or set of times, these

queries return the location of the objects. This can be achieved by combining time

and attribute constraints.

where + what → when. These queries return a time or a set of times when

given object or set of objects occupied a given location or set of locations. They

can be constructed by combining spatial and attribute constraints.

Although our initial goal was to support these three classes of queries, by having

separate constraints, our model is able to express other types of queries, including

when → what + where, where → when + what, and what → where + when, by

simply defining a single type of constraint.

2.4 The System

In this section, we describe the system we built to support the interactive

analysis of the taxi data. It combines the visual query model described above with

other visual operations and representations to cater to the requirements set forth

in Section 2.2.
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Figure 2.6: Attribute constraints are specified (in the middle) to refine the query
on the left. They are shown as dark gray strips on the histogram. The result of the
refined query is shown on the right and consists of a single trip.

2.4.1 User Interface Components

The main view of our system is shown in Figure 2.4. Its components and their

role in the system are described below.

Map. Maps serve different purposes in our system. They provide a canvas for

displaying query results, for users to specify spatial constraints and compose/refine

queries.

Time selection widget. This widget allows users to specify temporal constraints.

As shown in Figure 2.5, two widgets are available which we describe in Section 2.4.2.

Data summary view. The information associated with the results of a query

can be visualized using different representations within the data summary view.

For example, this view can display the selected trips as time series, histograms,

and scatter plots over different attributes. Since our query model supports multiple

sub-queries in a view (represented by different colors), visualization filters can

distinguish their results. For example, plots can be generated where each line

corresponds to one sub-query.

Tool bar. Several operations are supported through the tool bar. The first 3

buttons (from top to bottom) allow users to specify whether their queries should

consider pickups, dropoff, or both. The fourth button supports the creation of

directional queries. The group and ungroup (fifth and sixth) buttons provide a

simple mechanism for users to combine (and split) both region-based and directional

queries. The system can also export query results as a CSV file, which could then

be analyzed using other tools. Lastly, the attribute exploration button provides a
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visual mechanism for users to define attribute constraints.

Multiple Coordinated Views. The view in Figure 2.4 is used to specify a set

of queries that share both time constraints and attribute constraints, but with

different spatial constraints. By using multiple views the user can specify other

queries with distinct time and attribute constraints (see Figure 2.2). To enable

comparison, these views can be synchronized to show the same spatial region and

to synchronize the scale of the attribute summaries.

2.4.2 Visual Query Specification

Spatial constraints are specified by polygons and arrows on the map view. These

are created either by brushing or by selecting predefined polygons corresponding to

NYC’s neighborhoods, zip codes, and boroughs. In order to create a single-region

spatial constraint, the user first chooses which parameter is associated with the

selection to be created by selecting either start/end constraint button (via the

toolbar) and through brushing, the user then creates an atomic spatial constraint.

Selected regions can be moved, edited, and deleted. The user can also link two

regions to form a directional constraint (Figure 2.4). Atomic spatial constraints can

be grouped to form complex ones. This is achieved by first selecting the regions

and arrows to be grouped and then pressing on the merge button in the toolbar

(see the blue query in Figure 2.4).

Temporal constraints are specified using the time selection widgets: Regular

Selection and Recurrent Selection (Figure 2.5). In the Regular Selection widget,

the user defines an atomic temporal constraint by assigning the values of the start

time and end time fields. Using the Recurrent Selection widget, the user can specify

complex constraints that cover different temporal scales, by selecting an arbitrary

combination of years, months, days of the week, and hours. This widget is similar

to the time wheel in the TEMPEST system [45].

Attribute constraints are defined through the attribute selection view, which is

accessed through the exploration button in the toolbar. As illustrated in Figure 2.6,

this view shows histograms that summarize the attribute values for the trips in the

result set of the query shown on the left. By brushing the desired values or value

ranges (the dark gray rectangles), attribute constraints are derived and added to

the original query. The result of the refined query is shown on the right.
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2.4.3 Query Result Visualization

Rendering Trips on a Map. The spatial component of the query results is

visualized in the map view. Figure 2.7 illustrates alternative visualizations. A

basic visual representation for this kind of data is a point cloud, where each trip is

represented by a pair of points denoting their pickup and dropoff locations. The

two points of a pair are differentiated by color: blue is for pickup and red is for

dropoff. For a small number of trips, this visualization can quickly give us a sense

of how the taxi activity is distributed throughout the city. However, as the number

of trips increases, it gets cluttered very quickly, as shown in Figure 2.4.3(a). This

figure contains the points corresponding to all taxi trips in one week. The point

cloud covers almost the entire map, making it hard for users to discern what is

happening.

To address this issue, our we applied a set of techniques to provide alternative

visualizations to the user. First, as shown in Figure 2.4.3(b), we employ an adaptive

level-of-detail (LOD) strategy to reduce the number of points rendered. Our LOD

strategy works by first sorting all the points based on their spatial coordinates,

i.e.their distance from the equator and prime meridian. We then build a binary tree

on top of the sorted points and perform an in-order traversal to sort them again

based on the visiting order. This is equivalent to building hierarchical indexing

for regular grids on a Z-order curves [101]. In the end, all the points are arranged

linearly in such a way that the first n elements are also a hierarchical subsampling of

size n of the original point cloud. During user interaction, n will scale proportionally

to the map zoom level with n = 1e6 at the finest level. This is also the maximum

number of points that our application would display even if the actual number of

matched records is higher.

Second, our system supports density summary visualizations or heat maps (see

Figure 2.4.3(c)) that can be used to show the distribution of pickups and/or dropoffs

in an area. The tool buttons on the right of the user interface may also be used

for selecting which location attribute (pickup, dropoff or both) is being used for

constructing the heat maps. For example, if both pickup and dropoff locations are

selected, both pickup and dropoff locations would be used for aggregation on each

pixel of the heat map. Such heat map can help answer questions such as “How

often do taxis travel to a particular neighborhood?”. Darker locations on a heat
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Figure 2.7: Different spatial visualizations of taxi trips for the week 05/01/2011
to 05/07/2011. In (a) all the trips are rendered To reduce the clutter, TaxiVis uses
both LOD (b) and density heat maps (c). The system also supports heat maps
based on well-defined regions such as neighborhoods (d). For the latter, summary
information about the region can be overlaid on the map, for example, hovering
the mouse over a neighborhood highlights it and shows the number of trips.

map indicate a higher level of activity in an area. Combined with the point cloud

LOD, this is a powerful tool to quickly summarize the data.

Finally, we have also generalized the concepts of heat maps to apply to grid

maps in our system. A grid map is a set of cells where their geometries and visual

representations can be customized by the users. An example of this is a grid map

of zip codes or neighborhoods in NYC showing the number of taxi pickups (see

Figure 2.4.3(d)). A heat map may also be considered as a grid map where its cells

are points on a regular grid and its visual representations are just spherical gradient

textures.

Visualizing and Interacting with Trip Data. Besides displaying query results

on a map, filters can be applied to the results to derive different visual representa-
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Figure 2.8: Comparison of taxi pickups (left) and dropoff (right) in different
neighborhoods over the first week of May 2011. The plots show that Midtown and
the Upper East side are the most active areas. But over the weekend, there is an
increased number of dropoffs in Downtown. The figure also highlights the fact the
Harlem is underserved by taxis.

tions. In our current implementation, we provide support for visual representations

that are suitable for the types of attributes associated with the trips. For example,

time series, histograms, and scatter plots (see Figure 2.4, Figure 2.2, and Figure 2.6).

In addition, as we discussed in Section 2.4.2, these visualizations can be active and

serve as a means to further refine queries.

2.4.4 Storage Manager

Supporting interactivity is an important requirement of our approach. Thus,

performance was a key factor in the design of our system. We have experimented

with several designs for data storage that can be run interactively on a single

machine. In particular, we have evaluated two traditional database management

systems, PostgreSQL and SQLite, with the latter being used for in-memory storage.

Though both systems provide extensions for spatial queries, their query performance

is not suitable for interactivity, not to mention the fact that both take a considerable

amount of time to build the spatial indices. For instance, SQLite took 52 hours

just to build the indices for a single year of data. Moreover, a single atomic

spatiotemporal query could take from seconds to tens of seconds to complete, while

complex ones such as those specified by the recurrent time selection widget, can

take minutes. Another issue with these database systems is their large memory

footprint. In our experiments, PostgreSQL and SQLite used more than 200GB

and 100GB of RAM (in memory setup for SQLite), respectively. We deemed them
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Table 2.1: Summary of experiments with data storage strategies.

SQLite PostgreSQL Ours
Storage Space 100GB 200GB 30GB

Building Indices Time 52h 13h 28m
1k-query 8s 3s 0.2s

100k-query 85s 24s 2s

unsuitable for our interactive system because high memory usage would lead to

more paging to disk.

In order to address these issues, we have built a light-weight database variant

that allows fast queries on all attributes including spatiotemporal constraints. Our

implementation is based on a space-partitioning data structure, k-d tree [37], that

treats each taxi trip as a point in a k-dimensional space. In our implementation,

points are only stored in leaves. Our code takes only 30 minutes to build the indices

for the full 3 years of data and uses only 30GB of disk space. At run-time, the

whole data structure, including the data points, are mapped to the system virtual

memory, thus, it may operate in-core or out-of-core adaptively, depending on the

available resources. In our tests, compared to the database systems mentioned

above, our system memory usage is considerably smaller, mostly staying at hundreds

of megabytes relatively to the amount of data being explored. This design has

performed within the bounds of the needs of our interactive system, and queries

are significantly faster. In Table 2.1, we summarize the results obtained in our our

experiments where 1k-query and 100k-query refer to queries returning approximately

1000 and 100,000 trips respectively.

2.4.5 Rendering Considerations

The performance of the map view is also extremely important in delivering a

good user experience. Thus, selecting a map rendering system with both flexibility

and efficiency was a top priority in our design. Different options are available: (1)

web-based engine provided by online map services such as Google Maps, Bing Maps

or OpenStreetMap; (2) 2D desktop-based engines for rendering map tiles from

OpenStreetMap such as KDE’s Marble. Since web-based rendering engines do not

guarantee a consistent graphics acceleration across web browsers and hardware, it
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Figure 2.9: Comparing tips per trip and fare per miles for trips originating in
different neighborhoods in the period of 05/01/2011 - 05/07/2011.

would hinder some of our visualizations such as the ability to build heat maps on

the fly using Frame Buffer Objects or performing trip animations with OpenGL

shaders. Moreover, effectively displaying a large amount of data with the web-based

map API is still a major challenge including where to host the data and how to

render them efficiently. On the other hand, though available systems in the option

(2) solve the compatibility issue and data transfer, they only support a specific

2D rendering engine. For example, in the current KDE’s Marble, rendering has

to be done through the QPainter object of Qt; OpenGL is not yet supported.

Unfortunately, the use of OpenGL is required for many of our rendering layers. Our

solution was a combination of (1) and (2): we embed a web browser as our bottom

layer for rendering maps and place other native visualizations on top of it. In our

application, we use Qt and promote the QGraphicsWebView as our embedded layer.

This widget is placed inside an OpenGL canvas of a QGraphicsView widget, thus,

making it possible for other layers to be compatible with both Qt’s QPainter and

OpenGL native graphics. All geospatial transformations are done in a thin layer

above the map view. It should be noted that the web-based component is only

used for displaying maps, all other rendering is done in OpenGL to maximize the

system performance.
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2.5 Case Studies

In this section, we present case studies that illustrate both the power and

simplicity of our model and system.

2.5.1 Investigating Taxi Activity in Different Regions

While analyzing taxi service in a city, it is useful to compare different geograph-

ical areas. In TaxiVis, users can select regions at different levels of granularity:

through free selection, by zip code, and neighborhoods. Figure 2.8 shows the how

pickups and dropoffs vary over a period of one week in four different areas. Here,

we made use of grouping to analyze the behavior of combined neighborhoods. For

example, we grouped East, West and Greenwich Village (shown in green) as well as

Harlem and East Harlem (blue). By far, Midtown (orange) is where most activity

happens during the week days, followed by the Upper East Side (red). During the

weekends, the situation changes and we see greater activity in Downtown. Note

the increase in the number of trips that starts to happen on Thursday (May 5),

with big peak for pickups on Friday (May 6) in the evening—this indicates that

the nightlife on weekends is very lively in Downtown.

This one-week overview provides an accurate overview of city life, where people

go and when. It also highlights social inequalities. People who live in Harlem

have long complained about the lack of taxi service in their neighborhood. The

plot clearly shows that their discontent is well justified. There is over one order

of magnitude difference in the number of trips to/from Harlem compared to other

more affluent neighborhoods. The heat map also shows that while people take

taxis to Harlem, there are barely any pickups there. Exploring other parameters

associated with the trips we found one surprising fact: the tips per trip originating

in Harlem are higher than for the other neighborhoods (see Figure 2.9). Further

analysis also showed that the fare per mile is lower for Harlem, and thus, there

is less economic incentive for taxis to be in that area. The higher tips may be a

means to reward drivers that go to Harlem.
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Figure 2.10: Comparing movement across NYC transportation hubs. On the top,
we examine trips starting at the two major airports in NYC: JFK and La Guardia.
In the bottom, we refine the query to compare trips starting at the airports with
trips starting at the train stations, Penn Station and Grand Central.

2.5.2 Exploring Movement: Transportation Hubs

Airports and major train stations (i.e. Penn Station and Grand Central) are

key transportation hubs in NYC. By analyzing taxi movement to and from these

locations, we can obtain insights into how people move into and out of the city.

To compare the number of trips originating at JFK and La Guardia, we select

the regions in their vicinity and examine a 1-week period (05/01/2011 through

05/07/2011). As the plot in the top of Figure 2.10 shows, there are more pickups

at La Guardia than at JFK on most days. Another interesting question is where

passengers go. The choropleth (Figure 2.10 top) that highlights NYC neighborhoods,

shows that most people go to Midtown (the darkest region), followed by the Upper

West Side.
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By hovering the mouse over a neighborhood, the system displays the exact

number of trips ending in that neighborhood. We can also obtain more fine-grained

information about the exact dropoff locations—the popular destinations, using a

heat map.

In order to study the movement patterns for airports and train stations, we

can group them (Figure 2.10 bottom) . We select the regions around Penn Station

and Grand Central, and group them using the Group/Ungroup button (note

the two green outlines); we also group the trips that start at the airports (blue

outline). Immediately, the plot is updated to show the number of pickups in the

two regions. Note that there are many more pickups around the train stations.

Another interesting observation is that the number of trips originating at the train

stations remains roughly constant from Monday through Thursday, and starts to

decrease on Friday, hitting a low on Saturday. This reflects the behavior of many

commuters who go to the City during the week, but not on weekends. Note that,

while in this example we have focused on pickups, i.e., people arriving, it is easy

to also study dropoffs. Starting from the map view shown in Figure 2.10, we can

simply select the airport and train regions (by double-clicking on them), and then

click on the “Dropoff” button.

Using the summary view, we can further explore features of the selected trips.

For example, by examining the average cost of trip per mile, we can see that it is

higher within Manhattan. This provides an incentive for taxi companies to stay

within Manhattan and avoid trips to the airport. Note that while it is illegal for

taxis to reject rides, this is a common practice when the destination is JFK.2 This

problem is accentuated during rush hour on weekdays, when trips take much longer

(see Figure 2.2) and lead to a potential reduction in revenue.

2.5.3 Studying Behavior over Time

Taxi Demand Patterns. Studying how taxi demand varies over time can be

useful to understand city dynamics. For taxi companies, this information can

help in decision making, both to schedule driver shifts and maximize profits. To

simplify the process of comparing multiple times slices, TaxiVis provides a time

2http://cityroom.blogs.nytimes.com/2011/02/24/taxi-panel-focuses-on-destination-
discrimination.
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Figure 2.11: Time exploration. (a) shows activity for all Mondays in May 2011
and May 2012. Two such Mondays stand out: 05/30/11 and 05/28/12. Examining
the summary plot in (b), we see that the number of trips in these two days is
significantly lower than the on other Mondays.

space exploration mechanism. The user first selects the time slices of interest. This

can be done using the time selection widgets (Figure 2.5). In the regular selection

mode, the slices are selected by specifying a time range, a step size (e.g.an hour, a

day, a week), and the number of steps. In the recurrent selection mode, the list

of time ranges is already expressed and generated by the widget. For example, by

selecting 2011, May and Sunday, 5 times ranges are returned–each corresponding

to a Sunday in the month of May, 2011. Given a list of time ranges, the result of

a time space exploration is a multi-view visualization displaying one map per time

interval, and a data summary view that aggregates the results for the time intervals.

Each map view and plot line is associated with a color assigned to its time range.

This is illustrated in Figure 2.11. Here, we examined all Mondays in May 2011 and

May 2012. The number of trips for the two years is very similar, including the

significant drop on Memorial Day. The latter indicates that the number of taxis on

the streets could potentially be reduced on the holiday.

Hurricanes Sandy and Irene. The taxi data can also give insights into the

effects of major events. We used the time space exploration to study taxi activity

during the the week of Hurricane Sandy. Figure 2.12 shows the taxi trips starting

on Sunday, the day before the hurricane, through Saturday. The heat maps closely

reflect the extent of the disruption caused by this event. On Monday, the day

the hurricane landed, there was a big drop in the number of trips throughout

Manhattan. On Tuesday, life starts to get back to normal in most regions, except
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Figure 2.12: Taxi activity in Manhattan during the week of Hurricane Sandy.
On the day the hurricane hit, there are very few taxis on the streets throughout
Manhattan. On the next four days, activity goes back to normal in all parts of the
city, except in lower Manhattan, where there was a power outage which lasted for
five days.

for Lower Manhattan, where there are virtually no taxis for five days. This area

suffered a major power outage which was only restored on Saturday. We have also

studied the period around Hurricane Irene (see Figure 2.13). Note that although

activity came back to normal sooner, on the day of the hurricane, there were

virtually no cabs: there were only 1076 trips, while on average, there are 500,000.

This seems to indicate that although shorter, Irene caused a bigger disruption in

Manhattan.

2.6 Discussion

TaxiVis was designed with the intent to explore the taxi trips dataset. However

the overall framework is general and can support the exploration of other datasets

from different applications such as bike sharing [112], population migration [65],

and property owenership [70] to name a few. Also, while our query model and

data layer focused on OD data, these can be adapted to support queries on general

trajectory data. In fact, similar problems were pursued by the recent works by

Krueger et al. [76] and Wang et al. [126].

There are number of future directions for improvement of TaxiVis. One of them

is realted to do with the fact that while our visual query model is flexible, the

current user interface has some limitations. For instance, there are useful temporal

constraints that cannot be expressed with the current time widgets. For example,

the recurrent time selection widget (Figure 2.5) can be used to select all Tuesdays

in a particular month. However, it is not possible in the current interface to exclude
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Figure 2.13: Taxi activity in Manhattan during the week of Hurricane Irene.

one of these Tuesdays from the set of temporal constraints. We plan to experiment

with alternative and more flexible widgets both for time and attribute constraint

specification. We also plan to add support for multiple data sources to help in

the analysis. In fact, our current system relies on user knowledge of the city to

make inferences about the patterns on taxi data. We intend to add more context

information about the city so the user is able to correlate the taxi data with, for

example, information about the main business activities in the regions.

2.7 Summary

In this chapter, we presented a new system that supports visual exploration of

big origin-destination and spatiotemporal data. A key component of this system is

a visual query model that allows users to quickly select data slices and explore them.

We have shown that this model attains a good balance between simplicity and

expressiveness. Another important contribution of this work is the system design,

which not only combines the visual query model with other visualization primitives,

but also addresses performance challenges that arise due to the scale of the data.

In particular, to support interactivity, we designed an efficient storage manager as

well as a rendering subsystem. We have present a series of case studies, using a

large data set consisting of over 520 million taxi trips in NYC, which illustrates

the capabilities and effectiveness of our system and design decisions.
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Chapter 3

Event Guided Exploration of

Spatiotemporal Data

Patterns in spatiotemporal data usually occur at multiple spatiotemporal scales.

For example, traffic accidents usually have a local influence on traffic (block a

road), conventions can happen over many consecutive weekends, and severe weather

events may last for a few days and completely change the behavior of a particular

location. For example, as can be seen in Figure 2.1, patterns corresponding to high

impact weather events like hurricanes Sandy and Irene affect a large extension of

space for a long period of time. On the other hand, as shown on the bottom of

Figure 2.1, patterns corresponding to the NYC Five Boro Bike Tour only affect a

small region in space and during short period of time.

As described in Chapter 2, interactive visualization systems are very powerful

tools to perform exploratory data analysis of spatiotemporal data. On the other

hand such systems are constrained by the display and data dimensions. This limits

the exploration workflow to a few options. In fact, the most common approach

is to explore the data in the spatial sense, in which case time is usually fixed, or

it can be explored over time, in which case space is usually fixed for comparison

purpose. In such setting, the usual approach to analyze this kind of data is to

use select portions of the data and use different types of aggregation and produce

visual summaries [4, 83]. Due to the large number of possibilities for occurrence of

patterns, finding patterns like the Five Boro Bike Tour is difficult.

This leads to a trade-off between the level of aggregation and the number of
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data slices to be explored. The use of a coarse (spatial or temporal) aggregation

reduces the number of data slices, but it may result in loss of information. Consider

the example illustrated in Figure 3.1(a), which shows a heatmap of pickups and

drop-offs of NYC taxi trips dataset (Chapter 2.2) on Sunday 1 May 2011 between 8

and 9 am, which corresponds to the NYC Five Boro Bike Tour. Note that there are

no taxi pickups and drop-offs along 6th avenue. However, as shown in Figures 3.1(b)

and (c), a coarse level of aggregation makes it difficult to identify small or local

events. While a finer level of aggregation would avoid these problems, it requires

the exploration of a large number of data slices. In order to find patterns such

as Figure 3.1(a), current state of the art systems require their users to perform

manual (exhaustive) exploration. This is not only time consuming, but for large

datasets, it becomes impractical. For example, temporal aggregation of a year’s

worth of data into a discrete set of hourly intervals results in over 8000 data slices

to be explored per year.

As a step towards addressing this challenge, in this chapter, we propose an

efficient and scalable technique that automatically discovers events and guides users

towards potentially interesting data slices. Event detection is accomplished through

the application of topological analysis on a time-varying scalar function derived

from the spatiotemporal data (Section 3.4). We use the minima and maxima

of a given function to represent the events in the data. Intuitively, a minimum

(maximum) captures a feature corresponding to a valley (peak) of the data. For

example, the lack of taxis along 6th avenue during the bike tour event forms a

local minimum and is therefore captured using our technique. The use of topology

also allows for events having an arbitrary spatial structure. In order to support

a potentially large number of events, we design an indexing scheme that groups

similar patterns across time slices, thereby allowing for identification of not only

periodic events (hourly, daily, and weekly events), but also of events with varying

frequency (regular and irregular). Thus, unlike previous approaches that impose a

rigid definition of what constitutes an event [8], our technique is flexible and able

to capture a wide range of spatiotemporal events. The index further allows users

to efficiently search for occurrences of similar patterns. Compared to techniques

based on statistical analysis that support different kinds of events, our approach is

computationally efficient and scales to large datasets. We also describe a visual
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interface (Section 3.5) designed to aid in event guided exploration of spatiotemporal

data that integrates the event detection and indexing techniques. The interface

allows users to interactively query and visualize interesting patterns in the data.

Finally, we show the effectiveness of our approach on two spatiotemporal datasets:

the NYC taxi trip records described in Chapter 2.2, and subway service, published

by the Metropolitan Transit Authority (MTA). We presented results of preliminary

analyses to experts at both the TLC and MTA. While they offered insights for some

of the events we found, they were surprised by others which indicated potential

problems they had to investigate (see Section 3.6). This initial feedback suggests

our technique is effective and has the potential to help in exploratory analyses of

large, spatiotemporal data.

3.1 Related Work

The problem of event detection in the context of spatiotemporal data has

been recognized and addressed in previous works. We discuss approaches to event

detection in three categories: those that use computational topology for feature

tracking, those related to visual analytics, and techniques for event detection from

statistics and machine learning. Note that there is no universal definition of an

event [8]. It is thus difficult to quantitatively compare different techniques. Here, we

present a qualitative comparison where we consider flexibility to support different

event types, efficiency, and scalability.

Computational topology. Computational topology has been used to identify

and track features of spatiotemporal data. Laney et al. [79] and Bremer et al. [24]

used the Morse decomposition of a scalar field to identify features of the input

and track these features across time using geometric properties of the features.

Pascucci et al. [103] identified features, which correspond to burning cells during

turbulent combustion, using merge trees and tracked them by computing the

overlap of the features. Widanagamaachchi et al. [129] extended this technique

and designed a framework to explore time-varying data. Kasten et al. [73] mapped

critical points of the input scalar function across time steps and created a merge

graph that is used to track unsteady flow fields. Doraiswamy et al. [39] identified

cloud systems in each time step using the join and split tree, and tracked them
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Figure 3.1: It is difficult to identify short irregular patterns when the data is
aggregated over either space or time. (a) A heatmap of taxi locations in Manhattan
on 1 May 2011 between 8 am and 9 am. Note that the path of the bike tour contains
no taxis. (b) The time series plots compare the number of trips that occurred in
Manhattan on three Sundays in 2011: 24 April, 1 May, 8 May. It is difficult to
distinguish between the three Sundays using just the number of trips, even though
an entire stretch of streets are blocked to traffic on May 1st. (c) The trips are
aggregated over time and displayed as a heat map for the three Sundays. Note that
the path of the bike tour (highlighted) looks similar in all the heat maps.

across time using optical flow. These methods are only interested in movement of

features across consecutive time steps, which is accomplished by looking at adjacent

time-slices. Such tracking cannot be applied to our problem, since we need to

identify features that have similar behavior but are spread across non-adjacent time

slices.

Visual Analytics for Spatiotemporal Data. Scholz et al. [111] proposed a

technique to analyze hotspots using taxi data in San Francisco. They pre-defined

regions of interest, modeled the taxi activity in each census tract in these regions,

and used the model to predict the life cycle of hotspots. By pre-defining regions

of interest and using artificial boundaries such as census tracts, this approach
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(a) (b) (c) (d) (e)

Figure 3.2: Topology of scalar functions. (a) The height function f defined on a
graph. The super-level set at f1 is the set of all points above the highlighted plane
and consists of two components (colored red). (b) Join tree of f . (c) The features
of the input are defined based on the edges of the join tree. The labeled peaks
denote the set of maxima. The features are colored the same as the corresponding
edges in (b). πi denotes the persistence of maximum vi. Intuitively, the persistence
of each maximum is equal to the height the corresponding peak. (d) The simplified
join tree obtained from removing the maximum v3. (e) The resulting smoothed
function.

is likely to miss events which are of arbitrary shapes and happen at different

granularities (see Figure 3.1). Maciejewski et al. [87] used kernel density estimation

to model hotspots in spatial distributions along with time series analysis to detect

anomalous hotspots. Andrienko et al. [6, 7, 8, 10] proposed visual analytics

procedures to determine places of interest based on high-frequency events that also

have high density of occurrence. The user first applies a set of filters to define

features of potentially interesting events. Then, the points with those features are

clustered to find interesting recurring locations. Unlike these techniques, which

have a rigid definition of events (e.g., high density and recurrent occurrence), our

technique is able to capture a wide spectrum of events, both based on density (low

and high) and frequency of occurrence at different time scales.

Statistical Event Detection in Spatiotemporal Data. The problem of event

detection has also been studied by the statistics and machine learning communi-

ties [69, 78, 89, 94, 95, 125]. The area is closely related to spatial scan statistics [77]

and anomaly detection [30], albeit exploiting the spatiotemporal nature of the

domain and focusing on the discovery of “interesting” contiguous regions in space

and time. Previous work examined multiple overlapping spatiotemporal subsets

of data and identified significant deviations from a baseline, e.g., an expectation

over time, via a frequentist likelihood ratio test or a Bayesian posterior probability
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distribution over events [95]. However, the majority of the literature has focused

on either purely spatial data or has accounted for temporal variations and effects

via simplistic approaches such as exponentially weighted linear regression or data

partitioning based on day-of-week or season. Furthermore, the time complexity

for these approaches is exponential O(2N ) in the number of pre-defined space-time

partitions, with polynomial approximations (non-exhaustive search) available only

for the frequentist hypothesis tests that require extensive randomization [89] for

p-value estimation. In contrast, our technique allows for detection of events that can

have arbitrary spatial geometry, different time intervals, scales up with polynomial

time complexity of O(n2) in the number of events, and enables user exploration

of urban datasets via efficient event querying. The latter ensures flexibility of

the technique across applications and domains, where users can define and query

interesting events based on prior knowledge and different spatiotemporal properties

of the data.

3.2 Background

The topological representation of large datasets provides an abstract and com-

pact global view that captures different features and leads to enhanced and easier

analysis across applications [57, 102]. In this section, we briefly introduce concepts

from computational topology that serve as the basis of the proposed technique.

Comprehensive discussions on this topic can be found in [42, 67, 91].

Scalar functions. A scalar function maps points in a spatial domain to real values.

The spatial domain of interest for the techniques developed in this chapter is a graph

G representing a particular aspect of an urban environment like the road network.

The scalar function is represented using the graph G, together with a piecewise

linear (PL) function f : G → R. The function is defined on the vertices of the

graph and linearly interpolated within each edge. Figure 3.2(a) shows an example

of a scalar function defined on a graph representing a terrain. The function value

at each point on this graph is equal to the point’s y-coordinate. A super-level set

of a real value a is defined as the pre-image of the interval [a,+∞). Similarly, the

sub-level set of a is the pre-image of the interval (−∞, a]. Figure 3.2(a) highlights

the super-level set at function value f1.
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Critical points. The critical points of a smooth real-valued function are exactly

where the gradient becomes zero. Points that are not critical are regular. We are

interested in the evolution of super-level sets (sub-level sets) against decreasing

(increasing) function value. Topological changes occur at critical points, whereas

topology of the super-level set (sub-level set) is preserved across regular points [91].

The critical points of a PL function are always located at vertices of the

mesh [19, 43]. Consider a sweep of the function f in decreasing order of function

value. The nature of topological change to the super-level sets of f when the sweep

passes a vertex determines the type of that vertex. A new super-level set component

is created at a maximum, while two super-level set components merge into one at a

join saddle. Similarly, during the sweep of the input in increasing order of function

value, a new sub-level set component is created at a minimum, while two sub-level

set components merge into one at a split saddle. The scalar function shown in

Figure 3.2(a) has 4 maxima (see Figure 3.2(c)).

Different types of critical points of a scalar function capture different types of

features. In particular, a maximum captures a peak of the function, where the

function value is higher than its neighborhood. Similarly, a minimum captures a

valley of the function. The set of peaks and valleys are the natural features of a

given function, and are therefore of interest in this work. We use the set of minima

and maxima to represent features (events) of the given data.

Topological persistence. Consider the sweep of the input function f in decreasing

order of function value. As mentioned above, the topology of the super-level sets

change when this sweep encounters a critical point. A critical point is called a

creator if a new component is created, and a destroyer otherwise. It turns out

that one can pair up each creator vc uniquely with a destroyer vd that destroys the

component created at vc. The persistence value of vc is defined as πc = f(vc)−f(vd),

which is intuitively the lifetime of the feature created at vc, and is thus a measure

of the importance of vc. The traditional persistence of the global maximum is equal

to ∞ since there is no pairing destroyer for that maximum. In our technique, we

use the notion of extended persistence [2] which pairs the global maximum with the

global minimum. For the height function shown in Figure 3.2(a), the persistence

of each feature corresponds to the height of the corresponding peak, highlighted

in Figure 3.2(c). Given an input domain of size n, the persistence of the set of
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minima and maxima can be computed efficiently in O(n log n) time [41, 44].

Join tree and split tree. The join tree and split tree abstracts the topology of a

scalar function f , and are useful for extracting and representing features of f (the

regions corresponding to maxima and minima). The join tree tracks the changes in

the connectivity of super-level sets of an input function f with decreasing function

value. Figure 3.2(b) shows the join tree corresponding to the function shown in

Figure 3.2(a). The split tree of f is defined similarly, and tracks the connectivity of

the sub-level sets of f with increasing function value. Nodes of the join tree and

split tree correspond to the set of critical points of f .

Regular points are often inserted into the join/split tree as degree-2 nodes to

obtain an augmented join tree/augmented split tree. We use the subgraph of the

input mesh induced by the regular vertices that are part of an edge in the augmented

join/split tree to represent the feature corresponding to the maximum/minimum.

The colors of the different features of the function in Figure 3.2(c) correspond to

the colors of the edges of the join tree shown in Figure 3.2(b). Optimal algorithms

exists to compute join and split trees of a PL function [28, 33, 85, 100].

Simplification. The input is often simplified to remove noise. This is accomplished

by removing low persistent features. The join and split trees provide an efficient

mechanism to perform this simplification [29]. Removing an edge in the join/split

tree corresponds to smoothing the corresponding region of the function. For example,

consider the feature represented by v3 in Figure 3.2 which has low persistence.

Simplifying this feature corresponds to smoothing the function in order to remove

the maximum v3. The simplified join tree is shown in Figure 3.2(d), while function

resulting from this simplification is illustrated in Figure 3.2(e). Features can also

be simplified based on geometric measures like hyper-volume [29].

3.3 Spatiotemporal Data and Scalar Functions

We model urban data as a time-varying scalar function f defined on a graph

G, where the temporal dimension is represented as a set of discrete time steps. In

this section, we describe two datasets that we use throughout the chapter and the

scalar functions derived from them.
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3.3.1 NYC Taxi Trips Data

We use the NYC taxi trips described in Chapter 2.2. In our experiments, we use

data of taxi trips that took place in Manhattan during 2011 and 2012. The data set

is first divided into a set of hourly intervals. Note that this time interval is not fixed,

and can be changed depending on the application. Manhattan is represented using

the graph corresponding to its road network. Each node of this graph represents an

intersection of two or more streets, and each edge corresponds to a street segment.

Analysts at the TLC and at the Department of Transportation (DoT) are

interested in identifying traffic-related events that have led to road closures as

well as taxi hot spots (see Section 3.6.1). To capture these events, we define the

scalar function for an hourly interval at each node of this graph as the density of

taxis within a small circular region surrounding the corresponding location. The

radius of the circular region is approximately equal to half the distance between

two avenues in Manhattan. The density is then computed as the Gaussian weighted

sum of the trips within this neighborhood, where the weights correspond to the

trip’s distance from the node. This ensures that trips closer to a node have a higher

contribution to the density compared to a trip that is farther away. Recall that the

set of minima and maxima are used to represent events in the data. Given a single

time step, a minimum of the above function represents a region where the density

of taxis is lower than its local neighborhood, implying a relative scarcity of taxis in

that region. Similarly, a maximum represents a region where the density of taxis is

higher than that of its local neighborhood, implying a relatively high concentration

of taxis.

Such a density function can also be used on many other urban datasets such

as twitter feeds [119] and GPS traces from mobile devices [63] which have a

representation similar to that of the taxi data.

3.3.2 MTA Subway Data

The MTA provides real-time information for the numbered lines of the NYC

subway system [92]. These data consist of the time stamps of all the stops for all

the trips that happen each day. Engineers at MTA are interested in analyzing data

from these feeds to improve operations and scheduling of the subway system. In
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Figure 3.3: Overview of the event guided exploration technique. First, (1) the input
data is transformed into a time-varying scalar function. (2) Topological features are
computed from the scalar functions to identify the set of events. (3) An event group
index is then created from the identified events to support efficient querying over a
large number of events. (4) A visual interface guides the user towards interesting
events (5) in the data, allowing them to select an event and (6) interactively search
for similar events.

particular, they are interested in delays in the schedule of the different trains. In

order to capture this for a given train, we compute the scalar function at each

station as the average delay of the train at that station. The delay at a station for

a given train is the difference between the time the train was scheduled to arrive

and the actual time at which it arrived. The underlying graph used to define the

scalar function is essentially a simple path representing the route of the train. The

nodes of this path corresponds to the different stations along its route. As with the

previous data set, the temporal dimension is divided into a set of hourly intervals.

The above scalar function is computed for each of the train lines.
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3.4 Identifying and Managing Events

Our framework consists of two main steps. First, a set of potential events is

computed from the input scalar function – these constitute all features from each

time step of f . Then, similar single time-step events are grouped and an index is

built that supports efficient queries over a possibly large number of events. The

process is illustrated in Figure 3.3 and the details are presented below. We use the

NYC taxi data as a running example to illustrate our technique.

3.4.1 Computing Events

First, the split tree of the scalar function f is computed. The set of minima

and the regions corresponding to them constitute the set of minima events. Since

we are mainly interested in the set of “significant” events, simplification of the

split tree is performed to prune uninteresting (noisy) minima. We use a small

threshold (close to zero) during this simplification process. While persistence

captures the importance of a feature only in terms of the scalar function, for the

taxi data, we are also interested in capturing the geometric size of a feature. We

therefore use hyper-volume as the importance measure. The hyper-volume [29] of

a topological feature is defined as the integral of the input scalar function over

the corresponding region. This allows features that occupy a large area but have

low persistence (depth) to also be considered important. Thus, this simplification

retains “deep valleys” as well as “shallow, but large” valleys. Note that using

persistence instead of hyper-volume could potentially remove the large shallow

valleys during the simplification process. The top-k from the set of minima that

remain after simplification and their corresponding regions constitute the set of

minima events. Here, k is a user defined parameter. In our experiments, we found

that setting k = 50 provides a good threshold that is large enough to ensure no

significant event is lost. Figure 3.4 shows the scalar function and the associated

set of minima events identified for the time step 10-11am on 24 November 2011.

This was one of the time steps during which the Macy’s Thanksgiving Parade

(highlighted in the figure) occurred. The set of maxima events are computed

similarly using the join tree of the scalar function.
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Figure 3.4: Identifying minima events. Left: The scalar function corresponding
to the time step 10 am-11 am on 24 November 2011 is shown using a heat map.
Right: The set of minima events identified using the split tree. Each connected com-
ponent of the colored subgraph corresponds to an event. The event corresponding
to Macy’s Parade is highlighted.

3.4.2 Event Group Index

Each of the events computed in the previous stage corresponds to a single

time step. Multiple such events can be part of a larger macro event that spans

multiple time steps. For example, the Macy’s Parade consisted of a set of events

that spanned several hours when the roads were blocked for the parade. To group

such events, we first define a notion of similarity between events based on their

geometric and topological properties. Similar events within a user-defined time

interval are then grouped together to obtain the set of event groups. There can

potentially be a large number of event groups across different time intervals. To

support efficient search over event groups, we define a key that is used to index

these groups.

3.4.2.1 Similarity Between Events

An event E is formally represented as a pair (R, τ), where R is a subgraph of

G denoting the spatial region of E, and τ is a real number that represents the
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topological importance of E. τ is the same measure that is used to simplify the join

and split trees in the previous step, which for the taxi data is the hyper-volume

of E. Consider two events E1(R1, τ1) and E2(R2, τ2). We use the graph distance

metric [26], δ, to measure the geometric similarity between R1 and R2:

δ(E1, E2) = 1− |R1

⋂
R2|

max(|R1|, |R2|)
,

where R1

⋂
R2 denotes the maximum common subgraph between R1 and R2, and

|R| denotes the number of nodes in R. The topological similarity between two

events is defined as:

T (E1, E2) = |τ1 − τ2|

The geometric similarity measures the amount of overlap between two regions,

ensuring that similar regions have a significant overlap. The topological similarity

on the other hand ensures that the two events are topologically close with respect

to the topological importance measure used. Two events E1 and E2 are similar if

δ(E1, E2) ≤ εδ and T (E1, E2) ≤ ετ , where, εδ and ετ are user-defined thresholds.

3.4.2.2 Event Group and Event Group Key

An event group comprises a set of similar events that occur within a given

time interval. A brute-force approach to compute event groups from a set of n

events would require the computation of similarity between all pairs of events (
(
n
2

)
comparisons). For example, even considering 50 events per hourly time step results

in a total of 1200 events per day. Since urban datasets typically contain data for

multiple years, computing similarity between all event pairs is not practical.

To avoid a combinatorial explosion, we propose to group events for fixed time

intervals. In the experiments described in this chapter, we use a time period equal

to one month. We choose this time interval since it provides a good trade-off

between efficiency and number of events: there is a sufficient number of events so

as to not to miss periodic events, but the number of events in this interval is small

enough and does not create a computational bottleneck. Moreover, a time frame of

a month provides a natural and easily understandable abstraction for the user to

explore event groups.

Given an event group Σ = {E1, E2, . . . , Ek}, we define the event group key of Σ
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Figure 3.5: Event group index. The event group key of an event group corresponding
to Macy’s Parade. The black nodes and edges correspond to the maximum common
subgraph of regions of all the events in the event group, and is used to represent
the region of the event group.

as (RΣ, τΣ), where

RΣ =
⋂

i∈[1,k]

Ri and τΣ =
k∑
i=1

τi/k

The above definition of the event group key follows directly from the definition

of geometric and topological similarity measures. RΣ is the maximum common

subgraph of the geometric regions of all the events in Σ. Since the events in Σ

are similar, we can conclude that there is considerable overlap among them due to

the similarity condition. Thus, RΣ provides a good representation for the region

where events in Σ occur. τΣ captures the topological importance of the Σ as the

average of the topological importance of the events in Σ. The definition of event

group key also helps in using a consistent definition for the similarity between event

groups. Two event groups are similar if their keys satisfy the similarity constraints

described earlier.
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(a) (b) (c) (d)

Figure 3.6: The visual exploration interface. (a) The time line view showing 4 event
groups with different densities and ranges. In this view, event groups are sorted
according to their topological importance τ . (b) The event group distribution view
where the time resolution is an hour. (c) The event group distribution view when
the time resolution is changed to a day. The daily event (purple) moves to Region I
for this time resolution. (d) The event group distribution view when the time
resolution is changed to a week. The weekly event (orange) moves to Region II for
this time resolution.

3.4.2.3 Computing Event Groups

Even when restricting the events to be within a time interval, comparison

between all pairs of events is a costly operation. To decrease the number of such

comparisons, we relax the condition of similarity between two events: two events

are similar if their event groups are similar. Using the relaxed condition, event

groups for each time interval are computed as follows. Initially, each event is its

own group. The algorithm iterates through the set of event groups to identify

similar group pairs. Events are processed in increasing order of their time step.

When two similar event groups are found, they are merged into a single group. The

algorithm continues until no event groups are similar. Figure 3.5 shows an event

group corresponding to the Macy’s Thanksgiving Parade along with its event group

key.

The quadratic number of comparisons to be performed among the events present

in a given time interval is still a computationally expensive operation (approximately

650 million comparisons in the worst case are required per month assuming 50 events

per hour). However, utilizing the spatial information of the events, it is possible to

drastically reduce the number of comparisons. The spatial region of the input graph

is first divided into a set of smaller subregions. An event intersecting a subregion

is assigned to that subregion. It is then sufficient to group only events present in
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each subregion. Note that an event can be assigned to multiple subregions. These

multi-region events can be efficiently handled by maintaining the event groups

using the union-find data structure [35].

3.4.2.4 Analysis

Time complexity. Let the graph G have N nodes. Computing the join and split

trees of a scalar function defined on G takes O(N logN +Nα(N)) time [28], where

α is the inverse Ackermann function. Given n events per time interval, computing

event groups for that period requires O(n2) time in the worst case. However, we

note that in practice the constant associated with the above bound is small, thus

allowing for fast computation. For example, when using 50 events per hour on the

taxi data, the average number of events assigned to a subregion of Manhattan was

about 1000. Manhattan was divided into a total of 50 subregions, thus amounting

to a maximum of 25 million comparisons as opposed to 650 million that is required

by a brute-force technique.

Scalability. The set of event groups along with the corresponding keys are stored

separately on disk for each time interval. As and when data is obtained for newer

time steps, it is easy to update the event group index. Computing the scalar

function followed by identifying the events is independent for each time step. If

the newer events correspond to an already existing time interval, then they are

grouped into the event groups of that interval. If the time interval does not exist,

then a new set of event groups are formed for this time interval.

3.4.3 Querying Events

Once an event is discovered, it is often useful to identify similar events that

may have occurred at different times. Manual search is impractical due to the

large number of data slices. For example, consider a case where a particular road

block had unintended effects on the traffic in Manhattan. Experts at the DoT are

interested in identifying how frequently such road blocks occur, if they are periodic,

and if they have the same effects. This will help them design preventive measures

and improve decision making.

The event group key enables the efficient evaluation of such similarity queries.
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Given a query consisting of a geometric pattern (a sub-graph) together with a real

value, we perform a linear search over the set of event groups to identify the set

of events similar to the given query. Since the set of event groups for each time

interval are stored separately on disk, queries can be executed in an out-of-core

manner by sequentially loading event groups from each interval.

3.5 Visual Exploration Interface

In this section we describe an interactive visual exploration interface that uses

coordinated views and allows users to browse through the data based on the

detected events. Given the input data set, the event group index is first created in

a pre-processing step. The data together with the created index is then loaded by

the interface and used to support interactive exploration and querying of events in

the data. The rest of this section describes the different views and options available

in this interface for data exploration.

3.5.1 Map View and the Query Interface

The map view, as the name suggests, provides geographical context to the user.

For a given time step, the geometry of the different events in that time step is

visualized in the context of a map of the city of interest (see Figure 3.4). This view

also allows users to select events of interest to search for similar events.

3.5.2 Event Group Distribution View and Timeline View

The event detection technique can generate a large number of event groups,

many of which may be uninteresting. It is thus important to allow users to explore

the set of event groups and guide them towards potentially interesting events.

Events can be broadly classified into two categories – recurring events and sporadic

(or one-off) events. To capture these categories, we define two attributes – range

and density. The range of an event group is defined as the amount of time between

the first and the last event in that group based on their time steps. Its density

is defined as the number of events of that group that happen per time unit. It
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measures the time frequency of the events within the group. The resolution of time

determines the time unit. Our tool supports three units – hours, days, and weeks.

A combination of these two attributes enables the classification of an event

group. We provide an event group distribution view that uses a scatter plot

to visualize the event groups, where the axes correspond to the two attributes.

Figure 3.6(b) illustrates an event group distribution view consisting of 4 event

groups. As illustrated in the figure, the different combinations of the two attribute

values roughly divides the event group distribution space into four regions:

Region I Event groups in this region have a low range, but high density. This

indicates rare occurrence of such events, and can be used to identify irregular

patterns of the data. The green event group shows one such example – it consists

of events that happen over two consecutive hours.

Region II Event groups in this region have high range and high density, thus

implying that such events occur over frequent periods throughout the given time

interval. Event groups in this region can be used to identify trends in the data.

The blue event group consists of similar events that occur every hour during a 7

day period, and therefore has both high range as well as density.

Region III Event groups in this region consists of a small number of events that

span a large range. Such events could move to Region II at a lower time resolution,

and could potentially represent patterns that are regular over a large time interval,

but irregular with respect to the range of the input data. The orange event group

contains events that occur over two weeks, but only for one hour per week. Note

that this event group moves to Region II (Figure 3.6(d)) when the time resolution

is changed to a week.

Region IV Event groups in this region have low range as well as low density.

However, such events could move to Region I at a lower time resolution. Figure 3.6(c)

shows an example where the purple event group, having events over two days, moves

from Region IV to Region I when the time resolution is changed to a day.

As we show later in this chapter, this view acts as a powerful device to help

identify many interesting patterns. Using it in conjunction with the query interface

simplifies the exploration of large datasets.

While the distribution view gives an overview of an event group, its exact

periodicity cannot be inferred accurately. This is instead accomplished using the
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Figure 3.7: The event group distribution view for November 2011 after filtering.
Note that the event group corresponding to Macy’s Parade stands out in this view,
thus helping the user identify this pattern.

timeline view which visualizes the individual events in an event group over time

(see Figure 3.6(a)). This view is inspired by the Gantt chart visualization [58] which

is commonly used to represent activities (events) over time. Event groups are

represented by a horizontal sequence of points, each point representing individual

events. The x-axis in this view represents time. In the timeline view, the event

groups are sorted based on their topological importance in order to help the user in

identifying significant event groups (the most important event group is on the top).

Figure 3.6(a) shows the timeline view containing the four event groups described

above.

3.5.3 Filtering Interface

Given the possibly large number of event groups, the ability to filter them not

only helps to remove spurious events, but it also allows users to focus on specific

types of events. Our visual exploration interface supports multiple property-based

filters:

Event group size allows users to filter event groups based on the number of events

constituting that group. The user can specify both the maximum and minimum

size using this filter. For example, if the user is interested in patterns that happen

for at least 4 hours, then minimum size should be set to 4.

Event size allows the users to filter event groups based on the geometric size of
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(a) (b) (c)

Figure 3.8: Minima events in NYC. (a) Selecting the lone high density event
group from Region I of October’s event distribution view identifies the event
corresponding to the Halloween Parade in 2011. (b) Changing the time unit to
daily, and selecting high density event groups with range = 2 identifies events
corresponding to Hispanic Day Parade and Columbus Day Parade that occurred
on consecutive days. (c) Changing the time unit to weekly for the month of
August, and selecting high density event groups with range = 3 identifies events
corresponding to the NYC Summer streets that occurred on three consecutive
Saturdays.

the events in the group. The geometric size of an event is defined as the size of

the subgraph representing that event. For example, the user might be interested in

viewing only events that span at least 10 nodes.

Event time allows the user to filter events for a particular time period. For

example, the user can search for events that occur only at night.

Spatial region allows the user to select regions on the map and filter out events

that occur outside this region.

Figure 3.7 shows the event group distribution view for November 2011 after

the application of the first two filters. The minimum event group size was set to 4,

and the minimum event size was set to 10. The lone highlighted event group in

Region I corresponds to Macy’s Parade.

Multiple event groups can overlap in the distribution view. To help identify

event groups that are occluded in the distribution view, we also allow users to filter

event groups using the distribution view, and visualize the selected events in the

time line view.
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Figure 3.9: Using the timeline view to isolate events. (a) Identifying daily events.
The most important event group (the topmost event group) in the timeline view
corresponds to the daily event corresponding to the Hispanic Day Parade and
Columbus Day Parade. (b) Identifying weekly events. The timeline view is used
to select a periodic event group, which corresponds to the NYC summer streets
that happened on Park avenue for 3 consecutive Saturdays.

3.6 Case Studies

In this section, we present scenarios that illustrate the features and benefits

of event-guided exploration for two datasets: NYC taxi trips and subway data

(Section 3.3).

3.6.1 NYC Taxi data

We applied our technique on the density scalar function derived from the NYC

taxi data. In what follows, we describe a use case where we explored events at

different time granularities and queried for similar events. Motivated by a problem

posed by the TLC, we also looked for trends in the data to help them identify areas

with high concentrations of taxis. We have been collaborating with experts from

the DoT and the TLC who are currently using TaxiVis [54] to analyze the taxi data.

We demonstrated the event-guided exploration framework to them. Their feedback

was very positive and they expressed interest in using the framework together with

TaxiVis to improve policy decisions in their respective organizations.
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3.6.1.1 Minima events in NYC

Minima events are of interest for the taxi data, since they provide information

about regions where there are comparatively fewer taxis. If such minima events occur

in places where there is usually a high density of taxis, then this implies blockage

of streets. Policy makers in the DoT are particularly interested in identifying such

road blocks. By analyzing its spatial location and frequency of occurrence, they

are interested in putting in place policies to help them handle such situations.

Since such phenomena occur rarely, we focus on Region I of the distribution view

to identify such events. We categorize the events into hourly, daily, and weekly

respectively, denoting the periodicity of the event. In this section, we briefly discuss

a few examples of events that we found while exploring different months.

Hourly events. Figure 3.8(a) shows the event group distribution view for the

month of October in 2011. Filtering out event groups having less than 4 events

and event size greater than 10, and selecting the highlighted event group reveals

an event that occurred along Sixth avenue in Greenwich Village on October 31st.

This corresponds to the annual NYC Halloween Parade. As shown in the running

example, we also find the Macy’s Thanksgiving Parade in November. Figure 3.3

illustrates the process used to identify the NYC Five Boro Bike Tour that happened

on 1 May 2011. Using similar a similar process, we were able to find many other

events such as the New year’s eve ball drop, St. Patrick’s Day Parade in March,

etc.

Daily events. Figure 3.8(b) shows the event group distribution view for October

when the time unit is changed to days. The highlighted high density point with

range = 2 consists of multiple event groups. However, using the timeline view to

choose the most important event group identifies the one that happened on Fifth

avenue on October 9th and 10th, 2011 (see Figure 3.9(a)). This corresponds to the

Hispanic Day Parade on 9th October and the Columbus Day Parade on October

10th.

This change in the resolution of the time unit essentially helps in boosting the

density of periodic events that happen on consecutive days, but for only a few hours

per day. Note that it will be difficult to isolate this event group in the distribution

view when the time unit is an hour since it is part of the dense cluster of points

in Region IV (Figure 3.8(a)). Exploring the month of May, we also found events
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Date Event

17 March 2011 St. Patrick’s Day Parade
7 October 2011 Pulaski Day Parade

10 September 2011 Labor Day Parade
8 September 2012 Labor Day Parade
8 October 2012 Columbus Day Parade
14 October 2012 Hispanic Day Parade

11 November 2012 Veterans Day Parade

Table 3.1: Event groups similar to Hispanic Day Parade.

corresponding to the 9th avenue Food Festival that happened on May 14th and

15th, 2011.

Weekly events. Changing the time unit to “week”, we were able to isolate the

event corresponding to the NYC Summer streets that happens on Park avenue as

shown in Figure 3.8(c). The Summer streets for the Year 2011 occurred on three

consecutive Saturdays, 6th, 13th, and 20th August respectively. Note that selecting

high density event groups with range equal to 3 weeks results in multiple event

groups as shown in the timeline view in Figure 3.9(b). This includes event groups

in which the events are not periodic. The events in the timeline view are colored

based on the day of the week. This helps in visualizing the periodicity of the events,

and one can immediately locate the periodic 3 week event group (highlighted in

Figure 3.9).

3.6.1.2 Querying events

Querying for events similar to a given pattern is essential for the analyses

performed by experts in DoT. Using the interface described in Section 3.5, we

can search for events similar to a selected event that occurs in other months. We

now discuss a few results obtained when querying for events similar to the ones

automatically detected.

In Figure 3.3, searching for events similar to 2011’s Five Boro Bike Tour, we

find the Five Boro Bike Tour that happened in 2012 together with the Dominican

Day Parades that happened in 2011 and 2012. Additionally, we also find that the

Gaza solidarity protest was held at the same location on November 18th, 2012.

When querying for patterns similar to Hispanic day parade, we were able to

find other parades that also occurred in the same location. Table 3.1 lists the set

of events similar to the Hispanic day parade. Similarly, the query with the New
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year’s ball drop event on December 31st, 2011 returns the same event from January

1st, 2012 and 2011, and 31 December 2012.

3.6.1.3 Identifying trends

Maxima events show high concentration of taxis. If such concentrations are

frequent, then it could imply taxi hot spots. Experts from TLC are particularly

interested in identifying such locations. They intend to install data receivers

throughout Manhattan to collect data at regular intervals from all the taxis. By

placing the receivers at strategic locations such as hotspots they hope to optimize

the amount of hardware used. The location of these hot spots can also identify

interesting regions in Manhattan.

Selecting highly frequent maxima event groups from Region II of the event

distribution view locates the different taxi hot spots in NYC. Figure 3.10(a) shows

the top 10 hot spots for the month of November 2011. Note that the frequent

hot spots include transit locations such as the New York Penn station and the

Port Authority Bus terminal, in addition to tourist locations such as Central

Park (Columbus circle).

By switching to lower time resolution (weekly) and viewing event groups that

consist of only events from 9 pm to 6 am, helps us identify various places of

nightlife in Manhattan, as shown in Figure 3.10(b). This includes areas popular

for restaurants and night clubs in Lower Manhattan such as Greenwich Village,

East Village, and Meatpacking district, in addition to the Hell’s Kitchen region in

Midtown. Note that there is also a high concentration of taxis during this time on

both Upper East Side and Upper West Side. Experts from TLC pointed out that

this was because a lot of people in that area use taxis to return home late night. It

is interesting to note that the frequency of these events was more prominent during

weekends compared to weekdays.

3.6.2 MTA data

To identify events related to delays, we used the average delay of trains at a

given station as the scalar function. Since we are only interested in the amount

of delay, topological persistence is used as the importance measure for this data
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Figure 3.10: Identifying trends. (a) Taxi hot spots correspond to areas of high
activity in NYC. These include transit locations and tourist spots. (b) Taxi hot
spots during the night corresponds to areas of active nightlife.

set. As we discuss below, we have presented the automatically identified events to

engineers at the MTA, who not only provided interesting insights, but were also

piqued by some of them.

3.6.2.1 Identifying trends

Minimum event groups. A minimum event for this function corresponds to a

station at which the delay is lower than that of its neighbors. This also signals

the station where trains start to get delayed. Therefore, a frequent presence of

such events could indicate a problematic situation at a station that needs to be

investigated. Such frequent patterns are represented as event groups in Region II

of the event group distribution view. We now discuss a few such interesting event

groups along with their implications.

Figure 3.11 shows the event group distribution view in August 2013 for the

southbound Line 3 trains, which run from Harlem in Manhattan to New Lots

Avenue in Brooklyn. A frequent daily minimum event group for this month

corresponded to the Wall Street station. Plotting the frequency distribution of

events in this group across both hours of the day, as well as days of the week
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Figure 3.11: Frequent minima events for August 2013 for the south bound 3 trains.
Two of the event groups in Region II of the event group distribution view (daily
events) corresponds to the Wall Street and the 14th Street stations. Frequency
distribution of events in the minimum event group corresponding to Wall street
station indicates that this event predominantly occurs during rush hours, i.e.,
between 8 and 10am and between 4 and 8pm. Also note that the frequency of this
event is higher on weekdays than on weekends.

indicates that such an event occurs at this station predominantly during the rush

hour period on weekdays. Note that a large number of people use Wall street

station, with it being in the middle of the financial district that houses a lot of

offices. We noticed this pattern even for other months.

According to MTA engineers, the delay at this station is due to two reasons.

Because the station is small, it can be difficult for passengers to board on or off

the trains due to the crowds. More importantly, passengers tend to hold doors in

order to allow other passengers to board, thus delaying the train from leaving the

station. A similar daily minimum event group was also found on the 14th street

station. Here the delay is because the 3 train sometimes waits for the 1 train to

arrive in order to allow passenger transfer between them.
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When considering northbound Line 3 trains, in addition to event groups similar

to that of the southbound line, we also found a frequent event group at the Borough

Hall station. The MTA engineers did not expect delays to occur at this station,

and they were interested in investigating further as to why it occurs. Another

unexpected delay was found at the Dyckman Street station along the northbound

Line 1 trains. This was interesting for the engineers because this delay occurred

predominantly during late nights and early hours of the day.

Maximum event groups. A maximum event for the computed delay function

corresponds to a station from which the train makes up on time. One such

frequent maximum event group was found on 34th street Penn station for the Line 3

southbound train. This is because the stop after Penn station, which is 14th street,

is far from Penn station. Additionally, this stretch of the route is straight allowing

the train to speedup and make up on time. Other frequent maximum event groups

we found were also along such straight stretches of the route.

3.7 Discussion

Event structure. The structure of topological features depends on the input

scalar function. Small changes in the scalar function can change the geometric size

of the events found, causing the geometry of the actual event to be split across

multiple topological features. For example, the event group found for the NYC

5 Boro bike tour consists of 2 events corresponding to time steps 8 am and 9 am

respectively. However when the map view for one of those time steps is viewed,

one can find that there exists another event that also corresponds to the bike tour.

Figure 3.12 illustrates this phenomena, where the blue region is part of the event

group identified by exploring the visualization interface. However, by guiding the

user to this time step, the user can also find the red region. The two regions

represents a huge portion of the path taken by bike tour in Manhattan that starts

at Battery Park and passes through 6th avenue into Central Park.

As a side effect, this also causes some of the events not to be part of the event

group. For example, while the roads are blocked for the Macy’s Parade from early

hours of the day until 11 am, the event group corresponding to it consists of events

from only a subset of these time steps. Again, once the users are assisted towards
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Figure 3.12: Due to the impact of the scalar function on the shape of the events
found, the path taken by the bike tour is split into multiple regions.

one of these time steps, they can find the others by exploring close by time steps.

It will, however, be interesting to explore techniques to allow combining such split

events into a single event.

Similarity computation. The grouping of events depends on the thresholds εδ

and ετ . For the results reported in this paper, we used εδ = 0.3 and ετ = 0.2. While

these values gave good results for both the taxi and subway datasets, it would be

interesting to explore methods that help identify a good threshold based on the

data. The ordering of events when computing event groups can also affect the

number of groups found. We plan to explore the effects of event order in the quality

of the event groups found.

Currently, we restrict events in a group to be present in the same spatial location.

Users might also be interested in the occurrence of events that have a certain shape.

For example, using the taxi data, user might be interested to find events where a

long stretch of an avenue is blocked irrespective of the location. This is a difficult

problem which we intend to explore in future work.

Scalar function computation. While we show two possible transformations of

the raw data to scalar functions, we expect many other scalar functions to be useful.

The design of the scalar function is dependent on the application. For example,

another possible scalar function that can be computed using the MTA data set
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is the average waiting time of a passenger at each station. MTA engineers are

interested in maintaining high frequency between trains especially during peak

hours. Hence a frequent maxima event group of such a scalar function would help

in identifying stations which have significant waiting times.

Another parameter in designing the time-varying scalar function is the time

interval used to convert the temporal component into a set of discrete time steps.

We chose an hourly interval since it was small enough to not conceal short events,

but was large enough to provide sufficient data to avoid spurious events.

3.8 Summary

In this chapter, we introduced a topology-based technique for event-guided

exploration of spatiotemporal data, which aims to extend the capabilities of current

visual analysis systems by guiding users towards interesting portions of the data. Our

technique uses efficient algorithms to capture topological features of spatiotemporal

data and enables flexible exploration of events by grouping and indexing events. As

demonstrated in a variety of case studies, the proposed approach is efficient, scales

to large datasets, and is able to handle a wide range of event types. As discussed

in Section 3.7 our work opens many directions for future work, both in exploring

possibilities to improve the event detection mechanism and also in user interaction

with this novel exploration tool.
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Chapter 4

Clustering Trajectory Data for

Visual Presentation and Pattern

Discovery

In this chapter, we continue to pursue the problem of designing techniques

for pattern mining in spatiotemporal data. However, while in Chapter 3 we were

concerned with static patterns present spatiotemporal data, in the present chapter,

we are concerned with dynamic or movement patterns in trajectory data.

Trajectory data is often captured to study movement in different domains. For

example, ecologists study animal movements to learn about population growth,

social interactions, feeding and migratory patterns, etc. [25, 61]. Meteorologists

use trajectory data to help predict storm paths [27, 46], and researchers from a

wide variety of fields study human mobility to perform targeted advertising, predict

traffic and commuting patterns, as well as data-driven urban planning [21]. In all

such cases, due to the vast amount of data being collected, there is a great need

for scalable and efficient techniques for analyzing this data and discovering the

underlying patterns [63].

As briefly discussed in Chapter 1, the analysis of this kind of data is challenging

not only because of its size, but also due to its complexity [108]. Trajectories

are spatiotemporal in nature, involving dynamic geometric positions, directions,

velocities, durations, and other characteristics specific to the entities being tracked.

Hurricane tracks may include overall storm strength, wind speeds, or seasonality.
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Animal tracks may be influenced by their size, age, or gender. Incorporating these

characteristics, when available, can help direct the trajectory analysis, but adds

complexity. In particular, all of these features poses challenges to visual analysis of

trajectory data. In fact, effective representation of large collections of trajectory

data is difficult and common solutions often produce extremely cluttered displays

(see Figure 4.1).

In this chapter, we propose a technique to attack the problems of movement

pattern mining and visual representation at the same time. This technique consists

on a novel approach for model-based trajectory clustering based on vector field

fitting. Vector field is a mathematical concept widely used in the fields of computer

graphics, scientific computing and scientific visualization [32, 121]. Intuitively,

the idea behind our method is to use vector fields as a generative model for

the spatial component of the trajectory data. This can be seen as the inverse

operation of producing characteristic lines, such as streamlines, of a vector field.

This process induces a similarity notion on the dataset by considering a set of

trajectories similar if they can be approximated well by streamlines of a single

vector field (see ). This modeling approach solves the two main drawbacks of

previous methods, namely that we can define a similarity that naturally encodes

features of the trajectories together with their geometries. Clustering is achieved

through parameter estimation algorithm based on alternating optimization called

Vector field k-means. One important consequence of our modeling approach that is

not present in previous work is the ability to capture global patterns in the data that

are not evident when considering only local information (Section 4.5). Furthermore,

the obtained vector fields are a good summary of the movement patterns in the

clustered data. Finally, we can leverage a vast set of techniques for vector field

visualization to display such movement patterns (see Figure 4.1 and Section 4.5).

Section 4.6 describes how to modify the method above to not only consider

the spatial component of the trajectories, but also their attribute components.

This is achieved by using a different generative model based on scalar fields.A

parameter estimation algorithm similar to vector field k-means can be used obtain

the clustering based on the attribute components. We call this algorithm Attribute

field k-means. As we discuss in Section 4.6, the scalar field modeling approach

provides a generalization of the vector field modeling previously described.
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Figure 4.1: Left: 1415 Atlantic tropical storms (from the HURDAT dataset) used
as input. The orientation of each trajectory is represented by linearly interpolating
from blue (start) to orange (end). This color scheme is used throughout this chapter.
Right: four trajectory clusters and their corresponding vector fields showing relative
speed. Clusters (b) and (c) contain the Cape Verde-type cyclones, and separate
them according to whether they dissipate in North America (b) or turn back to
the Atlantic Ocean (c). Clusters (a) and (d) show storms developing in the Gulf of
Mexico. We observed faster-moving storms to be in cluster (a), and slower-moving
ones in (d).

4.1 Related Work

Due to the growing rate at which mobility data is being collected, computational

movement analysis is a very active research field, combining techniques and expertise

from many fields, including GIS, information visualization, computational geometry,

databases, and data mining [63]. In this work, we focus on just one of the problems in

movement analysis, that of extracting arbitrary movement patterns from trajectory

data. In other words, given a large number of trajectories of moving objects, e.g.

animals, people, or vehicles, we want to quickly identify underlying patterns that

exist and that shed light on the global movement trends of the moving objects.

Our approach for identifying these patterns is to perform trajectory clustering. As

Kisilevich et al. [74] provide a thorough examination of many trajectory clustering

techniques, we briefly review the most relevant methods here.

Rinzivillo et al. [108] designed a density-based progressive clustering technique

that can utilize different distance functions at each step of their clustering. This

allows analysis of objects with heterogeneous properties to be handled differently
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during the cluster refinement stages. Lee et al. [80] also use density-based clustering,

but believe that clustering whole trajectories may miss common sub-trajectories.

They partition the trajectories into line segments based on a simplification algorithm

and cluster these segments using the notions of neighborhood and density. The

techniques of both Rinzivillo and Lee rely on the definition of a distance measure

between trajectories. This is known to be a difficult problem, in the sense that

no proposed distance measure captures well all the attributes of trajectories [63].

For example, both of these methods only use the geometry of the trajectory and

therefore they cannot encode speed information, which might be relevant in cases like

storm track analysis. Pelekis et al. [104] exploit local similarities of subtrajectories

too, but they also study the effect of uncertainty (in measurement) in the original

trajectory data.

Like Rinzivillo et al., our overall approach falls within the broader category

of visual and exploratory movement analysis, which exploits humans’ ability to

visually detect patterns, and then steer the visualization and analysis to those

regions of greatest interest. The research of Andrienko and Andrienko [11, 13, 108]

has focused on human-in-the-loop analysis systems, but has also included more

general aggregation and visualization of movement data [5], and more recently the

identification of important locations and events by analyzing movement data [9, 15]

and the visualization of trajectory attributes [118]. All these works could benefit

from more efficient clustering methods since they rely on clustering for display

purposes.

An important problem related to trajectory clustering is how to ultimately

visualize trajectory data. Traditionally flow maps [15, 107, 124] have been used to

convey the amount of people and goods that moved between locations but without

necessarily reporting the exact routes that were taken. More recently, there have

been several compelling techniques based on density maps [110, 130], heat maps [97],

kernel density estimation [36], and 3D based visualizations [12, 118]. Vector fields

have been widely used in scientific visualization and even by some researchers doing

trajectory clustering analysis to show speed and direction of animal movements

[25] and wind [27]. In these cases, they have only been used to visualize the results,

rather than as an integral part of the underlying clustering technique.

The related problem of deriving vector fields from trajectory datasets has been
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studied in different contexts. Jänicke et al. [72] defined a measure to evaluate vector

field visualizations based on how well a computer vision algorithm could derive

a vector field from an image containing visual representations (e.g., streamlines)

of the vector field. This problem was independently investigated in the image

processing community by Nascimento et al. [93]. Although the model proposed

by Nascimento et al. has some similarities with ours, we point out that it is not a

clustering algorithm, but a way to model movement as vector fields. Furthermore,

their model has a set of complex parameters to be estimated which brings higher

computational costs, and more importantly increases the complexity for the human

analyst. Thus their method is not suitable for our purposes. We propose a different

(and simpler) modeling approach which has a smaller number of variables and

outputs not only the vector fields (that in our case do represent distinct mobility

patterns) but also a meaningful clustering of the input dataset, which makes our

algorithm suitable for visual data analysis.

4.2 Background and Notation

Trajectories are modeled as paths of the form α : [t0, t1] → R2. We assume

we are given a set of n trajectories T = {α1, ..., αn}. Each trajectory is given as

a sample, i.e., for each i = 1, ..., n, we are given a sequence of space-time points

α̂i = {(αi(ti1), ti1), (αi(t
i
2), ti2), . . . , (αi(t

i
pi

), tipi)}. We approximate each trajectory αi

with piecewise linear curves (constant velocity between two consecutive samples).

This results in a polygonal line representation for each trajectory. For each αi we

denote the interval [ti1, t
i
pi

] by Ii and by |Ii| the time span for αi, i.e., |Ii| = tipi − t
i
1.

We call each portion of a trajectory between two samples a segment of the trajectory

αi. For each segment sj = [αi(tj), αi(tj+1)] of αi we define ωsj =
tj+1−tj

T
, where

T =
∑
αi∈T
|Ii| is the total time span in the dataset.

In this paper, we consider vector fields as functions defined over a domain

Ω ⊂ R2 with values in R2. We discretize Ω as a regular triangle grid G with

resolution R (R2 vertices) and assume linear interpolation within each face of

the grid for the reconstruction of the vector field. We assume all trajectories are

contained in this grid and are tessellated so that each trajectory is comprised of

segments that do not cross the boundaries of the domain triangles as in Figure 4.2.
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Figure 4.2: Illustration of the trajectory tessellation and Laplacian matrix com-
putation. The trajectories are tessellated so each segment is contained on a face
of the grid. Each segment sj determines a constraint in the form of a matrix Csj .
The Laplacian matrix enforces our smoothness penalty.

For the optimization problems described in this paper, the components of the

vector field can be treated separately. Therefore, the presented formulas are written

as if X were a scalar field. For each segment sj of a trajectory αi we denote by

Csj the 2×R2 matrix that contains in the first and second rows respectively the

barycentric coordinates of the first and second vertices of segment sj (with 0 entries

everywhere else); Figure 4.2 illustrates the setting. We also define the vector bsj as

the vector whose entries equal the value of the velocity vector of the segment sj,

i.e., bsj =
αi(tj+1)−αi(tj)

|Is| .

4.3 Vector Fields as a Generative Model of Tra-

jectories

As briefly described before, our approach consists of capturing movement

patterns by defining a vector field for which the trajectories are approximately

streamlines, i.e., we attempt to separate the trajectories into a small number of

clusters according to the best vector field that approximates them. Streamlines are
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characteristic lines that are tangent to the vector field at each point. More formally,

given a vector field X, a trajectory α is a streamline of X if X(α(t)) = α′(t), where

α′(t) denotes the velocity vector of α at time t.

Our assumption is that for every set of trajectories T , there exists a set of

smooth vector fields Xj ∈ F, |F | = k that explains most of the mobility in the data,

in the sense that each trajectory would be approximately tangent to one of the Xj .

More formally, we define this as the problem of finding the vector fields Xj and the

cluster assignment function Φ : T → {1, . . . , k} such that for each j = 1, . . . , k{
∆Xj = 0

α′i(t) = Xj(αi(t)),∀αi ∈ Φ−1(j) and ∀t ∈ Ii

where ∆ denotes the vector Laplace operator. The first equation directs the

solution towards smooth vector fields; the second equation ensures that vector fields

represent the trajectories well. It is clear that with this formulation the problem

may have no solution. We propose instead to solve it in the least squares sense, by

minimizing the following energy

E(X1, . . . , Xk,Φ) =
k∑
j=1

λL ||∆Xj||2+
∑

αi∈Φ−1(j)

(1− λL)

T

∫ tipi

ti1

||Xj(αi(t))− α′i(t)||
2
dt,

(4.1)

where T is the normalization factor (defined previously) and λL > 0 plays

the role of a weighting factor: for small values of λL less weight is given to the

smoothness of vector fields and therefore we get vector fields that match the given

trajectories but are less smooth. For large values of λL we are giving relatively high

priority to the smoothness of the vector field.

4.4 Vector Field K-Means Fitting Process

The model presented in Section 4.3 has two main elements: the vector fields

and the assignment of trajectories to clusters. Therefore the model fitting problem

consists of defining the vector fields (X1, ..., Xk) and assigning each trajectory to a

vector field (Φ), guided by Equation 4.1. We propose a 2-level alternate optimization
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Algorithm 1 Vector Field K-Means Outline

Require: k: # of clusters, T = {α1, . . . , αn}: Array of curves
Ensure: V = {X1, . . . , Xk}, Φ : T → {1, . . . , k}

Φ← Initialize(T ,k)
repeat

for i = 1 to k do
Xi ← fitVectorField(Φ−1(i))

end for
for i = 1 to n do
j0 ← argmin

j∈{1,2,...,k}
E ′′(Xj, αi)

Φ(αi)← j0

end for
until converge

algorithm as the vector field k-means fitting process. It consists basically of the

following steps:

(*) Given a candidate assignment of trajectories Φ, for each set Φ−1(i), i =

1, . . . , k, we find the best-fitting vector fields over those particular trajectories,

and

(**) Given a set of vector fields Ṽ = {X1, . . . , Xk}, we compute the best assign-

ment function for those particular vector fields by picking, for each trajectory,

the vector field that best approximates it.

Algorithm 1 contains the outline of vector field k-means. In this pseudo-code,

the step (∗) corresponds to the fitVectorField routine. As we show below, we

can formulate this step as a sparse linear system (in the general form of [115])

whose solution can be computed essentially in linear time, and which gives us

the smoothest, best-fitting vector field for a set of trajectories. The step (∗∗)
corresponds to finding the vector field with smallest error with respect to a given

trajectory. We further describe these components below.

4.4.1 Fitting Vector Fields

The fitVectorField routine is the central step of vector field k-means. It consists

of an optimization problem with two types of constraints: value and smoothness,
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defined below. As depicted in Algorithm 1, in this step we are given as input a

fixed subset T ′ of T and we want to minimize

E ′(X, T ′) = λL ||∆X||2 +
∑
αi∈T ′

(1− λL)

T

∫ tipi

ti1

||X(αi(t))− α′i(t)||
2
dt (4.2)

We now use the grid G to write E ′ in matrix form. First, we use the well-known

Laplacian matrix cotangent weights [120], denoted by L, to get a finite representation

of the Laplace-Beltrami operator. In general, if we let p, q be a pair of adjacent

vertices of the grid (see Figure 4.2), then the entries of the cotangent Laplacian

matrix L are given by

L̄pq =
1

2
(cot θpq + cot ηpq),

L̄p = −
∑

t∈Neighborhood(p)

∆pt.

This formula allows us to compute the Laplacian of scalar functions defined over

the grid by simply representing the values of the function on the vertices of the

grid as a vector and multiplying the vector field by the Laplacian matrix. More

concretely, by using the Laplacian matrix of G we can represent the first term

of Equation 4.2 in matrix form as ||
√
λLLX||2, where X is the finite-dimensional

representation of the vector field. Before representing the second term of E ′ in

matrix form we define for each segment sj the matrix C̃sj =
√

(1− λL)ωsjΛCsj
and the vector b̃sj =

√
(1− λL)ωsjΛbsj , where Λ is a 2 by 2 matrix given by

Λ =
1

2
√

6

( √
3 + 1

√
3− 1√

3− 1
√

3 + 1

)
.

We denote by C̃ the matrix that consists of stacking Csj for all segments sj and

denote by b̃sj the vector obtained by stacking all the b̃sj again for all sj. A simple

calculation shows that the second summand in Equation 4.2 is given by ||C̃X − b̃||2

(see Appendix A). Therefore



75

E ′(X,T ′) = ||LX||2 +
∣∣∣∣∣∣C̃X − b̃∣∣∣∣∣∣2

The minimization of this energy is a least-squares problem and can be solved

by solving the corresponding system of normal equations: (LTL+ C̃T C̃)X = C̃T b̃.

4.4.2 Assigning trajectories to vector fields

In the second phase of Algorithm 1, we assume we have the vector fields

V = {X1, . . . , Xk} fixed. The goal is to build the next function Φ that assigns

each trajectory to one of the k cluster centers, i.e. the vector fields X1, . . . , Xk.

The assignment algorithm is trivial: for each trajectory αi, we simply evaluate

E ′′(Xj, αi) =
∫ tipi
ti1
||Xj(αi(t))− α′i(t)||

2 dt, for each vector field Xj, and define the

new assignment to be the minimizer for all the k possible choices.

4.4.3 Algorithm Initialization

As it is common to alternate optimization methods, initialization is critical

to performance [90]. In spite of being crucial it is difficult, in general, to have

guarantees on the optimization performance based on the optimization. This was

achieved for particular cases such as K−Means clustering [17] and low-rank matrix

completion [71]. The usual solution is to use heuristics for initialization [90].

We implemented a simple method to choose the initial vector fields and trajectory

partitions that was effective in our experiments. The main idea is to try to have as

diverse initial clusters as possible. The algorithm takes as inputs an array of curves

and a number k of clusters to be created, and starts by choosing a trajectory α at

random to be part of the first cluster. It uses the fitVectorField routine previously

described to fit a single trajectory to the first vector field. The algorithm proceeds

by fitting to the i-th vector field the trajectory that has the worst error among

all previously fit vector fields. After computing k vector fields, we compute the

assignment Φ by picking the best vector fields for each trajectory.
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Dataset Trajectories Resolution k Optimize Assign

Synthetic 2000 3 2 1.730s 0.074s
Atlantic 1415 5 7 8.076s 0.335s

Beijing Wide 45563 5 4 110.99s 4.265s
Beijing Campus 12883 10 16 124.35s 2.195s

CDR 37435 4 4 201.24s 7.597s
CDR Large 372601 4 4 2497s 75.24s

Table 4.1: Experimental results: For each dataset, we report the number of
trajectories, the grid resolution, the number of clusters (k), and the total running
times (in seconds) for the vector field fitting (optimize) and trajectory assignments.

4.4.4 Computational Complexity and Convergence

As discussed in Section 4.4.2, the assignment step consists of a linear pass over

the trajectory data, and for each of these, we need to find the vector field that

minimizes the error. This can be implemented in O(k|S(T )|), where S(T ) denotes

the set of line segments that compose the trajectories in T . For the fitting step, we

have used a simple Unconstrained Conjugate Gradient algorithm as a linear system

solver [96]. Therefore, the complexity of this step is given by O(kN(R2 + |S(T )|)),
where N denotes the maximum number of iterations of the Conjugate Gradient

Method, R denotes the grid resolution corresponding to the multiplication by the

Laplacian matrix, and |S(T )| corresponds to the multiplication by the constraint

matrix C. As we see in the experiments, good results can be obtained with relatively

low values of R and hence the complexity is dominated by kN |S(T )|. The choice

of the Conjugate Gradients solver was convenience; we could further optimize our

implementation by using more sophisticated methods to solve systems of linear

equations [96]. We note that each iteration of the main loop in Algorithm 1 is

guaranteed to decrease the energy E and thus no assignment can be repeated, from

which we conclude that our algorithm converges in a finite number of steps.

4.5 Experiments and Results

We now report the results of running vector field k-means. In our experiments,

the algorithm was able to efficiently extract significant movement patterns across

diverse datasets. We start with a small synthetic dataset and progressively increase

the input sizes until we reach an example with over 370,000 very noisy trajectories.

All running times (see Figure 4.1) are from our prototype implementation: a single-
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Figure 4.3: An illustration of vector field k-means as it partitions 2000 synthetic
trajectories into two clusters. The algorithm alternates between fitting the best
possible vector fields from the current assignment (“optimize”) and matching
trajectories to the vector field which fits them best (“assign”). Although no
trajectories form a complete circle, vector field k-means still recovers the two
separate circular patterns.

threaded, single-process C++ application running on an Intel Core i7-960 desktop

with 6GB of RAM. The total memory required by our application remained under

1GB for all reported experiments.

As there are no standard methods for evaluating trajectory clustering methods,

we evaluate our results based on visual inspection and on whether patterns in other

data available about the trajectories (besides position and time information), can be

found based on our clusters. The parameters used were selected iterativelybasically

trial and error and, in some cases, background knowledge. In Section 4.7, we discuss

parameter dependence and selection in more detail. We ran the algorithm until

convergence, although the optimization could be stopped earlier when the number

of trajectories that change from one cluster to another is small.

4.5.1 Synthetic Data

In this dataset there exists two overlapping circulatory movement patterns.

Each trajectory covers a partial, randomly selected section of the circle at a random

distance from the center. We sampled 1000 trajectories from each overlapping

pattern. As we show in Figure 4.3, vector field k-means recovers the two overlapping

patterns perfectly, which illustrates that our method does not create clusters by

selecting representative trajectories at all: its vector fields fit all circular trajectories

equally well. Our implementation converged in 30 iterations, in less than 2 seconds,

using a 3x3 grid.
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Figure 4.4: Large-scale movement patterns around Beijing, from the GeoLife
Trajectories dataset. Clusters (a), (b) and (d) appear to depict travel in and out of
the city through the surrounding highways. Cluster (c) has much slower speeds
and its trajectories are tightly packed around a small region. Upon inspection, we
found this to area to contain the Microsoft Research Asia campus.

4.5.2 Atlantic Hurricanes

HURDAT is a hurricane tracking dataset maintained by the National Hurricane

Center (NHC) [1]. The dataset contains trajectories of the 1415 Atlantic tropical

storms between 1861 and 2011. It contains not only position and time information,

but also sustained surface wind speeds and sea-level pressure. The data are recorded

with a resolution of 6 hours.

In Figure 4.1, vector field k-means separates what looks like a fairly uniform set

of trajectories. One of the clusters neatly captures Cape Verde hurricanes which

tend to make landfall in North America, while two other clusters show storms

that originate in the Caribbean and Gulf of Mexico. Upon closer inspection, this

separation of two similar looking clusters is due to the more chaotic trajectories of

one of the clusters, which result in a generally lower-velocity vector field.

4.5.3 GeoLife GPS Trajectory Dataset

The GeoLife GPS dataset consists of 17,621 trajectories recorded by Microsoft

Research at Beijing. The trajectories are GPS tracks of 178 users from April 2007 to

October 2011 [133]. Although the dataset encompasses trajectories across the globe,
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Figure 4.5: The GeoLife Trajectories dataset clustered using vector field k-means.
The original trajectories were cropped to a 10 block area in downtown Beijing.
We partition the data into four clusters (k = 4), and then subdivide each cluster
resulting in 16 subclusters. Images (a) and (b) show two clusters from the first-level
subdivision, and images (c) and (d) show two clusters from the second level. The
first two vector fields show trajectories in patterns of faster vehicular traffic, while
the latter appears to show pedestrian traffic moving to and from a lunch spot near
the Microsoft Research Asia campus.

we focus on two regions around Beijing. As the raw trajectories are unsegmented,

some lasting for days, we split trajectories whenever the time between two samples

is larger than 2.5 times the median time between samples. We then reduced the

sampling rate by only keeping measurements at least 2 minutes apart.

Figure 4.4 shows a first run of vector field k-means on the GeoLife dataset

in which the algorithm was able to find general movement trends within the

trajectories. Three of these are clear directional patterns heading west, north, and

south. We speculate these to be mainly commuting patterns, since the remaining

cluster (subfigure c) consists essentially of trajectories inside the city’s road network.

Although we believe that with the chosen grid resolution (5x5) vector field k-means

cannot reliably resolve the patterns in that cluster (and hence the vector field is

not very informative), the large density of trajectories around a relatively small

area in the cluster suggested further analysis centered in that region.

Figure 4.5 shows an exploration we performed on that narrower region of Beijing.

In this case we used a grid of resolution 15. By looking at the darkness of the

arrows in Figure 4.5 we see that regions of different speeds are found. For example,

traffic over the streets (Figure 4.5 (a) and (b)) is much faster than the speed of
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Figure 4.6: Left. The anonymized call detail records for over 370,000 cell phone
calls produced noisy trajectories around a suburban city. Three of the four clusters
computed are shown. Right. Despite the noisy trajectories, we recovered clear
movement patterns related to highway (bold black lines) traffic. The three vector
fields correspond to the clusters on the left.

people going to and from the speculative lunch spot location (Figure 4.5 (c) and

Figure 4.5 (d)), which suggests that people walk to that destination.

4.5.4 Call Detail Record Dataset

We collected anonymized Call Detail Records (CDR) from the cellular network

of a large U.S. communications service provider. For each phone call, CDRs provide

us with the sequence of cellular antenna locations, known as handoffs, used during

that call. We collected over 370,000 calls during one week in 2011 for approximately

300 antenna located near a suburban city with 20,000 residents. Our goal was to

capture handoffs related to vehicular traffic.Given the sensitivity of CDRs, we took

several steps to ensure privacy. The data was collected and anonymized by a third

party not involved in the data analysis. Unlike other studies [22] our dataset cannot

associate multiple calls made by the same individuals: each call is independent.

As a result, all of our input trajectories (i.e.handoff patterns), are only partial

trajectories for any individual. As we show in Figure 4.6, although the handoffs are



81

(a) (b) (c)

Figure 4.7: TraClus experiments using the synthetic dataset. In (a) 268 clusters are
found with ε = 0.03 and MinLns = 2. In (b), with ε = 0.23 and MinLns = 140
TraClus detects two clusters (drawn here separated for clarity), but clearly merges
portions of the two circular patterns. Slight variations on the parameters (ε = 0.25
and MinLns = 160) causes TraClus to merge the two cluster into one as seen in
(c). These results were obtained in 0.8, 1.6, and 6.5 seconds respectively.

quite noisy, we can still recover movement patterns clearly related to the highway

traffic around the city.

4.5.5 Comparison

We compare vector field k-means with TraClus, by Lee et al. [80], a density-

based algorithm that is one of the main references in trajectory clustering. Roughly

speaking, the algorithm consists of two steps: trajectory simplification into line

segments and segment clustering. The algorithm also has two main parameters: a

distance threshold ε used to define neighborhoods for each segment, and a density

lower bound MinLns that is used to find neighborhoods that define clusters.

Unlike vector field k-means, TraClus does not incorporate the time information,

thus trajectory speed information is lost.

We used the C++ implementation of their algorithm that is available on

the author’s webpage (http://dm.kaist.ac.kr/jaegil/#Publications). In the

following experiments, we use the heuristic proposed in their paper (and also part

of the author’s implementation) to select the parameter values. Whenever this

http://dm.kaist.ac.kr/jaegil/#Publications
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Figure 4.8: TraClus computed nine clusters for the HURDAT dataset. Cluster
representative trajectories are in black. Notice that because TraClus starts by
subdividing trajectories, no cluster from TraClus captures the pattern of trajectories
found by vector field k-means in Figure 4.1 (c).

heuristic fails to provide the parameter estimates, we adjusted the parameters by

manually searching over a range of values. We reiterate that as vector field k-means

and TraClus mine different patterns, it is difficult to say that one method is always

better than the other, but we do investigate what kind of patterns TraClus is not

able to find that vector field k-means is, and vice versa.

We first present the performance of TraClus on the synthetic discussed in

Section 4.5.1. The results are shown in Figure 4.7. Note that because TraClus

utilizes local features while clustering, it is unable to capture the overall global

structure of this dataset. More specifically, when the neighborhood size ε is very

small, TraClus considers each segment as its own cluster, while making ε larger

groups the segments of the two centers of the circular patterns together, as shown

in Figure 4.7.

Our results of running TraClus on the HURDAT dataset, shown in Figure 4.8,

are very similar to the ones obtained by the authors [80] though not exact because

our input contained more trajectories. In this case, TraClus detects nine clusters in

four seconds. The representative trajectory for each of these clusters is highlighted in

black, but are not as informative as the vector fields of Figure 4.1. In addition, their
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Figure 4.9: Illustration of basic concepts used. An 1-attribute f is represented as a
height field. A trajectory γ consistent with f is also shown.

partitioning step precludes TraClus from generating clusters of Atlantic crossing

storms that then proceed up the U.S. east coast. That information has been lost

by their approach.

We also performed experiments using the TraClus algorithm and the GeoLife

dataset (used in Figure 4.5). In this case, TraClus failed to produce any meaningful

clusters. Using the parameters reported by the TraClus heuristics (ε = 20 and

MinLns = 12454), the algorithm finds no clusters, after 54 seconds of computation.

Changing the parameters to ε = 20 and MinLns = 1000, the algorithm reports a

single cluster which does not represent any meaningful pattern, after a little more

than 3.6 hours of computation.

4.6 Attribute field k-means: Clustering Trajec-

tories with Attributes

In this section, we describe how to generalize the vector field k-means approach

to obtain a clustering method that handles trajectories with attributes. To do so,

we need to generalize the idea of streamline (i.e., trajectories that match a vector

field) to the scalar case to deal the attribute values. In order to achieve this we

first extend the notation to be able to express trajectories with attributes.
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4.6.1 Extended Notation and Terminology

We define a trajectory with M -attributes, or just M-trajectory for simplicity,

as functions of the form α : [t0, t1] → R2 × RM , such that α(t) = (αS(t), αA(t)),

where αS(t) ∈ R2 denotes the spatial component of the trajectory and αA(t) ∈ RM

denotes the attributes of the trajectory. The concept of trajectory used in the

previous sections of this chapter can be seen as 0-trajectories, i.e., only the spatial

component is considered. We now define the counterpart of vector fields in our

current setting. An M -attribute field, or simply M -field, is defined as a function

f : R2 → RM . Finally, we say that a trajectory α is consistent with an attribute

field f , if f(αS(t)) = αA(t) for all t ∈ [t0, t1]. Notice that this notion corresponds

to the idea of streamlines in the previous approach. These concepts are illustrated

in Figure 4.9 for the case where M = 1. Similarly, given a set of M -trajectories

T = {α1, α2, ..., αn} we say that an attribute field f is consistent with the set T , if

each αi is consistent with f for i = 1, 2, ..., n. Given a vector x = (x1, , ..., xM) we

denote the dth entry of x by x(d). Thus, given an M -trajectory α its dth attribute is

denoted by α
(
Ad). Similarly, the dth attribute of an M -field, f , if denoted by f (d).

4.6.2 Attribute field k-means Overview

The general goal of attribute field k-means is to capture patterns in trajectory

attribute values. The main idea behind it is to do so by exploring the attributes’s

spatial distribution via attribute fields, as illustrated in the following diagram

Time Attribute
αA //Time

Spatial

αS

��

Spatial

Attribute

f

??

As in the case of vector fields (Section 4.3), we use the notion of consistency

defined above to model trajectories with attributes. However, as in Section 4.3,

for a non-trivial set of trajectories there is no attribute field f consistent with it.

Therefore, in order to handle real world scenarios we need to define consistency in

an approximate sense.

We do this by defining a measure of how consistent an attribute field f is to a
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set of M -trajectories T = {γ1, γ2, ..., γn} as follows

ConsW (f, T ) =
n∑
i=1

M∑
d=1

wd

∫ t
γi
1

t
γi
0

∣∣∣∣∣∣f (d)(γS(t))− γ(d)
A (t)

∣∣∣∣∣∣2 dt, (4.3)

where W = (w1, ..., wM) denotes a weight vector for the different attributes.

By changing these weights, one can express how the consistency of one attribute

is preferred compared to the others. For simplicity of notation, we will omit the

vector W from formulas in the rest of this section and will assume that weights are

fixed for the application in mind.

Given a set of M -trajectories T = {α1, α2, ..., αn} and the number of clusters

K to be found, we use the notion of approximate consistency (Equation 4.3) to

Equation 4.1 as follow:

E(f1, ..., fK ,Φ) =
K∑
j=1

λL ||∆fj||2 +
(1− λL)

T

∑
αi∈Φ−1(j)

Cons(fj, αi), (4.4)

where f1, ..., fK are M−attribute fields. As before,Φ : {1, ..., n} → {1, ..., K} is

an assignment function and λL and T are defined as in Section 4.3. The intuition

behind Equation 4.4 is to derive the attribute fields fj and partition the set of

trajectories according the how consistent they are with each of the fields.

4.6.3 Attribute field k-means Overview Fitting Process

To perform the clustering, we perform an optimization process to minimize

the function defined in Equation 4.4. In order to do so, similar to the vector field

k-means setting we tessellate the M -trajectories so that each segment is contained

in a face of the grid G. Similar to the vector field case, attribute fields are defined

on the vertices of the grid and linear interpolation is used to compute the values

inside the each face of the grid.

We perform an alternating optimization process similar to the one described in

Section 4.4. In more details, we also use a two phase optimization process with

a fitting phase in which the attribute fields are derived from a given partition of
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the trajectories and an assignment phase where trajectories are assigned to the

different clusters given a collection of attribute fields.

In the fitting phase, for each j = 1, ..., k, we are given as input a fixed subset

T ′ = Φ−1(j) of T and we want to minimize

E ′(f, T ′) = λL ||∆f ||2 +
(1− λL)

T

∑
αi∈T ′

Cons(fj, αi) (4.5)

Following the same derivation to the one described in Section 4.4.1, we obtain a

least-squares problem for each component fd of the attribute field f that is similar

to the least-squares problem in Section 4.4.

In the assignment phase, we derive the next function Φ that assigns each

trajectory to one of the k clusters, i.e. the attribute fields f1, . . . , fk. As before,

the assignment algorithm is trivial: for each trajectory αi, we simply evaluate

Cons(fj, αi), for each attribute field fj, and define the new assignment to be the

minimizer for all the k possible choices.

4.6.4 Comments on Attribute field k-means

One important observation is that given a 0-trajectory α it is possible to define

a canonical 2-trajectory from it by defining the attribute component the tangent

vector of α. More precisely, we can define α as α(t) = (α(t), α′(t)). Given a set

of 0-trajectories then we can generate a set of 2-trajectories as described above.

It is easy to see that in setting, performing Attribute field k-means corresponds

to the performing Vector field k-means in the initial set of trajectories. In this

sense, Attribute field k-means can be seen as a strict generalization of Vector field

k-means.

For this reason, Attribute field k-means inherits most of the features of Vector

field k-means. In particular, it is very dependent on the initialization and we use

the same initialization method proposed in Section 4.4.3. Also, the algorithm is

guaranteed to converge (Section 4.4.4).
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(a) (b) (c)

Figure 4.10: (a) The synthetic dataset described in Section 4.5.1 with colors
representing groups of trajectories randomly generated within each circular pattern.
(b) For each trajectory, a new attribute is generated by sampling the corresponding
field. (c) By considering these attributes, attribute field k-means is able to separate
the generated groups.

4.6.5 Sample Experiment

In order to demonstrate how attribute field k-means can recover complex

patterns we modify the synthetic dataset described in Section 4.5.1. The modified

dataset was obtained by randomly splitting each circular pattern in two groups of

equal size Figure 4.10(a). For each of these groups, a scalar attribute is generated

by using the corresponding attribute field in Figure 4.10(b). Each of these attribute

fields has value equal 1 in one of the corners of the domain and 0 in the remaining

ones. Notice that in this setting, vector field k-means is not able to split the

different groups. On the other hand, using the same parameters as in Section 4.5.1

and by considering the dataset of 3-trajectories obtained by including the generated

attribute together with the trajectories tangent vectors, Attribute field k-means is

able to separate the for groups Figure 4.10(c).

4.7 Discussion

In this section, we discuss issues related to parameter selection, advantages and

limitations of vector field k-means, as well as possible extensions of our algorithm.
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We base the discussion on vector field k-means. As discussed before, attribute field

k-means inherits the same features.

4.7.1 Parameter selection

Although we can select both grid resolution R and the weight given to the Lapla-

cian regularization λL, the two parameters are not independent. The eigenvectors of

the Laplacian are naturally interpreted as equivalent to the fundamental frequencies

on the mesh, exactly like sines and cosines are the fundamental frequencies on

a circle [120]. The corresponding eigenvalues are the squares of the frequencies

themselves, which means that as we increase λL, we give larger weights to the

eigenvectors corresponding to high-frequency signals, and the system tends towards

lower-frequency results. A similar effect is achieved by reducing R, which directly

band-limits the signal on the vector field. Using this dependency between these

parameters, we can virtually eliminate one of them. As a result, we fix λL to be

0.05 and interactively select R in our experiments. The resolution parameter R

thus controls the amount of detail in the derived vector fields: by increasing R

more complex behavior can be modeled and smaller features have more influence

in the clustering. Decreasing R enables the algorithm to filter smaller, possibly

insignificant, features and capture global trends. As with most parameters, a clear

trade-off exists.

Picking an appropriate number of clusters remains an open problem even in

the case of traditional k-means, and we offer no substantive contributions on

that matter. Many proposed methods try to attack this problem (see [48] and

references therein), however no definitive algorithm solves this problem optimally

for all applications in general settings. Still, we stress that as far as performance

is concerned, vector field k-means compares quite favorably to results reported in

the literature, and thus it is much easier to keep a human analyst in the loop and

make cluster count an interactive procedure with vector field k-means than with

previous methods.
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4.7.2 Advantages

Our model aims at a balance between richness and expressivity of features,

and simplicity of implementation and analysis. We believe this is a significant

advantage over the current methods for trajectory clustering. As mentioned earlier,

by representing the cluster centers as vector fields and using those as a means to

define similarity between trajectories, we can eliminate expensive computations of

metrics for trajectories and the computations of the centroid trajectory as well [63].

Another advantage is our ability to capture global patterns that are not apparent

at the local level in highly noisy trajectories or even partial trajectories.

Vector field k-means is also highly parallelizable. Our prototype does not take

advantage of this and includes no significant optimizations, but it is obvious that

separate components of vector fields can be computed in parallel, and that many

of the intermediate matrices in the linear solvers can be reused from one iteration

to the next. We expect these to further increase the performance, and allow vector

field k-means to handle even larger datasets.

4.7.3 Limitations

The choice of the initial clusters impact the results achieved by vector field

k-means, as it converges to a local minimum and we currently do not offer any

guarantees that our result is close to the global optimum. Many techniques have

been proposed to choose good initial centers for the clusters in the regular k-means

case, one of the most important being the k-means++ approach by Arthur et

al. [18], which proves a log k approximation factor. However it is not yet obvious

how to extend this technique to vector field k-means results.

Although vector field k-means is able to naturally encode some attributes such

as direction and speed, which are not well handled by previous methods, the notion

of spatial distance is not directly represented, which may result in clusters with

different behaviors in different spatial regions.

The vector fields derived by our method are steady, and in general, trajectories

with self-intersections can lead to artifacts in steady vector fields near these areas.

However, our results show that vector field k-means is able to mine interesting

patterns even in the presence of self-intersections.
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4.8 Summary

We have introduced a novel trajectory clustering technique that brings together

ideas from visualization, data clustering, and scalar field design. Vector field k-

means can find global patterns, handle partial trajectories, scale to large datasets,

and is simple to implement. We also showed an extension of vector field k-means to

consider trajectories with attributes, named attribute field k-means. The algorithm

opens many possibilities for modeling and user interfaces design, notably for

querying and exploring trajectory datasets.
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Chapter 5

Conclusions and Future Work

This dissertation presented three main contributions to the area of visual ana-

lytics of spatiotemporal data. The first was the design of the TaxiVis visualization

system which provides interaction mechanisms for querying large collections of

spatiotemporal data (Chapter 2). Furthermore, we presented two pattern mining

techniques that were designed to solve problems inspired by limitations of interac-

tive visualization systems for the exploration of spatiotemporal data (Chapter 3

and Chapter 4). Both of these pattern mining techniques apply ideas from scientific

visualization and computer graphics which were not used before in the analysis

of spatiotemporal data. As described in this thesis, this approach leads to novel

techniques that are mathematically well founded, computationally efficient, and the

results of which can be understood via previously proposed visual representations.

While many advances have been done in the field of visual analysis of spatiotem-

poral data, there are still many open problems. Also, new and more sophisticated

data sources challenge current technology for data analysis. We highlight some

important directions for future research in the following.

Data Management for interactive data analysis. One of the hot topics in

visualization research is how to support interactive analysis when datasets are very

large. Specialized data layers such as the one presented in Chapter 2 are able to

provide interactive query response times for a class of queries even when the dataset

in consideration is large. However, as more data become available and more complex

queries are needed, more sophisticated data layers will be necessary. In a recent
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Figure 5.1: Illustration of the interface of the 3D Urbane visualization system.
Urbane provides architects, developers, and planners with a new, data and analysis
rich way of reading the city ultimately facilitating better decision making. Using
the visual interface together with the map view, they can simulate the affect of
such development. For example, the views to the freedom tower (highlighted in
green) of the buildings highlighted in red would be adversely impacted if the new
constructions (colored purple) are built.

work Lins et al. [83] proposed the Nanocubes data structure. Nanocubes enable

interactive responsive times for aggregate queries on extremely large spatiotemporal

datasets. This is achieved by an expensive precomputation phase in which all

possible queries are performed and their results stored. The main drawbacks of this

approach are that they often result in large and static (can not handle updates)

data structures. The major competitor to precomputation based approaches in this

context is the use of incremental query results to provide interactivity in handling

large datasets. Only portions of the dataset are used at each time to produce the

visual summaries that are explored by the users. This approach presents some

advantages compared to the precomputation based techniques. For example, it can

process general queries (not only aggregate ones) and the resulting data collections

can, in general, be easily updated. However, by the nature of the process, aspects

such as animation and uncertainty are involved in the visualization which are

challenging for decision making [50]. One interesting direction for research is how

to design data layers that combine the good aspects of both approaches.
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Visualization of Spatial/Spatiotemporal 3D data. For a long time, 3D

visualizations have been avoided in information visualization and visual analytics

due the problems such as occlusion and navigation. However, new applications

require actual representation of 3D spatial data such as real world geometries.

This feature which used to be only of concern in scientific visualization, is now of

great importance in visual analytics. For example, spatial data in urban datasets

such as price of properties and noise complaints in large cities can be mapped not

only with respect to latitude and longitude, but also with respect to the buildings’

geometries. In this scenario, the usual problems for visualization in 3D need to

be faced. Therefore, the main challenge is how to create effective representations

and interactions that can be easily used by users, while keeping the 3D nature of

the data evident. Furthermore, these visualizations should be effective not only

for data exploration (when they are used by the experts), but for communication,

since many of them are going to be used by experts to present to their clients

and collaborators. Figure 5.1 shows our first research effort [52], the Urbane

system. This type of application has not received much attention from the research

community. Therefore, there is a need for more research efforts that explore the

design space of such visualizations and how users will interact with those. The final

objective is to understand in which cases should 3D visualizations should/can be

used.

The role of pattern mining techniques in real world analysis scenarios.

Understanding how pattern mining techniques could be integrated and used in

real world visualization systems is a very important research question. The main

challenge here is in integrating these techniques in real systems in a transparent way

so that users do not need to understand their details and also are not deviated from

their main analysis tasks. This is a difficult problem since, for example, techniques

such as event guided exploration and vector field k-means are based on complex

concepts that might not be known for many potential users of those techniques.

However, in such scenarios it is desirable that users can not only understand the

results of the computation, but also leverage domain knowledge to provide feed

back. This can help, for example, in defining parameters and improve results of

those techniques. More traditional techniques such as K-means clustering [108]
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and self-organizing maps [64] have been applied in real world system with success.

However, more research is required to have the same success with recent techniques

such as the ones presented in this thesis.
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Appendix A

Detailed Derivation of Matrix

Form for Vector Field K-Means

Fitting Step

In the following we include a detailed explanation of the derivation of the

matricial form of Equation 4.2 of the paper and in particular explain the need

for the matrix Λ. The idea is to convert the problem in a finite dimensional

least-squares problem, i.e., we want to write the energy E ′ in the form ||Dx− c||2,

for some matrix D and some vector c.

Assume we have a vector field X defined over a grid G as before and also we

are given a trajectory α : [a, b]→ R2 and let a = t0 < t1 < ... < tn−1 < tN = b, be

the partition of the interval [a, b] where each point of the partition is either a vertex

of α or a point where this trajectory touches the grid (all the vertices and grid

intersections are included). The first summand in E ′ (Equation 4.2) corresponds to

the Laplacian matrix and its matricial form is simply given by ||LX||2, where L is

the Laplacian matrix of the grid, defined in Section 4.4.1. The second summand in

E ′ is given by:
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||X ◦ α− α′||2L2 =

∫ b

a

||X(α(t))− α′(t)||dt =

n−1∑
i=1

∫ ti+1

ti

||X(α(t))− α′(t)||2L2 =
n−1∑
i=1

∫ ti+1

ti

||X(α(t))− α′i||2L2 ,

where α′i denotes the velocity vector of the ith segment of α. Given this fact, we

can proceed with the following derivation:

||X ◦ α− α′||2L2 =
n−1∑
i=1

∫ ti+1

ti
||X(α(t))− α′i||2L2 =

n−1∑
i=1

(ti+1 − ti)
∫ 1

0
||(1− σ)X(α(ti)) + σX(α(ti+1))− α′i||2dσ =

n−1∑
i=1

(ti+1 − ti)
∫ 1

0
||(1− σ)(X(α(ti))− α′i) + σ(X(α(ti+1))− α′i)||2dσ =

n−1∑
i=1

(ti+1 − ti)[1
3
||X(α(ti))− α′i||

2 + 1
3
||X(α(ti+1))− α′i||

2 +

1
3
〈X(α(ti))− α′i), X(α(ti+1))− α′i〉].

Therefore, we can see that the 3 terms appear with the coefficients 1
3
, and the

matrix Λ makes this coefficient appear in ||C̃X − b̃||2, since

ΛTΛ =

(
1
3

1
6

1
6

1
3

)
.
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