
3D Memory for Augmented Reality

DISSERTATION

Submitted in Partial Fulfillment of

the Requirements for

the Degree of

DOCTOR OF PHILOSOPHY (Computer Science)

at the

NEW YORK UNIVERSITY

TANDON SCHOOL OF ENGINEERING

by

Shaoyu Chen

May 2024

3D Memory for Augmented Reality

DISSERTATION

Submitted in Partial Fulfillment of

the Requirements for

the Degree of

DOCTOR OF PHILOSOPHY (Computer Science)

at the

NEW YORK UNIVERSITY

TANDON SCHOOL OF ENGINEERING

by

Shaoyu Chen

May 2024

Approved:

Department Chair Signature

Date

University ID: N18526811

Net ID: sc6439

ii

Approved by the Guidance Committee:

Major: Computer Science

Cláudio T. Silva
Institute Professor of Computer Science and Engineering and Data Science

New York University

Date

Fabio Miranda
Assistant Professor of Computer Science

University of Illinois Chicago

Date

Ken Perlin
Professor of Computer Science

New York University

Date

Qi Sun
Assistant Professor of Computer Science and Engineering

New York University

Date

iii

Microfilm or other copies of this dissertation are obtainable from

UMI Dissertation Publishing
ProQuest CSA

789 E. Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

iv

Vita

Shaoyu Chen was born in Guangzhou, China in July, 1995. He earned his

Bachelor of Engineering in Computer Science from the Hong Kong University of

Science and Technology in 2017. While completing his undergraduate studies,

he served as a student researcher at HKUST VisLab directed by prof. Huamin

Qu, where he developed a variety of visualization tools. He started his Ph.D. in

September 2017, working in various areas, including virtual reality, augmented

reality, data visualization and computer vision. During his Ph.D., he was an intern

at Adobe Research and Meta.

v

Acknowledgements

I would like to thank my advisor, Cláudio T. Silva, for the unwavering support,

invaluable guidance, and fruitful exchange of ideas throughout my Ph.D. studies.

Thank you for granting me the opportunity to work independently on challenging

projects and consistently pushing my abilities to a higher level. I would also like to

thank members of my Ph.D. committee, Fabio Miranda, Huy Vo, Ken Perlin, and

Qi Sun for their expertise, insightful ideas, and constructive feedback.

I would like to thank my mother and father for their unconditional love and

support.

I would like to thank all the members of the VIDA Lab for providing an excellent

research environment and assistance with user studies. I feel incredibly fortunate to

have been part of the VIDA Lab, where discussions with colleagues were consistently

inspiring, and the atmosphere was fun.

I would like to especially thank Gromit Chan and Guande Wu for their insightful

conversations. I would like to thank Bea Steers, Bowen Yu, Budmonde Duinkharjav,

Chen Zhao, Connor Defanti, Corinne Brenner, Harish Doraiswamy, Iran Roman,

Jianzhe Lin, Jing Qian, Joao Rulff, Jose Echevarria, Jun Yuan, Li-Yi Wei, Marcos

Lage, Mengwei Ren, Nivan Ferreira, Shijie Li, Sonia Castelo, Stefano Petrangeli,

Xin Sun and Yurii Piadyk. It was my pleasure to work with each of you.

I would like to thank funding agencies that supported the work presented in this

thesis: the National Science Foundation (NSF awards CNS-1229185, CCF-1533564,

CNS-1544753, CNS-1730396, CNS-1828576, CNS-1626098), DARPA PTG program,

CNPq, and FAPERJ. Any opinions, findings, and conclusions or recommendations

expressed in this thesis are those of the author and do not necessarily reflect the

views of the funding agencies.

Shaoyu Chen

May 2024

vi

To my family and friends.

vii

ABSTRACT

3D Memory for Augmented Reality

by

Shaoyu Chen

Advisor: Prof. Cláudio T. Silva, Ph.D.

Submitted in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy (Computer Science)

May 2024

Augmented Reality (AR) headsets, with their capability to overlay digital infor-

mation onto the physical world and equipped with diverse sensors for perceiving

physical surroundings, emerge as powerful tools. This functionality offers a promis-

ing avenue for the development of AI assistants capable of guiding users in daily

tasks, such as cooking. Understanding the physical environments where humans

perform tasks establishes a universal foundation applicable to diverse scenarios. In

AR, automated perception and memorization of physical surroundings empower

intelligent assistants, facilitating tasks like querying the locations of objects, as

known as episodic memory.

Recent advancements in computer vision have enabled object detectors to

identify various classes, with open vocabulary object detectors now trained using

large-scale image datasets and text embeddings. As a result, they can detect novel

classes not present in the training set, allowing the creation of AR assistants capable

viii

of generalizing across tasks without requiring re-training. However, these open

vocabulary object detectors are constrained in providing information solely about

the current RGB frame. To provide better task guidance, a 3D memory algorithm

that mimics human episodic memory is needed to provide comprehensive data

about observed objects, including object ID, 3D position, object class, and the time

of last observation. Existing techniques, neglecting the unique challenges of limited

camera field-of-view (FoV), frequent view changes and task object manipulation by

AR users, encounter various issues when employed as 3D memory in AR scenarios.

In this thesis, we present solution to empowers intelligent AR assistants with 3D

memory.

First, we proposed a 3D memory framework grounded in tracking-by-detection

paradigm for complex and dynamic AR scenarios. To take advantages of the

power of both 2D open vocabulary object detectors and 3D depth information from

depth sensors equipped by AR headsets, we presented a 2D-3D hybrid framework

mimicking 3D Episodic Memory for AR. Additionally, we presented a tracking-by-

detection method designed for complex and dynamic AR scenarios, considering

the unique challenges inherent in such environments. In the absence of a suitable

existing dataset, we created an annotated dataset for evaluating the performance of

3D memory. Experiments using this dataset demonstrated significant advantages

of our proposed method over existing solutions.

Second, we created visual analytics tools to enhance comprehension of 3D

memory outputs and facilitate the debugging of AI assistants’ machine learning

models. We built visual analytics tools on top of ARGUS, which is a state-of-the-art

visual analytics system to support the development of intelligent AR assistants.

We presented case studies to demonstrate the effectiveness of these visual analytics

tools. One interesting direction is to visualize the 3D information within AR/VR

headsets. However, given the large volume of the recorded data, it is impractical to

store the data on the headset and streaming the data from server to the headset is

required. We proposed a method to real-time stream the large volume of 3D data

while providing a better user experience in AR/VR.

We envision the proposed open-source framework to form the foundation of AR

task assistants with robust 3D episodic memory.

ix

Contents

Vita . iv

Acknowledgements . v

Abstract . vii

List of Figures . xii

List of Tables . xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 3

1.3 Organization . 4

2 Related Work 5

2.1 Multi-object Dynamic SLAM . 6

2.2 2D Multi-object Tracker . 6

2.3 3D Multi-object Tracker . 8

2.4 Datasets . 8

2.5 Visual Analytics for 3D Object Tracking 9

3 3D Memory Algorithms for AR 10

3.1 Method . 12

3.1.1 Analyze and Rethink 2D MOT 13

3.1.2 Input and Tracker State . 15

3.1.3 Pre-processing . 16

3.1.4 Association . 18

3.1.5 Life Cycle Management . 20

3.2 Evaluation . 21

x

3.2.1 Metrics . 21

3.2.2 Datasets . 21

3.2.3 Implementation Details . 22

3.2.4 3D Baseline . 22

3.2.5 Comparisons with 2D trackers 23

3.2.6 Comparison with Detic + GT ID 25

3.2.7 Ablation Study . 26

3.3 Limitations . 28

3.4 Discussion . 30

4 Visualization for 3D Memory 32

4.1 ARGUS for 3D Memory . 32

4.1.1 ARGUS Online Mode . 33

4.1.2 ARGUS Offline Mode . 33

4.1.3 Case Studies . 36

4.1.4 Discussion . 38

4.2 Instant Reality: Gaze-Contingent Perceptual Optimization for 3D

Virtual Reality Streaming . 39

4.2.1 Introductions . 39

4.2.2 Method . 42

4.2.3 Implementation . 51

4.2.4 Evaluation: User Study . 52

4.2.5 Evaluation: Objective Analysis 57

4.2.6 Discussion . 60

4.2.7 Appendix . 63

5 Conclusions and Future Work 67

xi

List of Figures

3.1 The proposed Dynamic Episodic Memory can track the manipulated

object and remember 3D position of objects even if objects are

outside field-of-view. 11

3.2 Pipeline of our algorithm. 13

3.3 Comparison of 2D frames and 3D point clouds under movement. . . 14

3.4 Inputs of our algorithm. 15

3.5 Raw outputs from Detic. 18

3.6 Comparison of performance under different confidence thresholds

and framerates on the test set. 24

3.7 Aligned frame whose corners don’t have depth information. 29

3.8 Example of transparent objects. 30

4.1 The architecture of TIM . 32

4.2 ARGUS Online Mode. 33

4.3 ARGUS Offline Mode. 34

4.4 Temporal view of ARGUS offline mode. 35

4.5 Spatial view of ARGUS offline mode. 36

4.6 Using temporal view of memory and video player to debug the modules. 37

4.7 Temporal view of memory for same clip from 2 different memory

algorithms. 38

4.8 Our gaze-contingent immersive 3D assets streaming interface. . . . 40

4.9 Decomposition visualization of bandpass filtered contrast multiplied

by contrast sensitivity function of corresponding frequency band . . 43

4.10 Visualization of our perceptual model in 2D screen space. 45

4.11 Visualization of mapping importance from 2D pixels to 3D triangles. 48

xii

4.12 Results for various 3D data types. 49

4.13 Overview of the system. 51

4.14 The setting of our user study. 53

4.15 User study results. 54

4.16 The statistics of the time FovVideoVDP first reaches threshold per

sequence among all users . 57

4.17 Example frames of the dynamic scene. 58

4.18 Extendability test with varied network bandwidths. 60

4.19 Pressure test with artificially introduced network latencies. 61

4.20 Approximation error visualization. 62

4.21 Perceived static visual stimuli. 64

xiii

List of Tables

3.1 Comparison with 2D trackers using Detic detections on the test set. 23

3.2 Comparison with 2D trackers using ground truths on the test set. . 23

3.3 Ablative analysis of different design choices of our proposed method

on training set. 26

3.4 Ablative analysis of window size of our proposed method on training

set. 26

1

Chapter 1

Introduction

1.1 Motivation

Augmented Reality has attracted growing attention for providing a novel mode

user interaction. The rise in AR technology has led to the development of advanced

AR headsets, exemplified by Microsoft HoloLens 2 and Apple Vision Pro. These

headsets possess significant capabilities, not only overlaying digital information

onto the physical world but also being equipped with diverse sensors for perceiving

the physical surroundings. This functionality opens avenues for the creation of AI

assistants capable of guiding users in daily tasks, such as cooking. Understanding

the physical environments where humans perform tasks establishes a universal

foundation applicable to diverse scenarios. In AR, automated perception and

memorization of physical surroundings empower intelligent assistants, facilitating

tasks like querying the locations of objects, as known as episodic memory. Episodic

memory can help the AI assistants provide better task guidance like directing users

to find objects outside field-of-view (FoV), or identifying the active tasks based on

active objects in memory.

Recent advancements in computer vision have facilitated the identification

of various object classes by object detectors. Open vocabulary object detectors,

trained with large-scale image datasets and text embeddings, allow the detection

of any class, even if the class is novel and not present in the training set. This not

only enables the AI assistant to understand the physical world, but also facilitates

the construction of AR assistants capable of generalizing across tasks without the

2

need for re-training. However, these open vocabulary object detectors are limited

to providing information solely about the current RGB frame, lacking the ability to

utilize temporal information from the video stream or depth information from the

depth sensor. For example, if a static object becomes out-of-view due to headset

movement, it won’t be in the object detection result. Therefore, to provide better

task guidance, a 3D memory algorithm mimicking human episodic memory is

required to provide comprehensive data about observed objects, including object

ID, 3D position, object class, and the time of last observation. This can enable

the AI assistant not only to guide users to find objects needed for current task in

3D space, but also to provide information for other modules of the AI assistant,

allowing inference of the current step of a task or correction of user errors. However,

existing methods, neglecting the unique challenges of limited camera field-of-view,

frequent view changes and task object manipulation by AR users, encounter various

issues when employed as 3D memory in AR task guidance scenarios.

Other than 3D memory, AI assistants for task guidance may consist of other

machine learning modules, including but not limited to object detection, action

recognition, and reasoning for task steps and errors. Debugging and improving

the AI assistant in such multi-module scenarios pose significant challenges for

developers. While visual analytic tools can aid in comprehending and debugging

machine learning modules, existing methods fall short in supporting the visual

analytics of 3D memory.

Challenges

1. Episodic Memory for AR. Existing methods encounter three main road-

blocks in AR scenarios: (1) fast camera movement due to user head motion,

(2) objects disappearing and reappearing due to limited FoV, (3) diverse object

classes. For example, 3D object-level SLAM estimates 3D positions, but has

assumptions unsuitable for egocentric AR scenarios, such as slow/smooth

camera motion and high frame rate of depth frames. Additionally, existing

3D multi-object tracking is limited to objects only within the “current” FoV,

and the missing global memory and context prohibit queries about objects

outside the current view, which is often prevalent and crucial. Unlike the

common settings, scenes in egocentric settings typically feature diverse objects

3

in varying scales, which often induce classification errors, particularly for

methods trained on non-egocentric dataset [1]. Furthermore, diverse objects

can cause end-to-end methods with a limited vocabulary to fail due to novel

classes.

2. Datasets. To fine-tune and evaluate the 3D memory algorithm, an ideal

evaluation dataset shall contain (1) egocentric RGBD video, (2) dynamic

scene in real-world task scenarios, (3) multi-object tracking annotation. To

our best knowledge, existing datasets fail to simultaneously meet all three

requirements, necessitating the development of a method requiring minimal

data for fine-tuning and generalizing well across different tasks. Creating and

annotating a suitable dataset is imperative for the evaluation of the proposed

method.

3. Visual Analytic for 3D Memory. Visualization tools for 3D memory

are crucial since they can help developers debug and improve the algorithm,

especially for the case of AI assistants where there are multiple machine

learning modules working together. Despite existing works focusing on object

detection, creating visual analytic tools for 3D memory remains an open

problem. Additionally, visualizing 3D information in AR/VR is an interesting

direction. However, a 6 min HoloLens 2 recording can result in 3GB data [9].

The significant data volume poses challenges for interactive visualization due

to network bandwidth limitations.

1.2 Contribution

In this dissertation, we describe two contributions that address the challenges

described above. The main contributions can be summarized as follows.

1. 3D Memory Algorithms for AR (Chapter 3). To address challenges 1

and 2, we proposed a 3D memory framework based on tracking-by-detection

paradigm and developed a real-time spatial perception system for complex

and dynamic AR scenarios. To take advantages of the power of both 2D open

vocabulary object detectors and 3D depth information from depth sensors

4

equipped by AR headsets, we introduced a 2D-3D hybrid framework to

mimic 3D Episodic Memory for AR. In addition, we presented a tracking-by-

detection method designed for complex and dynamic AR scenarios considering

unique challenges like limited FoV. Due to the absence of an existing suitable

dataset, we created an annotated dataset for evaluating the performance of

3D dynamic episodic memories. Experiments using this dataset demonstrate

significant advantages, including improved tracking accuracy and robustness

to low frame rates, of the proposed method over existing solutions.

2. Visualization for 3D Memory (Chapter 4). To address challenge 3,

we created analytic tools on top of ARGUS, a state-of-the-art visual ana-

lytics system supporting the development of intelligent AR assistants, and

demonstrated their usefulness through case studies. Additionally, to tackle

the real-time streaming of large volumes of 3D information, we propose a

method for real-time streaming while providing a superior user experience

in AR/VR. The effectiveness of the proposed method is validated through

subjective studies and objective analysis under varying network conditions.

1.3 Organization

The remaining of this thesis is organized as follows. First, Chapter 2 discusses

the related work on 3D memory, including existing tracking methods and datasets.

Next, Chapter 3 introduces our proposed 3D memory for AR. Chapter 4 presents the

visualization tools developed for the 3D memory, including ARGUS extensions for

3D memory and InstantReality for real-time 3D data streaming. Finally, Chapter 5

concludes the dissertation, highlighting potential future works.

5

Chapter 2

Related Work

3D memory is similar to multi-object tracking (MOT), since both of them focus

on tracking the trajectory of objects in the scene. Multi-object tracking is one of the

most active topics in computer vision and the core foundation for spatial computing

systems such as VR/AR. Unlike the common settings, scenes in egocentric settings

typically feature diverse objects in varying scales, which often induce classification

errors, particularly for methods trained on non-egocentric dataset [1]. This makes

robust tracking in AR scenarios remarkably challenging. Typically, the AR system

only has limited knowledge about the physical surroundings at the beginning due to

the limited FoV of the headset, but we will get more knowledge as the user moves

around and rotates the head. In addition, objects may be transformed or consumed

during the tasks. For example, in cooking tasks, ingredients are transformed and

consumed during the cooking process. For the reasons above, to track and memorize

objects in the scene, the tracking system must be able to distinguish between a

new unseen object (to be added) and an object seen before (to be discarded). Some

tracking methods such as XMem [13] only focus on tracking the object given manual

initializations without automatically adding new objects and removing outdated

objects using object detection results. Therefore, we mainly discuss related methods

capable of object life cycle management in these three categories: multi-object

dynamic SLAM, 3D Multi-object tracker, and 2D Multi-object tracker.

6

2.1 Multi-object Dynamic SLAM

Given RGBD input, dynamic SLAM can not only map the environment and

provide the camera pose, but also reconstruct and track moving objects. The

common idea is to separate the background and objects, reconstruct each object

separately and then use the reconstructed representation to match and track

objects in the following frames. Co-Fusion [64] and RigidFusion [82] rely on motion

segmentation to segment the objects from background, while MaskFusion [62],

MID-Fusion [84], EM-Fusion [70] and TSDF++ [28] rely on object masks provided

by Mask-RCNN [29]. However, there are two major issues when using them in AR

task guidance scenarios. First, the feature-based camera pose estimation and the

tracking can fail under motion blur and large inter-frame movement [42, 47, 49].

Therefore, these methods rely on assumptions such as slow/smooth camera motion

and high frame rate of camera frames, which are unsuitable for egocentric AR

scenarios. Second, existing approaches typically assume the rigidity of 3D objects.

However, deformable and consumable objects are common in real-world tasks,

raising fundamental challenges in dynamic localization. In addition, transparent

objects are a common part of everyday tasks, but the time-of-flight sensors in AR

headsets have trouble in capturing the shape of transparent objects [91]. This

prevents the reconstruction of object shape, and hence tracking by geometric shape

matching will fail. These two issues make the multi-object dynamic SLAM not

suitable for AR task guidance.

2.2 2D Multi-object Tracker

With the advent of high-performing object detector, many 2D multi-object

trackers apply the tracking-by-detection paradigm, so that they can benefit from

the enhanced object detection as object detectors improve. In the tracking-by-

detection paradigm, for each frame, an off-the-shelf object detector is run first to

find all the objects. Then the tracking problem becomes matching the detection to

the tracklets and add/delete tracklets as necessary after the matching. SORT [7]

demonstrated that 2D tracking-by-detection tracker can achieve state-of-the-art

performance and run real-time by using a rudimentary combination of techniques

7

like IoU for similarity, Kalman Filter for motion model and Hungarian algorithm

for matching detections to tracklets. Some methods improve the matching by using

similarity between appearance features learned by neural networks. DeepSORT [81]

proposed adding the cosine distance between the appearance feature to calculate

the similarity. MOTDT [10] proposed using the appearance feature similarity to

match the detection and tracklet first, and then using IoU to match the unmatched

tracklet. However, these methods need an extra feature extractor which can

be computationally expensive. CenterTrack [88] used object centers instead of

bounding boxes to perform the tracking and modified the CenterNet [89] to let

it not only output the object center, but also a 2D offset of the center from the

adjacent frame. Since it requires CenterNet to output 2D offset of the center from

the adjacent frame, it cannot take any off-the-shelf object detector as input and

benefit from the improvements in the object detectors. ByteTrack [86] proposed a

two-stage matching strategy. In the first stage, the high confidence detections are

matched to tracklets and the unmatched high confidence detections are initialized

to new tracklets after the second stage matching, while in the second stage, low

confidence detections are matched to remaining tracklets and no new tracklets

will be created for these detections. However, these 2D trackers cannot utilize

the information from the depth sensor of AR headset, and do not take the fast

camera movement of egocentric view into account. As shown in our evaluations,

they will suffer from low frame rate and have poor performances in AR scenarios.

In addition, there are methods to improve object detection result for frame-based

detector on video stream like the method proposed by Sabater et al. [65] and

Seq-Bbox-Matching [5]. They create tubelet, which is similar to tracklet, links

detections across frames and aggregates the information to improve the detection

results. They not only suffer from the drawbacks of 2D multi-object tracker such as

low bounding box IoU under low frame rate and fast headset movement, but also

issue like objects move in and out field-of-view breaks tubelet since tubelet only

links detections in adjacent frames. To make things worse, these methods focus on

improving the object detection results, and the identity from the tubelet is just a

byproduct and they are not optimized for keeping track of object identity.

8

2.3 3D Multi-object Tracker

Many 3D multi-object trackers also adopt the tracking-by-detection paradigm

to benefit from the strong power of 3D object detectors. Similar to SORT [7],

AB3DMOT [80] created a baseline for 3D MOT and demonstrated that 3D tracking-

by-detection tracker can achieve state-of-the-art performance and run real-time

using 3D IoU, 3D Kalman Filter and Hungarian algorithm. Different improvements

have been proposed on top of AB3DMOT. For example, when calculating similarity,

IoU is replaced with L2 distance in CenterPoint [85], and Mahalanobis distance by

Chiu et al. [14] SimpleTrack [50] analyzed and improved the four main modules

in the 3D MOT pipeline: pre-processing, motion model, association and life cycle

management. However, these methods require a 3D detector which outputs 3D

bounding box of objects. Currently, there is no 3D detector that can detect tens

of thousand classes like Detic [87]. Therefore, these methods are designed and

evaluated using driving datasets like KITTI [24], Waymo Open [71] and nuScenes

[8], and their generalizability is limited.

2.4 Datasets

Although there are 3D object tracking datasets like KITTI [24], Waymo Open

[71] and nuScenes [8], they are for outdoor autonomous driving scenarios, which

are very different from indoor AR task guidance scenarios. These datasets usually

focus on limited number of object classes, mainly cars and pedestrians, while in

AR task guidance, the object classes can vary a lot given the variety of tasks.

To evaluate the 3D memory algorithm, the dataset should satisfy three re-

quirements: (1) egocentric RGBD video, (2) dynamic scene in real-world task

scenarios, (3) multi-object tracking annotation. Lopes et al. [44] surveyed existing

RGBD datasets. However, none of the existing datasets can satisfy all the three

requirements. Datasets like GMU kitchen dataset [25] are recorded with static scene

instead of dynamic scene. Real-world egocentric tracking datasets like EgoTracks

[73] from Ego4D [26] and TREK-150 [21] from Epic-Kitchen [18] lack depth sensing,

and focus on single-object tracking. Datasets like Epic-Kitchen VISOR [19] and

MECCANO [56] are recorded with dynamic scene, but only provide active object

9

(object being manipulated by the user) annotations without object ID instead of

annotating all objects with object ID. HOI4D [43] focuses on short video sequences

(20s) depicting interactions between a single hand and a single object, deviating

from real-world task scenarios. For the reasons above, we collected some recordings

of user performing task wearing HoloLens 2 and create a dataset by annotating

these recordings for evaluation.

2.5 Visual Analytics for 3D Object Tracking

Visual analytics systems play an important role in understanding, debugging

and improving machine learning models, especially neural networks due to their

black-box-like nature. Hohman et al. [32] surveyed and summarized visual analytics

systems for machine learning models. However, none of the existing works is

developed for 3D object tracking. There are very few existing works that supports

spatial-temporal visual analytics for machine learning models that take both RGB

and depth data as input. Hou et al. [33] proposed a visual evaluation method

for autonomous driving algorithms. The method has a 3D spatial view to help

users understand the environment and other traffic participants. Wang et al. [76]

developed a system which focuses on addressing the interpretability issue of 3D

object detection in autonomous driving. The system helps users interpret the model

failures and improve the models by providing information about when, where, and

how the detection model fails. Castelo et al. [9] proposed ARGUS, which is a

state-of-the-art visual analytics system to support the development of intelligent

AR assistants. However, it only supports analyzing object detection results by

object classes, and fails to consider the cases where there are multiple instances

from the same class in the scene.

10

Chapter 3

3D Memory Algorithms for AR

AR headsets not only superimpose digital information, but also provide sensing

capabilities to understand both humans and the physical surroundings from a

first-person perspective. The dynamic understanding of 3D environments also

unlocks assistive “episodic memory” based on users’ past actions [26, 74], e.g.,

responding to AR users’ inquiry of “where was the mug that I just used?”. However,

unlike traditional machine vision tasks, AR assistants in real-world scenarios face

unique challenges, such as highly dynamic movements of the head-mounted cameras,

repetitive objects that may have indistinguishable appearances, or being frequently

manipulated by users.

Recent advancements in computer vision allow the AR systems to see and

detect objects of different classes. Object detectors like YOLO [57] and Faster-

RCNN [59] can both localize and classify the objects in the image space. However,

they are trained to predict a fixed set of predefined object categories. This limits

the generality of these object detectors since they need to be re-trained with

additional annotated data to identify new object categories. Although there are

object detectors like YOLO9000 [58] which use a mix of image detection and

image classification datasets for training to utilize the class-rich advantage of image

classification datasets and can detect thousands of object categories, it is still

possible that they will encounter new visual concept which they cannot handle. On

the other hand, open-vocabulary object detectors, which use language embeddings

of class names to classify objects, have the ability to detect objects outside of the

training vocabulary. CLIP [55] provides an embedding allowing efficient learning

11

(a) Frames of user manipulating object. Top row shows the 2D bounding boxes of the objects.
Bottom row shows the estimated 3D positions.

(b) Outputs from the Dynamic Episodic Memory.

Figure 3.1: The proposed Dynamic Episodic Memory can track the manipulated
object and remember 3D position of objects even if objects are outside field-of-view.

of visual concepts from natural language supervision. Detic [87] achieves state-

of-the-art performance on open-vocabulary and long-tail detection benchmarks

by decoupling the localization and classification sub-problems and using CLIP to

classify the objects. However, existing object detection approaches face critical

roadblocks in the unique AR scenarios to assist users’ spatial awareness. First,

they commonly focus on identifying objects at present. However, in order to assist

AR users in a real-world task sequence, the system must “memorize” the entire 3D

environment and its changes over time, even if the objects are moved by users or

beyond the current field-of-view. Second, machine-learning-based detections may

face inevitable spatial (e.g., incorrect classes) and temporal (e.g., missing an object

in a frame) imperfections, compromising the reliability of individual frames.

Therefore, spatiotemporally integrated “memory” is essential for an AR assistant

to accurately understand and inform users of the physical task objects.

12

In dynamic tasks, objects are commonly moved by users’ hands. With this

observation, we proposed a multi-object tracking framework based on tracking-by-

detection paradigm. Our goal is to develop a real-time spatial perception system for

complex and dynamic AR scenarios. The system provides comprehensive task object

information including object ID, position, and identity, as shown in Figure 3.1. To

generalize to different tasks, it leverages the “tracking by detection” paradigm and

a large vocabulary detector [87].

To summarize, we make the following main contributions

• An end-to-end run-time framework that combines the power of 2D detector

and 3D depth information to mimic 3D Episodic Memory, assisting AR users’

spatial awareness;

• A tracking-by-detection method designed for complex and dynamic AR sce-

narios;

• An annotated dataset for evaluating the performance of 3D dynamic episodic

memories.

3.1 Method

Similar to many 2D multi-object trackers, we adopt the tracking-by-detection

paradigm which has proven successful for multi-object tracking. We use Detic [87]

as the object detector, allowing our method to be easily generalized to different

tasks, as Detic can detect any class given class names using CLIP [55]. The pipeline

of our method can be divided into four parts: inputs, pre-processing, association

and life cycle management as shown in Figure 3.2. While most existing 2D/3D

multi-object tracking-by-detection trackers include a motion model, our method

does not incorporate one, given that objects are static in most cases.

We first analyze why existing 2D multi-object trackers fails in AR scenarios.

Then we describe the four parts of our method.

13

Figure 3.2: Pipeline of our algorithm. For simplicity, we only visualize the step
between frame t-1 and frame t. In the data association, the only matched pair is
the butter knife tracklet with ID 0 and butter knife detection. In the life cycle
management step, new tracklets are created for the jar of jelly, while the tracklet
of plate with ID 1 is deleted due to miss. Although the jar of butter is detected as
jar of jelly, no tracklet is created since the confidence is lower than the threshold
for new tracklet.

3.1.1 Analyze and Rethink 2D MOT

In AR scenarios, 2D MOT can fail at both the association and life cycle

management stages. One issue during association is that 2D multi-object trackers

use intersection-over-union (IoU) between 2D bounding boxes to calculate similarity

Due to the low frame rate and abrupt headset movement, the 2D bounding boxes

of a static object may not overlap at all, resulting in zero IoU and matching failures.

However, in indoor AR scenarios, objects are static in most cases. Although the 2D

bounding box position of a static object may change a lot due to headset movement,

the 3D position reconstructed from depth camera of that object in world coordinate

remains unchanged as shown in Figure 3.3. Therefore, 3D distance can be used

to calculate the similarity instead of using 2D bounding box IoU. Because of the

existence of false positives and false negatives in the object detection results, using

only 3D distance may result in wrong associations. The class information from the

object detection results can also be used to calculate the similarity to reduce errors.

14

(a) frame at time t (red) (b) frame at time t+1 (blue)

(c) 3D point cloud of the two frames

Figure 3.3: Comparison of 2D frames and 3D point clouds under movement.
Although the 2D bounding box positions change a lot due to headset movement
from (a) to (b) resulting in zero bounding box IoU for the static objects, the point
cloud of these two frames overlap with each other, which means the 3D positions
remain unchanged.

We use a similarity score calculated using the 3D distance and class information

from object detector to replace the 2D bounding box IoU.

During life cycle management, most existing 2D trackers will delete an object if

it is missed for a certain number of consecutive frames. This could be undesired

for AR scenarios, because a static object can become outside FoV due to headset

movement and get deleted. When it appears in FoV again, it will be added as a

new object, resulting in an identity switch. Also, if the user cannot find an object

outside FoV, we cannot guide the user to find it since it has been deleted. For

the reasons mentioned above, we should only delete missing objects if they should

15

(a) RGB frame with object detection (b) depth frame

Figure 3.4: Inputs of our algorithm. Note that the RGB frame and depth frame
are from separated cameras, resulting in different field-of-view.

appear inside FoV. AR headset can provide information like headset position, head

orientation and camera parameters, so that given a 3D coordinate, we can tell

whether it is inside FoV or not.

3.1.2 Input and Tracker State

As shown in Figure 3.4, for each incoming RGB frame, the input to our method

contains:























RGB frame with camera intrinsic/pose

Object detection result from the RGB frame

(Temporal nearest) depth frame with camera intrinsic/pose

Meanwhile, the information of each tracklet include:























































Tracklet ID

3D position

Class labels of past N observations (a sliding window of max N frames)

Timestamp of last seen

Counts for life cycle management (seen count & consecutive miss count)

16

The 2D bounding box of matched detection is also saved to tracklet for visualization

and evaluation purposes.

3.1.3 Pre-processing

3.1.3.1 Frames Alignment

AR headsets like HoloLens 2 have separated RGB camera and depth camera

instead of a single RGBD camera. The RGB camera and depth camera can have

different frame rates, field-of-view and resolutions. Therefore, it is necessary to align

the frames from the RGB camera and depth camera. The alignment is performed

by mapping the each point of the depth point cloud to a pixel of the RGB image.

The 3D directions of each pixel of the depth camera can be calculated from

the camera intrinsic or provided by the manufacturer. By multiplying these 3D

directions with the depth values of each pixel, we can reconstruct a 3D point cloud

for the given depth image. We denote the position of pixel p in coordinate system

s as Posp,s . Let (xp,yp, zp) be the direction of pixel p in 2D depth image and dp

be its depth value. The 3D position of the pixel p in the depth camera coordinates

can be calculated as Posp,depth = (dpxp,dpyp,dpzp).

In addition to the local coordinate systems of the cameras on board, AR

headsets also provide a world coordinate system and camera extrinsic parameters

which transform the world coordinate system to camera coordinate system for

each captured frame. Although the camera positions are relatively fixed to each

other, we cannot transform from one camera coordinate system to another camera

coordinate system directly since the frames could be from different timestamps.

Therefore, the world coordinate system can link the camera coordinate systems of

the different frames. By transforming the point cloud into the world coordinate

system, we can further transform it to the coordinate system of other cameras to

utilize information from other cameras. For example, we can further transform it

to the RGB camera space, allowing us to generate a pseudo-RGBD image and take

advantage of object detection results from the RGB camera.

Let Mdepth2world be the matrix transforming the coordinates from the depth

camera space to the world space of a depth frame, and Mworld2rgb be the matrix

transforming the coordinates from world space to RGB camera space of an RGB

17

frame. For a pixel p of the depth frame, we obtain its 3D coordinate in RGB

camera space as Posp,rgb = Mworld2rgb ·Mdepth2world ·Posp,depth.

The camera intrinsic parameters of the RGB camera such as the focal length fx,

fy and principal point px, py are also provided by the headsets. This allows us to

reconstruct the camera intrinsic matrix A =











fx 0 px

0 fy py

0 0 1











and convert the Posp,rgb

back to the 2D image space of the RGB camera. Using this transformation, the 3D

points will be mapped to RGB pixels. Since the field of view of the RGB camera

and depth camera are different and not completely overlapped, the converted pixel

(xp,yp) may be outside the RGB image, thus omitted. This transformation can

also help us decide if a 3D point should appear inside camera field-of-view during

the life cycle management stage.

Given an RGB frame with object detection result, we first find the temporal

nearest depth frame available, and then perform the alignment as described above.

As a result, some RGB pixels will have the associated 3D point since the resolution

of RGB camera is usually much higher than the depth camera.

3.1.3.2 3D Position from 2D Detection

Since 2D object detectors like Detic can only provide 2D bounding boxes instead

of 3D positions, we then calculate the 3D positions of the detections. Given a 2D

bounding box, we use all the 3D points inside the bounding box from depth frame

to infer 3D position of the object. We use the average of the 3D points as the 3D

position of the object.

3.1.3.3 Non-maximum Suppression

As discussed in [50], object detectors usually output a large number of bound-

ing boxes to fulfill the recall requirements, leading trackers to select inaccurate

detections for extending or forming tracklets. For example, as shown in Figure 3.5,

Detic outputs 3 bounding boxes for the jelly, and 2 bounding boxes for the Nutella

and nut butter. To address this issue, non-maximum suppression can be applied

for detection results within the same class and across different classes. The IoU

threshold for different class objects should be much higher than the threshold of

18

Figure 3.5: Raw outputs from Detic. For a single object, Detic can output 2-3
detection results, and this will lead the trackers to select the duplicate detections
and create extra tracklets.

non-maximum suppression within the same class. This is because there are valid

cases where the bounding box of an object is inside the bounding box of another

object with a different class, such as a tortilla placed on a cutting board.

3.1.4 Association

In this stage, the tracker tries to match the tracklets with the detections in the

incoming frames. When designing the data association, we mainly consider two

factors: 3D position/distance and class label from the object detector. We don’t

take image features or object geometric shape into consideration because objects

can be non-rigid, and their appearance and shape may change during the task

process.

3.1.4.1 Similarity Metric

Based on the insight that objects are static unless moved by the hand in indoor

AR scenarios, 3D distance is used to calculate the similarity instead of using

19

2D bounding box IoU. However, using only 3D distance may result in a wrong

association. The class information from the object detection results is also used to

calculate the similarity to reduce error.

Our similarity metric is based on 3D position/distance and class information

from the object detector. Let dij be the 3D Euclidean distance between detection

Di and tracklet T j , α is a parameter for the similarity distribution, the position

similarity is calculated as:

Spos = e−α·dij (3.1)

Let N be the size of the sliding window and Cij be the count of class label

of detection Di in the the sliding window of tracklet T j , and Confidencei be the

confidence of detection Di. The class similarity is calculated as:

Sclass = Confidencei · Cij

N
(3.2)

Given the parameter λ which balances the position similarity and class similarity,

the final similarity score S is calculated as:

S = λSpos +Sclass (3.3)

3.1.4.2 Matching Strategies

After obtaining the similarity scores for all possible pairs of tracklets and

detections, a matching strategy is needed. We use greedy algorithm to associate

detections and tracklets. As discussed in [14, 50], distance-based metrics prefer

greedy algorithms to Hungarian algorithm. Starting from the pair of detection Di

and tracklet T j with the highest score, we iteratively associate the pairs until the

score is smaller than a threshold Threshscore. The match pairs of detection Di

and tracklet T j , matched detections Dmatched, unmatched detections Dunmatched,

matched tracklets Tmatched and unmatched tracklets Tunmatched will be saved and

used to update tracker states later.

20

3.1.5 Life Cycle Management

Here the tracker deletes the outdated tracklets and create new tracklets when

necessary. Since new objects may enter and existing objects may be transformed

or consumed, life cycle management is required to add and delete tracklets. We

use a count-based approach for the life cycle management. For matched tracklets

Dmatched, the tracklet will be updated by using the detection position as the new

position, adding the class to sliding window, increasing the seen count by 1 and

reset consecutive miss count to zero. For unmatched detections Dunmatched, a new

tracklet will be created if the confidence of the detection Di
unmatched is larger than

detection score threshold for creating new tracklet Threshconf . The new tracklet

will be initialized with detection position as the position, the class label as the only

element in the sliding window, seen count equals to 1 and consecutive miss count

to 0. For unmatched tracklets Tunmatched, we first determine whether they should

be inside the FoV by mapping the 3D position to the 2D camera plane as describe

in Section 3.1.3.1 and filter out those outside FoV. For the unmatched tracklets

inside the FoV, their seen counts will be decremented by 1 and their consecutive

miss count will be added by 1. The unmatched tracklets can be deleted in two

ways. First, they will be deleted if they miss for a number of consecutive frames

so that consecutive miss count is larger than max number of consecutive misses

allowed Nmax miss. Second, they will be deleted if the seen count reaches 0. This

allow the tracker to delete both false positive and disappeared objects effectively.

Disappeared objects usually have a large seen count, so it takes a large number of

frames to decrease the seen count to 0 and deletion after missing for a number of

consecutive frames can handle this case. If we only rely on number of consecutive

missed frames, false positive can survive for that number of frame and this can be

undesirable. Using the seen count can help handle this case.

When outputting tracklets, only matched tracklets Tmatched in this frame will

be output. In order to be output, the matched tracklets need to have a seen count

larger than min seen count required Nmin seen. For unmatched tracklets Tunmatched,

they will become inactive and will not be output.

21

3.2 Evaluation

3.2.1 Metrics

We evaluate the tracking algorithms using several MOT metrics [6], including

MOTA1 (multi-object tracking accuracy), IDS (number of identity switches), TP

(number of true positives), FP (number of false positives) and FN (number of false

negatives). Since other algorithms output 2D bounding boxes and data annotations

are also in 2D, our method will store the matched detection’s 2D bounding box to

the tracklet for evaluation.

3.2.2 Datasets

As discussed in Section 2.4, none of the existing labeled datasets can match all

our targets for evaluation. Therefore, we created a dataset using recordings of users

performing recipes and wearing HoloLens 2. This dataset contains 12 recordings

which cover 4 recipes - pinwheels, dessert quesadilla, tea and oatmeal, containing

including objects from 20 different classes. Apart from the headset movement

during the task processes, it also contains many other challenges like duplicate

objects, transparent objects and occlusions. In some cases, object movement process

was outside field-of-view due to the limited camera FoV. It is split into a training

set (8 recordings), and a test set (4 recordings). The dataset is annotated using

Computer Vision Annotation Tool (CVAT), an industry-leading data annotation

platform widely used by communities and companies. The dataset frame rate

is around 2.5fps to simulate real-world, run-time AR scenarios where the object

detection speed is limited by the available on-device computational power. Notably,

various datasets with similar purposes also provide annotated videos at 1-2fps, such

as TAO dataset [20] and nuScenes [8]. Corresponding tracking methods [88, 90]

also operate at this rate. The intervals between frames may not be uniform given

the variations of the network. There are 6045 frames and 35,490 object annotations

in total. To facilitate the replication of our evaluations, we have also included the

Detic detection results used in our analysis.

1MOTA = 1 − FP+FN+IDS
GT# is one of the most popular metrics used for ranking methods on

MOT benchmarks

22

3.2.3 Implementation Details

We set the parameter for the similarity distribution α to 5, λ which balances the

position similarity and class similarity to 2 and the min similarity score of a matched

pair Threshscore to 1.4 through a pilot study using recordings with Aruco markers.

For parameters that can be fine-tuned, we set the detection score threshold for new

tracklet Threshconf to 0.7, max number of consecutive misses allowed Nmax miss to

5 so that our algorithm can handle short-term occlusion under 2 seconds at 2.5 fps,

windows size N to 15 and minimum number of seen count required Nmin seen to 2.

These parameters are determined using the training set as shown in the ablation

study later. For Detic, we use the Detic C2 SwinB 896 4x IN-21K+COCO model

with their released weights. The proposed algorithm is implemented with Python.

All the evaluations run on a PC with Intel i9-9880H 8-core CPU and 32GB of

RAM.

3.2.4 3D Baseline

Since 2D trackers cannot utilize 3D depth and class label information, we

create a simple baseline 3D tracker using greedy algorithm to validate the proposed

similarity for data association. The baseline tracker also uses the tracking-by-

detection pipeline. The only difference between our proposed method and this

3D baseline is the similarity score of data association. In data association, given

Detic detections of the current frame, it greedily matches the tracklet to the closest

detections of the same class. The life cycle management of this baseline is the same

as our proposed method. It can be implemented by setting the sliding window size

to 1 and min similarity score of a matched pair Threshscore to 0, and the similarity

score S is calculated by

S = Cij · e−dij (3.4)

We also fine-tuned the confidence threshold parameter by selecting the value

with highest MOTA on the training set and set it to 0.7.

23
TP FN FP IDS MOTA

Ours 7294 4517 2047 75 0.4379
3D Baseline 7206 4605 2728 144 0.3669
ByteTrack 5570 6241 982 563 0.3408
SORT 5011 6800 750 470 0.3210

Table 3.1: Comparison with 2D trackers using Detic detections on the test set. The
best results for each metric are shown in bold.

TP FN FP IDS MOTA
Ours 11412 399 0 65 0.9607
3D Baseline 11494 317 0 41 0.9697
ByteTrack 9951 1860 122 896 0.7563
SORT 8999 2812 0 649 0.7070

Table 3.2: Comparison with 2D trackers using ground truths on the test set. The
best results for each metric are shown in bold.

3.2.5 Comparisons with 2D trackers

We compare the proposed algorithm and the 3D baseline with 2D trackers,

specifically SORT [7] and ByteTrack [86]. These 2D trackers were chosen as they

don’t require extra neural networks for tracking and can take bounding box (x1,

y1, x2, y2, score) from any 2D detector as input. ByteTrack is a state of the art

2D tracker, and SORT is a classic 2D tracker and barebone of many other 2D

trackers. Since SORT and ByteTrack do not incorporate class information, we

run multiple instances of these trackers, one for each object class. Each instance

receives only detections of the corresponding class, and all the output is labeled

with that class. To ensure a fair comparison with our method and 3D baseline

whose confidence thresholds were fine-tuned by selecting the value with highest

MOTA on the training set, we fine-tuned the confidence threshold parameter for

ByteTrack and SORT using the training set, setting it to 0.5.

Table 3.1 presents the results using Detic as detection inputs. For reference, the

TP, FN and FP of the input Detic detection results at a 0.5 confidence threshold

are 7228, 4583, and 2132, respectively. Our method significantly outperforms the

2D trackers, especially in terms of IDS. These results demonstrate that 2D trackers

struggle with identity tracking. Although 2D trackers have fewer FPs compared

to 3D trackers, this advantage comes at the expense of generating fewer bounding

24

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
Confidence threshold

0.20

0.25

0.30

0.35

0.40

0.45

M
OT

A

Ours
ByteTrack
Detic + GT ID

(a) MOTA w.r.t conf threshold

0 1 2 3 4
Sample interval

0.20

0.25

0.30

0.35

0.40

0.45

M
OT

A Ours
ByteTrack

(b) MOTA w.r.t frame rate

Figure 3.6: Comparison of performance under different confidence thresholds and
framerates on the test set.

boxes, resulting in a higher number of FNs. Additionally, our method surpasses

the 3D baseline, highlighting the effectiveness of the proposed similarity score.

Tracking-by-detection allows algorithms to benefit from enhanced object detec-

tors. To evaluate different trackers given ground truth detections, we assessed them

using ground truth annotations. Table 3.2 illustrates the results using ground truths

as detection inputs. Despite using ground truths, the 2D trackers still perform

poorly and exhibit a high number of IDS. This is due to their assumptions about

camera stability and high frame rate, which do not hold in AR settings. Association

using 2D bounding box IoU and motion model like Kalman filter does not work well

under AR settings due to the low frame rate and abrupt movement of user hand/-

head. In addition, the 2D trackers will delete an object under consecutive misses

and this can be undesirable for objects outside FoV. The 3D Baseline surpasses

our method since nearest neighbors matching within the same class overfits the

ground truth inputs, where class labels are always correct, an unrealistic scenario

for object detectors. Our method and the 3D baseline achieve near-perfect results

with ground truth inputs, and we will discuss the limitations of our method that

prevent us for achieving better results in Section 3.3.

Effect of input frame rate. Tracking performance can be influenced by the

input frame rate. Therefore, we explore this effect by sampling one frame from

every n frame of the dataset. Results in Figure 3.6b indicate that our method is

25

more robust to lower frame rates than ByteTrack. This resilience is attributed

to the fact that 2D bounding boxes are not robust similarity indicators, being

easily affected by low frame rates, abrupt camera movement, and even packet drops

during transmission.

Runtime performance. We also compare the runtime performance of our

algorithm with ByteTrack using recordings with an average of 8 visible objects per

frame. During pre-processing, estimating 3D positions given 2D detections and

RGBD image takes about 6.6ms/frame. For the data association and life cycle

management, our algorithm takes 2.1ms/frame on average, while ByteTrack takes

4.0ms/frame. Therefore, the entire tracking pipeline can run at approximately

120fps, introducing minimal latency in interactive scenarios.

3.2.6 Comparison with Detic + GT ID

Let’s consider the scenario where the Detic detections are first filtered by a

threshold and then assigned with ground truth IDs (Detic + GT ID). This represents

the upper bound performance of using the filtered Detic detections for tracking,

since such an oracle tracker that can perfectly assign IDs does not exist in the real

world. Figure 3.6a shows the MOTA under different filtering thresholds for Detic +

GT ID, new tracklet thresholds for our method and detection score thresholds for

ByteTrack. Our method outperforms the other two methods and is more robust

to different confidence threshold values. Furthermore, since Detic + GT ID is

using ground truth IDs, the IDS error for its result is 0. The MOTA is calculated

by 1 − F P +F N+IDS
of GT . In this case, Detic + GT ID will only be penalized by the

FP+FN from Detic detections, while our method will be penalized by all FP, FN

and IDS. Therefore, the higher MOTA of our method means that our method has

fewer FP and FN than Detic + GT ID. As a result, if we apply our method as

an object detector by only considering the object class and object position in the

outputs, our method can achieve better results than the Detic detections. This

suggests that our method can improve the detection quality by better utilizing the

temporal information.

26
TP FN FP IDS MOTA

Ours 14661 9015 4523 190 0.4202
w/o nms 14807 8869 5513 220 0.3833
w/o seen count 14737 8939 4697 198 0.4157
Threshconf =0.65 15240 8436 5103 225 0.4187
Threshconf =0.75 13352 10124 4013 165 0.3959
Nmax miss=3 14483 9193 4365 212 0.4184
Nmax miss=10 14930 8746 4944 174 0.4144
Nmin seen=1 14912 8764 4662 300 0.4202
Nmin seen=3 14493 9183 4416 168 0.4185

Table 3.3: Ablative analysis of different design choices of our proposed method on
training set. The best results for each metric are shown in bold.

TP FN FP IDS MOTA
N=1 14521 9155 4897 274 0.3949
N=5 14675 9001 4827 198 0.4076
N=10 14678 8998 4623 190 0.4167
N=15 14661 9015 4523 190 0.4202
N=20 14686 8990 4623 190 0.4170
N=50 14619 9057 4551 225 0.4157
N=∞ 13818 9858 4674 439 0.3677

Table 3.4: Ablative analysis of window size of our proposed method on training set.
The best results for each metric are shown in bold.

3.2.7 Ablation Study

In this section, we investigate the impact of different design choices using the

training dataset, considering the imperfect nature of real-world object detectors

and evaluating the design choices based on Detic detections as input.

Effect of non-maximum suppression. Non-maximum suppression, as shown

in Table 3.3, reduces the number of false positives at the expense of decreasing true

positives. Despite this trade-off, non-maximum suppression contributes to a higher

MOTA. Detic’s capability to produce multiple detection results for a single object,

illustrated in Figure 3.5, can result in the creation of multiple tracklets for that

single object, leading to additional false positives. In some instances, these extra

detections generated by Detic might be associated with inactive tracklets, causing

27

false positives and identity switches.

Effect of seen count decrement. Existing trackers like SORT and AB3DMOT

will start outputting matched tracklets once it satisfy the min hits requirement and

only delete the tracklet by reaching the max consecutive misses allowed. However,

this may lead to undesired outcomes, as false positive detections may have confidence

score higher than the new tracklet threshold Threshconf . It takes time for the

created tracklet to reach the max consecutive misses allowed Nmax miss, and during

this time, false positive detections with low confidence can be associated and output.

By decreasing the seen count during misses and apply output filtering and tracklet

deletion based on the seen count, we achieve higher MOTA, reducing false positives

and identity switches.

Effect of new tracklet threshold. As the new tracklet threshold Threshconf

increases, false negatives increase while false positives and identity switches decrease.

A value of 0.7 yielded the highest MOTA when explored across the range of 0.5 to

0.8 on the training set.

Effect of max consecutive misses allowed. The choice of decreasing or increas-

ing the max consecutive misses allowed (Nmax miss) has implications. Decreasing it

may cause occluded tracklets to be deleted, resulting in identity switches when the

objects become unoccluded and are detected again. In contrast, increasing its value

may cause outdated tracklets may not be deleted in time, matching them to false

positive detections and let them evade the the new tracklet threshold Threshconf ,

causing an increase in false positives. Setting it to 5 is deemed appropriate based

on MOTA.

Effect of min seen required. When changing the min seen required for a

tracklet to be output Nmin seen to 1, the newly created tracklets will be output

immediately instead of needing an extra detection from the future frames to be

confirmed. This will increase both true positives and false positives since true

positives can be output starting from first frame and false positives that only last

one frame can also be output. This change also significantly affects the number of

identity switches. Since for newly created objects, their class label windows are not

28

yet filled and usually results in low class score. As a result, when they are under fast

movement, the detection cannot be matched to the existing tracklets so that new

tracklets are created for each frame, resulting in identity switches. Alternatively,

changing the Nmin seen to 3 will result in lower the MOTA. A compromise is found

by setting Nmin seen to 2, aligning with ByteTrack’s implementation behavior.

Effect of window size. We investigate the effect of the class label sliding window

by varying its size. A small window limits the ability to utilize information from the

past. In the most extreme case where window size is 1, only the class information

from the last seen frame can be used. On the contrary, large window size allows for

more extensive use of historical information. Since it takes time for the window to

be filled, tracklets generated by false positive detections usually has few observations

and few elements in the window. As a result, they will have lower class similarity

score comparing with true positive tracklets, and the tracking will be more robust.

However, if the window size is too large, the sliding window can hardly be filled

and each observation will only increase the class similarity score by a very small

amount. This can be undesirable since it makes the data association heavily relies

on the position score. Table 3.4 demonstrates that both too small and too large

values lead to inferior performance. Setting it to 15 is deemed appropriate based

on MOTA.

3.3 Limitations

In case where the headset has separated RGB and depth cameras instead of a

single RGBD camera like HoloLens 2, it is possible that some parts of the RGB

image will lack depth information as shown in Figure 3.7 due to the different field

of view of the RGB and depth cameras. As a result, 2D detections in those parts

cannot convert to 3D, and the corresponding tracklets cannot be matched to the

detections and will be deleted due to consecutive misses. One way to mitigate this

is to find a better way to utilize depth information from the past instead of just

using the temporal nearest depth frame.

In addition, as shown in Figure 3.8, some objects in the scene can be transparent,

such as a glass cup. A 2D detector can see through the transparent objects while

29

(a) depth field-of-view (b) left: RGB frame, right: pseudo-RGBD frame after alignment

Figure 3.7: Aligned frame whose corners (highlighted in red) don’t have depth
information. The depth FoV of HoloLens 2 is in hexagon shape, which results in
the top left jar of jelly detection doesn’t have any depth information available and
cannot be converted into 3D.

the depth camera may not. This will result in inaccurate 3D position estimation

for the objects behind transparent objects.

In the evaluation of the 3D baseline, we fine-tuned only the parameters that

significantly impact the MOTA, as identified in the ablation study, such as the con-

fidence threshold. Parameters with negligible effects on the MOTA, like Nmax miss

and Nmin seen, were maintained at the same values as those used in our method.

This approach may have slightly disadvantaged the 3D baseline’s MOTA perfor-

mance.

Although our method can handle short-term occlusion up to max number of

consecutive misses allowed Nmax miss, it doesn’t attempt to solve tracking objects

under long-term occlusion. The object will be deleted if there are misses for

Nmax miss consecutive frames. Therefore, long-term occlusion can result in identity

switches.

30

Figure 3.8: Example of transparent objects. 2D detector can detect the bottle of
honey behind the liquid measuring cup while the depth camera cannot provide
correct 3D position of the bottle of honey.

3.4 Discussion

We present an end-to-end run-time framework that combines the power of

2D detector and 3D depth information to mimic 3D Episodic Memory for AR,

along with a tracking-by-detection method designed for complex and dynamic AR

scenarios. Using Detic as the object detector, it can be generalized on different

tasks. The average runtime per frame is about 8ms, which means it won’t introduce

latency for interactive scenarios and can run at 120 fps. The evaluation shows

that it can work well under low frame rate and abrupt camera movement, where

the existing state-of-the art 2D trackers can fail. In addition, it can benefit from

the improvement of object detectors and output near-perfect results with perfect

detections.

In future, object detectors such as Segment Anything [36] may output accurate

mask instead of bounding box for detected objects, resulting in a more accurate

estimation of the 3D position given the 2D detections. However, for headsets with

separated RGB and depth cameras like HoloLens 2, since the RGB frame and

depth frame are from different timestamps, it is still quite challenging to estimate

31

the position of moving objects. Another interesting direction of future work is to

incorporate image features to solve the long-term occlusion issue and the moving

object issues by re-identifying the long-term occluded objects and moving objects

using image features.

32

Chapter 4

Visualization for 3D Memory

4.1 ARGUS for 3D Memory

Visualization tools for 3D memory play a crucial role in helping developers

to debug and enhance the algorithm, especially for the case of AI assistants

where multiple machine learning modules work together. Figure 4.1 illustrates the

architecture of TIM, a Transparent, Interpretable, and Multimodal AR Personal

Assistant designed to guide users through various tasks. To automatically guide

users through task steps, machine learning modules for object detection, action

detection, step reasoning, and 3D memory are employed. Given the complexity

of the pipeline, visual analytics tools become essential for comprehending and

debugging these modules.

ARGUS [9] is a state-of-the-art visual analytics system to support the develop-

ment of intelligent AR assistants. It has the capability to visualize not only data

Figure 4.1: The architecture of TIM

33

Figure 4.2: ARGUS Online Mode. The memory output is rendered in green.

streams from multimodal sensors on HoloLens 2 but also the machine learning

model outputs of TIM. Therefore, we choose to build our visual analytics tools for

3D memory on top of ARGUS to leverage the advantages offered by this system.

ARGUS has two modes, online mode and offline mode, both of which are modified

for visualizing the 3D memory.

4.1.1 ARGUS Online Mode

ARGUS online mode (shown in Figure 4.2) enables developers to observe a live

view from the main RGB camera of HoloLens 2, along with online visualizations of

object, action, and step detection. Additionally, developers can use the buttons

in the top left to start/stop recording the data for subsequent offline analysis We

incorporate visualization for live 3D memory output, similar to the visualization of

object detection, by drawing a green bounding box for each tracklet and providing

the object ID and class label.

4.1.2 ARGUS Offline Mode

ARGUS Offline mode enables analysis of the recorded data generated by per-

former actions and the models of TIM. Given the spatiotemporal characteristics

34

Figure 4.3: ARGUS Offline Mode. (A)data manager, (B)spatial view, (C)temporal
view.

of the data, both spatial and temporal visualization widgets are provided to allow

developers analyze the data from different perspectives. As shown in Figure 4.3, the

offline mode consists of 3 parts: the data manager, spatial view and temporal view.

Both spatial view and temporal view are modified to support visualize memory

output

Temporal View. A summary of the model output is crucial for starting an

analysis. The visual summary of the temporal view allows users to quickly grasp a

global picture of the model outputs. As shown in Figure 4.4, the memory output

is visualized by using each row represents the object status of an object across

time. The color of the cell in the row represent the object status. Green indicates

detection by the object detector. Yellow represents undetected status with the

tracklet extended by the memory. Red denotes manipulation by the performer’s

hand Blue represents being outside the camera field-of-view. Some objects can

occupy multiple rows if their class labels change during the session, as illustrated

by objects with ID 3,4,6 in the Figure 4.4.

The video player is also modified to support displaying memory outputs by

rendering the bounding boxes in green. This allows developers to analyze specific

time frames. When a frame is replayed in the video player, the rows of objects

35

Figure 4.4: Temporal view of ARGUS offline mode. A visual summary of the
memory output for one session is provided.

36

Figure 4.5: Spatial view of ARGUS offline mode. The trajectory of an object is
visualized. When pointing towards a point of the trajectory, the temporal view and
video player will show the show the corresponding frame.

in that frame will be highlighted, and the corresponding bounding boxes will be

rendered in the video player.

Spatial View. The spatial view (Figure 4.5) allows the visualization of streamed

spatial data, such as the point cloud from the depth frames. The memory output

is visualized by showing the trajectory of an object. Additionally, when pointing

toward the points on the trajectory, the temporal view and video player will show

the corresponding frame of that point.

4.1.3 Case Studies

Debugging the modules. When a developer sees the temporal view of Figure 4.4,

it can be noticed that there are many objects (object id 3,4,6,25) occupy more than

one row, indicating a change in the class label stored in memory. This suggests

that the object detector struggles to differentiate between these two classes and

predicts a mix for the objects. The developer can investigate the issue further by

using the video player to replay the frame before the label change, as shown in

Figure 4.6a. For example, in this frame, the object with ID 3 is misdetected as jam

37

(a) debug object detection (b) debug action recognition

Figure 4.6: Using temporal view of memory and video player to debug the modules.

jelly, likely due to the viewing angle, resulting in the label change.

An issue of the action prediction can also be identified. The memory shows that

the user was moving the jar of butter or jelly around most of the time. However,

the actions output has very low coverage and confidence for the “take jar” action.

By replaying the video (Figure 4.6b), it can be confirmed that “take jar” has lower

confidence than the action “scoop spreads” and “wash knife” even though there is

no knife detected.

Comparing different memory algorithms. The temporal view of memory

can also be used to compare the performance of different memory algorithms. Here,

38

Figure 4.7: Temporal view of memory for same clip from 2 different memory
algorithms.

we compare two 3D memory algorithms: one that can utilize temporal information

(left) and another that can only utilize information from the last frame (right). As

shown in Figure 4.7, it can be seen that the performance of the algorithms of the

left is better since the lifespan of tracklets are longer, and it has fewer rows.

4.1.4 Discussion

We present visual analytic tools for 3D memory built on top of ARGUS. They

empower the developer to understand and debug the 3D memory algorithm together

with other machine learning modules of an AI assistant. Here, we focus on develop

tools for visualizing a single recording session. One interesting future work could

be visualizing the machine learning outputs across different recording sessions at

the same time, allowing users to analyze and compare the trajectories of different

performers doing the same task.

39

4.2 Instant Reality: Gaze-Contingent Perceptual

Optimization for 3D Virtual Reality Stream-

ing

4.2.1 Introductions

Thanks to the rapid growth of Internet technologies such as 5G, streaming

services have unprecedentedly revolutionized how we access and consume high-

quality multimedia, from listening to audios, watching videos, to scientific discovery

(e.g., NASA’s Eyes1). The edge-cloud streaming setting significantly reduces edge-

side computation and redundant offline storage, allowing for portable and wearable

consumer devices.

When it comes down to VR/AR, storing all the assets offline is impractical

for dynamic and location-based scenarios. Thus, streaming assets from the cloud

and perform the rendering on the edge-side become an effective solution. However,

VR streaming poses unique challenges due to the required high resolution, high

frame rate, low latency, and stereo rendering. Frame-based 2D streaming falls

unrealistic given the exceptionally high demands of data volume and responsiveness.

Still, current approaches fail in streaming large high-quality 3D assets, introducing

unacceptably long loading times or undesirable visual and interactive artifacts

(please refer to our video for examples). Comparisons of the recent 250% FLOPS

gains in the last two consecutive GPU generations 2 versus a smaller growth of

only 26% in global internet bandwidth during the same time 3 also suggest the

main roadblock for immersive 3D experiences lies in the delayed access to 3D assets,

instead of computational resource.

Perceptual mechanisms, such as foveation, have been harnessed in recent efforts

to accelerate interactive rendering [38, 48]. However, the acceleration only occurs

after all assets are stored at the user-end, thus improving the computation from,

but not the transmission of, scene assets (especially complex geometries). Gaze-

contingent effects have been used to optimize the limited network bandwidth for

1https://eyes.nasa.gov/
2https://www.digitaltrends.com/computing/nvidia-rtx-3090-vs-rtx-2080-ti-most-powerful-

gaming-gpus-duke-it-out/
3https://blog.telegeography.com/466-tbps-the-global-internet-continues-to-expand

40

(a) Edge view

(b) Cloud data

(c) Uniform streaming

(d) Quality for (c)

(e) Fixation-based streaming

(f) Quality for (e)

(g) Saccade-based streaming

(h) Quality for (g)

Figure 4.8: Our gaze-contingent immersive 3D assets streaming interface. Starting
from the partially-streamed 3D assets on the edge-side rendered at a given time (a),
our method streams additional updates from the cloud to the edge for perceptually
closer rendering to the full assets stored on the cloud (b). Standard uniform
streaming (c) evenly updates all visible assets in the scene, causing suboptimal
perceptual quality in (d), which visualizes both the temporal (popping with respect
to (a)) and the spatial (quality with respect to (b)) perceptual errors. Brighter
colors indicate worse artifacts. Our method, in contrast, optimizes the subset of
the assets to be streamed to the edge for better spatio-temporal quality under the
same network bandwidth. Our perceptual model considers both eccentricity-based
acuity during fixation (e) and temporal masking during eye movement (g). If the
user fixes the gaze (e), our model prioritizes regions near the gaze point (green
circle) while reducing potential popping artifacts. If a saccade is detected (g), our
model can safely ignore popping to stream more aggressive updates for further
quality improvement (h).

41

2D frame-based streaming [35, 61] but not 3D assets. Existing solutions for 3D

content streaming often have globally uniform granularity, such as game levels or

camera distance. Finer-grained controls can be achieved based on visibility [31] or

viewpoint [66] to optimize level-of-details (LoD). However, without comprehensive

optimization for human perceived quality, the adaptive streaming may cause strong

visual artifacts such as temporal popping or low quality with limited network

bandwidth.

To this end, we propose a 3D LoD-based streaming framework that automatically

schedules the data transmission priority towards optimal perceptual quality. Our

method is based on modeling human spatio-temporal perception and adapts to

varying network conditions. Our key idea is to estimate perceptual sensitivity based

on spatio–temporal user gazes, including foveation, saccade, and popping, so that

we can more aggressively optimize static image quality and dynamic frame change,

such as image regions outside the visual fovea or quickly glanced over during saccade.

The perceptual importance is then transferred to transmission priorities from the

cloud to the edge. To further enable real-time responses without extra latency

caused by the complex frequency domain computations, we also implemented a

simple neural-network-based accelerator for fast importance computation. Our

method is general enough to support various data formats, such as meshes, volumes,

height fields, and point clouds. It targets high field-of-view and eye-tracked displays

that require interactive streaming, such as cloud-based gaming. The framework is

also compatible with transmitting geometric transformations in dynamic scenes, as

our proof-of-concept shows in the supplementary video.

We conducted both subjective studies (via VR and traditional displays) and

objective analysis based on the recorded data, which indicated higher quality and

lower artifacts of our method than alternative solutions under identical bandwidth.

We also tested our method under varying latencies by simulating real-world network

transmission rates (from 3G to 5G).

In summary, the main contributions of this work are:

• a perceptually optimized high-quality and low-latency 3D immersive streaming

framework, supporting various 3D computer graphics data formats;

• a gaze-contingent perceptual model based on foveation, saccade, and pop-

ping to depict spatio-temporal visual behaviors during procedural streaming,

42

including static quality acuity and dynamic change suppression;

• a neural-network-based accelerator for real-time computation of the complex

perceptual mechanisms and large data volumes;

• a series of subjective studies and objective analysis validating our method

under varying network conditions.

Details on the implementation can be found in the InstantReality Github

repository4.

4.2.2 Method

Given a limited network bandwidth and a set of scene data, we optimize and

determine the streaming priority with regard to individual user’s spatio-temporal

perception. The priority is updated according to users’ static and dynamic gaze

behaviors. Our goal is to maximize perceived quality (compared with a fully local

rendering) and ensure dynamic smoothness (minimize popping artifacts).

We first describe the factors in our spatio-temporal perception model (Sec-

tion 4.2.2.1), followed by our method in 2D image space (Section 4.2.2.2) and 3D

object space (Section 4.2.2.3). Equation (4.3) summarizes our key idea. Finally, to

enable the cloud’s real-time responses to users’ dynamic head/gaze motions, we

accelerate the system via a deep neural network (Section 4.2.2.4). At each moment,

the cloud (for computation and storage) receives the gaze and existing content from

the edge (for rendering and interaction). Then, guided by our gaze-contingent and

perception/content-aware model, the cloud automatically determines the streaming

priority of each asset component based on their added perceptual quality and data

size (with regard to a given network bandwidth). Figure 4.13 shows an overview of

our system.

4.2.2.1 Modeling Spatio-temporal Vision

Spatial visual acuity. The human visual acuity is foveated, with a deterioration

along age [22] and visual field eccentricity [46, 51]. The importance of a pixel E(x)

is determined by its distance to the retinal eccentricity r =
√

x2 +y2. As the retinal

4https://github.com/chenshaoyu1995/InstantReality

43

(a) 4 cycle / im (b) 16 cycle / im (c) 64 cycle / im (d) 256 cycle / im

Figure 4.9: Decomposition visualization of bandpass filtered contrast multiplied
by contrast sensitivity function of corresponding frequency band (c(x, fi, I) from
Equation (4.2) and Equation (4.17) in Section 4.2.7.3). The green circle indicates
gaze position. When fi is low ((a) and (b)), the bandpass filtered contrast is
computed over the entire visual field based on visual content. With high fi ((c) and
(d)), the periphery sensitivity was clamped by Br, thus the empty content.

eccentricity r increases, the importance function E(x) decreases. Please refer to

Section 4.2.7.1 for the details of E(x).

Static stimuli. As shown in Figure 4.9, we model the perception of a static

image by separating it into a number of frequency bands. The perception for

each frequency band fi is the product of its bandpass-filtered contrast and its

contrast sensitivity function. The foveated retinal band Br(g,x) = E(g −x) will

also affect the perception, results in clamped peripheral part for high frequency

content. Please refer to Section 4.2.7.3 for details.

Dynamic stimuli. In runtime, the level of content LoD constantly changes

and the quality is improved gradually, because more detailed data is streamed

continually with the available network bandwidth. However, abrupt changes within

a small time period may cause popping artifacts. Similar to [67], we define the

perceived change as a temporally adapted Weber’s contrast considering short-term

memory.

Change blindness. The gaze fixations and the dynamic transitioning motions

among them also significantly alter the perceptual quality. Besides motion parallax

[68] and smooth pursuit movements to keep tracking on objects, people perform very

44

fast eye movements (a.k.a. saccades) to change among fixations. Due to the fast

movement, the visual contrast sensitivity (c) is suppressed as studied in [37]. We

ran a pilot study and validated the suppressed perception of the popping artifacts

along with the sensitivity drop. Therefore, we adaptively model visual sensitivities

w.r.t dynamic gaze behaviors including fixations and saccades, as detailed next

in Section 4.2.2.2. Albert et al. [2] suggested for foveated rendering, an overall

system latency of 50-70ms is acceptable when users are specifically tasked with

finding artifacts, and the requirements shall be further relaxed for regular tasks.

Although reading-introduced saccades can be as short as 20ms, both short- and

long- peri-saccades are combined with post-saccade suppression that stretches the

applicable duration to mitigate popping artifacts. Previous literature has shown

that saccadic suppression may typically last for at least 100ms even with a 50ms

saccade [34]. Thus, the allowable saccadic suppression durations contain modern

mobile network latencies (∼ 100ms for 3G) [69].

4.2.2.2 Model in Screen Space

Spatial acuity and quality. Due to foveated vision, we prioritize quality and

details in the fovea over the periphery. Thus, the importance of a given pixel x

under gaze position g is computed as:

P̂ec(g,x) = E(g −x), (4.1)

where E is the importance function defined in Equation (4.11) in Section 4.2.7.1.

Temporal consistency. A major problem from traditional LoD-based procedural

rendering is the visual popping effect [45]. That is, when the LoD level of an area

receives an update, the abrupt visual changes may easily be noticed and distractive

to the experience. The human visual system perceives LoD-introduced popping

artifacts in spatial frequency and retinal velocity [67].

By extending the perceived change as a temporally adapted Weber’s contrast

considering short-term memory to individual frequency band, we obtain the approx-

imated popping (i.e., perceived temporal intensities) between two varied frames (I

45

(a) current (b) P̂ec (c) P̂op (d) fixation perception(e) saccade perception

(f) target (g) P̂ec-only update(h) P̂op-only update (i) fixation update(j) saccade update

Figure 4.10: Visualization of our perceptual model in 2D screen space. Here each
pixel is treated as a unit with its own LOD. (a) is a semi-transmitted low LoD image
on the edge and the green circle indicates the gaze. (f) is the full LoD target on the
cloud. (b) and (c) visualize the importance of the eccentricity in Equation (4.1) and
the temporal consistency in Equation (4.2). Our model exploits both eccentricity
and temporal consistency in Equation (4.3). (d) and (e) visualize the corresponding
perceptual quality measures considering both static visual quality and dynamic
consistency. The second row shows the corresponding screen space update.

and I ′ in the screen space):

P̂op(g, I,I ′,x) =
b−1
∑

i=0

s(fi,L)× |c(x, fi, I)− c(x, fi, I
′)|

|c(x, fi, I)|+ω
, (4.2)

where g is the tracked gaze positions in I and I ′, respectively. ω is the controlling

parameter that balances for low-intensity stimuli where Weber’s law may fail. s

is the contrast sensitivity function given the frequency band fi and luminance L,

as detailed in Equation (4.12) under Section 4.2.7.2. The transition from I to

I ′ can be from the changes of scene or camera. The corresponding coefficients

are omitted here for the brevity of presentation. Although the spatial contrast

sensitivity function is not reflecting the sensitivity of the human visual system to

temporal changes, we have modeled the sensitivity temporal changes by introducing

Weber’s law on two temporally adjacent frames I and I ′. c is the bandpass filtered

point contrast given the frequency band fi, as detailed in Section 4.2.7.3. It assumes

46

slow gaze/head motion with fast (90FPS) frame update. Thus, g in the two frames

are approximately identical. The next paragraph discusses cases when the gaze

moves fast (saccade).

Adapting to dynamic gaze behaviors. As studied by [37], our visual sensitivity

gets significantly suppressed during saccades. Due to the change blindness, we

only perceive weak popping artifacts in this period. Thus, when saccades are

detected, we can instead stream the most noticeable popping elements to reduce

the popping intensity after it lands. This motivates our gaze-behavior-adaptive

per-pixel sensitivity by combining both spatial acuity and temporal consistency

models:

P̂ (g, I,I ′,x) =











P̂ec(g,x)−λP̂op(g, I,I ′,x) during fixation
∫

g′∈I ′ P̂op(g′, I,I ′,x)dg′ during saccade
, (4.3)

where λ is the balance between maximizing foveated perceptual quality and min-

imizing popping artifacts during fixation. A saccade is considered to happen if

the gaze speed is greater than 180 deg/sec. Because of the open challenge in real-

time saccade landing prediction [3], we integrate over the entire visual field while

computing the popping for saccade instead of assuming the landing position. This

ensures global robustness to any user’s attentional changes. Figure 4.10 visualizes

individual importance and the resulting image-space update.

We can adapt Equation (4.3) for progressive LoD update from level i+ j to i as

follows:

P̂ (g, Ii+j , Ii,x) =
i+j−1
∑

l=i

P̂ (g, Il+1, Il,x), (4.4)

where Ii represents the image at the i-th LoD.

4.2.2.3 Mapping from 2D Screen to 3D Streaming

In this section, we present how to extend the screen-space model from Sec-

tion 4.2.2.2 to 3D assets for a real-world cloud-based 3D streaming system. The

3D assets can have various representations, including triangle meshes, volumes,

47

terrains, or large crowded objects, as shown in Figure 4.12.

Map to 3D assets. So far, our perceptual model depicting static quality and

dynamic artifacts in Section 4.2.2.2 applies to individual pixels. The 3D assets,

however, comprise non-uniformly distributed content such as depths and connec-

tivities. We apply a deferred shading algorithm to convert various types of 3D

primitives to 2D perception evaluations.

We divide the 3D content based on the coarsest level of LoD. We denote an

individual computational unit as Ui, where i is its index among all units. It can be

a coarsest triangle in a 3D mesh, a largest super-voxel in a volume, a texel in the

coarsest mipmap level of a height/displacement texture, or a separate object in a

swarm scene. We denote the LoD level of Ui at time frame t as LUi,t.

At time frame t − 1 when the LoD levels of all units are determined and

transmitted to edge already, we render a framebuffer at cloud side for the whole

scene without anti-aliasing to retrieve the unit indices of every pixel, i.e., a mapping

Mt−1 : {x} 7−→ {Ui} from the set of pixels {x} to the set of units {Ui}.

If the LoD level of Ui is updated to LUi,t at time frame t, we approximate its

sensitivity by accumulating all pixels Mt−1 (x) = Ui of the unit at time frame t−1,

P̂Ui,t

(

LUi,t,gt−1,Mt−1

)

≈
∑

x∈M−1
t−1(Ui)

P̂
(

gt−1, It−1, Ît

∣

∣

∣LUi,t ,x
)

, (4.5)

where gt−1, Mt−1, and It−1 are the gaze position, unit mapping, and render image

at time frame t−1. Figure 4.11 visualizes the mapping. The mapping M implicitly

represents the camera of each time frame. It also varies according to the LoD

of all units. The approximation in Equation (4.5) simplified the evaluation by

assuming Mt−1 = Mt. Ît

∣

∣

∣LUi,t is the render image at time frame t if the LoD level

of Ui is LUi,t. We denote it with a hat because it is an approximation by assuming

the LoD level of other units is not changed between time frames of t − 1 and t.

P̂Ui,t is also dependent on the LoD levels of other units
{

LUj ,t−1 |j ̸= i
}

, which we

omit in Equation (4.5) for brevity. The evaluation of P̂Ui,t in Equation (4.5) is

computationally expensive, so we propose a neural evaluation, as will be detailed

in Section 4.2.2.4.

48

(a) 2D heatmap (b) 3D heatmap (c) before (d) update

Figure 4.11: Visualization of mapping importance from 2D pixels to 3D triangles.
(a) shows the gaze-aware importance P̂ in 2D. (b) shows mapped importance in
3D. (c) and (d) show the object before and after streaming, guided by (b). The
green circle indicates the user’s gaze fixation position.

Cloud-based streaming. Finally, we evaluate the perceptual quality per bit by

updating the LoD level of a unit,

WUi,t(LUi,t) =
P̂Ui,t

(

LUi,t,gt−1,Mt−1

)

DUi
(LUi,t−1,LUi,t)

, (4.6)

where D is the data volume difference by updating Ui’s LoD level from LUi,t−1 at

time t−1 to LUi,t at time t.

The edge side is a device with limited network bandwidth and storage. Therefore,

the 3D scene is fully stored on cloud side, including all LoD levels of all units. In

runtime at time frame t−1, the edge side sends the gaze position gt−1. The cloud

side knows the LoD levels of all units on the edge side as the edge side acknowledges

the received network packages containing the 3D data. According to that, the cloud

will compute the perceptual quality per bits for updating LoD levels of every unit

accordingly, with the updates holding highest W s to achieve the best improvement

of perceptual quality, given the constraint on the available update package size S.

argmax
{LUi,t}

∑

i

WUi,t(LUi,t), s.t.
∑

i

DUi
(LUi,t−1,LUi,t) ≤ S, (4.7)

4.2.2.4 Neural Acceleration

In a practical implementation, the cloud needs to compute Equation (4.5) for

each update. Although the cloud can afford more computation than the edge,

49

V
ol

u
m

e
C

T
D

at
a

D
is

p
la

ce
d

M
es

h
T

ri
an

gl
e

M
es

h

(a) current/tar-
get

(b) P̂ec (c) P̂op (d) fixation (e) saccade

Figure 4.12: Results for various 3D data types. From top to bottom, the 3D
assets are triangle mesh, displacement-based terrain, and CT scanned volume.
In each group of images, (a) shows the semi-transmitted scenes at edge on top
and full scenes at cloud on bottom. (b)/(c) is the importance and corresponding
updated rendering by considering only eccentricity P̂ec/temporal consistency P̂op.
Brighter means higher importance. (d)/(e) is the update if the gaze fixes/saccades
considering both (b)P̂ec and (c)P̂op. Similar to Figure 4.8, their first rows indicate
estimated perceptual quality (brighter means stronger spatio-temporal artifacts or
worse quality).

50

the heavy frequency domain decomposition for individual LoD and frames in

Equation (4.16) in Section 4.2.7.3 may cause intolerable latencies on the end users.

Thus, for each scene, we train a multilayer perceptron (MLP) neural network for

the fast prediction of P̂Ui
.

Specifically, with a camera view ct−1 and gaze position gt−1 as input, the

network learns to compute

N (ct−1,gt−1) =
{

P̂Ui

(

LUi,t,gt−1,Mt−1

)}

(4.8)

for all Ui and possible LUi,t. The camera view ct−1 contains 3 vectors, which are

coordinates of camera position, camera direction and up direction. In the input,

there is also a flag indicating whether a saccade is detected. The current LOD

state is not in the input since the network always predicts for all LODs, which

will be used by the cloud to make the streaming decision. Although we do not

provide the mapping Mt−1 explicitly to the network, the network also infers it from

ct−1 once trained on a specific scene. The diversity of projected areas of various

units Ui cause P̂Ui
to have no upper bound, making it difficult to optimize the

network. To combat this, we normalize P̂Ui
by the pixel counts of individual P̂Ui

in the projected screen space. After normalization, the value is bounded by the

maximum value of Equation (4.2). The cloud stores the network and retrieves the

fast-inferred P̂Ui
for streaming decision (Equations (4.6) and (4.7)), so the cloud

doesn’t need to render the actual image for the decision.

We report specific implementation details such as network architecture, loss

function, and dataset generation in Section 4.2.3 and the performance/precision

analysis in Section 4.2.5.2. Please also refer to our code repository for the actual

implementation of the network structure. We evaluate both performance gains and

prediction precision of our neural network in Section 4.2.5.2. Change the super

parameters like the ω will require retrain the neural network. To avoid retraining

the network when changing the λ, one solution is to train 2 networks to predict the

P̂ec and P̂op separately.

51

Figure 4.13: Overview of the system. The parameters of the camera and gaze are
sent to cloud, and they are used as the input of the pretrained neural network to
predict the perceptual importance of primitives. The image is rendered on edge
with the streamed assets.

4.2.3 Implementation

3D Assets. Our current method assumes we can set the LoD of each U indepen-

dently from one another. While this works for asset types with more independent

units such as point clouds [63, 66], volumes, and crowd agents, it might introduce

artifacts for others, such as cracks or T-junctions for triangle meshes. To ensure

quality without introducing complex implementation, we currently use vertex col-

ors instead of textures, and build the mesh hierarchies by sub-sampling existing

vertices without changing their positions. The displaced mesh (terrain scene from

Figure 4.12) is handled in a similar way, except that additionally a height map is

also sampled for vertices. For volume data, the LOD is created by sub-sampling

the voxels.

Solving Equation (4.7) is equivalent to the knapsack problem, which is NP-

Complete. For this reason, we use a greedy approximation, which always selects

the unit with the largest WUi,t(LUi,t) in Equation (4.6) if the bandwidth allows so.

System. We simulate the streaming network via ZeroMQ library (https://

zeromq.org/). The rendering system was implemented with OpenGL. The system

runs on a PC with Intel i9-9880H 8-core CPU and with 32GB of RAM, and an

NVIDIA RTX 2080 graphics card. For the VR headset, we use an HTC Vive Pro

Eye with an integrated eye tracker. It has a 110 degree FoV and 1440×1600 spatial

resolution (14 pixels per degree, i.e., 7 cycles per degree for Bd). Our system runs

https://zeromq.org/
https://zeromq.org/

52

at 90-FPS with neural acceleration.

Neural acceleration. We prepare the dataset for the neural network in Sec-

tion 4.2.2.4 by first sampling short sequences of camera and/or gaze movements in-

side a 3D scene at 90-FPS. The views are freely controlled by the HMD users. Then

the offline computed (via Equation (4.5)) {(ct−1,gt−1) , P̂Ui

(

LUi,t,gt−1,Mt−1

)

}
pairs are used to train the network. Since the adjacent frames are likely to have

similar data, we sample 4 frames per second uniformly and compute the ground

truth P̂Ui
for all Ui and LOD levels offline. There are 16 sequences, and each se-

quence lasts for about 30 seconds and contains ∼ 120 samples. We use 15 sequences

as the training set and the remaining one as the test set.

The neural network is fully-connected and consists of 3 inner-layers with

(100,1000,1000) neurons, each with ReLU activations, and an output layer with a

Sigmoid activation. The network was trained with L1 loss for 100 epochs. In the

training, we set the learning rate to 0.001 and batch size to 128. we used an SGD

optimizer with momentum = 0.9. For the neural network in the user study (Sec-

tion 4.2.4.1), since we have ∼ 2000 samples and each sample contains 722 (triangles)

×4 (LOD) ≈ 3000 scores. The sample size, higher than the parameter numbers,

avoids biased overfitting. We refer the readers to our open source implementation

for reproduction details.

Parameters. We determine the optimal spatio-temporal balancing λ via a pilot

user study. Users reported 3.0 as the most plausible experience. In our experiment,

the Weber’s law adjustment for low intensities ω was set to 10. With low network

bandwidths, the peripheral content may not receive the priority of transmission.

Thus, we included a pedestal constant 2.0 to the P̂ec for each pixel.

4.2.4 Evaluation: User Study

We compare different progressive streaming methods with different usages of

perceptual mechanisms under the same network bandwidth - uniformly increasing

the LoD of each U based on visibility (UNI), “foveated” streaming without consid-

ering dynamic consistency (ECC, a 3D version of [61]), and our method (OURS).

We experimented with two display environments, active HMD-based 6 DoF (degrees

53

(a) VR setting (b) Video setting

Figure 4.14: The setting of our user study. Both (a) and (b) were captured from
parts of our user studies.
of freedom) navigation (Section 4.2.4.1) for temporal consistency evaluation only

and passive screen-based observation (Section 4.2.4.2) for evaluation of both visual

temporal consistency and static visual quality.

4.2.4.1 Eye-Tracked Study

We first conducted a user study with an eye-tracked VR HMD to assess our

method’s effectiveness on perceived temporal consistency.

Stimulus and setup. We used a terrain displacement scene from Figure 4.12 in

this experiment. Based on users’ real-time head and gaze motions, the stimuli is a

sequence of simulated progressive streaming updates (from a coarse to adaptively

finer level). During the study, users wore an HTC Vive Pro Eye Headset and

remained seated. They were instructed to freely observe the virtual scene and

keep their fingers on the keyboard to make selections after each trial, as shown

in Figure 4.14a. Eight users (age 23−31, 1 female) participated in the study. To

accommodate the scene data size and study duration, we experimented with a

simulated 5G network bandwidth locally.

Task. Due to the limited access to participants during COVID-19, we aim to

maximize trial randomness and numbers to ensure objective measurements. We

designed a two-alternative-forced-choice (2AFC) experiment. Each trial consists

of a pair of conditions among the three (UNI/ECC/OURS). In each condition,

the stimulus was initiated with the coarsest LoD. The participants were then

54

0% 25% 50% 75% 100%ECC vs
. U

NI

OURS vs
. U

NI

OURS vs
. E

CC

(a) VR eye-tracked temporal con-
sistency

0% 25% 50% 75% 100%

(b) video-based temporal con-
sistency

0% 25% 50% 75% 100%

(c) video-based quality

Figure 4.15: User study results. We compare pair-wise 2AFC user vote percentage
in both HMD and traditional display studies from Section 4.2.4. The green/or-
ange/blue bar indicates the percentage voting for OURS/ECC/UNI and the
errorbars indicates the standard deviations.

instructed to freely observe the environment that was streamed and updated with

the corresponding method. Each condition lasted for 10 seconds. At the end of each

trial, the participants used the keyboard to select which one of the two conditions

appeared more smoothly and comfortably updated with fewer artifacts over the

entire duration.

Each experiment began with a warm-up session to familiarize the participants

with the interface and task, followed by 24 counter-balanced and randomly ordered

trials. Thus, each pair of conditions was evaluated 8 times per participant. To

minimize fatigue, a 2-second break was enforced between trials.

Results. Figure 4.15a plots the results of the pair-wise percentages that partici-

pants indicated as the preferred method. Specifically, OURS was voted as signifi-

cantly more preferred than both ECC (90.6%±8.3%) and UNI (92.2%±12.4%).

With a significance level established at p = 0.05 and power > .999, binomial tests

indicate the difference is significant for both comparisons (p < .001). ECC showed

marginally higher voting rate than UNI (56.3% ± 28.6%). We did not observe

significance with a binomial test (p = .38).

Discussion. The results above showed our method’s significant temporal quality

preference over the alternative solutions: under the same network conditions, our

method could stream 3D assets more smoothly by reducing popping artifacts.

55

However, this shall be achieved without compromising spatial-visual quality. Our

initial study design considered several evaluation metrics, including visual fidelity

to the reference, temporal smoothness, and perceptual comfort. We planned

to evaluate them both individually and collectively: ask participants to focus

on individual metric (such as visual fidelity or temporal smoothness only), and

additional post-study comments (such as why they choose one condition over

another).

However, during our pilot runs, we noticed several problems with this initial

design. Some participants commented that it was difficult for them to focus on

more than one aspect of the evaluation criteria, especially for those with less VR or

gaming experiences. Meanwhile, visual quality depends on the temporal integration

of multiple instead of individual frames. The integration also depends on the

exact view path, which can be freely moved by the participants and thus may

differ across pairs of conditions for a valid comparison. To address these issues, we

decided to focus on only temporal smoothness, which tends to be less view-path

dependent than spatial quality, for this free navigation HMD experiment, and leave

per-frame visual quality evaluation by fixing the gazes, as described in the following

experiment.

4.2.4.2 Screen-Based Study

Due to the aforementioned design challenges and extra difficulties of physically

distributing the eye-tracked VR display, we further simulate the study procedure in

Section 4.2.4.1 to a remote setting with recorded stimuli. This ensures a thorough

evaluation of both temporal smoothness and spatial quality.

Specifically, we recorded videos by randomly pre-defined gaze paths. During

the study, users were remotely monitored and instructed to keep one eye open, fix

their head positions, and gaze on the green cross and follow the same procedure as

Section 4.2.4.1.

Stimulus and setup. To evaluate a different data type from the eye-tracked

study, we chose the triangle mesh scene in Figure 4.12 for this study. The visual

stimuli were rendered with 1920×1080 resolution and 60 degree of vertical field of

view, so that the Bd is the same for every participant. In the monitored remote

56

study, participants first input their computer resolution and screen size. Our

study protocol would automatically compute and inform participants of the correct

eye-display distance. The user then fixed their head at the reported distance cross

accordingly. Twelve users (age 24−41, 5 females) participated in this study. All

users had normal or corrected-to-normal vision.

Tasks. The experiment was conducted in two phases: video-based stimuli for

temporal smoothness and static frame-based stimuli for visual quality. The task of

the first phase was similar to Section 4.2.4.1. The users observed two sequentially

played stimuli from the three conditions. After each trial, they selected the one

with preferred temporal consistency (i.e., fewer artifacts). In the second phase, each

trial consisted of two static images randomly sampled from the sequences in the

first phase at the same timestamp. In each trial, a full-quality rendering (second

row of Figure 4.12a) was first shown for 3 seconds as the quality reference. Then, 2

images of the 3 conditions were sequentially displayed for 3 seconds. After each

trial, the participants selected the one that appeared to be closer to the reference

in visual quality. Both tasks contain 15 counter-balanced and randomly ordered

trials. Thus, each pair of conditions was evaluated 5 times per participant.

Task Design Rationale. Fixing gaze in 2AFC experiment has been practiced

in assessing retinal acuity and perceived visual quality in VR [51, 72, 75]. In fact,

the human visual perception is limited during natural, active viewing conditions

[15]. Further, because of the suppressed vision during saccades, the visual quality is

primarily determined by the frames at gaze fixations. For this reason, the current

experiment where the gaze is fixed may generally represent free viewing conditions

where fixations are connected by saccades.

Results. Figures 4.15b and 4.15c plot the results. For temporal consistency

(phase-1), a consistent trend to Section 4.2.4.1 was observed: OURS had a

significant higher ration of voting over the alternatives (86.7% ± 18.8% against

ECC and 90.0% ± 12.9% against UNI). With a significance level established at

p = 0.05 and power > .999, binomial tests indicate the difference is significant for

both comparisons (p < .001). ECC, however, did not show major preference gain

over UNI (50.0%±30%,p = 1.0).

57

OURS ECC UNI

1

2

3

4

5

6

7

8

Ti
m

e
to

 re
ac

h
FV

VD
P

th
re

sh
ol

d
(s

ec
on

d)

(a) static scene

OURS ECC UNI

10
−1

10
0

10
1

Ti
m

e
to

 re
ac

h
FV

VD
P

th
re

sh
ol

d
(s

ec
on

d)

(b) dynamic scene

Figure 4.16: The statistics of the time FovVideoVDP first reaches threshold per
sequence among all users (Section 4.2.5.1). The sub-figure (a)/(b) shows the
results with static/dynamic scenes. The violin plot shows mean values, 1st/3rd
quartiles, and whiskers min/max. Lower values indicate better streaming efficiency
in additively improving the quality.

On the extended visual quality (phase-2), marginally higher voting rate on

OURS was observed over ECC (60.0%±20%,p = .16). On the other hand, with a

significance level established at p = 0.05 and power > .999, both OURS and ECC

were voted to have significantly improved quality than UNI (96.7% ± 7.4% and

95.0%±8.7% respectively, p < .001 for both).

Discussion. This study simulates and extends Section 4.2.4.1 to a remote screen-

based setting. Beyond the agreeing observation of temporal consistency, the phase-2

study also indicated that OURS preserves the high visual fidelity as ECC. The

experiments with both eye-tracked VR and traditional monitors show that our

method significantly improves the perceived temporal consistency (i.e., minimizing

popping artifacts) without compromising the visual quality.

4.2.5 Evaluation: Objective Analysis

4.2.5.1 Visual Quality

Section 4.2.4 shows our significant benefits of subjective quality judgement in

terms of temporal consistency and artifact reduction. For further objective evalua-

tion considering dynamic gaze adaptation stimuli (Equation (4.3)), we conducted a

series of analytical experiments.

58

Figure 4.17: Example frames of the dynamic scene. The animation is composed of
free-falling soft balls. Each image represents a frame along time. Please refer to
the supplementary video for the full visualization.

Static scene. Recently, a thoroughly considered metric, FovVideoVDP [46], was

proposed to measure video quality considering both spatio-temporal and foveated

effects. We compute the FovVideoVDP with rendering on the fully transmitted

asset as a reference. The analysis comprises full 10-second sequences from each user

(one sample from each tri-condition group, 8×8 in total) of the eye-tracked study.

Since edge-cloud streaming is a temporally procedural quality enhancement, we

measure the timing when FovVideoVDP reaches a shared threshold. Intuitively, this

measures the efficiency of the streaming achieving high quality. In the experiment,

we chose the threshold as 6.5 to ensure all conditions, even the slowest, can reach

it with the limited trial durations. As shown in Figure 4.16a, the average time

of OURS (1.446±0.669) and ECC (1.674±0.589) are significantly shorter than

UNI (2.813 ± 1.429). Pairwise t-tests show the difference between all pairs are

significant (p < .001 for OURS vs. UNI and ECC vs. UNI, p = .032 for OURS

vs. ECC).

Dynamic scene. We further preformed an experiment on a dynamic scene which

consists of an animation of a pile of falling soft balls as shown in Figure 4.17.

We refer the complementary video for full animation. The gaze is from the eye-

tracked study with the same setting as the static scene study, except that the

dynamic assets and threshold as 6.7. As shown in Figure 4.16b, the average time

of OURS (0.316±0.069) and ECC (0.352±0.049) are significantly shorter than

UNI (1.184 ± 2.548). Pairwise t-tests show the difference between all pairs are

59

significant (p = .008 for OURS vs. UNI, p = .011 for ECC vs. UNI, and p < .001

for OURS vs. ECC).

The above analysis on the eye-tracked gaze data revealed a consistent observation

to the subjective studies in Section 4.2.4. That is, OURS and ECC deliver high

visual quality more efficiently than UNI. Meanwhile, comparing with ECC, OURS

does not compromise the visual quality with the benefits of improved temporal

consistency.

4.2.5.2 System Performance

Performance gain from neural acceleration. We conducted a performance

analysis of the neural acceleration effectiveness. With all the scenes and gaze

trajectories, it takes an average of 389.28±14.44 ms without the neural acceleration.

In comparison, the neural network accelerates the computation to 20.30±0.89 ms.

Cloud/edge latency. Large-scale (e.g., 3D) data transmission inevitably intro-

duces latency between the cloud and the edge due to the underlying network. That

is, the gaze analyzed in the cloud may be outdated when the edge receives the

additive asset. To validate the impact under real-world network conditions, we

conduct a simulated experiment with varied transmission speeds ranging from 3G

to 5G+. With a recorded gaze motion trajectory, we compute the FoVVideoVDP

gain between OURS and UNI. By assuming 100KB packets, the approximated

network speeds for 3G (∼2Mbps) / 4G (∼40Mbps) / 5G (∼67Mbps) are referred

from [54, 60]. As seen in Figure 4.18, OURS shows significantly elevated spatio-

temporal quality (i.e., higher FVVDP) compared with UNI under all network

conditions. The elevation slightly decreases when network speed is slower than

10Mbps. The analysis demonstrates our approach’s consistent outperform than

UNI under both modern (4G and 5G) and legacy (3G - 4G) network conditions.

Using the same data, we further perform a pressure experiment with artificially

created latencies (from e.g., pings, database retrieval, etc.) with 3G/4G/5G net-

work speeds. Figure 4.19 shows the result. Our method is only subtly affected by

latencies across all conditions. Under 4G and 5G network, OURS can reach 0.5 in

JODs compared with UNI when the latency is lower than 100ms. The 4G and 5G

results are almost identical because their speeds are close.

60

5G4G3G

zero

latency

(a) illustration

2 5 10 20 40 80 160
Network Speed (Mbps)

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

FV
VD

P
G

ai
n 3G

4G 5G

(b) quality gain w.r.t. bandwidth

Figure 4.18: Extendability test with varied network bandwidths. (a) shows a gaze
trajectory from right to left, starting at the position circled by zero latency. The
3G/4G/5G circles indicate the gaze positions for which the required data packets
arrive. (b) shows the FoVVideoVDP gain of OURS from UNI along with varied
simulated network conditions. The significant quality elevation in OURS is only
subtly affected by gaze transmission latency when the speed is lower than 10Mbps.

Approximation errors. Unlike 2D frame streaming, our system faces chal-

lenges of the complex 3D structures including connectivity and sparsity. Although

our method analytically transforms screen-space perceptual models to 3D (Sec-

tion 4.2.2.3) with neural acceleration (Section 4.2.2.4), each of them may introduce

numerical loss. In this section, we also analyzed the potential error. Specifically, we

compute the MSE loss among the image-based per-pixel update, per-triangle update

with/without neural acceleration. Figure 4.20 visualizes an example sequence. The

experiments showed that the loss is relatively minor and worth the performance

gain enabled by the neural network.

4.2.6 Discussion

We present a method for high-quality 3D immersive streaming with gaze-

contingent perceptual optimization. Compared with 2D frame-based streaming

systems, our 3D streaming method enables low-latency interaction, low cloud over-

load, and consistent viewing. Our evaluation demonstrates that our system delivers

a statistically significant reduction of temporal artifacts without compromising the

visual quality.

61

0 25 50 75 100 125 150 175
Time (ms)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

FV
VD

P
G

ai
n

5G
4G
3G

Figure 4.19: Pressure test with artificially introduced network latencies. X-/Y-
axis indicates the introduced latency/corresponding average FVVDP values. Across
all network conditions, the low FVVDP changes demonstrate our method’s robust
benefits under real-world scenarios.

Limitations and Future Work. The two main parts of our method, modeling

human perception for visual importance in 2D, and mapping the 2D importance to

3D for rendering and streaming, are largely orthogonal, as various perceptual factors

can be considered for the 2D importance, before mapping it to 3D (Section 4.2.2.3).

This work focuses on combining foveation and saccade as the main perceptual

mechanisms to optimize spatial quality and temporal smoothness (Equation (4.3)).

Other possibilities include applying other perceptual phenomena to compute 2D

importance, such as color, saliency/attention [30, 79], and masking [23, 27, 39], as

well as applying our 2D importance estimation for streaming 2D and 360-degree

videos [17]. The modeling, implementation, and evaluation of all these possibilities

are promising future works, beyond the scope of a single paper.

In our system and analysis, we presumed an ideal and stable network environment

without bandwidth sharing. Moreover, the data transmission was considered as

individual packages of 100KB without compression and decomposition between

the cloud and the edge [16, 40]. As shown in Section 4.2.5.2, all these factors may

introduce additional latencies of the timely gaze tracking data sharing between

the cloud and the edge, causing approximation errors. There are several super

parameters in our method like the spatio-temporal balancing λ and the Weber’s

law adjustment for low intensities ω. One interesting future work is to adaptively

optimize these super parameters for each scene.

62

0 2 4 6 8 10
Time (sec)

0.0%

0.2%

0.4%

0.6%

0.8%
C

om
pu

ta
tio

na
l L

os
s

Mapping
Learning

Figure 4.20: Approximation error visualization. Areas highlighted by pink indicates
that there is a saccade. Due to the 2D to 3D mapping (Section 4.2.2.3, blue
area) and neural acceleration (Section 4.2.2.4, orange area), the final importance
prediction may contain approximation errors. However, their overall error is below
1%.

The neural network’s prediction precision is shown to support local 6DoF

motions, as shown in Section 4.2.5.2. However, its capability of supporting very

large motions such as in a flight simulation may require larger training data volume.

Similarly, they are currently trained with static scenes. Predicting high accuracy

results would also increase data samples due to introducing time as an additional

input dimension.

To address the quality drop due to the gaze information latency, we foresee

gaze motion prediction with machine learning may shed light on further reducing

the perceptual latency in low bandwidth and unstable networks. In our current

method, the rendering updates immediately upon receiving the relevant assets.

Our framework mitigates the perceived flickering. For instance, during saccadic

movement, we reduce the future (after the gaze lands) perceived flickering by taking

advantage of the change blindness. However, targeting at progressive streaming

systems, the temporal artifacts are not to be completely eliminated. Instead, a

locally adaptive rendering may increase temporal consistency at the cost of delayed

full quality. Recent research on balancing quality and latency [41] could make the

system adaptable to various users.

One important application scenario that may require 3D assets (instead of 2D

frames) is AR. High resolution and high FoV AR displays are yet to be available.

Thus, we conducted the experiments with VR. In the future, considering not only

63

virtual assets but also its interaction with physical surroundings may inspire more

efficient transmission.

4.2.7 Appendix

4.2.7.1 Spatial Visual Acuity

The human vision is foveated. Watson [78] proposed a formula that approximates

midget ganglion cells density as a function of retinal eccentricity r =
√

x2 +y2,

where x and y are the eccentricity degree in horizontal and vertical direction

respectively, for the meridian type m:

ρ(r,m) =2ρcone

(

1+
r

41.03

)−1

×


am

(

1+
r

r2,m

)−2

+(1−am)exp

(

− r

re,m

)



 ,

(4.9)

where ρcone = 14804.6deg−2 is the density of cone cell at fovea and am, r2,m, re,m are

all fitting constants along the four meridians of the visual field. And the cell-wise

spacing is calculated by [72]:

σ(x,y) =
1

r

√

√

√

√

2√
3

(

x2

ρ(r,1)
+

y2

ρ(r,2)

)

(4.10)

Then, given the eccentricity, the importance function E of a given eccentricity

x = (x,y) is modeled as [72]:

E(x) = 0.5σ(x)−1. (4.11)

4.2.7.2 Perceiving Static Stimuli

The visual sensitivity s of a certain frequency f and illumination L is determined

by [4]:

s(f,L) = afe−bf
√

1+ cebf , (4.12)

64

A

f

perceived stimuli stimuli in freq domain

Figure 4.21: Perceived static visual stimuli. The perceived stimulus (crossed area)
is an integration of frequency amplitudes. Its integral domain is bounded by the
densities of display pixels (Bd) and retinal receptors (Br).

where a = 540(1+0.7/L)−0.2

1+ 1
1+f/3

, b = 0.3(1+100/L)0.15 and c = 0.06.

Because illumination of commodity displays is largely insensitive to the dis-

playing content, we assume a constant illumination L for all frequencies. Given

an image I, its visual sensitivity is the integral of all frequencies weighted by their

amplitude,

∫

s(|f |,L) |A(f)|df (4.13)

where f = (fx,fy) is the two-dimensional frequency of I, and A is the amplitude of

f .

As shown in Figure 4.21, because of the finite display angular resolution and

the finite retinal receptor densities, the non-zero frequency in Equation (4.13) lies

in a finite domain as well,

∫

|f |<min(Bd,supBr)
s(|f |,L) |A(f)|df , (4.14)

where Bd is the display band from the pixel density and eye-panel distance (0.5

cycle per pixel (CPP) in our display); supBr is the supremum of the foveated

retinal band.

The amplitude A in Equation (4.14) will become spatially-variant if combined

with foveated vision (Equation (4.9)). That requires the evaluation of spatially-

variant spectrum, such as windowed Fourier or wavelet, which is prohibitively

expensive in a real-time system. Therefore, we evaluate local contrast c, which can

65

be more efficiently computed than A, of every pixel:

Φ(g, I) ≜
∫

x∈I

Φ̂(g,x,I)
∫

|f |<B̄(g,x)
s(f ,L)c(x, f , I)df dx, (4.15)

B̄(g,x) = min(Bd,Br(g,x))

where c is the local contrast of x = (x,y) of I under the frequency f . g = (gx,gy) is

the tracked gaze position on the screen space. Φ̂ is the corresponding sensitivity

value for a spatial position x, thus the frequency is integrated within a narrower

foveated retinal band Br(g,x) = E(g−x) according to the gaze position and spatial

position as shown in Equation (4.11). By applying clamping with Br(g,x), the

eccentricity variances on the contrast sensitivity function are considered. Note that

our model is for importance-based decision than pixel rendering so we assume the

visibility of certain spatial frequencies is defined by receptor density. The peripheral

vision can “reason” (other than directly perceive) higher-than-receptor-frequency

information from the aliasing on the receptors [77]. Therefore, fully approximate

the value by clamping the integration with the receptor frequency may cause loss of

importance in the periphery. Thus, we introduced a constant ω in Equation (4.2)

that compensates the peripheral region with low importance.

4.2.7.3 Bandpass filtering

To analytically compute the temporal consistency considering not only the

content but the retinal receptors and display capability, we discretize the Φ̂ in

Equation (4.15). Specifically, we perform a series of bandpass filtering of I to first

obtain the gaze- and content-aware pixel-wise sensitivity:

Φ̂(g,x, I) ≈
b−1
∑

i=0

s(fi,L)c(x, fi, I), (4.16)

where we divide the frequency domain of integral in Equation (4.15) into b bands,

where fi = 2i
B̄(g,x)

b are the representative frequencies located at the mid-point of

every band (following [53]). Ii is the fi-filtered version of I. Figure 4.9 visualizes Φ̂

66

across different bands fi. The contrast c at point x is defined as

c(x, f , I) =
af (x, I)

a0(x, I)
. (4.17)

Here af is the approximated local frequency of the f -filtered I, as detailed in [52],

and a0 is af with fi = 0.

67

Chapter 5

Conclusions and Future Work

This dissertation presented two main contributions to 3D memory in AR.

The first contribution was a 3D memory framework, which addresses the unique

challenges in AR scenarios such as rapid camera movement and limited FoV.

It combines the power of 2D open vocabulary object detectors and 3D depth

information from depth sensors equipped by AR headsets. In the absence of a

suitable existing dataset, we created an annotated dataset, wherein users engaged

in cooking tasks. The efficacy of the proposed framework was validated through the

dataset, showcasing its superiority over existing methods. The second contribution

was visualization tools for 3D memory, including extensions to ARGUS for debugging

machine learning modules of AI assistants, and InstantReality[11] for real-time

streaming large volume 3D data while providing a better user experience in AR/VR.

The contributions presented here enable AI assistants to integrate a 3D memory

module with other essential modules, such as task reasoning and user interface. This

integration has unveiled novel research challenges, providing interesting directions

for further exploration in the realm of AI assistants in AR. In the following, we

present some of these challenges and highlight interesting directions of future

research.

Multimodal inputs. In this thesis, the proposed 3D memory framework utilizes

the information from both RGB and depth sensors. However, modern AR headsets

are often equipped with additional sensors beyond the RGB and depth sensors.

For example, the Microsoft HoloLens 2 not only equips with an RGB and an

68

infrared depth camera, but also contains four peripheral grayscale cameras, a

microphone array, an IMU sensor and eye sensors for calculating the user’s gaze.

An interesting direction is to explore how to leverage these multimodal inputs

from the various sensors on board. The four peripheral grayscale cameras not

only enlarge the FoV, but also enable stereo depth estimation to overcome the

limitations of the time-of-flight infrared depth sensor. Eye gaze from users could

provide information about active objects. Furthermore, different headsets can have

distinct sensor configurations. For instance, the Meta Quest 3 has two RGB cameras,

two grayscale cameras and a depth camera, which differs from the HoloLens 2. The

Quest 3 also lacks eye tracking. Building a generic 3D memory framework that can

handle multimodal inputs and adapt to different sensor configurations remains a

challenge.

Task guidance with 3D memory. To provide task guidance to the user, the

outputs of 3D memory must be presented through a user interface. Designing such

a user interface to improve user task performance is still an open problem. AI

assistants need to carefully choose the information shown to the user, as unnecessary

information displayed in the headset could obstruct the user’s view or distract

them from performing the task, given the limited display space available. AI

assistants also need to decide when and how to guide the user to find a required

object outside the user’s FoV to help them complete the current step. Adding

spatial information in instructions are considered important by domain experts [83].

Interface design that better utilizes the available screen space to show both local

and global 3D information simultaneously has been explored for virtual reality [12],

and it can be an interesting direction for augmented reality. Moreover, the outputs

of 3D memory can aid the reasoning module in inferring the current task/step and

determining whether the user has made an error. With 3D memory, AI assistants

can memorize seen objects that are now outside the FoV, allowing them to use

global context when inferring the current task/step instead of relying solely on the

current RGB frame. Exploring how to leverage information from 3D memory to

enhance reasoning performance could be an interesting direction.

69

Human-in-the-loop AI. Unlike computers using a mouse and keyboard for

input, AR headsets support natural ways of interaction such as hand gestures, eye

gaze, and voice commands. This give us new opportunity to make the 3D memory

human-in-the-loop. Some cases that are very challenging for computer vision, such

as differentiating a jar of nut butter and a jar of Nutella, could be easily done

by the human. 3D memory allows memorizing not only objects in the scene, but

also user’s feedback to the machine learning results. Exploring how to build an

interactive AI system in AR that allows users to correct AI errors and assist AI in

decision-making could be an interesting direction.

70

Bibliography

[1] P. Akiva, J. Huang, K. J. Liang, R. Kovvuri, X. Chen, M. Feiszli, K. Dana,

and T. Hassner. Self-supervised object detection from egocentric videos. In

Proceedings of the IEEE/CVF International Conference on Computer Vision,

pages 5225–5237, 2023.

[2] R. Albert, A. Patney, D. Luebke, and J. Kim. Latency requirements for

foveated rendering in virtual reality. ACM Trans. Appl. Percept., 14(4), Sept.

2017.

[3] E. Arabadzhiyska, O. T. Tursun, K. Myszkowski, H.-P. Seidel, and P. Didyk.

Saccade landing position prediction for gaze-contingent rendering. ACM Trans.

Graph., 36(4), July 2017.

[4] P. G. J. Barten. Evaluation of subjective image quality with the square-root

integral method. J. Opt. Soc. Am. A, 7(10):2024–2031, Oct 1990.

[5] H. Belhassen., H. Zhang., V. Fresse., and E. Bourennane. Improving video

object detection by seq-bbox matching. In Proceedings of the 14th International

Joint Conference on Computer Vision, Imaging and Computer Graphics Theory

and Applications (VISIGRAPP 2019) - Volume 5: VISAPP, pages 226–233.

INSTICC, SciTePress, 2019.

[6] K. Bernardin and R. Stiefelhagen. Evaluating multiple object tracking perfor-

mance: the clear mot metrics. J. Image Video Process., 2008, jan 2008.

[7] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft. Simple online and realtime

tracking. In 2016 IEEE International Conference on Image Processing (ICIP),

pages 3464–3468, 2016.

71

[8] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. Liong, Q. Xu, A. Krishnan,

Y. Pan, G. Baldan, and O. Beijbom. nuscenes: A multimodal dataset for

autonomous driving. In 2020 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pages 11618–11628, Los Alamitos, CA, USA,

jun 2020. IEEE Computer Society.

[9] S. Castelo, J. Rulff, E. McGowan, B. Steers, G. Wu, S. Chen, I. Roman,

R. Lopez, E. Brewer, C. Zhao, J. Qian, K. Cho, H. He, Q. Sun, H. Vo, J. Bello,

M. Krone, and C. Silva. Argus: Visualization of ai-assisted task guidance in ar.

IEEE Transactions on Visualization and Computer Graphics, 30(1):1313–1323,

2024.

[10] L. Chen, H. Ai, Z. Zhuang, and C. Shang. Real-time multiple people tracking

with deeply learned candidate selection and person re-identification. In 2018

IEEE International Conference on Multimedia and Expo (ICME), pages 1–6,

Los Alamitos, CA, USA, jul 2018. IEEE Computer Society.

[11] S. Chen, B. Duinkharjav, X. Sun, L.-Y. Wei, S. Petrangeli, J. Echevarria,

C. Silva, and Q. Sun. Instant reality: Gaze-contingent perceptual optimization

for 3d virtual reality streaming. IEEE Transactions on Visualization and

Computer Graphics, 28(5):2157–2167, 2022.

[12] S. Chen, F. Miranda, N. Ferreira, M. Lage, H. Doraiswamy, C. Brenner,

C. Defanti, M. Koutsoubis, L. Wilson, K. Perlin, and C. Silva. Urbanrama:

Navigating cities in virtual reality. IEEE Transactions on Visualization and

Computer Graphics, 28(12):4685–4699, 2022.

[13] H. K. Cheng and A. G. Schwing. Xmem: Long-term video object segmentation

with an atkinson-shiffrin memory model. In Computer Vision – ECCV 2022:

17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings,

Part XXVIII, page 640–658, Berlin, Heidelberg, 2022. Springer-Verlag.

[14] H.-K. Chiu, J. Li, R. Ambruş, and J. Bohg. Probabilistic 3d multi-modal,

multi-object tracking for autonomous driving. In 2021 IEEE International

Conference on Robotics and Automation (ICRA), pages 14227–14233, 2021.

72

[15] M. A. Cohen, T. L. Botch, and C. E. Robertson. The limits of color awareness

during active, real-world vision. Proceedings of the National Academy of

Sciences, 117(24):13821–13827, 2020.

[16] D. Cohen-Or, Y. Mann, and S. Fleishman. Deep compression for streaming

texture intensive animations. In SIGGRAPH ’99, pages 261–267, 1999.

[17] X. Corbillon, G. Simon, A. Devlic, and J. Chakareski. Viewport-adaptive

navigable 360-degree video delivery. In 2017 IEEE International Conference

on Communications (ICC), pages 1–7, 2017.

[18] D. Damen, H. Doughty, G. M. Farinella, A. Furnari, J. Ma, E. Kazakos,

D. Moltisanti, J. Munro, T. Perrett, W. Price, and M. Wray. Rescaling

egocentric vision: Collection, pipeline and challenges for epic-kitchens-100.

International Journal of Computer Vision (IJCV), 130:33–55, 2022.

[19] A. Darkhalil, D. Shan, B. Zhu, J. Ma, A. Kar, R. Higgins, S. Fidler, D. Fouhey,

and D. Damen. Epic-kitchens visor benchmark: Video segmentations and

object relations. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,

and A. Oh, editors, Advances in Neural Information Processing Systems,

volume 35, pages 13745–13758. Curran Associates, Inc., 2022.

[20] A. Dave, T. Khurana, P. Tokmakov, C. Schmid, and D. Ramanan. Tao: A large-

scale benchmark for tracking any object. In Computer Vision – ECCV 2020:

16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,

Part V, page 436–454, Berlin, Heidelberg, 2020. Springer-Verlag.

[21] M. Dunnhofer, A. Furnari, G. M. Farinella, and C. Micheloni. Visual object

tracking in first person vision. International Journal of Computer Vision,

131(1):259–283, 1 2023.

[22] D. B. Elliott, K. C. Yang, and D. Whitaker. Visual acuity changes throughout

adulthood in normal, healthy eyes: seeing beyond 6/6. Optometry and vision

science : official publication of the American Academy of Optometry, 72

3:186–91, 1995.

73

[23] J. A. Ferwerda, P. Shirley, S. N. Pattanaik, and D. P. Greenberg. A model

of visual masking for computer graphics. In SIGGRAPH ’97, pages 143–152,

1997.

[24] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the

kitti vision benchmark suite. In 2012 IEEE Conference on Computer Vision

and Pattern Recognition, pages 3354–3361, 2012.

[25] G. Georgakis, M. Reza, A. Mousavian, P. Le, and J. Kosecka. Multiview rgb-d

dataset for object instance detection. In 2016 Fourth International Conference

on 3D Vision (3DV), pages 426–434, Los Alamitos, CA, USA, oct 2016. IEEE

Computer Society.

[26] K. Grauman, A. Westbury, E. Byrne, Z. Chavis, A. Furnari, R. Girdhar,

J. Hamburger, H. Jiang, M. Liu, X. Liu, M. Martin, T. Nagarajan, I. Ra-

dosavovic, S. Ramakrishnan, F. Ryan, J. Sharma, M. Wray, M. Xu, E. Xu,

C. Zhao, S. Bansal, D. Batra, V. Cartillier, S. Crane, T. Do, M. Doulaty, A. Er-

apalli, C. Feichtenhofer, A. Fragomeni, Q. Fu, A. Gebreselasie, C. Gonzalez,

J. Hillis, X. Huang, Y. Huang, W. Jia, W. Khoo, J. Kolar, S. Kottur, A. Ku-

mar, F. Landini, C. Li, Y. Li, Z. Li, K. Mangalam, R. Modhugu, J. Munro,

T. Murrell, T. Nishiyasu, W. Price, P. Puentes, M. Ramazanova, L. Sari, K. So-

masundaram, A. Southerland, Y. Sugano, R. Tao, M. Vo, Y. Wang, X. Wu,

T. Yagi, Z. Zhao, Y. Zhu, P. Arbelaez, D. Crandall, D. Damen, G. Farinella,

C. Fuegen, B. Ghanem, V. Ithapu, C. V. Jawahar, H. Joo, K. Kitani, H. Li,

R. Newcombe, A. Oliva, H. Park, J. M. Rehg, Y. Sato, J. Shi, M. Shou,

A. Torralba, L. Torresani, M. Yan, and J. Malik. Ego4d: Around the world in

3,000 hours of egocentric video. In 2022 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 18973–18990, Los Alamitos,

CA, USA, jun 2022. IEEE Computer Society.

[27] W. Griffin and M. Olano. Evaluating texture compression masking effects

using objective image quality assessment metrics. IEEE Transactions on

Visualization and Computer Graphics, 21(8):970–979, 2015.

[28] M. Grinvald, F. Tombari, R. Siegwart, and J. Nieto. Tsdf++: A multi-

object formulation for dynamic object tracking and reconstruction. In 2021

74

IEEE International Conference on Robotics and Automation (ICRA), pages

14192–14198, 2021.

[29] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In 2017 IEEE

International Conference on Computer Vision (ICCV), pages 2980–2988, 2017.

[30] S. Hillaire, A. Lecuyer, T. Regia-Corte, R. Cozot, J. Royan, and G. Breton.

Design and application of real-time visual attention model for the exploration

of 3d virtual environments. IEEE Transactions on Visualization and Computer

Graphics, 18(3):356–368, 2012.

[31] J. Hladky, H.-P. Seidel, and M. Steinberger. The camera offset space: Real-

time potentially visible set computations for streaming rendering. ACM Trans.

Graph., 38(6), Nov. 2019.

[32] F. Hohman, M. Kahng, R. Pienta, and D. H. Chau. Visual analytics in deep

learning: An interrogative survey for the next frontiers. IEEE Transactions

on Visualization and Computer Graphics, 25(8):2674–2693, 2019.

[33] Y. Hou, C. Wang, J. Wang, X. Xue, X. L. Zhang, J. Zhu, D. Wang, and

S. Chen. Visual evaluation for autonomous driving. IEEE Transactions on

Visualization and Computer Graphics, 28(1):1030–1039, 2022.

[34] M. Ibbotson and B. Krekelberg. Visual perception and saccadic eye movements.

Current Opinion in Neurobiology, 21(4):553–558, 2011. Sensory and motor

systems.

[35] A. S. Kaplanyan, A. Sochenov, T. Leimkühler, M. Okunev, T. Goodall, and

G. Rufo. Deepfovea: Neural reconstruction for foveated rendering and video

compression using learned statistics of natural videos. ACM Trans. Graph.,

38(6), Nov. 2019.

[36] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao,

S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick. Segment

anything. arXiv:2304.02643, 2023.

[37] J. Knoell, P. Binda, M. C. Morrone, and F. Bremmer. Spatiotemporal profile

of peri-saccadic contrast sensitivity. Journal of vision, 11(14):15–15, 2011.

75

[38] G. A. Koulieris, K. Akşit, M. Stengel, R. K. Mantiuk, K. Mania, and

C. Richardt. Near-eye display and tracking technologies for virtual and aug-

mented reality. Computer Graphics Forum, 38(2):493–519, 2019.

[39] G. Lavoué, M. Langer, A. Peytavie, and P. Poulin. A psychophysical evaluation

of texture compression masking effects. IEEE transactions on visualization

and computer graphics, 25(2):1336–1346, 2018.

[40] M. Levoy. Polygon-assisted jpeg and mpeg compression of synthetic images.

In SIGGRAPH ’95, pages 21–28, 1995.

[41] M. Li, Y.-X. Wang, and D. Ramanan. Towards streaming perception. In

European Conference on Computer Vision, pages 473–488. Springer, 2020.

[42] P. Liu, X. Zuo, V. Larsson, and M. Pollefeys. Mba-vo: Motion blur aware

visual odometry. In 2021 IEEE/CVF International Conference on Computer

Vision (ICCV), pages 5530–5539, 2021.

[43] Y. Liu, Y. Liu, C. Jiang, K. Lyu, W. Wan, H. Shen, B. Liang, Z. Fu, H. Wang,

and L. Yi. Hoi4d: A 4d egocentric dataset for category-level human-object

interaction. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), pages 21013–21022, June 2022.

[44] A. Lopes, R. Souza, and H. Pedrini. A survey on rgb-d datasets. Computer

Vision and Image Understanding, 222:103489, 2022.

[45] D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson, and R. Huebner.

Level of Detail for 3D Graphics. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 2002.

[46] R. K. Mantiuk, G. Denes, A. Chapiro, A. Kaplanyan, G. Rufo, R. Bachy,

T. Lian, and A. Patney. Fovvideovdp: A visible difference predictor for wide

field-of-view video. ACM Trans. Graph., 40(4), July 2021.

[47] R. Mur-Artal and J. D. Tardós. Orb-slam2: An open-source slam system

for monocular, stereo, and rgb-d cameras. IEEE Transactions on Robotics,

33(5):1255–1262, 2017.

76

[48] H. Murphy and A. Duchowski. Gaze-contingent level of detail rendering.

EuroGraphics, 2001, 01 2001.

[49] R. A. Newcombe, D. Fox, and S. M. Seitz. Dynamicfusion: Reconstruction

and tracking of non-rigid scenes in real-time. In 2015 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 343–352, 2015.

[50] Z. Pang, Z. Li, and N. Wang. Simpletrack: Understanding and rethinking 3d

multi-object tracking. In L. Karlinsky, T. Michaeli, and K. Nishino, editors,

Computer Vision – ECCV 2022 Workshops, pages 680–696, Cham, 2023.

Springer Nature Switzerland.

[51] A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Luebke,

and A. Lefohn. Towards foveated rendering for gaze-tracked virtual reality.

ACM Trans. Graph., 35(6), Nov. 2016.

[52] E. Peli. Contrast in complex images. J. Opt. Soc. Am. A, 7(10):2032–2040,

Oct 1990.

[53] C. Párraga, T. Troscianko, and D. Tolhurst. The effects of amplitude-spectrum

statistics on foveal and peripheral discrimination of changes in natural images,

and a multi-resolution model. Vision Research, 45(25):3145 – 3168, 2005.

[54] D. Raca, D. Leahy, C. J. Sreenan, and J. J. Quinlan. Beyond throughput, the

next generation: A 5g dataset with channel and context metrics. In MMSys

’20, pages 303–308, 2020.

[55] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,

A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning

transferable visual models from natural language supervision. In M. Meila

and T. Zhang, editors, Proceedings of the 38th International Conference on

Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of

Proceedings of Machine Learning Research, pages 8748–8763. PMLR, 2021.

[56] F. Ragusa, A. Furnari, and G. M. Farinella. Meccano: A multimodal egocentric

dataset for humans behavior understanding in the industrial-like domain.

Comput. Vis. Image Underst., 235(C), oct 2023.

77

[57] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once:

Unified, real-time object detection. In 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 779–788, Los Alamitos, CA,

USA, jun 2016. IEEE Computer Society.

[58] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger. 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages

6517–6525, 2016.

[59] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time

object detection with region proposal networks. In C. Cortes, N. Lawrence,

D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information

Processing Systems, volume 28. Curran Associates, Inc., 2015.

[60] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen. Commute path

bandwidth traces from 3g networks: Analysis and applications. In Proceedings

of the 4th ACM Multimedia Systems Conference, MMSys ’13, pages 114–118,

New York, NY, USA, 2013. Association for Computing Machinery.

[61] M. F. Romero-Rondón, L. Sassatelli, F. Precioso, and R. Aparicio-Pardo.

Foveated streaming of virtual reality videos. In Proceedings of the 9th ACM

Multimedia Systems Conference, MMSys ’18, pages 494–497, 2018.

[62] M. Runz, M. Buffier, and L. Agapito. Maskfusion: Real-time recognition,

tracking and reconstruction of multiple moving objects. In 2018 IEEE Inter-

national Symposium on Mixed and Augmented Reality (ISMAR), pages 10–20,

2018.

[63] S. Rusinkiewicz and M. Levoy. Qsplat: A multiresolution point rendering

system for large meshes. In SIGGRAPH ’00, pages 343–352, 2000.

[64] M. Rünz and L. Agapito. Co-fusion: Real-time segmentation, tracking and

fusion of multiple objects. In 2017 IEEE International Conference on Robotics

and Automation (ICRA), pages 4471–4478, 2017.

[65] A. Sabater, L. Montesano, and A. C. Murillo. Robust and efficient post-

processing for video object detection. In 2020 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), pages 10536–10542, 2020.

78

[66] M. Schütz, G. Mandlburger, J. Otepka, and M. Wimmer. Progressive real-time

rendering of one billion points without hierarchical acceleration structures.

Computer Graphics Forum, 39(2):51–64, 2020.

[67] M. Schwarz and M. Stamminger. On predicting visual popping in dynamic

scenes. In APGV ’09, pages 93–100, 2009.

[68] A. Serrano, I. Kim, Z. Chen, S. DiVerdi, D. Gutierrez, A. Hertzmann, and

B. Masia. Motion parallax for 360◦ rgbd video. IEEE Transactions on

Visualization and Computer Graphics, 25(5):1817–1827, May 2019.

[69] C. Serrano, B. Garriga, J. Velasco, J. Urbano, S. Tenorio, and M. Sierra.

Latency in broad-band mobile networks. In VTC Spring 2009 - IEEE 69th

Vehicular Technology Conference, pages 1–7, 2009.

[70] M. Strecke and J. Stueckler. Em-fusion: Dynamic object-level slam with

probabilistic data association. In 2019 IEEE/CVF International Conference

on Computer Vision (ICCV), pages 5864–5873, 2019.

[71] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,

J. Guo, Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han, J. Ngiam,

H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon, A. Gao, A. Joshi, Y. Zhang,

J. Shlens, Z. Chen, and D. Anguelov. Scalability in perception for autonomous

driving: Waymo open dataset. In 2020 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 2443–2451, 2020.

[72] Q. Sun, F.-C. Huang, J. Kim, L.-Y. Wei, D. Luebke, and A. Kaufman.

Perceptually-guided foveation for light field displays. ACM Trans. Graph.,

36(6), Nov. 2017.

[73] H. Tang, K. Liang, M. Feiszli, and W. Wang. Egotracks: A long-term egocentric

visual object tracking dataset. arXiv:2301.03213, 2023.

[74] V. Tschernezki, A. Darkhalil, Z. Zhu, D. Fouhey, I. Laina, D. Larlus, D. Damen,

and A. Vedaldi. Epic fields: Marrying 3d geometry and video understanding.

In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine,

editors, Advances in Neural Information Processing Systems, volume 36, pages

26485–26500. Curran Associates, Inc., 2023.

79

[75] O. T. Tursun, E. Arabadzhiyska-Koleva, M. Wernikowski, R. Mantiuk, H.-P.

Seidel, K. Myszkowski, and P. Didyk. Luminance-contrast-aware foveated

rendering. ACM Trans. Graph., 38(4), July 2019.

[76] J. Wang, Y. Li, Z. Zhou, C. Wang, Y. Hou, L. Zhang, X. Xue, M. Kamp,

X. Zhang, and S. Chen. When, where and how does it fail? a spatial-temporal

visual analytics approach for interpretable object detection in autonomous

driving. IEEE Transactions on Visualization and Computer Graphics, pages

1–16, 2022.

[77] Y.-Z. Wang, A. Bradley, and L. N. Thibos. Aliased frequencies enable the

discrimination of compound gratings in peripheral vision. Vision Research,

37(3):283–290, 1997.

[78] A. B. Watson. A formula for human retinal ganglion cell receptive field density

as a function of visual field location. Journal of Vision, 14(7):15–15, 06 2014.

[79] A. B. Watson, A. J. Ahumada, and J. E. Farrell. Window of visibility: a

psychophysical theory of fidelity in time-sampled visual motion displays. J.

Opt. Soc. Am. A, 3(3):300–307, Mar 1986.

[80] X. Weng, J. Wang, D. Held, and K. Kitani. 3d multi-object tracking: A baseline

and new evaluation metrics. In 2020 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 10359–10366, 2020.

[81] N. Wojke, A. Bewley, and D. Paulus. Simple online and realtime tracking with

a deep association metric. In 2017 IEEE International Conference on Image

Processing (ICIP), pages 3645–3649, 2017.

[82] Y.-S. Wong, C. Li, M. Nießner, and N. J. Mitra. Rigidfusion: Rgb-d scene recon-

struction with rigidly-moving objects. Computer Graphics Forum, 40(2):511–

522, 2021.

[83] G. Wu, J. Qian, S. Castelo, S. Chen, J. Rulff, and C. Silva. Automated

text simplification for the task guidance in augmented reality. In 2023 IEEE

International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-

Adjunct), pages 585–586, 2023.

80

[84] B. Xu, W. Li, D. Tzoumanikas, M. Bloesch, A. Davison, and S. Leutenegger.

Mid-fusion: Octree-based object-level multi-instance dynamic slam. In 2019

International Conference on Robotics and Automation (ICRA), pages 5231–

5237, 2019.

[85] T. Yin, X. Zhou, and P. Krahenbuhl. Center-based 3d object detection and

tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), pages 11784–11793, June 2021.

[86] Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu, and

X. Wang. Bytetrack: Multi-object tracking by associating every detection box.

In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner, editors,

Computer Vision – ECCV 2022, pages 1–21, Cham, 2022. Springer Nature

Switzerland.

[87] X. Zhou, R. Girdhar, A. Joulin, P. Krähenbühl, and I. Misra. Detecting twenty-

thousand classes using image-level supervision. In S. Avidan, G. Brostow,

M. Cissé, G. M. Farinella, and T. Hassner, editors, Computer Vision – ECCV

2022, pages 350–368, Cham, 2022. Springer Nature Switzerland.

[88] X. Zhou, V. Koltun, and P. Krähenbühl. Tracking objects as points. In

A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, editors, Computer Vision –

ECCV 2020, pages 474–490, Cham, 2020. Springer International Publishing.

[89] X. Zhou, D. Wang, and P. Krähenbühl. Objects as points. arXiv:1904.07850,

2019.

[90] X. Zhou, T. Yin, V. Koltun, and P. Krahenbuhl. Global tracking transformers.

In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pages 8761–8770, Los Alamitos, CA, USA, jun 2022. IEEE Computer

Society.

[91] J. Zhu, L. Wang, R. Yang, J. E. Davis, and Z. pan. Reliability fusion of

time-of-flight depth and stereo geometry for high quality depth maps. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 33(7):1400–1414,

2011.

	Vita
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contribution
	Organization

	Related Work
	Multi-object Dynamic SLAM
	2D Multi-object Tracker
	3D Multi-object Tracker
	Datasets
	Visual Analytics for 3D Object Tracking

	3D Memory Algorithms for AR
	Method
	Analyze and Rethink 2D MOT
	Input and Tracker State
	Pre-processing
	Association
	Life Cycle Management

	Evaluation
	Metrics
	Datasets
	Implementation Details
	3D Baseline
	Comparisons with 2D trackers
	Comparison with Detic + GT ID
	Ablation Study

	Limitations
	Discussion

	Visualization for 3D Memory
	ARGUS for 3D Memory
	ARGUS Online Mode
	ARGUS Offline Mode
	Case Studies
	Discussion

	Instant Reality: Gaze-Contingent Perceptual Optimization for 3D Virtual Reality Streaming
	Introductions
	Method
	Implementation
	Evaluation: User Study
	Evaluation: Objective Analysis
	Discussion
	Appendix

	Conclusions and Future Work

