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ABSTRACT

In this dissertation, we advance the theory and practice of verifying visualization algori-
thms. We present techniques to assess visualization correctness through testing of impor-
tant mathematical properties. Where applicable, these techniques allow us to distinguish
whether anomalies in visualization features can be attributed to the underlying physical
process or to artifacts from the implementation under verification. Such scientific scrutiny is
at the heart of verifiable visualization — subjecting visualization algorithms to the same veri-
fication process that is used in other components of the scientific pipeline. The contributions
of this dissertation are manifold. We derive the mathematical framework for the expected
behavior of several visualization algorithms, and compare them to experimentally observed
results in the selected codes. In the Computational Science & Engineering community
CS&E, this technique is know as the Method of Manufactured Solution (MMS). We apply
MMS to the verification of geometrical and topological properties of isosurface extraction
algorithms, and direct volume rendering. We derive the convergence of geometrical prop-
erties of isosurface extraction techniques, such as function value and normals. For the
verification of topological properties, we use stratified Morse theory and digital topology
to design algorithms that verify topological invariants. In the case of volume rendering
algorithms, we provide the expected discretization errors for three different error sources.
The results of applying the MMS is another important contribution of this dissertation. We
report unexpected behavior for almost all implementations tested. In some cases, we were
able to find and fix bugs that prevented the correctness of the visualization algorithm. In
particular, we address an almost 20-year-old bug with the core disambiguation procedure
of Marching Cubes 33, one of the first algorithms intended to preserve the topology of the
trilinear interpolant. Finally, an important by-product of this work is a range of responses

practitioners can expect to encounter with the visualization technique under verification.



To my beloved parents.



“No amount of experimentation can ever prove me right; a single experiment
can prove me wrong.”

— Albert Einstein
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CHAPTER 1

INTRODUCTION

Today’s technology provides unprecedented opportunities to scientists for deriving, ex-
panding, or correcting scientific theories. In the past few decades, we have seen a sharp
increase in one’s ability to acquire, store, and process data. Simultaneously, the scientific
visualization emerged as a discipline and became the centerpiece in the pipeline of many
scientists. In fact, visualization techniques became the means through which scientists
explore, evaluate, and present results. Propelled by a vibrant community, visualization
techniques have become more widespread, and have successfully been applied to a variety
of fields including medical diagnosis, computational fluid dynamics, weather simulation,
among others. The wide range of applications, and the uniqueness of each field have further
motivated the development of complex visualization techniques, some of which include
isosurface extraction, direct volume rendering, flow visualization, to name a few. The
amount of work published in these (and other) areas in the past 20 years is remarkable.

With the increasing complexity and importance of visualization techniques in the scien-
tific pipeline, questions related to the reliability of visualizations began to attract attention.
In the past few years, there has been a growing number of published articles related to the
way humans perceive images, the accuracy of visualizations, ways to extract and depict
uncertainty, and how visualizations compare to each other. More generally, the goal is to
determine how reliable visualizations are. In this context, “reliable” is used in a broad sense
so as to include many of the topics of current interest of the visualization community that
contributes to increase one’s confidence in visualizations: uncertainty visualization; uncer-
tainty quantification; evaluation; user perception; and verification. In this dissertation, we
focus on the wverification of visualization algorithms and implementation. Many techniques
can be used for verification purposes, but at the heart of the methodology for verifying

visualization, one will find good-old science practices.



1.1 Verification of Scientific Theories

New theories are put forward and evaluated through the scientific method: observations;
hypothesis formulation; predictions and testing; and analysis of the results. Details on
how to perform each of these steps vary according to the phenomena being studied. A
particularly important step in the process of deriving a valid scientific theory is the process
of falsification: the process by which the theory predictions are tested. As Karl Popper
argued in “The Logic of Scientific Discovery” [140, p. 9]:

With the help of other statements, previously accepted, certain singular state-
ments — which we may call “predictions” — are deduced from the theory; es-
pecially predictions that are easily testable or applicable. From among these
statements, those are selected which are not derivable from the current theory,
and more especially those which the current theory contradicts. Next we seek a
decision as regards these (and other) derived statements by comparing them with
the results of practical applications and experiments. If this decision is positive,
that is, if the singular conclusions turn out to be acceptable, or verified, then
the theory has, for the time being, passed its test: we have found no reason to
discard it. But if the decision is negative, or in other words, if the conclusions
have been falsified, then their falsification also falsifies the theory from which
they were logically deduced.

An example of testing risky prediction is the classic Eddington’s experiment of Einstein’s
theory of relativity [27]. Eddington conducted an experiment to measure the light deflection
caused by the massive size of the Sun. During the eclipse of May 29th 1919, Eddington
photographed the Hyades star cluster and measured the light deflected. At the time,
Newton’s law of gravity was the accepted theory; it predicted some shift in the position
of the stars, as observed from Earth, whereas Einstein’s theory of gravity predicted twice
as much shift. Because Einstein’s prediction contradicted current theory, it was a risky
prediction. The eclipse was photographed, and the deviations were measured. At that
time, two outcomes were possible: either the expected (predicted) deflection would not
match the observed one — because no deflection is observed, or Newton’s prediction was
correct, or some other value is obtained — in which case the theory would be refuted; or,
the predicted deflection would match the observations, in which case, nothing could be said
about the correctness of the theory, aside from that it has not been proved wrong and has
stood up to risky tests. The more a theory is tested, the more trustworthy it becomes.

The same idea of falsification can be applied to test the trustworthiness of an algorithm
and its implementation. During the course of a scientific inquiry, scientists carefully perform

each step in the scientific method to mitigate and control errors. For each step of the
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scientific method, there are multiple ways to account for these errors: by using sophis-
ticated statistical methods; advanced mathematical models; high-precision equipments;
redundancy; etc. The reason behind it is that the reliability of the conclusions depends
on how each of the steps are performed. In the example of Eddington’s experiment, a series
of precautions had to be made and several error sources were taken into account to show
that Einstein’s predictions were correctﬂ Since the scientific methodology is used to increase
one’s confidence in a particular statement, it can also be applied to the substeps involved in
the formulation of a scientific theory, which, in turn, builds up one’s confidence in the theory
itself. There is a need for reliability of scientific software. The lack of such guarantees led
the discipline of Computational Fluid Dynamics (CFD) to once be referred to as “Colorful
Fluid Dynamics” [I12]. Of course, the Computational Science & Engineering and Computer

Science communities have already developed standard methodology for software verification.

1.2 Verification

The meaning of the word “verification” may vary according to the context in which it

is used. When applied loosely, it refers to good coding practices (e.g., use of versioning
system), software testing (e.g., unit/regression tests), and even the process of debugging a
code. These practices are obviously valuable to help build a trustworthy software, but they
are often ad hoc and have limited scope. In this dissertation, the word “verification” is
used as in Computer Science (CS) and Computation Simulation (CS&E). In CS according
to IEEE standards, wverification is the “process of evaluating a system or component to
determine whether the products of a given development phase satisfy the conditions imposed
at the start of that phase” [67]. In this context, the program specification is the condition
imposed at the start phase and the verification process ideally should guarantee that the

resulting implementation (i.e., final computer software) meets the specification exactly. In

!They started by sending off two expeditions. The first to Sobral, northern Brazil, and another to the
island of Principe, northern of Sdo Tomé and Principe. Aside from equipment related to the telescope,
backup lenses were packed along with all necessary equipment to account for the rotation of the Earth. The
expedition at Principe, among other problems, had to deal with clouds and rain, thus they were able to
retrieve only two usable photos. The expedition at Sobral, on the other hand, encountered better weather
but had problems due to the rise of the temperature between the time the telescope was assembled and
the time of the eclipse. Parts of the telescope expanded and as a result, the images were blurred. Another
problem was related to the very small expected light deflection. Since photograph plates could expand
and shrink with the temperature, deflection could be due to other factors other than light deflection, such
as shrinkage. Other source of errors are involved. According to Coles [27], at the time the results were
published, they were met with some skepticism. For more details, see Coles [27].
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the past few decades, several techniques have been developed to attain software verification,
which include theorem provers [12], model checking [25], fuzzing [7, [56], and others. This
variety of techniques is due to the difficult task of testing a program (either a model or
an implementation) which may contain millions of lines of code and an exponentially large
state-space where a bug might be hidden. Because of this large number of paths, verification
can be considered a process where one accumulates evidence that a code is correct [143],
rather than deriving a proof that the code is actually correct. These techniques have
been successfully applied not only for verification of user-level computer code [5], but also
hardware [I57] and operating system kernel [79).

Verification techniques developed in the CS&E community are focused in general on
the numerical solution of partial differential equations (PDEs) that models a physical
phenomena of interest. In this context, verification is defined as the process of determining
if a computational model, and its corresponding numerical solution, can be used to represent
the mathematical model of the event with sufficient accuracy [3]. This definition is closely
related to the errors involved during discretization and implementation. They are of great
importance to scientists because they can be used to assess which of the models, mathe-
matical or computational, should be refined. A successful approach for code verification,
known to be sensitive to code mistakes [143], is the order of accuracy test — an evaluation
of the implementation behavior when submitted to successive grid refinements [143].

The verification tools proposed by the CS and CS&E communities cover only part of the
scientific pipeline. Given the importance of visualizations, not only numerical softwares have
to be verified, but also visualization algorithms and implementations. Nevertheless, visual-
ization has not fallen under the same rigorous scrutiny as other components of the pipeline
like mathematical modeling and numerical simulation. Unlike traditional computational
science and engineering areas, there is no commonly accepted framework for verifying the
accuracy, reliability, and robustness of visualization tools. Furthermore, very few studies
have focused on how the error originating from other components of the computational
pipeline impacts visualization algorithms.

While the lack of a well-established framework for verifying visualization tools has led to
the development of a variety of analysis techniques [195] 174], we believe visualization has
achieved sufficient importance to warrant investigation of stricter verification methodologies.
Several authors have already asserted its need [54, [55] [76]. This work presents a concrete

step towards reducing the gap between best practices in simulation science and visualization.



1.3 Contributions

We advocate that all visualization algorithms and implementation should be verified.

Hence, the main contribution to this dissertation is to advance the theory and practice of

verifying visualizations. We do so by extracting important mathematical properties of the

algorithms under verification. Then, we verify whether the implementation honors that

property by stress testing it. As in the case of falsification of scientific theories, a mismatch

reveals a problem; in the case of visualization, the problem will lie in the implementation,

algorithm, or verification process. On the other hand, if the implementation honors the

property of interest for all performed tests, then nothing can be said about the correctness

of the implementation and algorithm, except that it has stood severe stress tests. More

specifically, our contribution can be summarized as follows:

1. Chapter [2 Verifying Geometry of Isosurface Extraction Algorithms [46].

(a)

(d)

We introduce a framework for the verification of visualization tools based on the
Method of Manufactured Solutions, and show how to apply it for the verification
of geometrical properties of isosurface extraction algorithms and implementa-
tions;

We provide the required mathematical analysis for the implementation of the
verification procedure. The important properties that should be honored are
derived from this mathematical analysis;

We show concrete results, and show how this verification procedure helped us
to find and fix problems in both algorithm and implementation. Moreover, we
show that it is not trivial to find solutions that are both geometrically accurate
and honors additional properties (such as triangle quality);

As a by-product of the verification, we detail the behavior of several freely

available implementations;

2. Chapter |3; Verifying Topology of Isosurface Extraction Algorithms [45].

(a)

(b)

()

We introduce a framework for verification of topological properties of isosurface
extraction algorithms;

We derive a framework based on Digital Topology for the extraction of impor-
tant invariants (topological properties) that should be honored by topologically
correct implmentations;

In addition, we derive a framework based on Stratified Morse Theory for the

extraction of important invariants;
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(d) We detail the behavior of several freely and commercially available implementa-
tions of isosurface extraction; We show that all but one implementation failed
our tests;

3. Chapter Practical Considerations on the Topological Correctness of Marching
Cubes 33 [29].

(a) We show that both the Marching Cubes 33 algorithm and implementation have
problems that prevent its topological correctness. Moreover, one of the problems
is traced back to its original publication;

(b) We propose a new and alternative ways to deal with the issues raised;

(c¢) Building on recent efforts on executable papers, we provide new ways to interact
with our work so as to improve understanding and reproducibility of the results
shown;

4. Chapter [5¢ Verifying Direct Volume Rendering Algorithm [43].

(a) We introduce a framework for verification of volume rendering algorithms and
implementations;

(b) We provide the error analysis of the standard volume rendering integral that is
crucial for the verification procedure;

(c) We show how we used this information to find and fix problems in widely used
volume rendering implementations. Moreover, we provide a first attempt to
detect the sensitivity of the verification procedure;

5. Chapter [6} Flow Visualization [44].

(a) We provide an overview of the some of the topics involved in reliable visualization.
We focus on flow visualization and supporting tools.

The goal of this dissertation is to provide another step towards creating a culture of

verification inside the visualization and related communities.



CHAPTER 2

VERIFYING GEOMETRY OF
ISOSURFACE EXTRACTION
ALGORITHMS

In this chapter, we are concerned with important properties of isosurface extraction
algorithms. In particular, we will focus on geometrical properties; thus, the verification
procedure developed in the forthcoming sections will be focused on the correctness of
the geometry of the extracted surfaces. This is in contrast to topological properties of

isosurfaces, which will be discussed in Chapter

2.1 Related Work

Isosurface extraction is a popular visualization technique, being a tool currently used

in science, engineering, and applications. This popularity makes it a natural target for
this first application of verification mechanisms in the context of visualization. This same
popularity has also driven a large body of work comparing different isosurface extraction
algorithms.

Previous researchers have examined topological issues [127) 94], mesh quality [33], [153],
accuracy [131],[195], and performance [165]. The influence of different reconstruction schemes
and filters in scalar visualization has also been examined [16, [139]. In this chapter, we focus
on techniques to verify the correctness of algorithms and their corresponding implementa-
tions. In particular, we provide mathematical tools that other researchers and developers
can use to increase their confidence in the correctness of their own isosurface extraction
codes. A traditional way to test implementations in scientific visualization is to perform
a visual inspection of the results of the Marschner-Lobb dataset [I02]. In the context of
isosurface extraction, researchers routinely use tools such as Metro [24] to quantitatively
measure the distance between a single pair of surfaces. We argue that the methodology

presented here is more effective and more explicit at elucidating a technique’s limitations.
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In particular, our proposal pays closer attention to the interplay between a theoretical
convergence analysis and the experimental result of a sequence of approximations.

Globus and Uselton [55] and more recently, Kirby and Silva [76] have pointed out
the need for verifying both visualization techniques and the corresponding software im-
plementations. In this chapter, we provide concrete tools for the specific case of isosurface
extraction. Although this is only one particular technique in visualization, we expect the
general technique to generalize.

It is important to again stress that verification is a process: even when successfully
applied to an algorithm and its implementation, one can only concretely claim that the
implementation behaves correctly (in the sense of analyzed predicted behavior) for all test
cases to which it has been applied. Because the test set, both in terms of model problems
and analyzed properties, is open-ended and ever increasing, the verification process must
continually be applied to previous and new algorithms as new test sets become available.
This does not, however, preclude us from formulating a basic set of metrics against which
isosurface extraction methods should be tested, as this is the starting point of the process.

This is what we turn to in the next section.

2.2 Verifying Isosurface Extraction Algorithms

In this section, we describe the technique we use for verifying isosurface extraction
algorithms, namely the method of manufactured solutions (MMS). We illustrate a possible
implementation of MMS in Algorithm [I]and Figure This technique requires us to write
down the expected behavior of particular features of interest of the object (or model prob-
lem) being generated. In our case, we are generating triangular approximations of smooth
isosurfaces, and the features of interest are geometric surface convergence, convergence of
normals, area, and curvature.

To use MMS, we first accomplish a mathematical analysis of the expected convergence
rate of the features (or characteristics) of interest, known in the numerical literature as
the formal order of accuracy of the characteristic. This analysis is done for solutions of
the problem that can be conveniently described and analyzed (these are the manufactured
solutions). Then, the code is executed with progressively refined versions of the data that
are used in the generation or sampling of the manufactured solution. Finally, the empirical
convergence rate is compared to the one predicted by the analysis. When the convergence

rates are comparable, we increase our confidence in the algorithm. If the realizable behavior



Algorithm 1 Overview of the method of manufactured solutions (MMS).

MMS(f,u, h1)

> Let f be a scalar field containing the solution surface S
>> Let u be a given property (f, normals, area, etc.)
> Let h; be the initial grid size
fori+ 1ton
do G}, < an approximation of f at grid size h;
Sh, < an approximation of S computed from Gy,
By, + [[u(Sh,) — u(S)]]
T; < log hi, Y; <— log Ehi
hi+1 — hi / 2

© 00 J O Ui W N

10 G + slope of best-fit linear regression of (z;, ;)
11  Compare ¢ and q
B /’/ i
<5 e
20 - (h.E,) h
i) 7 - — -
E, =llu(@ Y-«

log A

Figure 2.1. Workflow for the method of manufactured solution (Algorithm , clockwise
from the top left.

disagrees with the analysis, either (1) the analysis does not correspond to the correct behav-
ior of the algorithm, (2) the assumptions upon which the analysis was build were violated
by the input data and hence, the predicted behavior is not valid for the circumstances
under investigation, or (3) there are issues with the algorithm or with the implementation
of the algorithm (depending on access to source code and algorithmic details, one may not

be able to distinguish between these two — algorithmic or implementation — and hence, we
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in this work always consider them together. Given sufficient information, the verification
process can help further delineate between these two issues). Notice, however, that all three
situations warrant further investigation. In the following sections, we will discuss these
issues in more detail. Let us first clarify how we will arrive at theoretical and empirical
convergence rates.

For a fixed grid size, we will strive to write the approximation error between the desired

isosurface property and its approximation by:
E = ‘uapprox - ue:cact|u = O(hp) = ah? (21)

where Ugpproz, Uezact are the approximated and exact values of a property u, || is the norm
used to compare the approximate and exact property, p is the order of accuracy and « is
a constant. Practically speaking, the polynomial expression is not very convenient
for numerical experimentation, as it is hard to find the value of p from the direct plot of
h against E. The standard technique to estimate p is to linearize by working on a log-log

scale:

log E = log(ah?) = log a + plog h. (2.2)

Using this linearized version, we estimate p from the slope of the line that best fits the
points (logh,log F) in a least-squares sense. We use this technique in Section when
testing the isosurface codes.

MMS critically depends on an analysis of the order of accuracy of expected solutions.
Although this seems quite simple, the order of accuracy under a sensitive norm like || - ||oo
has shown in practice to be very effective in bringing out implementation errors in numerical
approximation schemes [146] [3]. In this dissertation, we show that this analysis is just as
effective for isosurface extraction. In addition, we believe the convergence analysis required
by MMS is interesting in its own right. As we will discuss in Section [2.4] it helps to shed
light on the consequences of implementation choices.

In the context of isosurface methods, manufactured solutions can be built by specifying
a “solution surface” to be the exact solution and deriving a scalar field that contains such a
solution surface as a level set. The verification methodology then proceeds as following: (1)
use the manufactured scalar field as input for the isosurfacing methods, (2) run the methods,
and (3) check the output surface against the solution surface (sometimes called the ansatz

solution within the mathematical verification literature). In many cases, the manufactured
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scalar field can be derived analytically, making the observed order of accuracy tractable (we
give examples in next section).

In what follows, we will derive expected orders of accuracy for several features of
surfaces produced by isosurface extraction codes. We keep our assumptions about the
actual algorithms to a minimum to maximize the applicability of the arguments given. We
essentially only assume that the maximum triangle size can be bounded above at any time,
and use Taylor series arguments (under assumptions of smoothness) to derive convergence
rates. It is important to point out that order of accuracy analysis of polyhedral surfaces
has been studied by many researchers [110, 190} 191} 62]. In fact, the results presented
below are in agreement with the ones reported in the literature. However, because we
are considering isosurface extraction, some of our arguments benefit by being able to be

condensed to simpler statements.

2.2.1 Convergence of Vertex Position

We start our analysis of isosurface extraction by studying the convergence of vertex
positions. We analyze this convergence indirectly by relating the values of the scalar field
at the vertex points and the distance between the vertices and the correct isosurface. Given
a value A such that the exact isosurface S is defined by f(z,y, z) = f(¥) = A, the algebraic
distance of ¥ to S is defined as |f(7) — A| [167]. Notice that algebraic distances only makes
sense for implicit surfaces: it requires a scalar field. In addition, we restrict ourselves to
regular isosurfaces, ones where for every point x in S, |V f(z)| exists and is nonzero. Then,
the geometric distance between ¥ and S is approximated by |f(¥) — A|/|V f(¥)| [167]. We
illustrate this relation in Figure Since, by assumption, |V f(z)| > k for some k > 0,
and all x in .S, convergence in algebraic distance implies convergence in geometric distance.
Convergence in algebraic distance, however, is much more tractable mathematically, and
this is the item to which we turn our focus.

Many isosurface methods estimate vertex positions through linear interpolation along
edges of a grid. Let f: U C R?® — R be the a smooth real function defined in a subset

U = [az, by] X [ay, by] x [az,b;], where [a;,b;],i € x,y, z are real intervals. We assume the

intervals [a;, b;] have the same length and let a, = o, ..., 2y = by, ay = Yo, ..., Yn = by, and
a, = 20,--.,2n = b, be subdivisions for the intervals such that x; = zg + ith, y; = yo + ih,
2 = zo+1th, 1 =0,...,n, where h is the grid size and ¢;;ji, = [%i, Tit1] X [Yj, Yj+1] X [2k, 2k+1)

is a grid cell. Through a Taylor series expansion of f, one can evaluate f at a point p € ¢;j;
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Figure 2.2. The distance between a point ¢ and the isosurface S with isovalue A can be
approximated by the algebraic distance divided by the gradient magnitude of the scalar
field at ¥, | f(¥) — A|/|V f(¥)|. In the figure, the thick circle represents the isosurface S and
the fainter isolines illustrate changes in gradient magnitude: in regions of small gradient
magnitude, the algebraic distance is small but geometric distance is large, and vice-versa
for large gradient magnitude.

as:

=

L1 .
(D) = fijk +Vfijr -0+ 55TH( )6 (2.3)
where fiir = f(®i, Y5, 2), V fiji is the gradient of f in (x4, y;, 2k), H(E) is the Hessian of f
at a point gconnecting (xi,yj,z) and P, and 5= (u,v,w)T is such that p’'= (x; + uh,y; +
vh, 2 +wh)T.
Let the linear approximation of f in p be defined by

F) = fijk + Vfiji -0 (2.4)

and consider a point ) such that f (£)) = A, that is, #} is a point on the isosurface A of f .
The algebraic distance between the exact isosurface f(z,y,z) = A and the linearly
approximated isosurface can be measured by |f(2}) — A|. From Equations (2.3) and (2.4),

one can see that:

=

— = 1 —
|f(55/\)—)\|=|fijk+Vfijk-5+§5TH( )6 — A =

(2.5)
[f(@3) + O(h?) = Al = O(h?)
thus, the linearly approximated isosurface is of second-order accuracy.

2.2.2 Convergence of Normals
Assume, generally, that the scalar field f(z,y,z) = A can be locally written as a graph

of a function in two-variables g(x(u,v),y(u,v)) = X — f(z(u,v),y(u,v), 2;), as illustrated
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in Figure where z(u,v) = x; + uh and y(u,v) = y; + vh. This is acceptable because we
have already assumed the isosurface to be regular. Still without losing generality, we write
9(2(0,0),5(0,0)) = 0, that is, the isosurface contains the point (z;,y;, 2;). Let ®(u,v) =
(z(u,v),y(u,v), g(x(u,v),y(u,v))) be a parametrization for the isosurface f(z,y,z) = A in
ciji and

2 2 T
0d aq)—h2< 9 _ 9% 1) = ¥ (2.6)

— X — = <
ou  Ov ox’ 0y’
be the normal vector in ®(0,0) = (z;, Yj, 9(xi,y;)) (the partial derivatives of g are evaluated
at (2(0,0),4(0,0)) = (2,y;))-

Consider now the triangle defined by the points p1, p2, and p3 approximating the isosur-
face f(z,y,2) = X in the grid cell ¢;jj (see Figure . Let pi be the grid point (z;,y;, 2x),
so p1 = 5(0,0), Py = 5(142,1)2), and p3 = (I;(U3,U3). Using the cross product in R3, the
normal of the triangle p1psps can be computed by:

np1;2p3:(p_é —pi) X (p3 — pi)=
(UQQ(.Z’(Ug, U3)7 y(u37 U3)) - vgg(x(uQ, ’Ug), y(u27 UQ)))
(2.7)
h(ugg(@(uz, v2), y(u2, v2)) — uag(x(us, vs), y(us, vs)))
h2 (UQU3 — U3U2))

Expanding g(z(u;,v;), y(ui,v;)), i € {2,3} in a Taylor series, some terms cancel and the

normal 7, ,p, becomes:

- 2 dg dg T
Npypops = Th e +O(h), — ({Ty + O(h),1 (2.8)

where r = wuovs — uzve. Comparing the exact normal vector ny in Equation with
Npipaps abOve, we recover first-order of accuracy for normals. In addition, notice that the
usual scheme of estimating vertex normals by the arithmetic mean of triangle normals does
not decrease the order of accuracy; that is, vertex normals (computed by arithmetic mean)

are at least first-order accurate.
2

8%.y)

()

Figure 2.3. Isosurface local parametrization and approximation.
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2.2.3 Convergence of Area

Currently, much less is known about convergence in area, compared to convergence of
vertices or normals. To illustrate the difficulty involved in approximating lengths and areas,
consider the sequence of approximations to a straight line shown in Figure Even though
the function sequence converges uniformly to the line, the length of the approximation stays
constant.

To the best of our knowledge, the only relevant results establish convergence in area
given convergence in vertex positions and convergence in normals, such as in Hildebrandt
et al. [62]. However, the authors only establish asymptotic convergence, with no order of
accuracy associated with it. The argument is more mathematically involved than space
allows here, so we refer the reader to that paper. Currently, this means that the only
information the observed order of accuracy provides to us is that if we expect convergence

in normals, we should also expect convergence in area, and vice-versa.

2.2.4 Convergence of Curvature
The following formula gives an estimate of the curvature at a vertex p:
K(p) = L biin (2.9)
z4iin1
where 0;,41 and A;;+1 are the angle Zp;pp;+1 and area of the triangle p;pp;+1, respectively
(summation is over all triangles comprising the star of p) [I10]. Meek and Walton [110]
showed that the curvature computed via Equation does not converge in general;
that is, if the vertices of the star of p are arbitrarily distributed around p, one cannot
expect curvature convergence. In fact, they described a more general result stating that

O(h) accuracy can only be obtained if the normals are known to have accuracy O(h?).

D
><>E

C

Figure 2.4. Uniform convergence does not imply convergence in area. The sequence of
curves converges uniformly to a straight line, but the length of the curves does not change.
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Subsequently, Xu [190] presented a very particular distribution of vertices around p under
which the curvature estimated by Equation has accuracy O(h?).

Curvature discretization schemes other than the one given in Equation such as
the quadratic-fit and spherical-image method (see Meek and Walton [110] for details) also
demand particular vertex distributions to ensure convergence. In our context of keeping
the analysis applicable for many isosurfacing algorithms, this means we cannot use the
lack of observed curvature convergence as an indication of problematic behavior. Based
on the results mentioned above, one should actually expect curvature not to converge for
most isosurface extraction algorithms. More generally, this indicates a weakness of MMS,
namely that some features of interest (such as curvature) will not have sufficient theoretical
order of accuracy to be used in numerical measurements. Notice, in addition, that if we had
not written down the theoretical model for curvature convergence, we might have expected
some sort of curvature approximation. Even a negative result such as the one presented in

this section can increase the confidence in the results generated by an implementation.

2.3 Experimental Results

In this section, we present the results of applying the afore-described methodology. We
use the framework to verify six different isosurface extraction codes, namely: VTK Marching
Cubes [100], SnapMC [141], Macet [33], Dual Contouring [73], Afront [I53], and Dellso [32].
All these implementations are open source and/or publicly available. Before presenting the
actual results of subjecting these implementations to the verification process, we briefly

review their salient features.

2.3.1 VTK Marching Cubes

Marching Cubes [100] (MC) is arguably the most popular isosurface extraction algo-
rithm. It reduces the problem of generating an isosurface triangulation to a finite set
of cases by considering the signs of how the isosurface intersects each cell of a regular
background grid. As there are only 256 different types of intersections between the isosurface
and a regular Cartesian 3D cell, a template of triangles is set to each case, making the
implementation quite simple through a look-up table. The vertices of the triangles lie on
the edges of the cubic cells, and they are computed by linearly interpolating the implicit

function values stored at the corners of the grid cell.



16

2.3.2 SnapMC
SnapMC [141] is a recently proposed algorithm that extends the original Marching Cubes
look-up table to cases where the isosurface goes exactly through the corners of the back-
ground grid. The new look-up table is automatically built by an adaptation of the convex
hull scheme proposed by Bhaniramka et al. [6]. Even though the traditional Marching Cubes
algorithm can easily handle these cases by some kind of symbolic perturbation, SnapMC
perturbs the scalar field to avoid edge intersections close to grid corners. In particular, it

changes the values on the grid so that the surface is “snapped” to the grid corners.

2.3.3 Macet
Macet [33] is another variant of Marching Cubes that tries to improve the shape of the
triangles in a mesh. Unlike SnapMC, it perturbs the active edges of Marching Cubes cases
by moving the vertices before the triangulation step. The motivation behind Macet is that
poorly-shaped triangles tend to be generated when the intersection between the isosurface
and a grid cell is approximately parallel to an edge of the grid cell. Therefore, some corners

of the background grid are displaced so as to avoid the parallel-like intersections.

2.3.4 Dual Contouring

Dual Contouring [73] is a feature-preserving isosurfacing method to extract crack-free
surfaces from both uniform and adaptive octree grids. This technique can be seen as a
combination of Extended Marching Cubes [8I] and SurfaceNets [53] as it makes use of
Hermite data and quadratic error function minimization to position the vertices of the
surface mesh (as Extended Marching Cubes) and the dual topology to connect such vertices
(as SurfaceNets). Dual Contouring tends to generate better quality triangles than Marching
Cubes while still being very effective in representing sharp features, rendering this implicit

polygonalization method a good alternative to the popular Marching Cubes.

2.3.5 Afront
Afront [I53] is an advancing-front method for surface extraction. Although we focus on
applying Afront to isosurface extraction, it can also be used for remeshing and triangulating
point-set surfaces. The outstanding feature of Afront is that it generates triangles adapted to
the local details of a surface, namely its maximum absolute curvature. In this sense, Afront

is fundamentally different from the other algorithms we analyze. In lieu of grid refinement,
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we will use its p parameter to control triangulation size. Because the manufactured solution
we use is a sphere, reducing p by half is roughly equivalent to reducing the maximum triangle
size by half. A full analysis of Afront (and, in particular, the influence of the other main

parameter 1) warrants further investigation, but is beyond the scope of this dissertation.

2.3.6 Dellso
Dellso [32] is a Delaunay-based approach for isosurfacing. It computes the restricted
Delaunay triangulation from a 3D Voronoi Diagram. We run our tests on a customized
version of Dellso 16 bit, and our examples use the default set of parameter.
In what follows, we present the results of applying the verification process to these
algorithms. We will describe the manufactured solutions we use and their observed conver-

gence rate on the isosurface extraction algorithm.

2.3.7 Observed Order of Accuracy

We start by investigating the behavior of the algorithms under the manufactured solution
given by the scalar field f(z,y,2) = 22 + y? + 22 — 1 and isosurface f(z,y,z) = 0 in the
domain D = [—4, 4]3. Let Sk be a simplicial complex that approximates S for a given
discretization parameter k (cell size h for marching cubes-based methods, accuracy p for
Afront, and maximum edge size ¢ for Dellso).

The order of accuracy for VITK Marching Cubes, SnapMC, Macet, and Dual Contouring
depends on the cell size h. We run our tests with grid refinement h;11 = h;/2 and initial
condition hy. For Afront, the order of accuracy depends on parameter p, thus the refinement
is given by pi+1 = p;/2 with initial condition p;. Our customized version of Dellso has an
additional parameter ¢ that controls the largest edge on the output mesh. In this case,
the refinement formula is ¢;11 = ¢;/2. In the particular case of SnapMC, we set the snap
parameter v to its maximum value (v = 1/2). Even though the manufactured solution we
selected is about as simple as can be imagined, comparing the formal order of accuracy with
the observed one was enough to suggest bugs in two implementations. The observed order

of accuracy of the examined properties is presented on Table

2.3.7.1 Algebraic distance
Section [2.2.1| shows that one expects second-order convergence for function value on

vertices if linear interpolation is used. We define the following approximation error on L.
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Table 2.1. Comparison between formal order of accuracy and observed order of accuracy
using f(z,y,z) = 22 +y? + 22 — 1 as a manufactured solution and for different algorithms.
! indicates the original source code and 2 our fixed version. * indicates that a high-order
spline was used instead of a linear interpolation.

Vertex Normal Area Curvature

O(%)  O(h) = 0(1)
VTK MC 1.94 0.93 2.00 —-3.35
SnapMC 1.93 0.82 2.14 —0.29
Afront* —0.06 0.80 1.93 —0.27
Macet!* 098 —0.12 0.29 —2.41
Macet?* 0.03 0.75 2.02 —0.61
DC! 1.02  —0.11 0.69 —2.08
DC? 1.96 0.96 1.89 —0.15
Delllso 1.49 1.07  2.04 0.07

norm:
Ejr = max |A — f(vj)| (2.10)
j=1-n

where A is the isovalue of interest, v; is a vertex of S, and n the number of vertices.
Figure 2.5(a)[shows the vertex observed order of accuracy. VITK Marching Cubes, SnapMC
have nearly quadratic convergence rates, as shown in Figure Afront shows a zero-
order of accuracy though it presents very low error (in fact, the lowest in Figure .
This is due to the Catmull-Rom spline that is being used for surface approximation on
the voxelized grid. Since it has cubic-order of accuracy, even for large values of p it can
approximate with high precision the manufactured solution f. The next section shows
that this is due to a poor choice for a manufactured solution. Dellso implementation has
nonzero order of accuracy due to an outlier. Large values of ¢ causes bad approximations
of the manufactured solution.

The Macet and Dual Contouring curves suggest that the algorithms converge to a fixed
value. In fact, there was indeed a problem in the implementation that was affecting the
convergence of Macet and Dual Contouring (specifically, we found a hard-coded limit in the
number of steps in a root-finding procedure that was being triggered by the high resolution
of the volume). Once fixed, we obtain the results shown in Figure Macet and Afront
now have similar behavior in the observed order of accuracy of vertex position (Figure
2.6(a)). This is because both methods use high-order interpolation with splines, not linear
interpolation as assumed before (see Section .
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2.3.7.2 Normals
Section shows that one expects first-order of accuracy for normal computations.
We define the following approximation error using L., norm:

E, = Jnax. |0, | (2.11)
where 0, is the angle between the normal of the triangle o; and the normal of the point in
S closest to the centroid of ;. As shown in Figure VTK Marching Cubes, Afront,
SnapMC, and Dellso have good observed order of accuracy above 0.8. However, only VTK
Marching Cubes and Dellso present close proximity to linear. Macet and Dual Contouring
once again do not present a consistent order. Figure [2.6(b)| shows the results after fixing

both codes.

2.3.7.3 Area
Although there is no formal order of accuracy for area, one expects some convergence

for it (Section [2.2.3)). We define the following approximation error:

By, = |A(S) - A(5)) (2.12)

where A is the area function of a continuous or piecewise-linear surface. The results are
shown in Figure VTK Marching Cubes, Afront, and Dellso present second-order of
accuracy, as shown in Figure SnapMC accuracy is slightly better than quadratic due
to poor approximation for large h. The error dropped faster than quadratic when the grid
was refined for the first time. Macet and Dual Contouring exhibit once again unexpected
behavior. Unlike the previous time, the curves now seem to diverge when h is too small.

Once the bug is fixed, the convergence curves changes, and they become quadratic (Figure

2:6(0)).

2.3.7.4 Curvature
Section [2.2.4]shows that one expects zero-th order of accuracy for curvature computation.

We define the approximation error using L., norm:

Ep = max |K(vj) — K(v;)]| (2.13)

j=1-n

where K (v) is the Gaussian curvature at v € S and K (v) is the Gaussian curvature at

v € S. In this particular case where S is a sphere, K(v) = 1 for every v € S. The results
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are shown in Figure Dellso, Afront, and SnapMC are close to zeroth-order accuracy.
The curvature order of accuracy for VI'K Marching Cubes, on the other hand, diverges
significantly. This unexpected behavior might deserve further investigation which we leave
for future work. Although the curves shown in Figure for Macet and Dual Contouring
diverge, they change after fixing the code (Figure .

2.3.8 Detected Bugs

We were able to find and fix bugs in two of the implementations under verification,
namely, Macet and Dual Contouring, using as manufactured solution a sphere centered
at origin with radius 1. The new result curves are shown in Figure [2.6f The observed
order of accuracy for Dual Contouring is quite satisfactory for all manufactured solution.
In particular, the normal order of accuracy has the best rate among the methods. Macet
improved for its results for area. On the other hand, it still has some issues related to
normals, which perhaps indicates a need for more tests and verification. The new order of
accuracy for algebraic distance (Figure does not tell us much about the correctness
of the code because of the zero-th order of accuracy (same for Afront).

The zero-th order of accuracy might happen if the formal order of accuracy is zero-th
order, in which case the observed order matches the formal order. It might also happen due
to a poor choice for manufactured solution. If it is not complex enough, the implementation
being tested may approximate exactly the solution and therefore there is no error within
the approximation although another error source (truncation error, for instance) may show
up. The next section presents a detailed discussion concerning MMS.

Although we managed to fix the Macet convergence problem, we were not able to do
so in a way that preserves triangle quality. Two were the problems we found in the source
code, and we proposed two solutions for one of them. Table shows that we could not
find any combination that both fixed the convergence problem and preserved the triangle
quality simultaneously. This sort of behavior raises the question if there is a theoretical
problem that prevents both from being satisfied simultaneously, or it is just a matter of
finding a better algorithmic fix. In both cases, further study and subsequent tests must be

accomplished.
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Table 2.2. Table of results for Macet. Triangle quality versus convergence. We were not
able to find a solution that provides both triangle quality and convergence.
Bug #1 Bug #2 Quality Observed accuracy

No Fix No Fix Good Bad
Fix 1 No Fix Good Bad
Fix 1 Fixed Bad Good
Fix 2 No Fix Good Bad
Fix 2 Fixed Bad Good

2.4 Discussion

As we have shown, MMS is an effective means of diagnosing problems within the
algorithms and implementations of isosurface extraction algorithms. In this work, we have
considered the two — algorithm and implementation — as one unit as one cannot always
distinguish between the two if only limited information (source code and algorithmic details)
is available. In this section, we present a more thorough discussion of the use of MMS,

particularly for isosurface extraction.

2.4.1 On the Implementation and Use of MMS

One of the primary advantages of verifying simulation codes using MMS is that it is a
nonintrusive method. MMS treats the code being verified as a blackbox, and so can be easily
integrated into an existing test suite with little to no impact. However, MMS does not “see”
the implementation, and so provides little direct information about where a particular bug
might be when there is a discrepancy between the formal and observed orders of accuracy.
In our experience, there are three main places where mistakes can happen: (1) in the
design and construction of the manufactured solution, (2) in the coding of the algorithm
being tested, and (3) in the evaluation and interpretation of the results. Mistakes on the
evaluation of results have two flavors: misinterpretation or poor formal order of accuracy.
The first heavily depends on testers’ and experts’ experience and ability to judge what a
good result is. For example, should the normal observed order of accuracy for Afront and
Macet on Figure be considered linear (p = 0.80 and p = 0.75, respectively)? The
latter depends on a rigorous formal order of accuracy analysis of the algorithm considering
all sorts of errors; even round-off errors may be significant. In fact, we spent more time
on writing out rigorously the analysis of the formal order of accuracy and on searching

for possible sources of error than on the tests themselves. This again highlights the fact
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that verification using MMS is a process: it is typical to go back to the white board and
refine formal analyses before arriving at conclusive answers. Although the formal order
of accuracy analysis might be a painful process, the literature has many results that can
be promptly used. As a consequence, if one wishes to writes his own MC technique, for
instance, his only concern is to write a test which exploits the results available within the

literature.

2.4.2 On the Complexity of the Manufactured Solution

The complexity of the manufactured solution can have a large influence on the effec-
tiveness of verification. Suppose one chooses the manufactured solution to be f(z,y,2) =
x+y—+k, k constant, instead of a sphere. Since MC-based techniques use linear interpolation,
one expects the approximation to be exact regardless of any discretization parameter h, i.e.,
p = 0 (notice that the evaluated error might be nonzero, implying there is some other error
source that does not depend on h). Since such a function f is extremely simple, it might not
trigger bugs that would otherwise reduce the observed order of accuracy. In our experiments,
the (problematic) implementation of Dual Contouring achieved the formal order of accuracy
for this particularly simple function (p = 0).

Another example on the influence of manufactured solution arose with in our exami-
nation of Afront. Because Afront uses Catmull-Rom splines, some simple isosurfaces will
converge to within numerical error for very rough volumes, and the numerically observed
order of accuracy will be much lower than expected. With an implicit function whose
isosurfaces are spheres, we observed zero-th order of accuracy for Afront for algebraic
distance. With a modified implicit function that included transcendental functions, MMS
reveals that Afront does not have the expected convergence rate on the full interval, as
shown in Figure Notice that Macet has similar behavior. Additional tests are needed

to determine the source of this behavior within both codes.

2.4.3 On the Order of Accuracy
In this chapter, we have chosen to make our formal analysis as generic as possible to
accommodate as many implementations under verification as possible. Although we are
able to evaluate many codes using the same manufactured solution, when using MMS for a
particular code, it is best to exploit as much detail about the algorithm as necessary. If the

goal is to design a manufactured solution for verifying Marching Cubes-based techniques,
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f(zy,2) = 2% + y* + 22 + cos(Ax)? + cos(Ay)? + cos(Az)?, A is a constant. The
observed orders of accuracy for all implementations are relative to the voxel size h. We
expect third-order accuracy for Afront and Macet due to their use of high-order spline
approximations. Both have the expected convergence rate for all but the last two values.

the manufactured solution should exercise all possible cases. Additionally, particular aspects
of the manufactured solutions can be incorporated into the formal analysis. For example,
the analysis for Afront becomes much more complicated if curvatures are not constant over
the surface (in that case, its additional parameter n comes into play [I53], and accurately
bounding the triangle size is not practical).

The errors in Section 2.3.7] were measured at different locations on the mesh. Vertex
convergence and Gaussian curvature were measured on triangle vertices, while normals were
measured on the triangle centroid. More importantly, measurements performed at different
locations may have different orders of accuracy. For example, Macet has cubic formal
order of accuracy on vertices due to the spline approximation but quadratic formal order
of accuracy on centroids.

In Section we define the error using a pessimistic Lo, norm. This makes MMS
a very sensitive technique. In fact, it can detect subtle off-by-one mistakes in grid sizes
and interactions between node-centric and cell-centric reconstructions, even for simple
manufactured solutions. In these cases, it is important not to infer incorrect conclusions.

The numerical estimates for MMS should be performed on as wide a range of parameter
values as possible. In our tests, we used h € (0.001,1.0) and observed that both faulty

implementations performed appropriately for large values of h. Just as the implementations
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might only enter the asymptotic regime and achieve the formal convergences for small values
of h, it might be that (as we have experienced) bugs only manifest themselves on sufficiently

small values of h.

2.4.4 On the Limitations of the Test
MMS does not cover every aspect of verification for isosurface extraction. For example,
an important aspect we do not know how to test with MMS is the topological correctness of
an extracted mesh. This is challenging because there does not seem to be a good measure
of convergence for topological properties such as the Euler characteristic or Betti numbers.

A proper study of these issues is a natural avenue for future work.

2.5 Conclusion

Using a simple manufactured solution, we were able to reveal bugs that prevented
the convergence of some mesh properties of two publicly available isosurfacing codes. In
particular, the by-products of the verification process, namely a continuous refinement of
mathematical analysis of the algorithm’s behavior and a numerical comparison of the results
of the implementation against a known solution are valuable in their own right, and should
be published together with new algorithms. In the next chapter, we present a natural
extension of the verification of geometrical properties of isosurfaces, namely, the verification

of topological properties of isosurfaces.



CHAPTER 3

VERIFYING TOPOLOGY OF
ISOSURFACE EXTRACTION
ALGORITHMS

Visualization is an important aspect of current large-scale data analysis. As the users
of scientific software are not typically visualization experts, they might not be aware of
limitations and properties of the underlying algorithms and visualization techniques. As
visualization researchers and practitioners, it is our responsibility to ensure that these
limitations and properties are clearly stated and studied. Moreover, we should provide
mechanisms which attest to the correctness of visualization systems. Unfortunately, the
accuracy, reliability, and robustness of visualization algorithms and their implementations
have not in general fallen under such scrutiny as have other components of the scientific
computing pipeline.

We strive for verification tools which are both simple and effective. Simple verification
methods are less likely to have bugs themselves, and effective methods make it difficult for
bugs to hide. Alas, the mathematical properties of an algorithm and its implementation
are both constructs of fallible human beings, and so perfection is an unattainable goal;
there will always be the next bug. Verification is, fundamentally, a process, and when it
finds problems with an algorithm or its implementation, we can only claim that the new
implementation behaves more correctly than the old one. Nevertheless, the verification
process clarifies how the implementations fail or succeed.

In this chapter, we investigate isosurfacing algorithms and implementations and focus
on their topological properties. For brevity, we will use the general phrase “isosurfacing”
when we refer to both isosurfacing algorithms and their implementations. As a simple
example, the topology of the output of isosurface codes should match that of the level set
of the scalar field (as discussed in Section [3.2)). Broadly speaking, we use the method of

manufactured solutions (MMS) to check these properties. By manufacturing a model whose
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known behavior should be reproduced by the techniques under analysis, MMS can check
whether they meet expectations.

An important contribution of this work is the selection of significant topological char-
acteristics that can be verified by software methods. We use results from two fields in
computational topology, namely, digital topology and stratified Morse theory.

In summary, the main contributions of this work can be stated as follows:

1. In the spirit of verifiable visualization, we introduce a methodology for checking

topological properties of publicly and commercially available isosurfacing software.

2. We show how to adapt techniques from digital topology to yield simple and effective

verification tools for isosurfaces without boundaries.

3. We introduce a simple technique to compute the Euler characteristic of a level set of

a trilinearly interpolated scalar field. The technique relies on stratified Morse theory
and allows us to verify topological properties of isosurfaces with boundaries.

4. We propose a mechanism to manufacture isosurfaces with nontrivial topological prop-

erties, showing that this simple mechanism effectively stresses isosurfacing programs.

As input, we also assume a piecewise trilinear scalar field defined on a regular grid.
The verification process produces a comprehensive record of the desired properties of the
implementations, along with an objective assessment of whether these properties are sat-
isfied. This record improves the applicability of the technique and increases the value of
visualization. We present a set of results obtained using our method, and we report errors

in two publicly-available isosurface extraction codes.

3.1 Related Work

The literature that evaluates isosurface extraction techniques is enormous, with works

ranging from mesh quality [33] [153], 141], to performance [165] and accuracy analysis [131],
195]. In this section, we focus on methods that deal with topological issues that naturally

appear in isosurfacing.

3.1.1 Topology-aware Isosurfacing
Arguably the most popular isosurface extraction technique, Marching Cubes [100] (MC)
processes one grid cell at a time and uses the signs of each grid node (whether the scalar
field at the node is above or below the isovalue) to fit a triangular mesh that approximates

the isosurface within the cell. As no information besides the signs is taken into account,
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Marching Cubes cannot guarantee any topological equivalence between the triangulated
mesh and the original isosurface. In fact, the original Marching Cubes algorithm would
produce surfaces with “cracks,” caused by alternating vertex signs along a face bound-
ary, which lead to contradicting triangulations in neighboring cells [126]. Disambiguation
mechanisms can ensure crack-free surfaces, and many schemes have been proposed, such
as the one by Montani et al. [I17], domain tetrahedralization [16], preferred polarity [§],
gradient-based method [I80], and feature-based schemes [64]. The survey of Newman and
Yi has a comprehensive account [124]. Although disambiguation prevents cracks in the
output, it does not guarantee topological equivalence.

Topological equivalence between the resulting triangle mesh and the isosurface can
only be achieved with additional information about the underlying scalar field. Since
function values on grid nodes are typically the only information provided, a reconstruc-
tion kernel is assumed, of which trilinear reconstruction on regular hexahedral grids is
most popular [I125]. Nielson and Hamann, for example, use saddle points of the bilinear
interpolant on grid cell faces [126]. Their method cannot always reproduce the topology
of trilinear interpolation because there remain ambiguities internal to a grid cell: pairs
of nonhomeomorphic isosurfaces could be homeomorphic when restricted to the grid cell
faces. This problem has been recognized by Natarajan [122] and Chernyaev [21], leading
to new classification and triangulation schemes. This line of work has inspired many other
“topology-aware” triangulation methods, such as the reconstruction technique of Cignoni
et al. [22]. Subsequent work by Lopes and Brodlie [98] and Lewiner et al. [94] has finally
provided triangulation patterns covering all possible topological configurations of trilinear
functions, implicitly promising a crack-free surface. The topology of the level sets generated
by trilinear interpolation has been recently studied by Carr and Snoeyink [I7], and Carr
and Max [I5]. A discussion about these can be found in Section

3.1.2 Verifiable Visualization
Many of the false steps in the route from the original MC algorithm to the recent
homeomorphic solutions could have been avoided with a systematic procedure to verify
the algorithms and the corresponding implementations. Although the lack of verification
of visualization techniques and the corresponding software implementations has been a
long-term concern of the visualization community [55] [76], concrete proposals on verification

are relatively recent. Etiene et al. [46] were among the first in scientific visualization to
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propose a practical verification framework for geometrical properties of isosurfacing. Their
work is based on the method of manufactured solutions (MMS), a popular approach for
assessing numerical software [3]. We are interested in topological properties of isosurfacing,
and we also use MMS as a verification mechanism. As we will show in Section our
proposed technique discovered problems in popular software, supporting our assertion about
the value of a broader culture of verification in scientific visualization.

There have been significant theoretical investigations in computational topology dealing
with, for example, isosurface invariants, persistence, and stability [26], [36]. This body of
work is concerned with how to define and compute topological properties of computational
objects. We instead develop methods that stress topological properties of isosurfacing.
These goals are complementary. Computational topology tools for data analysis might offer
new properties which can be used for verification purposes, and verification tools can assess
the correctness of the computational topology implementations. Although the mechanism
we propose to compute topological invariants for piecewise smooth scalar fields is, to the
best of our knowledge, novel (see Section , our primary goal is to present a method

that developers can adapt to assess their own software.

3.2 Verifying Isosurface Topology

We now discuss strategies for verifying topological properties of isosurfacing techniques.
We start by observing that simply stating the desired properties of the implementation is
valuable. Consider a typical implementation of Marching Cubes. How would you debug it?
Without a small set of desired properties, we are mostly limited to inspecting the output by
explicitly exercising every case in the case table. The fifteen cases might not seem daunting,
but what if we suspect a bug in symmetry reduction? We now have 256 cases to check. Even
worse, what if the bug is in a combination of separate cases along neighboring cells? The
verification would grow to be at least as complicated as the original algorithm, and we would
just as likely make a mistake during the verification as we would in the implementation.
Therefore, we need properties that are simple to state, easy to check, and good at catching

bugs.

3.2.1 Simple Example
Although the previously mentioned problem with Marching Cubes [100] is well-known,

it is not immediately clear what topological properties fail to hold. For example, “the
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output of Marching Cubes cannot contain boundary curves” is not one such property, for
two reasons. First, some valid surfaces generated by Marching Cubes — such as with the
simple 22 case — do contain boundaries. Second, many incorrect outputs might not contain
any boundaries at all. The following might appear to be a good candidate property: “given
a positive vertex vy and a negative vertex vy, any path through the scalar field should
intersect the isosurface an odd number of times.” This property does capture the fact
that the triangle mesh should separate interior vertices from exterior vertices and seems
to isolate the problem with the cracks. Checking this property, on the other hand, and
even stating it precisely, is problematic. Geometrical algorithms for intersection tests are
notoriously brittle; for example, some paths might intersect the isosurface in degenerate
ways. A more promising approach comes from noticing that any such separating isosurface
has to be a piecewise-linear manifold, whose boundary must be a subset of the boundary of
the grid. This directly suggests that “the output of Marching Cubes must be a piecewise-
linear (PL) manifold whose boundaries are contained in the boundary of the grid.” This
property is simple to state and easy to test: the link of every interior vertex in a PL
manifold is topologically a circle, and the link of every boundary vertex is a line. The term
“consistency” has been used to describe problems with some algorithms [I124]. In this work,
we say that the output of an algorithm is consistent if it obeys the PL manifold property
above. By generating arbitrary grids and extracting isosurfaces with arbitrary isovalues,
the inconsistency of the original case table becomes mechanically checkable and instantly
apparent. Some modifications to the basic Marching Cubes table, such as using Nielson and
Hamann’s asymptotic decider [126], result in consistent implementations, and the outputs
pass the PL manifold checks (as we will show in Section [3.5).

The example we have presented above is a complete instance of the method of manufac-
tured solutions. We identify a property that the results should obey, run the implementa-
tions on inputs, and test whether the resulting outputs respect the properties. In the next
sections, we develop a verification method for algorithms to reproduce the topology of the
level sets of trilinear interpolation [21], 98, [125], thus completely eliminating any ambiguity.
In this work, we say the output is correct if it is homeomorphic to the corresponding
level set of the scalar field. This correctness property is simple to state, but developing
effective verification schemes that are powerful and simple to implement is more involved.
We will turn to invariants of topological spaces, in particular to Betti numbers and the

Euler characteristic, their relative strengths and weaknesses, and discuss how to robustly
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check their values. Figure [3.1] shows our pipeline to assess topological correctness and also

the chapter organization.

3.3 Mathematical Tools

This section describes the mathematical machinery used to derive the topology verifi-

cation tools. More specifically, we provide a summary of the results we need from digital
topology and stratified Morse theory. A detailed discussion on digital topology can be found
in the work by Stelldinger et al. [164], and Goresky and MacPherson give a comprehensive
presentation of stratified Morse theory [57].

In Section [3.3.1] we describe a method, based on digital topology, that operates on

manifold surfaces without boundaries and determines the Euler characteristic and Betti

Random trilinear field

Isosurface
Extraction

Topology
Evaluation

-
Digital Surfaces
&
Stratified Morse Theory
Tools
\_ %

Compute expected

Topologicall Invariants Compute mesh

Topological Invariants

_d . .
(ﬁo,ﬂlaﬁz,x)f}n < Compare invariants . (ﬂo,ﬁhﬁmx);nesh

Figure 3.1. Overview of our topology verification pipeline. First step, we generate a
random trilinear field and extract a random isosurface using the implementation under
verification. We then compute the expected topological invariants from the trilinear field
and compare them against the invariants obtained from the mesh.
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numbers of the level sets. A more general setting of surfaces with boundaries is handled
with tools derived from stratified Morse theory, detailed in Section The latter method
can only determine the Euler characteristic of the level set.

Let us start by recalling the definition and some properties of the Euler characteristic,
which we denote by x. For a compact 2-manifold M, x(M) =V — E+ F, where V, E, and
F are the number of vertices, edges, and faces of any finite cell decomposition of M. If M
is a connected orientable 2-manifold without boundary, x(M) = 2 — 2g(M), where g(M)
is the genus of M. The Euler characteristic may also be written as x(M) = Y"1 (—1)5;,
where §; are the Betti numbers: the rank of the ¢-th homology group of M. Intuitively, for
2-manifolds, Sy, 81, and B2 correspond to the number of connected components, holes, and
voids (regions of the space enclosed by the surface), respectively. If M has many distinct
connected components, that is, M = [JI_; M* and M!(MJ = ( for i # j, then y(M) =
S x(MP). More details about Betti numbers, the Euler characteristic, and homology
groups can be found in Edelsbrunner and Harer’s text [36]. The Euler characteristic and
the Betti numbers are topological invariants: two homeomorphic topological spaces will

have the same Euler characteristic and Betti numbers whenever these are well-defined.

3.3.1 Digital Topology
Let G be an n X n x n cubic regular grid with a scalar e(s) assigned to each vertex s of G
and t : R® — R be the piecewise trilinear interpolation function in G, that is, t(x) = t;(z),
where ¢; is the trilinear interpolant in the cubic cell ¢; containing x. Given a scalar value «,
the set of points satisfying ¢(z) = « is called the isosurface o of t. In what follows, t(z) = «
will be considered a compact, orientable 2-manifold without boundary. We say that a cubic
cell ¢; of G is unambiguous if the following two conditions hold simultaneously:

1. any two vertices s, and s in ¢; for which e(s,) < a and e(s,) < « are connected
by negative edges, i. e., a sequence of edges s,s1,5182,...,SESp in ¢; whose vertices
satisfy e(s;) < afori=1,...,k and

2. any two vertices s. and sy in ¢; for which e(s.) > « and e(sg) > a are connected by
positive edges, i. e., a sequence of edges s.s1, 8152, . .., S84 in ¢; whose vertices satisfy
e(s;) >afori=1,...,1.

In other words, a cell is unambiguous if all positive vertices form a single connected com-
ponent via the positive edges and, conversely, all negative vertices form a single connected

component by negative edges [I80]. If either property fails to hold, ¢; is called ambiguous.
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The top row in Figure [3.2] shows all possible unambiguous cases.

The geometric dual of G is called the vozel grid associated with G, denoted by Vg. More
specifically, each vertex s of G has a corresponding voxel v in Vg, each edge of G corresponds
to a face in Vg (and vice versa), and each cubic cell in G corresponds to a vertex in Vg, as
illustrated in Figure [3.3] Each voxel vs can also be seen as the Voronoi cell associated with
s. Scalars defined in the vertices of G can naturally be extended to voxels, thus ensuring a
single scalar value e(vs) to each voxel v, in Vg defined as e(s) = e(vs). As we shall show,
the voxel grid structure plays an important role when using digital topology to compute
topological invariants of a given isosurface. Before showing that relation, though, we need
a few more definitions.

Denote by G’ the (2n — 1) x (2n — 1) x (2n — 1) regular grid obtained from a refinement
of G. Vertices of G’ can be grouped in four distinct sets, denoted by O, F, E, C. The set O
contains the vertices of G’ that are also vertices of G. The sets F' and F contain the vertices

of G’ lying on the center of faces and edges of the voxel grid Vg, respectively. Finally, C

4 5 6 7 1(b) 2(b) 3(b) 4(b)

v W Ul AT e

s & W _ ﬁl o T t‘

Figure 3.2. An illustration of the relation between unambiguous isosurfaces of trilinear
interpolants and the corresponding digital surfaces. The top row shows all possible configu-
rations of the intersection of t = a with a cube ¢; for unambiguous configurations [98]. Each
red dot s; denotes a vertex with e(s;) < a. Each image on the top right is the complement
¢; of cases 1 to 4 on the left (cases 5 to 7 were omitted because the complement is identical
to the original cube up to symmetry). The middle row shows the volume reconstructed
by Majority Interpolation (MI) for configurations 1 to 7 (left) and the complements (right)
depicted in the top row. Bottom row shows the boundary of the volume reconstructed by the
MT algorithm (The role of faces that intersect ¢; is explained in the proof of Theorem.
Notice that all surfaces in the top and bottom rows are topological disks. For each cube
configuration, the boundary of each digital reconstruction (bottom row) has the same set
of positive/negative connected components as the unambiguous configurations (top row).
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Figure 3.3. The four distinct groups of vertices O, F, E,C, are depicted as black, blue,
green, and red points. They are the “Old”, “Face”, “Edge,” and “Corner” points of a voxel
region Vg (semitransparent cube), respectively. For the sake of clarity, we only show a few
points.

contains all vertices of V. Figure illustrates these sets.
Consider now the voxel grid Vg dual to the refined grid G’. Given a scalar value «, the
digital object O, is the subset of voxels v in Vg such that v € O, if at least one of the

criteria below are satisfied:

ve O and e(v) < a

v € F and both neighbors of v in O have scalars less than (or equal to) «
e v € F and at least 4 of the 8 neighbors of v in O U F' have scalars less than (or equal)

(67

v € C and at least 12 of the 26 neighbors of v in O U F'U E have scalars less than (or
equal)

The description above is called Majority Interpolation (MI) (Algorithm , and it allows us
to compute the voxels that belong to a digital object On. The middle row of Figure [3.2]
shows all possible cases for voxels picked by the MI algorithm (notice the correspondence
with the top row of the same figure).

The importance of O, is two-fold. First, the boundary surface of the union of the
voxels in O,, denoted by 00, and called a digital surface, is a 2-manifold (see the proof
by Stelldinger et al. [164]). Second, the genus of 90, can be computed directly from O,
using the algorithm proposed by Chen and Rong [20]. As the connected components of O,,
can also be easily computed and isolated, one can calculate the Euler characteristic of each

connected component of O, from the formula y = 2 — 2¢g and thus Sy, 81, and .
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Algorithm 2 Voxel selection using Majority Interpolation (MI).

MAJORITYINTERPOLATION(G, o)

1 © Let O, F, E and C be the subset of vertices
in G' as described in subsection

2 > Let A((s,*) be the set of neighbors of s € G’ in the
set x, where x = {O, F, E, C'}, with associate scalar
less than «

3 forsed

4 do if s € O or

5 s € F and |A(s,0)| =2

6 s € F and |A(s,0) + N

7 + N

8

9

or
(s, F)| >4 or
s € Cand |A(s,O) (s, F)+N(s, E)| > 12

then Select voxel vy

The voxel grid Vg described above allows us to compute topological invariants for any
digital surface d0,. However, we so far do not have any result relating 00, to the isosurface

t(x) = a. The next theorem provides the connection.

Theorem 3.3.1. Let G be an n X n X n rectilinear grid with scalars associated with each
vertex of G and t be the piecewise trilinear function defined on G, such that the isosurface
t(x) = a is a 2-manifold without boundary. If no cubic cell of G is ambiguous with respect

to t(z) = «, then 00, is homeomorphic to the isosurface t(x) = a.

Proof: Given a cube ¢; C G and an isosurface t = {x | t(z) = a}, let t; = t N ¢;.

Similarly, denote

801 = CZR3 ((aoa N ci) - 861) ’

where clgs denotes the closure operator. We note that 00; is a 2-manifold for all ¢ [147, [164].
There are two main parts to the proof presented here. For each i,

1. the 2-manifolds ¢; and 00O; are homeomorphic; and

2. both t; and 90O; cut the same edges and faces of ¢;.

Since t is trilinear, no level-set of ¢ can intersect an edge more than once. Hence, if ¢; is
not ambiguous, t; is exactly one of the cases 1 to 7 in the top row of Figure [98], either a
topological disk or the empty set. Each case in the top row of Figure is the unambiguous

input for the MI algorithm to produce the voxel reconstruction shown in the middle row,
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where the boundaries of each of these voxel reconstructions are shown in the bottom row.
By inspection, we can verify that the boundary of the digital reconstruction 90; (bottom
row of Figure is also a disk for all possible unambiguous cases and complement cases.
Hence, for each ¢, the 2-manifolds 9O; and t; are homeomorphic. Then, for each i, both 90O,
and t; cut the same set of edges and faces of ¢;. Again, we can verify this for all possible
1 by inspecting the top and bottom rows in Figure [3.2] respectively. Finally, we apply the
Pasting Lemma [120] across neighboring surfaces 00; and 00O; in order to establish the
homeomorphism between 00, and t. O

This proof provides a main ingredient for the verification method in Section Cru-
cially, we will show how to manufacture a complex solution that unambiguously crosses
every cubic cell of the grid. Since we have shown the conditions for which the digital
surfaces and the level sets are homeomorphic, any topological invariant will have to be the

same for both surfaces.

3.3.2 Stratified Morse Theory

The mathematical developments presented above allow us to compute the Betti numbers
of any isosurface of the piecewise trilinear interpolant. However, they require isosurfaces
without boundaries. In this section, we provide a mechanism to compute the Euler charac-
teristic of any regular isosurface of the piecewise trilinear interpolant through an analysis
based on critical points, which can be used to verify properties of isosurfaces with boundary
components. We will use some basic machinery from stratified Morse theory (SMT),
following the presentation of Goresky and MacPherson’s monograph [57].

Let f for now be a smooth function with isolated critical points p, where V f(p) = 0.
From classical Morse theory, the topology of two isosurfaces f(x) = a and f(z) = a-+e differs
only if the interval [o, a+ €] contains a critical value (f(p) is a critical value iff p is a critical
point). Moreover, if €, is a small neighborhood around p and L™ (p) and L™ (p) are the subset
of points on the boundary of ¢, satisfying f(z) < f(p) and f(z) > f(p), respectively, then
the topological change from the isosurface f(z) = f(p)—e to f(x) = f(p)+e is characterized
by removing L~ (p) and attaching Lt (p). Thus, changes in the Euler characteristic, denoted
by Ax(p), are given by:

Ax(p) = x(L*(p)) = x(L™ (p)). (3.1)

For a smooth function f, the number of negative eigenvalues of the Hessian matrix de-

termines the index of a critical point p, and the four cases give the following values for
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‘ min ‘ saddle-1 ‘ saddle-2 ‘ max
X(L~(p)) | © 2 0 2
2 0 2 0

The above formulation is straightforward but unfortunately cannot be directly applied to
functions appearing in either piecewise trilinear interpolations or isosurfaces with boundary,
both of which appear in some of the isosurfacing algorithms with guaranteed topology.
Trilinear interpolants are not smooth across the faces of grid cells, so the gradient is not well-
defined there. Identifying the critical points using smooth Morse theory is then problematic.
Although arguments based on smooth Morse theory have appeared in the literature [I83],
there are complications. For example, the scalar field in a node of the regular grid might
not have any partial derivatives. Although one can still argue about the intuitive concepts
of minima and maxima around a nondifferentiable point, configurations such as saddles are
more problematic, since their topological behavior is different depending on whether they
are on the boundary of the domain. It is important, then, to have a mathematical tool
which makes predictions regardless of the types of configurations, and SMT is one such
theory.

Intuitively, a stratification is a partition of a piecewise-smooth manifold such that each
subset, called a stratum, is either a set of discrete points or has a smooth structure. In a
regular grid with cubic cells, the stratification we propose will be formed by four sets (the
strata), each one a (possibly disconnected) manifold. The vertex set contains all vertices
of the grid. The edge set contains all edge interiors, the face set contains all face interiors,
and the cell set contains all cube interiors. We illustrate the concept for the 2D case in
Figure [3.4L The important property of the strata is that the level sets of f restricted to
each stratum are smooth (or lack any differential structure, as in the vertex-set). In SMT,
one applies standard Morse theory on each stratum, and then combines the partial results
appropriately.

The set of points with zero gradient (computed on each stratum), which SMT assumes
to be isolated, are called the critical points of the stratified Morse function. In addition,
every point in the vertex set is considered critical as well. One major difference between
SMT and the smooth theory is that some critical points do not actually change the topology
of the level sets. This is why considering all grid vertices as critical does not introduce any

practical problems: most grid vertices of typical scalar fields will be wvirtual critical points,
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Figure 3.4. An illustration of a piecewise-smooth immersed 2-manifold. The colormap
illustrates the value of each point of the scalar field. Notice that although the manifold itself
is not everywhere differentiable, each stratum is itself an open manifold that is differentiable.

i.e., points which do not change the Euler characteristic of the surface. Carr and Snoeyink
use a related concept (which they call “potential critical points”) in their state-machine
description of the topology of interpolants [17].

Let M be the stratified grid described above. It can be shown that if p is a point in a
d-dimensional stratum of M, it is always possible to find a (3 — d)-dimensional submanifold
of M (which might straddle many strata) that meets transversely the stratum containing
p, and whose intersection consists of only p (one way to think of this (3 — d)-manifold is as a
“topological orthogonal complement”). In this context, we can define a small neighborhood
T:(p) in the strata containing p and the lower tangential link T; (p) as the set of points
in the boundary of T (p) with scalar values less than that in p (see Figure . Similarly,
we can define the upper tangential link T} (p) as the set of points in the boundary of 7% (p)
with scalar value higher than that at p. Lower normal N (p) and upper normal N; (p)
links are analogous notions, but the lower and upper links are taken to be subsets of N.(p),
itself a subset of the (3 — d)-dimensional submanifold transverse to the stratum of p going

through p. The definitions above are needed in order to define the lower stratified link and

normal

l

o \R00RNNRN

Figure 3.5. Example of tangential and normal link.



40

upper stratified link, as follows: given T.(p), T} (p), Ne(p) and N, (p), the lower stratified
Morse link (and similarly for upper stratified link) is given by

L™ (p) = (T=(p) x N (p)) U (Ne(p) x T, (p))- (3.2)

These definitions allow us to classify critical points even in the nonsmooth scenario. They
let us compute topological changes with the same methodology used in the smooth case.
In other words, when a scalar value « crosses a critical value «; in a critical point p,
the topological change in the isosurface is characterized by removing L™ (p) and attaching
L*(p), affecting the Euler characteristic as defined in Equation (3.1]).

The remaining problem is how to determine x(L~(p)) and x(L*(p)). Recalling that
X(AU B) = x(A) + x(B) = x(AN B), x(A x B) = x(A)x(B), and x(Tt) = x(N) = 1 (we
are omitting the point p) we have:

X(L7) = x(Te x N UN: x Tp))

= X(N) +x(Ty) = x(T- x N "Nz x T} (3-3)

Now, we can define T, =T, UT,, T; NT, = () and similarly for N, and N, . Then, expand
the partitions and products, and distribute the intersections around the unions, noticing all

but one of intersections will be empty:
Tex Ny "N x T, =T UT; ) x N )N (N, UN, ) x T7)
— ((Ty x N7) U (T x Np))n
(Ne X T ) U(N, x T7)))

=N; xT}
Therefore:
X(T: x Ny N Ne xT;) = x(Np xT})
= x(Np)x(T7)
which gives the final result
X(L7) = x(Np) +x(Tp) = x(Np )x(T)- (3.4)

The same result is valid for x(L*), if we replace the superscript ‘=’ by ‘+’ in Equa-
tion (3.4). If T, or T} are one-dimensional, then we are done. If not, then we can recursively

apply the same equation to T, and T]-jr and look at progressively lower-dimensional strata
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until we reach T.(p) and N.(p) given by 1-disks. The lower and upper links for these
1-disks will always be discrete spaces with zero, one, or two points, for which x is simply
the cardinality of the set.

In some cases, the Euler characteristic of the lower and upper link might be equal.
Then, x(L~(p)) = x(L"(p)), and Ax(p) = 0. These cases correspond to the virtual critical
points mentioned above. Critical points in the interior of cubic cells are handled by the
smooth theory, since in that case the normal Morse data are O-dimensional. This implies
that the link will be an empty set with Euler characteristic zero. So, by Equation ,
X(L™) = x(T} ). Because the restriction of the scalar field to a grid edge is a linear function,
no critical point can appear there. As a result, the new cases are critical points occurring at
vertices or in the interior of faces of the grid. For a critical point p in a vertex, stratification
can be carried out recursively, using the edges of the cubes meeting in p as tangential and
normal submanifolds. Denoting by n;1, n2, 73 the number of vertices adjacent to p with

scalar value less than that of p in each Cartesian coordinate direction, Equation (3.4) gives:

X(L7(p)) = mu1 + myz + gz — g1 (ngg + ny3) (3.5)

X(LT(p)) can be computed similarly, but considering the number of neighbors of p in each
Cartesian direction with scalars higher than that of p.

If pis a critical point lying in a face r of a cube, we consider the face itself as the tangential
submanifold and the line segment 7 orthogonal to r through p the normal submanifold.
Recursively, the tangential submanifold can be further stratified in two 1-disks (tangential
and normal). Denote by n; the number of ends of r* with scalar value less than that of p.
Also, recalling that the critical point lying in the face r is necessarily a saddle, thus having

two face corners with scalar values less and two higher than that of p, Equation (3.4]) gives:
X(L™(p)) =m+2-2mn (3.6)

Analogously, we can compute x (LT (p)) = ny + 2 — 2n,, where n,, is the number of ends of
r+ with scalar value higher than that of p.

A similar analysis can be be carried out for every type of critical point, regardless of
whether the point belongs to the interior of a grid cell (and so would yield equally well to a
smooth Morse theory analysis), an interior face, a boundary face, or a vertex of any type.
The Euler characteristic x, of any isosurface with isovalue « is simply given as:

Xo= Y Ax(m) (3.7)

pieca
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where C,, is the set of critical points with critical values less than «.

It is worth mentioning once again that, to the best of our knowledge, no other work
has presented a scheme which provides such a simple mechanism for computing the Euler
characteristic of level sets of piecewise-smooth trilinear functions. Compare, for example,
the case analyses and state machines performed separately by Nielson [125], by Carr and
Snoeyink [17], and by Carr and Max [15]. In contrast, we can recover an (admittedly weaker)
topological invariant by a much simpler argument. In addition, this argument already
generalizes (trivially because of the stratification argument) to arbitrary dimensions, unlike

the other arguments in the literature.

3.4 Manufactured Solution Pipeline

We now put the pieces together and build a pipeline for topology verification using the re-
sults presented in Section In the following sections, the procedure called ISOSURFACING
refers to the isosurface extraction technique under verification. INVARIANTFROMMESH

computes topological invariants of a simplicial complex.

3.4.1 Consistency

As previously mentioned, MC-like algorithms which use disambiguation techniques are
expected to generate PL manifold isosurfaces no matter how complex the function sampled
in the vertices of the regular grid. In order to stress the consistency test, we generate
a random scalar field with values in the interval [—1,1] and extract the isosurface with
isovalue @ = 0 (which is all but guaranteed not to be a critical value) using a given
isosurfacing technique, subjecting the resulting triangle mesh to the consistency verification.
This process is repeated a large number of times, and if the implementation fails to produce
PL manifolds for all cases, then the counterexample provides a documented starting point

for debugging. If it passes the tests, we consider the implementation verified.

3.4.2 Verification Using Stratified Morse Theory
We can use the formulation described in Section to verify isosurfacing programs
which promise to match the topology of the trilinear interpolant. The SMT-based verifi-
cation procedure is summarized in Algorithm The algorithm has four main steps. A
random scalar field with node values in the interval [—1, 1] is initially created. Representing

the trilinear interpolation in a grid cell by f(z,y, 2) = azyz+bry+cxz+dyz+ex+ fy+gz+h,
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Algorithm 3 Overview of the method of manufactured solutions (MMS) using stratified
Morse theory. INVARIANTFROMCPS is computed using Equation . The method either
fails to match the expected topology, in which case G is provided as a counterexample, or
succeeds otherwise.

MMS-SMT(G)
1 > Let the input G be n X n X n rectilinear grid
2 for i + 1 to #tests
3 do G <+ randomly sampled n x n x n grid
CPs <— COMPUTECRITICALPOINTS(G)
if p € C'Ps is degenerate or
p is an internal saddle close to edges or faces
then GoTo
else K < ISOSURFACING(G)
(x")i < INVARIANTFROMCPsS(G)
10 (x*)i + INvARIANTFROMMESH (K )
11 Compare (x); and (x*);

© 00 N & O

the internal critical points are given by:

where A, = bc —ae, Ay =bd —af, and A, = ed — ag [130]. Critical points on faces of the
cubes are found by setting x,y, or z to either 0 or 1, and solving the quadratic equation. If
the solutions lie outside the unit cube [0,1]3, they are not considered critical points, since
they lie outside the domain of the cell. The scalar field is regenerated if any degenerate
critical point is detected (these can happen if either the random values in a cubic cell have,
by chance, the same value or when A,, Ay, or A, are zero). In order to avoid numerical
instabilities, we also regenerate the scalar field locally if any internal critical point lies too
close to the border of the domain (that is, to an edge or to a face of the cube).

The third step computes the Euler characteristic of a set of isosurfaces with random
isovalues in the interval [—1, 1] using the theory previously described, jointly with Equa-
tion (3.7). In the final step, the triangle mesh M approximating the isosurfaces is ex-
tracted using the algorithm under verification, and x(M) =V (M) — E(M)+ F(M), where
V(M),E(M), and F(M) are the number of vertices, edges, and triangles. If the Euler
characteristic computed from the mesh does not match the one calculated via Equation ,
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the verification fails. We carry out the process a number of times, and implementations

that pass the tests are less likely to contain bugs.

3.4.3 Verification Using Digital Topology

Algorithm [] shows the verification pipeline using the MI algorithm, and Figure [3.6
depicts the refinement process. Once again a random scalar field, with potentially many
ambiguous cubes, is initially generated in the vertices of a grid G. The algorithm illustrated
in Algorithm [4] is applied to refine G so as to generate a new grid G which does not have
ambiguous cells. If the maximum number of refinement is reached and ambiguous cells still
remain, then the process is restarted from scratch. Notice that cube subdivision does not
need to be uniform. For instance, each cube may be refined using a randomly placed new
node point or using t;’s critical points, and the result of the verification process still holds.
This is because Theorem only requires ¢; to be unambiguous. For simplicity, in this
work, we refine G uniformly doubling the grid resolution in each dimension.

Scalars are assigned to the new vertices of G (the ones not in G) by trilinearly in-
terpolating from scalars in G, thus ensuring that G and G have exactly the same scalar
field [125]. As all cubic cells in G are unambiguous, Theorem m guarantees the topology
of the digital surface dO,, obtained from G is equivalent to that of t(z) = a. Algorithm
INVARIANTFROMDS computes topological invariants of 00, using the scheme discussed in

Section In this context, INVARIANTFROMDS is the algorithm illustrated in Algo-

KL

g

Figure 3.6. Our manufactured solution is given by ¢(z) = a. G is depicted in solid lines
while G is shown in dashed lines. G is a uniform subdivision of G. The trilinear surfaces
t; are defined for each cube ¢; € G and resampled in c} c Q . The cubes in the center of G
have four maxima each (left) and thus induce complicated topology. The final isosurface
may have several tunnels and/or connected components even for coarse G (right).
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Algorithm 4 Overview of the method of manufactured solutions (MMS) using digital
topology. The method either fails to match the expected topology, in which case G is
provided as a counterexample, or succeeds otherwise.

MMS-DS(G)
1 > Let the input G be a n X n x n rectilinear grid
2 for i <+ 1 to #tests
3 do G + randomly sampled n x n x n grid
G < REFINEANDRESAMPLE(G)
if Q has ambiguous cubes
then GoTo
O + MAJORITYINTERPOLATION(G)
K < ISOSURFACING(G)
(B8, 87, B5)i < INVARIANTFROMDS(00)
10 (8%, Bk, BE); + INVARIANTFROMMESH(K)

11 Compare (4, 47, 83): and (5, 87, B5):

© 00 O Ut =

rithm 5| Surfaces with boundary are avoided by assigning the scalar value 1 to every vertex

in the boundary of G.

3.5 Experimental Results

In this section, we present the results of applying our topology verification methodology
to a number of different isosurfacing techniques, three of them with topological guarantees
with respect to trilinear interpolant. Specifically, the techniques are:

VTKMC [155] is the Visualization Toolkit (VTK) implementation of the Marching
Cubes algorithm with the implicit disambiguation scheme proposed by Montani et al.

[117]. Essentially, it separates positive vertices when a face saddle appears and assumes

Algorithm 5 A simple formula for genus computation.

GENUSFrROMDS(00,)

1 > Let 00, be a 2-manifold without boundary

2 > Let |A;| be the number of surface points with
exactly i neighbors.

3 > Let g be the surface genus

9 =1+ (26| + 2[26| — [25])/8

5 return g

B
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no tunnels exist inside a cube. The proposed scheme is topologically consistent, but it does
not reproduce the topology of the trilinear interpolant.

Marching Cubes with Edge Transformations or MACET [33] is a Marching Cubes-based
technique designed to generate triangle meshes with good quality. Quality is reached by
displacing active edges of the grid (edges intersected by the isosurface), both in normal and
tangential direction toward avoiding “sliver” intersections. Macet does not reproduce the
topology of the trilinear interpolant.

AFRONT [153] is an advancing-front method for isosurface extraction, remeshing, and
triangulation of point sets. It works by advancing triangles over an implicit surface. A sizing
function that takes curvature into account is used to adapt the triangle mesh to features of
the surface. AFRONT uses cubic spline reconstruction kernels to construct the scalar field
from a regular grid. The algorithm produces high-quality triangle meshes with bounded
Hausdorff error. As occurred with the VI'K and Macet implementations, Afront produces
consistent surfaces but, as expected, the results do not match the trilinear interpolant.

MATLAB® [103] is a high-level language for building codes that requires intensive nu-
merical computation. It has a number of features and among them an isosurface extraction
routine for volume data visualization. Unfortunately, MATLAB documentation does not
offer information on the particularities of the implemented isosurface extraction technique
(e.g., Marching Cubes, Delaunay-based, etc; consistent or correct).

SNAPMC [141] is a Marching Cubes variant which produces high-quality triangle meshes
from regular grids. The central idea is to extend the original lookup table to account for cases
where the isosurface passes exactly through the grid nodes. Specifically, a user-controlled
parameter dictates maximum distance for “snapping” the isosurface into the grid node. The
authors report an improvement in the minimum triangle angle when compared to previous
techniques.

MC33 was introduced by Chernyaev [2I] to solve ambiguities in the original MC. It
extends the Marching Cubes table from 15 to 33 cases to account for ambiguous cases and
to reproduce the topology of the trilinear interpolant inside each cube. The original table
was later modified to remove two redundant cases, which leads to 31 unique configurations.
Chernyaev’s MC solves face ambiguity using Nielsen and Hamann’s [126] asymptotic decider
and internal ambiguity by evaluating the bilinear function over a plane parallel to a face.
Additional points may be inserted to reproduce some configuration requiring subvoxel

accuracy. We use the implementation provided by Lewiner et al. [94].
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DEeLIso [32] is a Delaunay-based approach for isosurface extraction. It uses the inter-
section of the 3D Voronoi diagram and the desired surface to define a restricted Delaunay
triangulation. Moreover, it builds the restricted Delaunay triangulation without having to
compute the whole 3D Voronoi structure. DELISO has theoretical guarantees of homeomor-
phism and mesh quality.

MCFLOW is a proof-of-concept implementation of the algorithm described in Schei-
degger et al. [I51]. It works by successive cube subdivision until it has a simple edge
flow. A cube has a simple edge flow if it has only one minima and one mazxima. A
vertex s € ¢; is a minimum if all vertices s; € ¢; connected to it has t(s;) > t(s;).
Similarly, a vertex is a maximum if ¢(s;) < t(s;) for every neighbor vertex j. This property
guarantees that the Marching Cubes method will generate a triangle mesh homeomorphic
to the isosurface. After subdivision, the surfaces must be attached back together. The final
mesh is topologically correct with respect to the trilinear interpolant.

We believe that the implementation of any of these algorithms in full detail is nontrivial.
The results reported in the following section support this statement. They show that
coding isosurfacing algorithms is complex and error-prone, and they reinforce the need for
robust verification mechanisms. In what follows, we say that a mismatch occurs when
invariants computed from a verification procedure disagree with the invariants computed
from the isosurfacing technique. A mismatch does not necessarily mean an implementation
is incorrect, as we shall see later in this section. After discussions with the developers,

however, we did find that there were bugs in some of the implementations.

3.5.1 Topology Consistency
All implementations were subject to the consistency test (Section , resulting in the
outputs reported in the first column of Table We observed mismatches for DELISO,
SNAPMC (with nonzero snap value), and MATLAB implementations. Now, we detail these

results.

3.5.2 DEgLIso
We analyzed 50 cases where DELISO’s output mismatched the ground truth produced
by MMS, and we found that: 1) 28 cases had incorrect hole(s) in the mesh, 2) 15 cases
had missing triangle(s), and 3) 7 cases had duplicated vertices. These cases are illustrated

in Figure [3.7] The first problem is possibly due to the nonsmooth nature of the piecewise
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Table 3.1. Rate of invariant mismatches using the PL manifold property, digital surfaces,
and stratified Morse theory for 1000 randomly generated scalar fields (the lower the rate
the better). The invariants 1 and B are computed only if the output mesh is a 2-manifold
without boundary. We run correctness tests in all algorithms for completeness and to test
tightness of the theory: algorithms that are mot topology-preserving should fail these tests.
The high number of DELISO, SNAPMC, and MATLAB mismatches are explained in Section
Iindicates zero snap parameter and 2 indicates snap value of 0.3.

Consistency (%) Correctness (%)
. Digital Surfaces SMT
Disk Bo P1 Po X X

AFRONT 0.0 35.9 228 359 475 255
MATLAB 19.7 32.2 189 20.5 493 703
VTKMC 0.0 27.6 23.2 27.6 435 70.7
MACET 0.0 54.3 20.9 54.3 64.0 100.0
SNAPMC! 0.0 45.0 254 450 57.3 T72.0
SNAPMC? 53.7 41.6 173 23.1 871 74.0
MC33 0.0 24 1.1 24 34 5.4
DELIsO 19.1 244 0.1 200 372 332
MCFLoOwW 0.0 0.0 00 00 0.0 0.0

Figure 3.7. DELISO mismatch example. From left to right: holes in C° regions; single
missing triangle in a smooth region; duplicated vertex (the mesh around the duplicated
vertex is shown). These behaviors induce topology mismatches between the generated
mesh and the expected topology.

trilinear interpolant, since in all 28 cases, the holes appeared in the faces of the cubic grid.
It is important to recall that DELISO is designed to reproduce the topology of the trilinear
interpolant inside each grid cube, but the underlying algorithm requires the isosurface to
be C? continuous everywhere, which does not hold for the piecewise trilinear isosurface.
In practice, real-world datasets such as medical images may induce “smoother” piecewise
trilinear fields when compared to the extreme stressing from the random field, which should
reduce the incidence of such cases. Missing triangles, however, occurred in the interior of

cubic cells where the trilinear surface is smooth. Those problems deserve a deeper analysis,
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as one cannot say beforehand if the mismatches are caused by problems in the code or
numerical instability associated with the initial sampling, ray-surface intersection, and the

3D Delaunay triangulation construction.

3.5.3 SNapMC

Table shows that SNAPMC with nonzero snap value causes the mesh to be topolog-
ically inconsistent (Figure in more than 50% of the performed tests. The reason for
this behavior is in the heart of the technique: the snapping process causes geometrically
close vertices to be merged together which may eliminate connected components, or loops,
join connected components, or even create nonmanifold surfaces. This is why there was an
increase in the number of mismatches when compared with SNAPMC with zero snap value.
Since nonmanifold meshes are not desirable in many applications, the authors suggest a
postprocessing for fixing these topological issues, although no implementation or algorithm

for this postprocessing is provided.

3.5.4 MATLAB

MATLAB documentation does not specify the properties of the implemented isosurface
extraction technique. Consequently, it becomes hard to justify the results for the high
number of mismatches we see in Table For instance, Figure shows an example
of a nonmanifold mesh extracted using MATLAB. In that figure, the two highlighted edges
have more than two faces connected to them and the faces between these edges are coplanar.
Since we do not have enough information to explain this behavior, this might be the actual
expected behavior or an unexpected side effect. An advantage of our tests is the record of

the observed behavior of mesh topologies generated by MATLAB.

3.5.5 MACET
In our first tests, MACET failed in all consistency tests for a 5 x5 x 5 grid. An inspection
in the code revealed that the layer of cells in the boundary of the grid has not been traversed.
Once that bug was fixed, MACET started to produce PL manifold meshes and was successful

in the consistency test, as shown in Table

3.5.6 Topology Correctness
The verification tests described in Section and were applied to all algorithms,
although only MC33, DELISO, and MCFLOW were expected to generate meshes with the
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) SNAPMC ( ) MATLAB ) MCFLOW

Figure 3.8. Mismatches in topology and geometry. (a) SNAPMC generates nonmanifold
surfaces due to the snap process. (b) MATLAB generates some edges (red) that are shared
by more than two face. (¢) MCFLoOwbefore (left) and after (right) fixing a bug that causes
the code to produce the expected topology, but the wrong geometry.

same topology of the trilinear interpolant. Our tests consisted of one thousand random
fields generated in a rectilinear 5 x 5 x 5 grid G. The verification test using Digital Surfaces
demanded a compact, orientable, 2-manifold without boundary, so we set scalars to one
for grid vertices in the boundary of the grid. As stratified Morse theory supports surfaces
with boundary, no special treatment was employed in the boundary of G. We decided to
run these tests using all algorithms for completeness and also for testing the tightness of
the theory, which says that if the algorithms do not preserve the topology of the trilinear
interpolant, a mismatch should occur. Interestingly, with this test, we were able to find
another code mistake in MACET that prevented it from terminating safely when the SMT
procedure was applied. For all nontopology-preserving algorithms, there was a high number
of mismatches as expected.

One might think that the algorithms described in Algorithms [3] and [4] do not cover all
possible topology configurations because some scalar fields are eventually discarded (lines 7
and 6, respectively). This could happen due to the presence of ambiguous cells after refining
the input grid to the maximum tolerance (digital topology test) or critical points falling too
close to edges/faces of the cubic cells (SMT test). However, we can ensure that all possible
configurations for the trilinear interpolation were considered in the tests. Figure shows
the incidence of each possible configuration (including all ambiguous cases) for the trilinear
interpolation in the generated random fields. Dark bars correspond to the number of times a
specific case happens in the random field, and the light bars show how many of those cases
are accepted by our verification methodology, that is, the random field is not discarded.
Notice that no significant differences can be observed, implying that our rejection-sampling

method does not bias the case frequencies.
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Figure 3.9. The horizontal axis shows the case and subcase numbers for each of the 31
Marching Cubes configurations. The dark bars show the percentage of random fields that
fit a particular configuration. The light bars show the percentage of random fields that fit a
particular configuration and do not violate the assumptions of our manufactured solution.

Some configurations, such as 13 or 0, have low incidence rates and therefore might not
be sufficiently stressed during verification. While the trivial case 0 does not pose a challenge
for topology-preserving implementations, configuration 13 has 6 subcases whose level-sets
are fairly complicated [08] [125]. Fortunately, we can build random fields in a convenient
fashion by forcing a few cubes to represent a particular instance of the table, such as case
13, which produces more focused tests.

Table [3.1] shows statistics for all implementations. For MC33, the tests revealed a
problem with configuration 4, 6, and 13 of the table (ambiguous cases). Figure shows
the obtained and expected tiles for a cube. Contacting the author, we found that one of
the mismatches was due to a mistake when coding configuration 13 of the MC table. A
nonobvious algorithm detail that is not discussed in either Chernyaev’s or Lewiner’s work
is the problem of orientation in some of the cube configurations [92]. The case 13.5.2 shown
in Figure (right) is an example of one such configuration, where an additional criterion
is required to decide the tunnel orientation that is lacking in the original implementation
of MC33. This problem was easily detected by our framework, because the orientation
changes the mesh invariants, and a mismatch occurs.

DELISO presented a high percentage of 5y mismatches due to the mechanism used for
tracking connected components. It uses ray-surface intersection to sample a few points over
each connected component of the isosurface before extracting it. The number of rays is

a user-controlled parameter and its initial position and direction are randomly assigned.



Figure 3.10. MC33 mismatch example. From left to right: problem in the case 4.1.2, 6.1.2,
and 13.5.2 of Marching Cubes table (all are ambiguous). Each group of three pictures shows
the obtained, expected, and implicit surfaces. Our verification procedure can detect the
topological differences between the obtained and expected topologies, even for ambiguous
cases.

DELISO is likely to extract the biggest connected component and, occasionally, it misses
small components. It is important to say that the ray-sample based scheme tends to work
fine in practical applications where small surfaces are not present. The invariant mismatches
for 81 and By are computed only if no consistency mismatch happens.

For MCFLOW, we applied the verification framework systematically during its imple-
mentation/development. Obviously, many bugs were uncovered and fixed over the course
of its development. Since we are randomizing the piecewise trilinear field, we are likely
to cover all possible Marching Cubes entries and also different cube combinations. As
verification tests have been applied since the very beginning, all detectable bugs were
removed, resulting in no mismatches. The downside of MCFLOW, though, is that typical
bad quality triangles appearing in Marching Cubes become even worse in MCFLOW, because
cubes of different sizes are glued together. MCFLOW geometrical convergence is presented

in the supplementary material [I51].

3.6 Discussion and Limitations
3.6.1 Quality of Manufactured Solutions

Whenever one uses MMS, one very important question is that of the quality of the
manufactured solutions, since it reflects directly on the quality of the verification process.
Using random solutions, for which we compute the necessary invariants, naturally seems
to yield good results. However, our random solutions will almost always have nonidentical
values. This raises the issue of detecting and handling degenerate inputs, such as the ones
arising from quantization. We note that most implementations use techniques such as
Simulation of Simplicity [37] (for example, by arbitrarily breaking ties using node ordering)
to effectively keep the facade of nondegeneracy. However, we note that developing man-

ufactured solutions specifically to stress degeneracies is desirable when using verification
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tools during development. We decided against this since different implementations might
employ different strategies to handle degeneracies and our goal was to keep the presentation

sufficiently uniform.

3.6.2 Topology and Geometry

This work extends the work by Etiene et al. [46] toward including topology in the loop
of verification for isosurface techniques. The machinery presented herein combined with the
methodology for verifying geometry comprises a solid battery of tests able to stress most of
the existing isosurface extraction codes.

To illustrate this, we also submitted MC33 and MCFLOW techniques to the geometrical
test proposed by Etiene, as these codes have not been geometrically verified. While MC33
has geometrical behavior in agreement with Etiene’s approach, the results presented in
Section [3.5] show it does not pass the topological tests. On the other hand, after ensuring
that MCFLOW was successful regarding topological tests, we submitted it to the geometrical
analysis, which revealed problems. Figure shows an example of an output generated
in the early stages of development of MCFLOW before (left) and after (right) fixing the bug.
The topology matches the expected one (a topological sphere); nevertheless, the geometry

does not converge.

3.6.3 SMT vs. DT

The verification approach using digital surfaces generates detailed information about
the expected topology because it provides 5y, 81, and 2. However, verifying isosurfaces
with boundaries would require additional theoretical results, as the theory supporting
our verification algorithm is only valid for surfaces without boundary. In contrast, the
verification methodology using stratified Morse theory can handle surfaces with boundary.
However, SMT only provides information about the Euler characteristic, making it harder
to determine when the topological verification process fails. Another issue with SMT is that
if a code incorrectly introduces topological features so as to preserve y, then no failure will
be detected. For example, suppose the surface to be reconstructed is a torus, but the code
produces a torus plus three triangles, each one sharing two vertices with the other triangles
but not an edge. In this case, torus plus three “cycling” triangles also has xy = 0, exactly the
Euler characteristic of the single torus. In that case, notice that the digital surface-based

test would be able to detect the spurious three triangles by comparing Gy. Despite being less
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sensitive in theory, SMT-based verification revealed similar problems as the digital topology
tests have. We believe this effectiveness comes in part from the randomized nature of our

tests.

3.6.4 Implementation of SMT and DT

Verification tools should be as simple as possible while still revealing unexpected behav-
ior. The pipeline for geometric convergence is straightforward and thus much less error-
prone. This is mostly because the approach of Etiene et al. uses analytical manufactured
solutions to provide information about function value, gradients, area, and curvature. In
topology, on the other hand, we can manufacture only simple analytical solutions (e.g.,
a sphere, torus, double-torus, etc.) for which we know topological invariants. There are
no guarantees that these solutions will cover all cases of a trilinear interpolant inside a
cube. For this reason, we employ a random manufactured solution and must then compute
explicitly the topological invariants. A point which naturally arises in verification settings
is that the verification code is another program. How do we verify the verifier?

First, note that the implementation of either verifier is simpler than the isosurfacing
techniques under scrutiny. This reduces the chances of a bug impacting the original
verification. In addition, we can use the same strategy to check if the verification tools
are implemented correctly. For SMT, one may compute x for an isovalue that is greater
than any other in the grid. In such case, the verification tool should result in x = 0.
For DT, we can use the fact that Majority Interpolation always produces a 2-manifold.
Fortunately, this test reduces to check for two invalid cube configurations, as described by
Stelldinger et al. [164]. Obviously, there might remain bugs in the verification code. As
we have stated before, a mismatch between the expected invariants and the computed ones
indicates a problem somewhere in the pipeline; our experiments are empirical evidence of
the technique’s effectiveness in detecting implementation problems.

Another concern is the performance of the verification tools. In our experiments, the
invariant computation via SMT and DS is faster than any isosurface extraction presented in
this work, for most of the random grids. In some scenarios, DS might experience a slowdown
because it refines the grid in order to eliminate ambiguous cubes (the maximum number of
refinement is set to 4). Thus, both SMT and DS (after grid refinement) need to perform a
constant number of operations for each grid cube to determine the digital surface (DS) or

critical points (SMT). In this particular context, we highlight the recent developments on
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certifying algorithms, which produce both the output and an efficiently checkable certificate

of correctness [107].

3.6.5 Contour Trees

Contour trees [I8] are powerful structures to describe the evolution of level-sets of simply
connected domains. It normally assumes a simplicial complex as input, but there are
extensions to handle regular grids [I30]. Contour trees naturally provide (y, and they can
be extended to report 81 and (2. Hence, for any isovalue, we have information about all
Betti numbers, even for surfaces with boundaries. This fact renders contour trees a good
candidate for verification purposes. In fact, if an implementation is available, we encourage
its use so as to increase confidence in the algorithm’s behavior. However, the implementation
of a contour tree is more complicated than the techniques presented here. For regular-grids,
a divide-and-conquer approach can be used along with oracles representing the split and
join trees in the deepest level of the recursion, which is nontrivial. Also, implementing
the merging of the two trees to obtain the final contour tree is still involving and error-
prone. Our approach, on the other hand, is based on regular grid refinement and voxel
selection for the DT method and critical point computation and classification for the SMT
method. There are other tools, including contour trees, that could be used to assess topology
correctness of isosurface extraction algorithms, and an interesting experiment would be to
compare the number of mismatches found by each of these tools. Nevertheless, in this
work, we have focused on the approaches using SMT and DT because of their simplicity
and effectiveness in finding code mistakes in publicly available implementations. We believe
that the simpler methodologies we have presented here are more likely to be adopted during

development of visualization isosurfacing tools.

3.6.6 Topology of the Underlying Object
In this work, we are interested in how to effectively verify topological properties of codes
which employ trilinear interpolation. In particular, this means that our verification tools
will work for implementations other than marching methods (for example, Dellso is based on
Delaunay refinement). Nevertheless, in practice, the original scalar field will not be trilinear,
and algorithms which assume a trilinearly interpolated scalar field might not provide any
topological guarantee regarding the reconstructed object. Consider, for example, a piecewise

linear curve v built by walking through diagonals of adjacent cubes ¢; € G and define the
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distance field d(z) = min{||z — /|| such that 2/ € v}. The isosurface d(z) = « for any a > 0
is a single tube around . However, none of the implementations tested could successfully
reproduce the tubular structure for all o > 0. This is not particularly surprising, since the
trilinear interpolation from samples of d is quite different from the d. Figure [3.11| shows
a typical output produced by VITK Marching Cubes for the distance field d = «. Notice,
however, that this is not only an issue of sampling rate because if the tube keeps going
through the diagonals of cubic cells, VTK will not be able reproduce d = a yet. Also
recall that some structures cannot even be reproduced by trilinear interpolants, as when -
crosses diagonals of two parallel faces of a cubic cell, as described in [21] [I30]. The aspects
above are not errors in the codes but reflect software design choices that should be clearly

expressed to users of those visualization techniques.

3.6.7 Limitations
The theoretical guarantees supporting our manufactured solution rely on the trilinear
interpolant. If an interpolant other than trilinear is employed, then new results ensuring
homeomorphism (Theorem should be derived. The basic infrastructure we have

described here, however, should be appropriate as a starting point for the process.

3.7 Conclusion

In this chapter, we extended the framework presented in the previous chapter by in-
cluding topology into the verification cycle. We used machinery from digital topology and
stratified Morse theory to derive two verification tools that are simple and yet capable
of finding unexpected behavior and coding mistakes. We argue that researchers and de-
velopers should consider adopting verification as an integral part of the investigation and
development of scientific visualization techniques. Topological properties are as important

as geometric ones, and they deserve the same amount of attention. It is telling that the only

Figure 3.11. Isosurface extracted with VI'K Marching Cubes
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algorithm that passed all verification tests proposed here is the one that used the verification
procedures during its development. We believe this happened because topological properties

are particularly subtle and require an unusually large amount of care.



CHAPTER 4

PRACTICAL CONSIDERATIONS ON THE
TOPOLOGICAL CORRECTNESS OF
MARCHING CUBES 33

Isosurface extraction techniques can be divided into two classes according to their topo-
logical guarantees, namely, consistency or correctness. Topologically consistent techniques
produce surfaces that are piecewise-linear (PL) manifolds (i.e., crack-free surfaces), except
at the boundary of the domain. Topologically correct techniques produce a PL-manifold
homeomorphic to the surface induced by a given interpolant, such as the trilinear inter-
polant. Although there are many topologically consistent MC-based techniques, only a
handful are topologically correct. Marching Cubes 33 is one of the first MC-based algorithms
that aim to preserve the topology of the trilinear interpolant.

Topological correctness increases the complexity of isosurface extraction algorithms. The
many isosurface configurations possible for a given interpolant in a cubic grid makes both the
algorithm and its implementation a challenging task. As algorithms and implementations
become more complex, issues may be overlooked and remain hidden in the multitude of
(pseudo-) lines of code. Throughout years of research, it has been shown that some
supposedly topologically correct techniques, including MC33, have issues that prevent
correctness [45, 98, 124]. In particular, the work of Etiene et al. [45] shows that the
MC33 implementation by Lewiner et al. [93, 94] fails to produce topologically correct
isosurfaces. Alas, the authors do not provide an explanation for the problem source, let
alone fix the problem. They only provide cases that are mishandled by MC33 and a
conjecture regarding the root of one of the observed flaws. As we studied the MC33
implementation, we realized that the source of the problem was not merely implementation
bugs but the core ideas behind the implemented algorithm. In this work, we address issues
with Chernyaev’s original algorithm, its extension, and its implementation. Our work closes

an existing gap in the topological correctness of Marching Cubes 33.
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The subtleties involved in the correctness of isosurface extraction techniques are some-
times difficult to grasp in the ordinary paper medium. Both the geometry and topology
inside grid voxels are often complex and challenging to understand, study and replicate (e.g.,
see Figures 9 and 10 in [I125]). As an attempt to bridge this gap, we build on recent efforts
towards ezxecutable papers [82,[172]. Executable papers extend the traditional paper/digital
counterpart by including tools that allow readers to interact, explore, and verify experiments
more easily. In this chapter, we use executable papers to increase the reproducibility of our
results. Our contributions, which have a practical nature, are the following:

e We explain and address three algorithmic issues and one nontrivial implementation
issue with Marching Cubes 33. In particular, we solve an issue with the core MC33
disambiguation procedure that, as far as we know, has not been addressed elsewhere.
Hence, we close an existing gap in the MC33 literature.

e We make our results reproducible. CrowdLabs [I72] and Vistrails [49] are used to
create an executable paper that can reproduce the results shown in the following
sections.

e We provide datasets that can be used to verify the correctness of any topologically
correct isosurface extraction technique.

A by-product of this work is a thorough analysis of both the MC33 algorithm and its
implementation that can be used by anyone interested in the use or development of correct
isosurface extraction algorithms based on MC33. The results of our efforts are materialized
into an extended version of the MC33 implementation [93], henceforth called Corrected-
MC33 (C-MC33).

This work is organized as follows. Section[4.2|reviews key aspects related to the Marching
Cubes 33 algorithm. Section [4.3|explains how experiments that uncovered problems in both
MC33 algorithm and implementation were conducted. The details of the problems found
are shown in Section [d.4]and the solutions are presented in Section[d.5] Section [£.6]shows the

results of applying algorithm with different topological guarantees to real-world datasets.

4.1 Related Work
Soon after the publication of the MC algorithm, the quest for a topologically correct

isosurface extraction technique began. A number of approaches were proposed for dealing
with cracks, face ambiguity, and, lastly, interior ambiguity. Diirst [35] was the first to point

out that some MC cases allow multiple triangulations. A consequence of this is that MC
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does not always generate topologically consistent surfaces. This problem arises due to the
ambiguity problem; the Asymptotic Decider [126] provides a simple and elegant solution to
face ambiguity.

The ambiguity problem also occurs in the interior of a voxel. Natarajan [122] was the
first to address this problem by adding four new cases to the standard MC triangulation
table (subcases of cases 3, 4, 6, and 7). To find the correct subcases, the author proposed
a disambiguation procedure based on both face and interior critical points. Nevertheless,
the method misses the possibility of two interior critical points in case 7; consequently, the
proposed algorithm may generate a surface with the incorrect topology [15], [124].

Using a different approach, Chernyaev [2I] extended the original MC table to 33 cases
— hence MC33; this extension included all the subcases for each ambiguous case. He used
the Asymptotic Decider and a new interior ambiguity test to discriminate among subcases.
Lewiner et al. [94] provided a practical open-source implementation of the Chernyaev
algorithm. It is worth noting that some of the configurations shown in Chernyaev’s work [21]
may have been inspired by personal communication with Nielson [125]. Matveyev [105]
introduced an isosurface technique that is also based on an extended table and used the
intersections of isosurfaces with cube diagonals to determine the correct case.

Lopes and Brodlie [98] extended the tests proposed by Natarajan. The goals of the work
are threefold: i) extract topologically correct isosurfaces; ii) produce geometrically accurate
isosurface; iii) allow continuity with respect to changes in threshold and data. Nevertheless,
as in Natarajan’s work, the method missed the possibility of two interior critical points in
case 7 [98]. Cignoni et al. [23] also used the test proposed by Natarajan to reconstruct
topologically correct isosurfaces. The work of Theisel [168] uses Bézier patches to build G*
continuous isosurfaces that are topologically correct. Nielson [125] lists all possible cases
of a trilinear interpolant inside a cubic grid and builds a topologically correct MC using a
three stage algorithm for surface polygonization.

The past two decades have also produced a number of isosurface techniques that are
not MC-based. Dual Contouring [73] (DC) is a robust, crack-free, isosurface extraction
technique that works on the dual grid. Several improvements over Dual Contouring have
been proposed: Schaefer et al. [I49] address the issue of nonmanifold surfaces generated by
DC; Varadhan et al. [182] combine a signed distance field with DC to reconstruct details
such as thin features; and Zhang et al. [193] use DC for topology-preserving simplification of

isosurfaces. Note that none of these techniques are intended to preserve the topology of the
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trilinear interpolant. Dey and Levine [32] presented an algorithm that computes a Delaunay
triangulation based on the intersection between the isosurface and the 3D Voronoi diagram.
Another paradigm for isosurface extraction is the advancing front method. Advancing front
algorithms build a triangulated surface by progressively adding triangles to an implicit
surface [59], possibly creating several fronts that are simultaneously advanced one triangle
at a time. A number of extensions have been proposed for advancing front techniques
[153], 154 [159].

In the following sections, we focus on MC33. Note that, although many of the algorithms
presented previously are topologically consistent, only a handful of them are topologically
correct [21, B2]. Also, the implementation of a topologically correct isosurface extraction
algorithm is nontrivial. Hence, once the algorithm is implemented, topological guarantees,
both consistency and correctness, may be lost because of algorithm or implementation
issues, as shown in the work of Etiene et al. [45]. Although it has been ten years since
the publication of MC33, we believe it is important to correct a mistake in the algorithm
that has gone unnoticed since Chernyaev published it almost 20 years ago. In this work,
we aim to close an existing gap in the MC33 literature. Furthermore, we aim not only
to provide a correct algorithm but verify that our modified implementation is faithful to
the correct algorithm. We explain the issues and propose solutions for both algorithm
and implementation. We note that “MC33” may refer to either the Marching Cubes 33
algorithm presented in Chernyaev’s work [2I] or its implementation, as in Lewiner et al.

[94] depending on the context.

4.2 Preliminaries

In this section, we present the notation that will be used throughout this chapter. We
also briefly review the main concepts behind Chernyaev’s algorithm and the implementation
of Lewiner et al.. Let G be a rectilinear grid with scalar values associated with each vertex
z; €G. Let g: R3 — R be a piecewise-trilinear interpolation function defined on G. Given
an isovalue A, the isosurface Sy is defined as the set of points for which g(x) = A. For each
voxel v; C G, and x € v;, g(x) = g;(z) where g; is the trilinear interpolant inside the cubic
cell v;.

The output of MC-based algorithms is a piecewise-linear mesh M), and we say that an
algorithm and its implementation are topologically correct if M) is homeomorphic to S).

Without loss of generality, we assume that A = 0, and thus Sy, = Sy = S. We say that a
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point z is positive (negative) if g(x) > 0 (g(x) < 0).

Given a voxel v;, and a cutting-plane P parallel to one of v;’s faces, define f; : R? — R
as the bilinear interpolant along P. Note that f;(z) = g;(z) for z € P. Throughout the
text, we deal with a single voxel v; thus, we omit the subscript . We also assume that v

and P are defined in the domains [0, 1] and [0, 1]2, respectively.

4.2.1 Chernyaev’s MC33

The two pillars of Marching Cubes 33’s topological correctness are Nielson and Hamann’s
Asymptotic Decider and Chernyaev’s interior ambiguities test; together these solve the face
ambiguity and interior ambiguity problems in the Marching Cubes 33 algorithm. A face
ambiguity occurs when face vertices have alternating signs. That is, one face diagonal is
positive (both vertices are positive) and the other is negative (both vertices are negative).
In this case, the signs of the face vertices are insufficient to determine the correct way to
triangulate the isosurface. Similarly, an interior ambiguity occurs when the signs of the cube
vertices are insufficient to determine the correct surface triangulation, i.e., when multiple
triangulations are possible for the same cube configuration (see Figure .

The idea behind the Asymptotic Decider is to verify the face saddle sign and compare
it to the sign on the face vertices. A positive saddle means that the positive face vertices
are connected; consequently, the positive face vertices are separated if the face saddle point
is negative (see Figure |4.2)). To compute the face saddle sign, the saddle point position z.
must be computed [21]:

B A—D A_B 1)
e = \A+C-B-D'A+C—-B-D)’ '

where A, B, C, and D are the scalar values at the face vertices (see Figure 4.2)). The sign
\' V. | \

Figure 4.1. Left: case 4 ambiguity. The interior ambiguity test proposed by Chernyaev
is used choose the correct configuration.Right: face ambiguity. The Asymptotic Decider is
used to resolve the ambiguity.
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Figure 4.2. Asymptotic Decider (left) and MC33 interior ambiguity test for MC case 4
(right). The gray areas represent regions with positive scalar values, and the capital letters
represent the scalar value at each vertex. In the left image, we observe that f(z.) < 0,
where z. is the saddle point position. Positive areas will be connected if f(x.) > 0. The
orange squared plane shown in the right image represents the cutting-plane. The goal of the
MC33 algorithm is to find a cutting-plane such that the gray areas in the top and bottom
planes are joined in the interior.

of x. can easily be checked by replacing Equation (4.1]) into the bilinear interpolant:

AC — BD

flae) A+C—B-D

(4.2)

For an ambiguous face, assuming A, C positive and B and D negative, the denominator of
the Equation is always positive (see Figure . Then, the face ambiguity is solved
by evaluating the sign of the numerator of f(x.).

Due to the interior ambiguity, the Asymptotic Decider alone cannot solve the topological
correctness problem. Chernyaev uses the idea behind the Asymptotic Decider to solve the
interior ambiguity problem. The proposed test uses a sweeping cutting-plane to evaluate
the behavior of the trilinear interpolant inside the cube.

Given a cube with an ambiguous configuration, define the scalar values at the base and
top planes as Ao, By, Co, Do, and A;, By, C1, Dy, respectively (see Figure . Let Ag
and C1, the vertices to be tested, be positive. Observe that, although Ay and C; belong
to opposite cube faces, they can be connected through the cube interior. In other words,
there may exist a path from Ag to C; passing through the voxel interior for which all
points belonging to that path are positive. To determine whether Ay and Cy are connected,

Chernyaev begins by observing that the saddle points at the top and base cube faces are
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negative, i.e., Equation (4.2)) is negative at the bottom and top faces. Since the denominator

is positive, it follows that:

AgCo— BgDy < 0 (43)
AlCl—BlDl < 0. (4.4)

Then, if there is a plane cutting the cube such that its saddle point is positive, it means
that there is a positive area crossing the cube, i.e., the positive vertices are connected inside

the cube. In other words, the Chernyaev interior test searches for a ¢ for which:

This can be achieved by solving a second order equation in ¢. Replacing X; = Xo + (X1 —
Xo)t, X € {A,B,C,D} and t € [0,1] in Equation (4.5), one obtains a second order equation

in t:
F(t) = ACy— B/D, (4.6)
= at’ 4 bt +c, (4.7)

where a, b, and ¢ are functions of A, B,C, and D (see Appendix . Chernyaev concludes
that positive vertices Ag and Cp are connected through the cube interior if:

1. a <0

2. tmax = —b/2a € (0,1);

3. F(tmax) > 0.

If one of the above conditions fails, the positive vertices are separated.

4.2.2 MC33 of Lewiner et al.
Lewiner et al. [94] proposed a modification of Chernyaev’s interior test. In this modifi-
cation, they use an alternative method for computing the height plane ¢ for most ambiguous
cases. For cases 6, 7, 12, and 13, the authors compute the height ¢t based on the barycenter
of the end vertices of an edge e (a cube edge intersected by the isosurface) weighted by the
values of the scalar field on these vertices (see Lewiner et al. [04] for details). In practice,
the implementation uses:
T
Vo-W1’

where V) and V;j are the scalar values at the vertices of e. Note that this is equivalent to

talt (4.8)

finding the intersection point between the isosurface S and e. The authors keep the structure
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of the test proposed by Chernyaev, but condition (i) is not used, and condition (ii) is always
true because e is an edge intersected by the isosurface; consequently, t,; € (0,1).

Section [4.4] explains why the algorithm proposed by Chernyaev and its modified version
proposed by Lewiner et al. may fail to extract surfaces that are topologically correct. In
the following section, we present the tools we use to detect, debug, and reproduce the issues
found in the MC33 algorithm and its implementation. The full Marching Cubes table can
be found in the works of Chernyaev [21] and Lewiner et al. [94].

4.3 Experiments Setup

We begin by investigating the source of topological problems in the MC33 implemen-
tation [45]. The topological issues described were obtained by systematically stress-testing
the implementation over many topological configurations using the verification framework
proposed in Etiene et al. [45]. These authors’ algorithm can be summarized as follows. (I)
A random scalar field G is built by uniformly sampling scalar values in the range [—1, 1]
for each x; € G. (II) The expected topological invariants are obtained directly from S, i.e.,
without extracting the isosurface of interest. The topological invariants used are the Euler
characteristic x(S) and the Betti numbers i (.S). (III) The MC33 implementation is used to
extract a piecewise linear mesh M, and its invariants x (M) and S (M) are computed. (IV)
Lastly, the pairs of topological invariants {x(S), x(M)} and {8 (S), Bx(M)} are compared.
A mismatch indicates that a problem has occurred. Nevertheless, as the authors note, a
match between invariants does not imply a bug-free code [45]. The verification process
does not prove the absence of bugs but only increases one’s confidence in its correctness.
In this chapter, we exploit the fact that when the expected and obtained surfaces are not
homeomorphic, a counterexample is given in the form of a scalar field G and a mesh M.

We use this information to find and correct errors in MC33.

4.3.1 Reproducibility
As investigators in a mature field within the scientific visualization community, isosurface
extraction researchers have developed ways to help other researchers and practitioners repro-
duce their results. Published journal articles offer a first approximation of reproducibility.
Nevertheless, many details regarding implementation, source code, input data, and other
types of information are often omitted. Many, but not all, published techniques make

source code and input data freely available, and some are part of widely used visualization
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packages such as VTK [155]. This practice greatly increases the degree of reproducibility of
the work. We use CrowdLabs [172] and Vistrails [49, [I58] as a platform to achieve this goal.
To explore some of the results shown in this chapter, the reader may click on individual
figure captions and interact with the results via web browser. We have selected cases in
which MC33 fails and have provided the respective correct results. In addition, to allow
the reader to explore and study the results presented here, he or she can also download the
scalar fields and respective topological invariants x and 8 used for stress testing MC33. We
also provide 10000 Marching Cubes cases grids and randomly generated 5x5x5 grids [2§].

This dataset can be used to test any topologically correct isosurface extraction technique.

4.4 Issues with the MC33

In this section, we discuss specific issues regarding both the work of Chernyaev [21] and

Lewiner et al. [94]. Because Lewiner et al. extends Chernyaev’s work, the issues presented
in the latter are also part of the former. Specifically, we detail three algorithmic issues —
two in Chernyaev’s MC33 and one in Lewiner et al. — and one implementation issue. The
solutions for the issues raised here will be presented in the next section.

This section is organized as follows. First, we explain an algorithmic problem with the
MC33 core disambiguation procedure. This issue has not been discussed in the literature
to date. We then discuss a second algorithmic problem related to the triangulation table
and the extraction of nonmanifold meshes. Although this problem has been discussed in
the literature, we discuss it here for completeness and because we provide an alternative
solution to the problem (see Section. Next, we show a third algorithmic problem related
to the alternative approach proposed by Lewiner et al. for computing the height plane ¢.

Lastly, we show a nontrivial problem with the open-source implementation of the MC33.

4.4.1 Issuel — Case 13.5
Here, we show a problem with the core disambiguation procedure described in the work
of Chernyaev. To our knowledge, this problem has not been exposed or addressed in the
literature.
Case 13 is certainly the most complex table case; all faces are ambiguous, and six
subcases are possible. Four of the subcases can be discriminated by using Asymptotic De-
cider. The remaining cases 13.5.1 and 13.5.2 require Chernyaev’s MC33 interior ambiguity

resolution method. Recall that the MC33 approach discriminates between tunnels and


http://liscustodio.github.io/C_MC33/MarchingCubes_cases.zip
http://liscustodio.github.io/C_MC33/Closed_Surfaces.zip

67

isolated sheets by finding a cutting-plane for which positive nodes in the cube diagonal are
joined by points in the interior of the cubic cell (see Figure . Cases 13.5.1 and 13.5.2
differ precisely because the positive nodes in case 13.5.2 are connected to one another by
interior points, which is not true for 13.5.1 (see Figure .

Although it seems that the MC33 methodology described in Section [£.2] fits naturally
in this scenario, as it turns out this disambiguation procedure cannot be applied for 13.5.
Let us illustrate this point with an example. Figure shows the expected changes in the
sign of the saddle point z. as a function of the height ¢t. Mathematically

Figure 4.3. Challenging cases for Chernyave’s interior test: voxel diagonal has vertices
with opposite signs. Case 13.5.2 needs to be oriented correctly. One of the diagonal vertices
is isolated from all other vertices in the cube, while the other is faced by the tunnel. In
order to determine which vertex is isolated, we apply the same tool used for disambiguation
of case 13.5. For case 13.5.1, the orientation of the isosurface have no influence on the
topology.

Figure 4.4. Sign changes of the cutting-plane saddle point as a function of the height
t. The gray area depicts f(z) > 0. The black (resp. white) dots are face saddles with
f(ze) > 0 (resp. f(z.) < 0). From left to right, the four leftmost images show the sign
of the face saddle points changing from negative to positive to negative and to positive
again, respectively. The rightmost image shows the hyperbolic trajectory of the face saddle
position z.(t). The MC33 algorithm fails to track the saddle point sign because it ignores
the influence of the hyperbolic trajectory shown here.



At—Dt At_Bt
ct - s . 4.
7e(?) <At+ct—Bt—Dt At+ct—Bt—Dt> (4.9)

It follows that the face saddle value (and thus sign) is also defined as a function of ¢:

A,C; — B,D,
A1) = 4.10
f(ze(t)) A, +C B, - D, (4.10)
at? + bt + ¢

= . 4.11
A+ Cy— By — Dy ( )

As can be seen in Figure [£.4] from left to right, as the plane height ¢ changes, the value of
the face saddle f(x.(t)) changes from negative to positive to negative and to positive again.
These changes occur at the roots ¢; and to of f(z.(t)) and the asymptote of f(z.(t)), i.e.,
the root t, of the denominator of f (see left image in Figure . Thus, in total, three
sign changes will occur. The rightmost image in Figure [£.4] shows the path traced by the
face saddles z.(t); as t grows, there is a “jump” not only in the sign of f(z.(t)) but also in
the position of z.(t) . The change occurs precisely when the height ¢ passes through the
asymptote of f(x(t)).

Nevertheless, contrary to what is expected, the polynomial F(¢) (Equation (4.7))), used
by Chernyaev’s MC33 algorithm for tracking the sign of the saddle point, is a second order
equation in ¢ and thus can only allow for two sign changes. Therefore, the sign tracked by

the MC33 algorithm will not match the expected one at some point. Because the sign of

Figure 4.5. Counterexample to Chernyaev’s core disambiguation algorithm. The MC33
algorithm incorrectly interprets case 13.5.2 as 13.5.1. The left image shows the zero-level
set for case 13.5.2 and cutting-planes at heights ¢1, ¢, and t,, which correspond to both
roots of F'(t) and the asymptote of f(z.(t)), respectively. The blue ribbon shows the path
of the face saddle z.(t). The right image shows the changes in f(z.(t)) and F'(t). According
to the three criteria of the MC33 algorithm described in Section the upward-facing red
parabola defines the absence of a tunnel (condition (i)), which is incorrect. The blue curve,
on the other hand, shows the correct sign change.
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the saddle points is embedded in all three conditions for verifying the presence or absence
of tunnels, MC33 will eventually provide a wrong result.

The source of the problem can be tracked to Equations and and the as-
sumption that the denominator of f(z.) (Equation ) is positive. These assumptions
can easily be verified to be true for case 4, shown in Figure [£.2l However, for case 13,
the saddle points at the top and bottom planes have opposite signs, which contradicts
Equations and . In addition, the denominator A+ C — B — D of f(x.) changes its
sign at the asymptote of f(z.), contrary to the assumption that it is always positive. The
consequence of incorrectly tracking sign changes is that the three rules used for resolving
internal ambiguity will fail for some scalar fields. As an example, Figure shows a case
13.5.2 that will mistakenly be taken as case 13.5.1 because a > 0 characterizes multiples
surface sheets instead of a tunnel (see also Appendix . The problem is not only related
to the misclassification of case 13.5.2 as 13.5.1. We have also devised examples in which
case 13.5.1 is mistakenly taken as case 13.5.2 because the three criteria shown in Section [4.2
hold. Thus, Chernyaev’s interior ambiguity test does not always yield topologically correct

isosurfaces.

4.4.1.1 Tunnel orientation

A second minor issue regarding case 13.5.2 is the tunnel orientation of configuration
13.5.2. Once case 13.5.2 is determined, one needs to properly orient the tunnel inside
the voxel. Figure shows the two possibilities. Both vertices at the voxel diagonal are
separated from all other voxel vertices at the voxel faces (note that this is not the case

for other vertices). Nevertheless, either the positive or the negative vertex of the cube

Figure 4.6. Two possible tunnel orientations for case 13.5.2. The difference between them
is the location of the positive vertex.



70

diagonal will connect with vertices with the same sign through the voxel’s interior. This
will determine which vertex is isolated and which is facing the tunnel. This problem with
the tunnel orientation is not dealt with or mentioned in either the work of Chernyaev or
Lewiner et al. Nevertheless, it was briefly mentioned in Etiene et al. [45], but no solution to
the problem was provided. As the authors observed, the isosurface topology changes if the
tunnel orientation is incorrect; thus, it must be oriented correctly. Section provides

a solution for this issue.

4.4.2 Issue II — Nonmanifold Surfaces

The second algorithmic issue is related to the triangulation table used to build trian-
gulated surfaces. The choice of the correct MC configuration is only part of the process of
building an algorithm that preserves the topology of the piecewise-trilinear field. The voxel
triangulation table is, in fact, the determinant of the final mesh topology. Chernyaev’s orig-
inal triangulation table contains cases that lead to topologically inconsistent nonmanifold
meshes in scenarios such as the one shown in Figure [£.7] This problem occurs because the
MC33 triangulation table allows faces that are coplanar with the grid voxel faces. Hence,
when neighbor voxels have “tunnels” in their interiors, and share an ambiguous, coplanar

face, the end result will be nonmanifold edges, as shown in Figure £.7] Because this is

Figure 4.7. Top: Problem with Chernyaev’s triangulation table. The figure shows the
zero level-set of a 5 x 5 x 5 randomly generated piecewise-trilinear scalar field G (left)
and two meshes extracted using the MC33 (center) and C-MC33 (right) algorithms. The
isolated voxel patches, shown in green and yellow, represent the two voxels at the center
of GG. The face shared by two consecutive tunnels, shown in purple, generates nonmanifold
edges. After one subdivision at the critical point of this case, the problem no longer occurs,
and a valid manifold surface is obtained (right). Bottom: Triangulation for tunnels used by
Lewiner et al. [94]. Each has a face that is coplanar to the voxel faces, which may lead to
nonmanifold surfaces [2§].
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an issue with the triangulation table, any topologically correct algorithm whose table is
based on Chernyaev’s triangulation table will build nonmanifold surfaces whether or not
the algorithm can correctly distinguish the voxel cases.

This problem with Chernyaev’s work was pointed out by Lopes and Brodlie [98] (follow-
ing earlier work by Van Gelder and Wilhelms [52]) and is one of the motivations of Lopes
and Brodlie’s work on topologically correct and geometrically accurate isosurface extraction
algorithm [98]. Lopes and Brodlie aimed at improving the geometry quality of the trilinear
surface patches and consequently solving the topology problem. They achieve this goal by
adding points to the voxel faces as well as to the voxel interior. These extra points are
placed on the trilinear patch, which increases geometry accuracy. They are classified into
three different classes and used for extending the contour of the trilinear patch with the
voxel faces. The implementation of this technique becomes intricate and error-prone due

to the additional steps required for voxel triangulation.

4.4.3 Issue III — Cutting-plane Computation

The third algorithmic issue is related to an MC33 improvement proposed by Lewiner
et al. [94] for computing the plane height. The problem is that Equation may fail
to find an appropriate height that can correctly distinguish between tunnels and surface
sheets. Let us illustrate this point with an example. For the cases previously cited, two
of the conditions in the Chernyaev interior test described in Section [4.2] are not used. The
MC33 implementation does not use condition (i), and (ii) is always true because the edge
e will always have a positive and a negative vertex, implying that ¢, € (0,1). Thus, only
condition (iii) is used in retrieving the correct voxel topology. Suppose that the scalar field
in a given voxel defines a tunnel, as shown in the left image in Figure [4.8] In this case, to
retrieve the correct topology, F'(t) should be a downward-facing parabola with both roots
ti,ta € (0,1), t; < to, and typax € (t1,t2). In this case, F(t) > 0 only for t € (t1,t2); hence,
F(tmax) > 0, and a tunnel is retrieved according to condition (iii). The problem with the
alternative approach is that, as shown in Figure the solution to Equation (4.8) is not
guaranteed to fall within the (t1,t2) interval, which implies that the scalar field may be
incorrectly interpreted as containing two sheets of surface (shown on the right). In other

words, because t,; € (0,t1) and F(t,) < 0, condition (iii) verifies the absence of a tunnel.
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Figure 4.8. |Case 6 configuration. Left: the cut plane height ¢ = ¢,;; > 0 used in thel
[MC33 implementation. Middle: the test proposed in the MC33 algorithm provides a
|different ¢ = t;nax > 0, which reaches the tunnel. Right: the former test decides that thel
isosurface is homeomorphic to two discs whereas the correct answer is a tunnel [2§].|

4.4.4 Issue IV — Case 10

The last issue described in this work is related to the implementation of MC33. De-
velopers know all too well that code mistakes are inherent to software and the MC33
implementation is not an exception.

Due to a missing step in the implementation of the disambiguation algorithm, MC33
fails to correctly resolve the ambiguity in cases 10 and 12. Note that both cases have exactly
two ambiguous faces and the nodes in ambiguous faces can be either separated or joined.
In the discussion that follows, we restrict ourselves to case 10; case 12 is similar.

Let us assume that the ambiguous faces are located at the top and bottom of the voxel.
Then, following the algorithm proposed by Chernyaev [21], depending on the sign of the
face saddles and the interior ambiguity test, one can identify the correct case:

e Case 10.1.1: the positive nodes on both faces are separated, and the positive nodes

at cube diagonals are also separated;

e Case 10.1.2: the positive nodes on both faces are separated, and the positive nodes

at the cube diagonals are not;

e Case 10.2: the positive nodes are separated on the top and connected on the bottom

face.

The cases shown above assume that the positives nodes at the top face are separated.
But a similar reasoning must be applied to cases in which the positives nodes at the top
faces are joined. In the implementation of Lewiner et al., the possibility that the positive

nodes at the top faces are joined is missing.
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4.5 Solutions

We present solutions for the four issues raised in the previous section.

4.5.1 Issue I — Case 13.5

The disambiguation of case 13.5 has been approached in different ways for different
frameworks for isosurface extraction. For example, Nielson [125] presents an algorithm that
is concerned with connectivity along edges, faces and the voxel interior. The author presents
a detailed description of the behavior of the trilinear interpolant inside the cubic grid and
uses these descriptions to solve the ambiguity problem in the interior. Lopes and Brodlie
[98], on the other hand, use critical points in order to resolve some ambiguities. In this case,
the sign of the critical point determines the correct configuration. Unfortunately, the above
solutions do not seamlessly integrate with the MC33 algorithm. The core idea for solving
interior ambiguity, namely, that tunnels can be detected by a sweeping plane through the
voxel, is absent in both approaches. This motivated us to devise an alternative solution
that we feel follows the idea presented in the original algorithm.

We solve this problem by proposing a new interior test that uses the fact that case
13.5.2 requires both roots t; and t3 of f(x.(¢)) and the associated saddle points to be inside
the voxel. First, recall that z.(t) tracks the path of the face saddle inside the voxel as a
function of height plane at height ¢, and f(x.(t)) tracks the value (and thus the sign) of that
saddle. Both functions are illustrated in the rightmost image in Figure [£.4] in which the
black hyperbolic curves represent the path of z.(t) and the color of the circles represents
the sign of the face saddle at a given point (white and black circles are points with negative
and positive values, respectively). For case 13.5.2, the path traced by the curve z.(t) must
intersect the isosurface tunnel twice, once at each of the roots t; and t9 of f(x.(t)). This
implies that both saddle points z.(t1) and z.(¢2) must lie inside the voxel. This is not the
case for 13.5.1 because the face saddle can cross the middle sheet at most once. Therefore,
it suffices to verify that both roots of f(x.(t)) and its saddle points are inside the voxel.
Algorithm [6] illustrates our solution. Our algorithm is very simple, and does not require the
computation of the critical points of the trilinear interpolant, or a detailed description of
its behavior inside a voxel. Our algorithm uses the ideas proposed by Chernyaev in order
to fix an algorithmic problem in his work. We have implemented and tested this solution

on C-MC33 using over 10000 randomly generated instances of case 13.5.
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Algorithm 6 A simple disambiguation procedure for Case 13.5

CASE 13.5(a, b, ¢)
> Let ¢1 and 5 be the roots of at? + bt + ¢ (Equation (4.7))
1 if ¢1,t0 € (O, 1) and xc(tl), .%'C(tz) S (0, 1)2
2 then return Case 13.5.2
3 else return Case 13.5.1

4.5.1.1 Tunnel orientation

To find the correct tunnel orientation one can use the sign of any point between the
roots t; and to. This is because any point in this range must have the same sign as the
critical points of the trilinear interpolant for case 13.5.2. This can be seen in the black path
shown in the rightmost image in Figure [£.4] and from the graph in Figure All points
between roots t; and to will have the same sign, which is the sign of the “interior” of the
tunnel. Thus, we compare the sign of f((¢1 + t2)/2) with the sign of both vertices of the
voxel diagonal which is inside the tunnel. The tunnel will face the vertex with the same sign
as f((t1 + t2)/2), whereas the other vertex must be isolated from all cube vertices. Figure
illustrates this scenario. Note that Lopes and Brodlie [98] used the sign of the critical
points of the trilinear interpolant to retrieve the correct tunnel orientation. We provide a

different solution that fits nicely with Chernyaev’s framework.

Figure 4.9. Solution to the orientation problem. The black dots represent regions with
positive scalar values. The cutting-plane location is at (¢; +t2)/2. The sign of f((t1+t2)/2)
determines the tunnel orientation.
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4.5.2 Issue II — Nonmanifold Surfaces

A possible solution to this problem involves postprocessing the mesh to remove nonman-
ifold features. Although many works in the literature proposed methods for fixing meshes
(see Ju [72] for an excellent survey), these are mainly focused on retrieving a valid manifold
mesh. Topologically correct algorithms, on the other hand, require that the topology of
the trilinear interpolant be preserved. In addition, mesh repairing techniques may mask
implementation issues by fixing them, which complicates the verification process.

We use an alternative approach that does not require any changes in the MC33 tri-
angulation table. An interesting fact is that this problem has a low probability of being
generated at random and an even lower probability of occurring in real-world datasets. In
our tests, it occurred only once in 10000 randomly generated 5 x 5 x 5 scalar fields. Thus,
instead of implementing the approach of Lopes and Brodlie, we adopt a different solution
that takes advantage of the fact that this is a rare event.

Nonmanifold surfaces are created when two adjacent voxels that share an ambiguous
face have tunnels in the voxel interior. By splitting both voxels at the critical point of that
face, the face ambiguity is eliminated [15]. To simplify the algorithm, we split not only the
voxels sharing the ambiguous face but all faces in the volume slice that contains that face
(see Figure . Assuming an input of size n x n x n, each subdivision will add n? voxels to
the grid. Assuming that k subdivisions are required, kn? voxels will be added. In practice
k = O(1), and thus kn? = O(1)O(n?) = O(n?). This implies that the asymptotic size
of the dataset does not change. This subdivision adds the degree of freedom necessary to

eliminate the problem, making this implementation of the Marching Cubes 33 topologically
correct (see Figure [4.7)).

Figure 4.10. Grid refinement. The slice of voxels containing the offending configuration
is splitted into two slices.
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4.5.3 Issue III — Cutting-plane Computation
Because this is a problem with the alternative method used in Lewiner et al., the issue

can be avoided by replacing the use of ¢, with use of the originally proposed tpyax.

4.5.4 Issue IV — Case 10
Algorithm [7] illustrates the required steps for disambiguation on case 10. We fixed the
MC33 implementation by adding the lines 16-20, which in the original implementation were
replaced by the result case 10.1.1.

4.6 Experiments with Real-world Datasets

We now turn our attention to the practical impact of the topological correctness of the
trilinear interpolant. For real-world datasets, the vast majority of Marching Cubes cases
match the nonambiguous configurations, namely, 1, 2, 5, 8, and 9. This means that the

standard Marching Cubes will match the topology generated by both MC33 and C-MC33.

Algorithm 7 Algorithm for case 10 [28]

1: Positive nodes are denoted as n*
2: if n' are separated at top face then
3. if n™ are separated at bottom face then

4: if n* at voxel diagonals are separated then -
5: Case 10.1.1 »\;
6: else v

7 Case 10.1.2 . ‘

8: end if

9: else

10: Case 10.2 R

11:  endif

12: else

13:  if n* are separated at bottom face then
14: Case 10.2

15: _ else

16: if n* at voxel diagonals joined then._ .

17: Case 10.1.1 .

18: else N R—
19: Case 10.1.2 e B
20: end if -
21:  endif

22: end if
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Nevertheless, for some voxels, there will be topological differences in the approaches, which
may result in quite different meshes.

For the sake of completeness, in this section, we provide a qualitative analysis of these
differences. The aneurysm dataset shown in Figure [£.11] provides an example of the dif-
ferences. From left to right, Figure [A.11] shows meshes extracted with VTK Marching
Cubes, MC33, and C-MC33. The VTK implementation is based on the work of Montani
et al. [116] and does not have topological guarantees aside from consistency. These three
implementations can be viewed as three distinct ways of extracting the mesh topology.
Although only a handful of voxels differ among the implementations, for the aneurysm
dataset, the consequence is that the (largest) main brain artery appears quite different in
each interpretation. Because the dataset contains several thin features, subvoxel accuracy is
required to connect the pieces of the blood vessels. As shown in the inset images in Figure
[4.11] one voxel is sufficient to separate fairly large vessels.

VTK and MC33 generate more extra connected components (shown in purple) than

does C-MC33. Figure [4.12] shows the difference in the number of connected components

Figure 4.11. |Aneurysm dataset. From left to right, the displayed isosurfaces were
extracted using VITK, MC33, and C-MC33, respectively. We show the main brain
artery component in yellow and the extra connected components in purple. From the
images shown, it is clear that the purple components should be part of the main branch.
Nevertheless, due to the implicit disambiguation in VT'K and the issues in MC33, the final
isosurface contains multiple components (left and middle figures). The isosurface generated
using C-MC33 is shown on the right [28].
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Figure 4.12. The left plot shows the difference between the number of connected
components extracted by VTK implementation of Marching Cubes and the number of
connected components extracted by our C-MC33 implementation. The right plot shows
the difference in the number of connected components but between the MC33 and C-MC33
implementations. Negative values indicate that the C-MC33 implementation generated
more connected components. Clearly, VTK generates more components that C-MC33.
MC33 generates more components for most of the isovalues.

generated by VITK and C-MC33 (left) and by MC33 and C-MC33 (right) as a function of
the isovalue for the aneurysm dataset. Clearly, VIK produces substantially more connected
components than C-MC33 (up to 2400 more components). The differences between MC33
and C-MC33 are not as large, although they are sufficient to disconnect important artery
segments. In this example, MC33 generates more connected components than C-MC33 for
most isovalues. The aneurysm dataset shows that changes in the topology of some voxels
can impact the final surface. In this particular example, it is reasonable to assume that
the blood vessels form a single connected component and thus that the dataset contains
as few connected components as possible. Using this criterion, C-MC33 shows the best
performance for most isovalues. We emphasize that the “importance” of the differences
in the number of connected components ought to be measured. For instance, although in
general C-MC33 produced fewer connected components, for some isovalues the number of
components extracted with C-MC33 was greater than the number extracted using MC33.
As it turns out, this is due to the presence of pieces of small components disconnected
from the main artery. However, because small isolated components do not disconnect large
portions of the datasets, contrary to what is shown in Figure MC33 and C-MC33
could be considered only “slightly” different. A thorough study of impact of the different

approaches for extracting mesh topology is desirable but is beyond the scope of this work.
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The second problem is due to the extraction of nonmanifold features. The issue explained
in Section also pertains to real-world datasets. Figure shows an example of a
medical dataset in which the output of MC33 implementation is a nonmanifold surface.
We have observed the same problem for certain isovalues of other commonly used datasets,
such as the backpack and bonsai datasets. Nevertheless, in our experiments, this problem
occurred rarely in the datasets tested: on average, one case of nonmanifold edges was found

per 107 evaluated voxels.

4.7 Conclusion

In this chapter, we discussed in detail three issues with the Marching Cubes 33 algorithm
and one nontrivial issue with its implementation. We presented solutions for the issues raised
and implement them into C-MC33, a topologically correct version of MC33. In addition,
we made our results reproducible so that the reader can easily study, explore, and use the

results presented here for his or her own purpose.

Figure 4.13. Skull dataset. The image shows a progressive zoom-in into the dataset in
order to reveal nonmanifold edges. The face containing the nonmanifold edges is highlighted
in purple. The rightmost image is an isolated version of the case shown in the dataset, with
a slightly different geometry for the sake of clarity. A nonmanifold edge appeared six times
in total for 50 distinct isosurfaces.



CHAPTER 5

VERIFYING DIRECT VOLUME
RENDERING ALGORITHM

In the last several decades, the visualization and graphics communities have developed a
wide range of volume rendering techniques. As they are used in several different disciplines
of science, and thus form a basis for new scientific insights, it is essential to assess their
reliability and identify errors. Furthermore, the increasing complexity of volume rendering
algorithms makes the correctness of the algorithm itself as well as its potentially error-prone
implementations complementary and equally important issues. Being that volume rendering
is essential in areas such as medical imaging, where accuracy and precision play a crucial
role, a formal methodology for assessing correctness is highly desirable [76l 137]. While
verification has been widely adopted in many different branches of computer science — see
model checking [25], fuzzing [56], and convergence analysis [146] — there has not been signifi-
cant work accomplished on a formalized praxis for asserting the correctness of visualization
techniques. We use the word verification in the same sense as Babuska and Oden [3]:
“verification is the process of determining if a computational model, and its corresponding
numerical solution, obtained by discretizing the mathematical model (with corresponding
exact solution) of a physical event, and the code implementing the computational model can
be used to represent the mathematical model of the event with sufficient accuracy” [3]. The
presented methodology is based on order of accuracy and convergence analysis [146] which
we can apply after deriving the expected behavior of the algorithms under observation.

To allow the verification of volume rendering algorithms, we start with an analysis
of the volume rendering integral and the most common discretization of this continuous
model — Riemman summation. This analysis gives us insight into the expected behavior
of the observed algorithms, which is essential to perform verification [67]. In this sense,
our main assumption, serving as a foundation for the proposed verification approach, is
that discretization errors of the implementations under verification should behave as the

errors introduced by the discretization of the volume rendering integral. Based on this,
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we can mathematically derive the expected behavior from the discretization of the volume
rendering integral and verify existing implementations through convergence analysis by
comparing their actual behavior to the expected behavior. Based on the results of this
comparison, we can assess the correctness of the implementation under verification. To get
further insights about deviations from the expected behavior, we present an investigation
of the sensitivity of this method. We can demonstrate that our methodology is capable of
increasing the confidence in volume rendering algorithms. To our knowledge, the proposed
approach is the first step towards the verification of DVR algorithms. Thus, it can be seen
as an important contribution towards a formal verification methodology of volume rendering
techniques [I43]. Our main contributions are:

e we derive the theoretical foundations necessary for verifying volume rendering with
order of accuracy and convergence analysis. We analyze the volume rendering integral
and its (common) discretization using Riemann summation to derive an algorithm’s
expected behavior when being subject to parameter changes;

e we explain how to exploit these theoretical foundations to perform a practical verifi-
cation of implemented volume rendering algorithms, such that it can be easily used
for the verification of existing volume rendering frameworks;

e we discuss the limitations of the proposed concepts by analyzing frequently occurring
errors and by documenting those errors we could identify when applying the presented

methodology to two widely used volume rendering frameworks, VTK [155] and Voreen

[113] (see Figure [5.1)).

5.1 Related Work

Critical decisions in fields such as medical imaging often rely on images produced

by volume rendering algorithms, where it is of utmost importance that the results are
correct [34]. The multitude of algorithms components and their interactions make this
guarantee a challenge. As a consequence, many authors focus on specific aspects of the
problem such as numerical aspects of the evaluation of the volume rendering integral,
shading, transfer functions, and interpolation schemes. The quality of volume rendering
has always been of central interest to the community, and relying on visual inspection is
a common practice. Meissner et al. [I11] evaluate volume rendering techniques using the
human visual system as a reference while, more recently, Smelyanskiy et al. [I61] present a

domain expert guided comparison scheme.
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While those approaches are valuable, the need for a more systematic evaluation is
discussed in several papers [55, [70, [71), [76]. See Pommert and Hoéhne [137, 138] for a
survey.

Among several aspects to consider in the correctness of volume rendering algorithms, one
of the most important is the approximation of the volume rendering integral. The solution
with linearly interpolated attributes is presented by Williams and Max [I88], with further
discussions on its numerical stability by Williams et al. [I89]. Interpolant approximations
and errors [39, [114] 115 128], gradient computation [I79] and opacity correction [90] are
also the subject of analysis with regard to numerical accuracy. The idea of pre-integration
enables high-quality, accurate and efficient algorithms using graphics hardware [42] [85]
145]. Similarly, VTK currently uses partial pre-integration, in particular for unstructured
grids [I19]. Note that although there has been work on high-accuracy volume rendering — to
the best of our knowledge — none of these approaches attempted to evaluate the convergence
rate of the standard discretization process of the volume rendering integral.

The use of a verification framework has only recently been discussed in scientific vi-
sualization, despite the vast literature on verification in computer science. Globus and
Uselton [55] first pointed out the need to verify not only visualization algorithms but also
their implementations, and Kirby and Silva suggested a research program around verifica-
tion [76]. The verification of isosurface algorithms was discussed by Etiene et al. [45] [46],
where a systematic evaluation identified and corrected problems in several implementations
of isosurface extraction techniques. Zheng et al. [I94] address CT reconstruction and
interpolation errors in direct volume rendering algorithms using a verifiable framework
based on projection errors. In contrast, our work focuses on the verification of the final

image produced through direct volume rendering.

5.2 Verification

Before presenting our verification procedure, let us consider four of the techniques used

for code verification in computational science [146]: expert judgment, a procedure in which
a field expert determines if the output of an implementation is correct by evaluating the
results; error quantification, which is the quantification of the discretization errors when
compared to an analytical solution, a benchmark solution or some ground-truth; convergence
analysis, a procedure in which one evaluates if the discretization errors converge to zero as

a function of some parameter; and order of accuracy, a procedure where one evaluates if
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the discretization errors decrease according to the expected rate. In this list, the expert
judgment is the least rigorous test, followed by error quantification and convergence analysis.
Order of accuracy is widely recognized as the most rigorous code verification tool [3, 80,
143, [146]. In this chapter, we focus on the latter two methods, namely, convergence analysis
and order of accuracy. Before we dive into these methods, let us first consider some of the
limitation of the expert analysis and error quantification.

In visualization, expert analysis and error quantification are, to the best of our knowl-
edge, the only two verification tools previously employed for verification of volume rendering
techniques [I11) 114, 161]. Whereas it is easy to envision situations where an expert
may fail to predict a code mistake, it is more difficult to see when error quantification
fails. We devise the following experiment to understand potential limitations of both
approaches. We artificially introduced a code mistake in a volume rendering implemen-
tation: the trilinear interpolation was changed from p(z,y, z) = Azyz+ Bxy(l — z)+... to
p(x,y,z) = Azyz+ Azy(l — z)+.... We then used this implementation to render an image
whose analytical solution is known. Finally, we compute the maximum error between the
rendered and the analytical solution, which in this case is 3.6 x 10~3. How can one decide if
this value is good enough? Does the sampling distance d or the input scalar field s(x,y, z)
give us enough data to make an informed decision? In this particular case, the correct
interpolant generates an image with maximum error of 3.4 x 1073 the two images are very
similar by this metric. Also, it may be challenging, even for an expert, to notice such a small
deviation, as shown in Figure |5.2l On top of this, the maximum errors for another code
mistake could be even smaller. (We point out that this particular case can be uncovered
by “playing around” with the data or other ad hoc methods. The goal is to show that
error quantification can also fail to predict code mistakes, even for a severe bug.) On the
other hand, we will have enough information to make such a decision if one observes how
errors behave when input parameters change instead of quantifying them from one image.
The convergence and order of accuracy tests work in this way, and they are the focus of
this chapter. We advocate the use of convergence and order of accuracy verification not
as a replacement but as an extension of the current testing pipeline. Note that these are
not the only approaches for assessing correctness of computer code. As mentioned before,
verification is well-developed in computer science [25] 147, [56], [192].

We apply verification in the spirit of Babuska and Oden’s procedure, which we summa-

rize in Figure [3]. It starts with a mathematical evaluation of the expected convergence
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Figure 5.2. Expert analysis and error quantification may fail to detect problems. Left:
the volume rendering of the torso dataset using an incorrect trilinear interpolation. Middle:
same dataset with the correct interpolation. Right: difference between the two images.
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Our verification procedure works by evaluating discretization error during

Figure 5.3.
refinement of one of three sampling parameters.

of the volume rendering integral (Section. The result of this step is an articulation of the
asymptotic error according to some discretization parameter (step size, dataset size, or pixel
size). Then, we use the volume rendering implementation under verification to generate a
sequence of images by successive refinement of one of the discretization parameters. Next, we
compute the observed discretization errors by comparing these images against a reference

— an analytical solution, if one is available, or one of the rendered images. Finally, we
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compare the sequence of observed outputs against expected errors to evaluate if expected

and observed convergence match (Sections and .

5.3 Discretization Errors

In this section, we present the mathematical model used in volume rendering algorithms
and its expected behavior, which we write in terms of the errors involved in each discretization
step. Let us assume the well-known low albedo emission plus absorption model [106]. The

volume rendering integral (VRI) I, as described by Engel et al. [42], is:

/OD C(s(x(N))7T(s(x(N))) x exp (— /0A T(s(x()\’)))d)\’> a, (5.1

where D is the ray length, C(s(x()))) is the reflected/emitted light, 7(s(x()))) is the light
extinction coefficient, and s(x(A)) is the scalar value at position x in the ray parameterized
by A. There are three natural ways to discretize the equation. We will generate progressively
denser ray sampling (by refining the integration step size), progressively larger datasets (by
refining the size of the vozel in the dataset), and progressively higher-resolution images
(by refining the pizel size in the final image). Each of these three variables will introduce
errors that may appear in a volume rendering system, where the first two of these variables
specifically impact the volume rendering integration (per pixel/ray). In the following sec-
tion, we discretize the VRI using the most common approximation in literature — Riemann

summation.

5.3.1 Errors Due to Step Size Refinement
In this section, we are interested in the errors generated by successive ray step refine-
ments (see Figure [5.4). Equation (5.1]) is commonly discretized using traditional Riemann

summation for numerical integration:

D
/0 F(s(x(\))dA = Z F(s(x(id)))d + O(d), (5.2)

where n is the number of subintervals and d = D/n. The proof of linear convergence follows
from Taylor expansion of the integrand over small intervals d. Other methods are available
and they provide different convergence rates. For instance, the Trapezoidal Rule is a 2nd
order method on the integral of f.

In the case of the VRI, we approximate not only the outer integral but also the integrand

T(s(x(N)) = exp( fo ))dN ) Moreover, T requires two approximations: e*M)
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Figure 5.4. Step size refinement. The figure shows an isosurface of a trilinear function
defined on the volume.

and the inner integral. Before we derive the convergence rate for the VRI, let us first
evaluate the convergence of 1. Throughout the text, we assume that all transfer functions
are smooth, i.e., C(s),7(s) € C*. Although this is not the case in practice, this restriction

is useful for convergence evaluation and verification purposes.

5.3.1.1 Approximation of 7'(\)

Let T(\) = Ty = e, where t()\) = fOA 7(N)dN, and A parameterizes a ray position.
We will first approximate ¢(\) and then T'(\). Typically, the integral is solved using Riemann
summation. In the following, d = D/n is the ray sampling distance, D is the ray length
and n is the number of subintervals along the ray:

i—1

/AT()\’)d)\’ = Y r(jd)d+O(d), (5.3)
0

Jj=0

where A\ = id. Using Equation (5.3)):

T(\) = exp <— / AT(X)dx> (5.4)

0
i—1
= exp —ZT(jd)d—f—O(d) (5.5)
7=0
i—1
= | [Lexp (=r(jd)d) | exp (O(d)) (5.6)
=0

Let us define 7; = 7(jd). We start with a Taylor expansion of exp (O(d)):
i—1
Ty = |[[exp(-7d) | 1 +0(d)) (5.7)
j=0

i—1 i—1
= H exp (—;d) + H exp (—7;d) O(d). (5.8)
j=0 J=0
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Let us focus on the second term in the right-hand side of Equation (5.8). The first
observation is that it contains only approximation errors, which means that we are interested
only in its asymptotic behavior. Let us expand it using first order Taylor approximation

and use the fact that 7;d = O(d):
H (1-0()0(d) = (1+0(d) 0d), (5.9)

where the change in the sign is warranted because the goal is to determine the asymptotic
behavior. For 7 = 1, only one step is necessary for computing the volume rendering integral
along the ray, and the previous equation will exhibit linear convergence. Nevertheless, in
the general case, the numerical integration requires multiple steps, hence errors accumulate,
and the convergence may change. Thus, we set i = n. Knowing that (1 + O(d))" = O(1)
(see Appendix) and inserting Equation into Equation , we obtain:

i—1

Ty = []exp(—7d)+0(d)O(1) (5.10)

j=0

i—1
= [[ @ =rd+0(d®) + 0(d). (5.11)

j=0
We now show that the first term on the right side of Equation (5.11]) also converges
linearly with respect to d. In the course of this section, we omit the presence of the term
O(d) in Equation (j5.11)) for the sake of clarity. Let us define the set K as the set of indices
j for which 1 — 7;d = 0. The size of K is denoted as |K| = k. We also define K as the set

of indices j for which 1 —7;d # 0, and |K| =i — k. Equation (5.11)) can be written as:

o= [[[1-md+o@®) | | ] o (5.12)
jeK JeK
= (] 1-md+ o0 | o). (5.13)
jeEK

Because 1 — 7;d # 0 for j € K:

T = (J[a-ma <1+ O(d2)d> O(d*). (5.14)
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From the definition of big O notation, 1/(1 — 7;d) = O(1), hence:

T = | [[Q-md (1 +0mo?) | o) (5.15)
jEK

= ([T -maa+ow@?) | o) (5.16)
jEK

= (I 1-md| @+ow@) o). (5.17)
jEK

In real-world implementation, k£ # 0 implies that at least one of the terms 1 — 7;d = 0.
Hence, the code accumulating the value of T, T = T * (1 - t; * d), will invariably return
T = 0. This can also be seen in our theoretical analysis. For k # 0, the entire right-hand
side of Equation s the approximation error. The larger k is — i.e., the more zeroes in
the product of Equation (5.17)) — the faster the sequence converges to zero due to the O(d?*)
factor. So, when k # 0, one obtains a high order approximation of Ty = 0. Nevertheless,
because we want to recover the approximation errors for the general case (T # 0), we set
k = 0 in Equation , and i = n (for the same reasons as previously stated):

n—1

T, = |[[1-md]| (1+0@)" (5.18)
j=0

Using the fact that (1 + O(d?))" =1+ O(d) and (1 + O(d))" = O(1) (see Appendix):

n—1
o = [J]1-md] (1+0() (5.19)
j=0
n—1 n—1
= [[]1-md ]| +0@) | [+ 0w) (5.20)
j=0 Jj=0
n—1
= [ [[1-md]| +0@a+o0@)" (5.21)
§j=0
n—1
= |[[1-7d]| +o0@oq) (5.22)
j=0
n—1
= ([[1-md]| +0(). (5.23)

J=0
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We finish our derivation by adding the previously omitted O(d):

n—1
Ty = |[][1-md]| +0()+0() (5.24)
j=0
n—1
= [[]1-md]| +0(d). (5.25)
j=0

5.3.1.2 Approximation of the Outer Integral
Let T} be the approximation of T'();). We write T'()\;) = T; = T;+O(d), and C; = C(id).
In typical volume rendering implementations, the outer integral is also approximated using

a Riemann summation. Thus:

n—1
I(z,y) = > C(id)7(id)T;d + O(d) (5.26)
=0
n—1
= Y Gmd(Ti+0()) + 0(d) (5.27)
=0
n—1 n—1
= Y CimTd+ ) CimdO(d) + O(d). (5.28)
=0 1=0

Because both 7; and C; are bounded, one can write C;7;dO(d) = O(d?) and Y, O(d?) =
nO(d?) = £0(d*) = O(d). The above equation can be rewritten as:

n—1
I(,y) = Y C(id)7(id)dT; + O(d). (5.29)
=0

We have now shown that the dominant error when considering step size in the VRI is of
order O(d). In other words, when decreasing the step size by half, the error should be
reduced by a factor of a half.

5.3.1.3 Numerical Integration Techniques

The interplay between the approximation errors of the inner and outer integrals is non-
trivial; here we demonstrate this fact with a simple numerical example. Table shows the
result of using different integration methods for the inner and outer integrals along a single
ray. We simulate the integration along a single ray to compute these quantities numerically.
For this experiment, we assume: x € [0, D], 7(s(x)) = cos(s(z)), C(s(x)) = sin(s(x)),
s(z) = x, and thus the solution for the VRI is I = 1 — exp (—sin(D))(sin(D) + 1). To

evaluate the effects of the discretization errors of the integrals, we further assume that
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Table 5.1. Effects of the different integration methods.

Outer integral
Riemann Trapezoidal
Monte Carlo | O(d%*3) O(d"®)

Riemann | O(d%%9) O(d*%)
Trapezoidal | O(d'°!) O(d*)

Inner
integral

exp(z) does not introduce errors. The computation of the convergence rate is detailed in
Section [5.4] The results shown in Table [5.I] suggest that one needs to improve the accuracy

of both the inner and outer integrals to obtain a high order method.

5.3.2 Errors Due to Dataset Refinement
For the purposes of this chapter, we assume that no additional errors will be created
during the refinement of the scalar field. Hence, we need to find an interpolation function
that fulfills the so-called two-scaling property. Fortunately, B-splines fulfill the two-scale
property [I78]; we choose the linear B-spline, which results in the well-known trilinear
interpolator. Care must be taking on the refinement step. In this chapter, we will choose
a refinement factor of two, which simplifies to a simple averaging of the nearest neighbors.

The errors introduced so far remain unchanged:

n—1

I(z,y) =Y C(3(x:)7(5(x:))dT(5(x;)) + O(d). (5.30)
=0

The previous equation shows that the grid size refinement errors are constant and due

to sources other than the grid size IV, such as the O(d) term.

5.3.3 Errors Due to Pixel Size Refinement

The final source of errors we investigate comes from the finite number of rays sent into
the image. This error is not one that arises due to the VRI discretization per se, but rather
due to how the VRI is used to render the final image seen by the viewer. We quantify
these errors by creating a sequence of images of progressively higher resolution, and then
examine the supremum of the difference between values of the finite approximations of the
volume-rendered image and the true solution. In this section, we assume that the derivatives
along image axes of the volume rendering integral exist.

Denote the true volume-rendered image as I(x,y). The approximation is constructed by
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sampling I(z,y) in a finite subset of the domain (in our case, a square lattice of increasing
resolution). At a level of detail 7, fj(x,y) denotes the nearest-neighbor interpolation of
the sampled values, and the error is measured as Ej = sup(, 0,12 [1(z,y) — Iz, y)|.
Effectively, this procedure assigns to the entire square pixel the value sampled in its center,
but evaluates the error over the entirety of the pixzel values. Figure[5.5|illustrates the process.

We use the notation I = I(x,y), Iij = I(zs, ), and §; = (x,y)— (x4, y;). In what follows,
the Taylor expansion assumes a fixed level of detail j. We omit the superscript j for the

sake of clarity. Let us write the values of I as a Taylor series expansion (H; = H(x;,y;)

and is the Hessian and I and I} are the partial derivatives of I; at (z;,;)):

~ 1
I = I+ VIZT(SZ‘ + §5ZTH'£(5i + - (5.31)
= L+0(VIFs) (5.32)
= I~i+0((If,If)T(x—93i,y—yi)), (5.33)

I; is a nearest-neighbor reconstruction from a square lattice for the pixel (z;,y;) at a given
level j. In the regime where the Hessian terms are negligible, the dominant errors (and
hence the supremum of the difference) occur when (x — x;,y — y;) = (h, h), where h is half

the pixel size. Thus:

AR
.

A AR RERE
LA AR BE RN ]

& I r I I

Figure 5.5. Pixel refinement. Typically, the VRI is evaluated only at pixel centers
(top). The value at the center is then interpolated in the domain defined by the pixel size
(bottom) using nearest-neighbor interpolation to obtain I'. In a correct implementation, as
i increases, I' approaches the true solution I.
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I = L+0®0) (5.34)
n—1
— ZC’(§(x,~))T(§(Xz‘))Td(§(Xz‘)))+
i=0
+0(h) + O(d). (5.35)

As can be seen, the error in the pixel approximation decays linearly with the pixel size.
Equation contains all the errors we examine for verification purposes, and it will be
the basis for our analysis in Section [5.4

Two practical aspects that are worth noting. In practice, the sup(x,y) of the error over
a pixel (z,y) cannot be computed. Thus, we use a finite high-resolution image as a proxy
for the true solution. This allows us to evaluate the maximum error over a pixel. Note
also that colors are evaluated at pixel center, as shown in Figure Also, often the final
image is not a smooth function. However, our goal is not to provide a characterization
of discretization errors that can be used in any arbitrary setting, but instead one that
can be used for verification purposes. Therefore, to use the analysis outlined above, one
must manufacture scalar fields and transfer functions which yield a smooth function (cf.

Section [5.5)).

5.4 Convergence Computation

The heart of our method is the evaluation of the discretization errors. Once we have
the discretization errors, we can evaluate the order of accuracy and convergence rate.
The error computation and analysis will proceed differently depending on whether an
analytical solution for the VRI is available or not. We highlight that previous frameworks for
verification of visualization algorithms could benefit from the fact that analytical solutions
can be easily constructed [46]. For the case of the VRI, this is no longer true, and therefore
we should not rely on known solutions. We describe two ways in which to proceed with the
convergence analysis. First, we will show how to calculate errors using a known solution,

and then how to do so when the analytical solution is not known a priori.

5.4.1 Numerical Errors Using a Known Solution
When a solution F'(x,y) for the VRI is known, the procedure is equivalent to the Method
of Manufactured Solutions [3]. In the previous section, we have shown that the solution F’

can be written as:

F(z,y) = I(z,y) + O(*) = I(z,y) + Br* + HOT, (5.36)
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where [ is the approximated image, r is the discretization parameter, and § € R is
a constant, multiplicative factor that is not a function of the dataset. An important
assumption is that the HOT, or “higher order terms”, are small enough that they do
not affect the convergence of order k € R; i.e., high order derivatives of F' must have
negligible impact in the asymptotic convergence of I [I46]. This formulation implies that
not all solutions F' are suitable for verification purposes, only those for which the HOT are
negligible. In addition, integration methods whose approximation errors cannot be written
as shown cannot be compared by only evaluating k, as we propose next. The expected
value of k for the cases of step size and pixel size refinement is £ = 1, whereas we do not
expect to see error reduction when examining grid size refinement. This implies that the
pixel intensity converges to the true solution at a rate determined by k, and thus the error
can be written as:
e(z,y) = I(z,y) — F(z,y) ~ pr*. (5.37)
One can evaluate the convergence for all pixels in the image using L, Lo, or other norms.
Henceforth, we adopt the Lo, norm because it provides a rigorous and yet intuitive way of
evaluating errors: it tells us that the maximum image error should decay at the same rate
k. Mathematically, the error is then:
B = sup(e(z,y)) = sup(|Z(z,y) = Flz,y)]) = prk. (5.38)
We denote individual images (and the respective errors) by a subscript i. For each image
I;, we first calculate the supremum of the absolute difference sup, , (|F(z,y) — Li(z,y)|).
We then compute the observed convergence rate k by taking logarithms of both definitions

of E and solving the resulting equations for log(/3) and k in a least-squares sense:

log E; = logsup (|F(z,y) — Li(z,y)|)
Ty

log(B) + klog(r;). (5.39)

The system of equations has as many equations as the number of images and calculated
errors. We note that the solution F(x,y) cannot always be computed analytically [106]. In

the general case, we need an alternative method for determining the error.

5.4.2 Numerical Errors when the True Solution Is Unknown
In the case where the true solution is unknown a priori, using a numerical approximation

in a high-precision context (i.e., a gold standard solution) to compute a reference image
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is a valid approach for verification [83]. The main disadvantage of this approach is that
it might mask errors which appear in the reference image itself. Our slightly different
approach requires neither an analytical solution nor a numerical approximation, but still
retains a high sensitivity to errors. Suppose we want to verify the convergence of a sequence
of images I; with r;11 = cr;, where ¢ € (0,1) is a constant factor. As we have seen in the
previous section, the approximation for the solution F' at resolution ¢ and ¢ + 1 can be

written respectively as:

F(x7y) = Il-(ac,y)—i—O(rf)

= Ii(x,y) + Brf + HOT, (5.40)
F(.’E, y) = IiJrl(x? y) + O(Tf—&-l)
= ILin(x,y) + Bri, + HOT. (5.41)

Again, we assume that the HOT are negligible. Now, we subtract Equation (5.41]) from
Equation (5.40) to eliminate the unknown F:

0 = (Lii(z,y) + Briy) — Ti(z,y) + Bry) (5.42)
0 = Iin(w,y) — Liw,y) + Briy, — Brf. (5.43)

Thus, the convergence order k£ can be computed by evaluating the errors involved in the

subtraction of consecutive images:

ei(w,y) = Lip1(z,y) — Li(w,y) = —Priy, +Brf (5.44)
= B -k (5.45)

2

As before, we use the Lo, norm to compute the maximum error amongst all pixels:

E; = sup(ei(,y))
x7y

= sup(isa(ey) = e, 9))) = B(1 = (5.46)

Thus, the observed convergence is again computed by taking logarithms of both sides. We

then write y = log 3(1 — ¢¥) to hide the dependency of the term in k and determine y and

k via least-squares:

logE; = logB(1—cM)rk (5.47)

= log B(1 —c*) + klogr; (5.48)
= y+klogr;. (5.49)
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In the case of the grid size test, the linear regression measures the constant error due
to sources other than the grid size, since no approximation errors with respect to N are
introduced.

Equation shows us how to compute the convergence rate using only the images ob-
tained from the VRI approximation and consequently avoiding any bias and/or limitations
introduced by simple manufactured solutions or numerical approximations using reference
images. We have generated sequences of images based on the refinements in the following

section. The steps are shown in Algorithm

5.5 Application Examples

We present the results of applying our verification framework to two mature and widely-
used libraries, namely, VTK and Voreen. We stress that the goal here is first to show that
our verification technique is very sensitive to changes that cause the output image to deviate
from the correct solution; secondly, it is very easy to apply and thus can help developers

and practitioners to gain confidence in their implementations.

5.5.1 Implementations Under Verification

In what follows, we show all the implementations that will be under scrutiny.

Algorithm 8 A simple algorithm for verification via step size, dataset size, or pixel size.

VERIFICATION PROCEDURE(G, 7(s), do, No, ho, p)

1 > Let G be the scalar field
2 > Let 7(s) be a transfer function
3 > Let dy, Ng x Ng x Ny, and hg be the initial step size,
dataset size and pixel size, respectively
> Let p € {step, dataset, pixel}
Fy <~ VOLUMERENDERING (G, 7(s), do, No, ho)
for ¢ + 1 to #tests
do REFINE(d;, N;, or h; depending on p)
F; < VOLUMERENDERING (G, 7(s),d;, N;, h;)
if there is an analytical solution I:
10 then E; = max,, |I(z,y) — Fi(z,y)|
11 else E; =max,, |Fi—1(z,y) — Fi(z,y)|
12 Linear regression of E; using Equations or

© 00 N O O
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5.5.1.1 VTK

The VTK library provides several implementations of the well-known VRI techniques.
In our tests, we included two modules from version 5.6.1: vtkVolumeRayCast (RCM)
and vtkFixedPointVolumeRayCast (FP). The RCM module accepts as input scalar fields
with 8- or 16-bit precision and internal computations are performed with single or double
precision. FP accepts input datasets with up to 32 bits of precision but it uses 15-bit
fixed-point arithmetic internally. Both techniques use back-to-front compositing. We have
also modified the VTK source to capture 15 bit and 32 bit precision images for FP and
RCM respectively.

5.5.1.2 Voreen

As opposed to the tested modules in VTK, Voreen uses the graphics processing unit
(GPU) and front-to-back compositing for its implementations. From the ray casting pro-
cessors available within Voreen, we have chosen the SingleVolumeRaycaster, which is the
standard processor in most Voreen workspaces. At the time of writing, version 2.6.1 is the
latest, and the one we verified. We made minor modifications to the code so that floating
point data of the format Nearly Raw Raster Data NRRD [74] could be imported and

smaller step sizes could be used.

5.5.2 System Setup

The grid lies in the domain [0,2]? for VTK and [0,1] for Voreen. The scalar values
at grid nodes are chosen from a uniform random distribution. The camera is centered at
the zy plane and is aimed along the z axis. We did not include shading since that gives
a more complex VRI. To verify shaded results, a different theoretical analysis is necessary.
The images can be generated using both perspective and parallel projections. We only use
postclassification, which simplifies the analysis. In addition, we assume an identity opacity
transfer function (that is, the opacity is exactly equal to the sampled scalar). We do this
because for every pair of scalar field and opacity transfer function, there is another scalar
field (which admittedly need to be of finer resolution) that, when combined with the identity
transfer function, represents the composition arbitrarily well. The function composition
arising from volume classification can increase the high-frequency content of a volume [4],
and a full treatment of the impact of arbitrary transfer functions on the convergence of the

integral remains a topic for future explorations. In addition, this assumption enabled much
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of the theoretical analysis that would not be possible otherwise, while still being stringent
enough to uncover issues in the implementations.

To apply verification via step size refinement, we start with dy = % and a refinement
factor of half, d;11 = %di. We use a dataset of size 23 since we have experienced that low
resolution grids with random scalar fields are effective at stressing the code for debugging
purposes.

Let I be the cell size. For verification via dataset refinement, we start with 23 grid nodes,
and we refine grid cells until we reach 5133 nodes, corresponding to cell sizes l;411 = %li.
Step size is fixed at d = 1072, This is done to evaluate the effects of discretization errors
due only to grid refinement.

For verification via pixel size refinement, we start by generating images with 322 pixels
using the implementation under verification, and then continue to refine pixel size until we
reach 10242 pixels. The pixel size h is refined according to h; 1 = %hi. The errors are com-
puted taking the difference between the rendered image and an analytical solution. In this
case, we use an analytical solution for the volume rendering integral in the domain [0, 1]2. We

assume the following: s(z,y,z) = zcos(zy), 7(s) = sin(s), x(A\) = (z,y, ), C(s) = 1, and
cos(cos(zy)) 1 )

cos(zy) cos(zy)

ray length D = 1. The analytical solution is then: I(z,y) =1 — exp(
The dataset size used is 5132, and the step size is set at d = 107° to mitigate sampling errors.
Both step and dataset size are fixed to only evaluate errors due to pixel size refinement.

For VTK, we also have the following setup: no auto adjustment of the step size d; single
thread; interpolation type is set to linear. For Voreen, we enabled floating point buffers in
the pipeline. The Voreen version under verification does not support parallel projection.

The errors are computed using the Lo, norm and are given by the maximum distance
between two images, defined as E; = max, y |I;(x,y) — Iit1(x,y)|, where I;(x,y) is the pixel
with center in (x,y) of the image I; rendered with the implementation under verification.
If a solution F is available, E; = max, | 1;(z,y) — F(z,y)|.

In the following sections, we report the results of applying the verification framework

with known and unknown exact solutions to three volume rendering implementations.

5.5.3 Observed Behavior
The results of our verification procedure are summarized in Figure We tested
both VTK and Voreen and found unexpected behaviors. We emphasize that this does not

immediately translate into a code mistake but only that a deeper investigation is needed.
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Figure 5.6. Each plot shows the convergence experiments for one particular implementa-
tion and one particular type of convergence. The behavior before any changes to the source
code were made are shown in blue. The results of the changes are shown by the orange lines.
The black line indicates the expected slope from the theoretical analysis. Notice the black
lines indicate only the expected slope of the results. Any line parallel to the black indicator
line has the same slope and is equally acceptable. The convergence order is denoted by k.
Notice also that the dataset refinement test does not introduce errors and thus all that is
expected is a constant error.
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To find the reason for the unexpected behavior, we analyzed the source code of the given
systems. We expect linear convergence when step size or pixel size are refined (k = 1) and

constant error when dataset refinement is used.

5.5.3.1 FP

The results obtained for the FP module (blue curves in Figures[5.6(a), (b), and (c)) were
different from expected for all tests. The 15-bit fixed-point precision could, to some extent,
justify this behavior. Still, we only expected this influence to have a negative effect after
a certain threshold for step size. The perspective projection curve shown in Figure (a),
for instance, has what appears to be a constant error when using step size refinement and
perspective projection. We expect the error to decrease for large values of d; we acknowledge
that when d is too small, the errors due to 15-bit fixed-point precision will dominate. After
investigating the reason for this deviation, we found that depending on the pixel position,
some rays might cross only half of the volume instead of the full volume. In other words,
instead of sampling the ray in n locations, for some pixels, the ray was only sampled 3
times. This is a combination of several factors which includes domain size, step size, and
ray direction. Details can be found in the supplementary material.

Using our synthetic dataset, we observed a ‘4’ pattern shown in Figure (left). The
darker regions are precisely the pixels where the ray does not cover the whole domain. Arti-
facts may also be seen in standard datasets such as the Carp shown in Figure[5.8] The orange
curves in Figures a), (b), and (c) show the convergence results after modifying VTK’s
source. Notice that for step size refinement using perspective projection, the convergence
curve changed from 0.02 to 0.92 for the first seven samples. For the eight and ninth samples,
the error slightly increases. A similar phenomenon occur in the parallel convergence curve.
The curve starts to diverge in the high-resolution regime (parallel and perspective projection
plot). This is likely to be due to the limit of 15-bit fixed point arithmetic. Although the
pixel size refinement convergence for perspective projection substantially improved (from
0.01 to 0.94), the convergence curves for parallel projection remained similar, which can be

explained by the O(d) error.

5.5.3.2 RCM
The RCM module (blue curves in Figures[5.6/(d), (e), and (f)) produces nearly linearly

converging sequences when refining the step size or pixel size. However, dataset refinement
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Before After 0 . 0.08

Figure 5.7. The figure shows images rendered using VTK 5.6.1. In our experiments,
the ‘+’ pattern became more evident in two cases: when coarse datasets are used, and/or
high number of sampling points along the ray are used. Darker pixels belong to regions
where the ray traverses only half of the volume, preventing convergence. The image on
the middle shows the result using our modified version of VITK. The convergence curve
improved significantly after the issue was fixed. Note that this effect only occurs when
perspective projection is used. For orthogonal projection, the problem is not noticeable.
For the convergence analysis, we used a scalar field given by S(z,y,z2) = zyz, D = 1,
transfer function 7(s) = s in the domain [0,1]*, and solution for the VRI given by
I(z,y) =1 —exp (—xy/2), which means the integration is along z (from zero to one).

- 0.04

e
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¥
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Figure 5.8. A CT scan of a carp, rendered with VIK 5.6.1 and Fixed-Point Raycast
Mapper (FP). On the left, we see the artifacts (dark lines) that prevented FP convergence.
In the middle, we see the results after fixing the issues that prevented convergence. The
artifacts are no longer visible. On the right, we see the difference image.

with either perspective or parallel projection fails to present the expected constant error.
Analyzing the source code, we found the discrepancy to be due to the number of steps
taken when marching inside the volume. For instance, suppose that the step size is set in
such a way that 200 steps are required to traverse the volume. Instead of 200 steps, the
RCM module used values between 195 and 199 steps, depending on some conditions. The
consequence of this deviation is shown in Figure [5.9]

The orange curves in Figures [5.6(d), (e), and (f) show the convergence results for the
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0 0.096

(a) Dataset refinement. Before, a linear trend is observed. After fixing an issue, a constant error is

obtained.

Before After

Before After 0 . 096
|

(b) Pixel size refinement. Exp.: k = 1. Before: k = 0.37. After: kK =1.23

Figure 5.9. The two figures show images rendered before and after fixing an issue with the
number of ray samples in the RCM module. This change was motivated by a mismatch in the
dataset convergence test. Although the images are indistinguishable to the human eye, the
errors (computed as the difference between images, shown on the right) are large enough
to change the expected convergence rate. For both images, we applied our verification
procedures on a grid with a scalar field given by S(z,y,z) = xyz and transfer function
7(s) = s in the domain [0, 1]®. Hence, the solution for the VRI is I(z,y) = 1 —exp (—zy/2).
(a) uses dataset refinement while (b) uses pixel size refinement.

RCM module after fixing the issue that prevented code convergence. It consists of changing
the epsilon values used during the computation of the number of steps. Notice that the
behavior is close to the expected one and the errors are very small (1075). The convergence
curve using pixel size refinement is close to linear for large pixel size but seems to be
converging to some positive value. This might be due to other sources of error which

become dominant after sufficient refinement.
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5.5.3.3 Voreen

Our first ray refinement tests did not result in linear convergence for Voreen (blue line
in Figure (g)) due to the early ray termination (ERT). By simply adapting the ERT
threshold, we were able to obtain the expected convergence for ray refinement (orange line
in the Figure [5.6(g)).

As can be seen in the Figure (i), the blue curve indicates that increasing the resolution
of the dataset decreases the error. We remind the reader that using our upsampled data, as
described in Section rendering the same scalar field represented by a different number
of voxels should not affect the result. For Voreen, the unexpected behavior was caused
by sampling at incorrect texture locations. More specifically, internally, Voreen assumed
that the texture data are node centered when, in fact, OpenGL uses grid centered data.
In this case, both the volume and transfer function values were affected. In OpenGL, the
texture coordinates of a texture of resolution R™ lie in the domain [0, 1]™, where m is the

texture dimension. Since the data values are grid centered, this means that the outermost

1

5p>1— ﬁ] with the settings used in Voreen. We will refer to

data values are located at [
the domain in which the data values lie as the data domain. For volume rendering, the
integration of a ray should be done over the data domain, but for Voreen, the entry and
exit points of the rays went outside of that domain which caused the unexpected behavior.
To obtain the expected constant convergence, we apply the following transformation to the

input texture coordinate p (see orange line in Figure [5.6{1)):

.1 1
- - 1]. .
P=gptp P ,p €[01] (5.50)

Equation ([5.50)) scales and translates the texture coordinate to be in the domain [ﬁ, 1—
ﬁ]m, where the data values lie. The effect of transforming the input coordinate for a
real-world example can be seen in Figure We provide an explanation for why this
does not affect ray entry and exit point sampling, and also discuss the implications of
different boundary values in the supplementary material. Although the scaling of texture
coordinates has been addressed for multiresolution volumes [97], to our knowledge, it has
not been applied to the sampling of transfer functions [411, [84), 144]. There are other solutions
for recovering the expected convergence rate, which include changing the way we refine our

sampling grid to match OpenGL grid centered data. However, we have chosen this solution

for several reasons. First, it matches Voreen’s initial assumption on node-centered data; it
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does not require special treatment at the border of the domain; and due to its simplicity, it
is easy to implement. We have contacted Voreen developers and the issue found was indeed
identified as a bug. The proposed solution will be adopted into Voreen’s next release.

No unexpected behavior could be detected for pixel size convergence, as shown in
Figure h), neither before nor after changing the texture coordinate sampling. Both

curves lie near the expected behavior (0.93 and 0.94).

5.6 Discussion

The convergence analysis presented in the previous section helped us to identify un-
expected behavior in two stable and widely-used frameworks. Unexpected behavior is
not indicative of an implementation bug but rather a warning about potential problems.
For instance, some valid design decisions might affect the convergence results. Consider
the widely used ERT acceleration technique. Depending on the thresholds involved, the
convergence results might deviate from the ideal, and the expected curve is recovered once
this feature is turned off. In this sense, the verification tool can help the developer to
identify portions of the code that introduce numerical errors and quantify their effect on
the final image. The issue with the RCM module is another example. The dataset size
convergence curve was unexpectedly linear because of a small variation in the number of
steps. While this particular issue might not be harmful, we were able to learn and reason
about its consequences after the verification process was done. Furthermore, “minor” bugs
and even design decisions cannot be ignored as they can mask more complex mistakes.
Therefore, one will be more confident after the design decisions that affect convergence are
“turned off” and the expected convergence is recovered. The FP module, on the other
hand, significantly deviates from the ideal number of steps required to march inside the
volume. Although we could force VTK to march the expected number of steps, we are still
investigating possible solutions to and consequences of this issue. To promote an unexpected
behavior to a bug, we need interaction with the developers of the code to confirm the code
mistake, which was the case with Voreen. One should be aware of the discussed issues when
implementing a volume rendering algorithm as their consequences are often not discussed

in the literature [41].
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5.6.1 Test Sensitivity

A verification technique ideally should be sensitive to any deviation from the correct
implementation. Unfortunately, in practice, verification has limited scope, and we gain
confidence if it helps us understand the code behavior, test sensitivity, and reveal bugs.
There are several ways to attain this goal: Yang et al. applied model checking to filesystem
verification and reported unknown bugs [192]; Howden [65] evaluated the efficacy of dynamic
and static testing for the detection of known real bugs of a mathematical library; Knupp
and Salari [80], on the other hand, used the order of accuracy verification procedure to
uncover known manufactured bugs in a proof-of-concept code. In software engineering, the
process of evaluating a testing suite by injecting defects into a program is known as mutation
testing [142].

We already presented the results of applying our verification framework to two libraries
and with our experiments we confirm the previously reported sensitivity of convergence
analysis [I46]. We went further to explore other scenarios in volume rendering that may
affect the convergence curve. Thus, in the spirit of mutation testing, we created new versions
of VTK which contain known issues. Table shows the results of some of the performed
tests. In our experiments, we observed that some issues did not affect the observed behavior.
The reason for this is that an incomplete set of tests [80] was performed, as shown with
test #10 in Table In that case, a bug in the G and B color lookups went unnoticed
because our framework only used the R channel. Once the verification framework includes all
three channels, the convergence behavior does not match the expectations, hence revealing
an aberrant behavior that should be investigated. For bug #9, we swapped two of the
polynomial coefficients, but they were equal for the scalar field used and thus the bug was
not detected. After changing the scalar field to s(z,y,z) = lzyz + 2zxy + 3xz + - -, the
convergence curve no longer matches the expected one, and thus the bug is detected. Bug
#11 was introduced in a matrix-vector multiplication routine which turned out to be dead
code. However, for bug #12, the loop range was slightly incorrect and it was not detected,
even after additional changes to the verification framework.

Aside from the defects injected into VTK, the following is a list of details known to
affect the convergence curve: FERT, as explained before; opacity correction, when using
the analytical solution of the volume rendering integral; hardcoded tolerance constants, the
famous “epsilons”; off-by-one indexing problems (sometimes VTK does not render pixels

in the first or last column of an image); improper volume sampling (cell centered versus
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grid centered scalar fields); high-frequency transfer functions; high-frequency scalar fields;
incorrect texture coordinate mapping, as reported with Voreen; inconsistent number of steps
through the volume, as reported with FP and RCM; etc. From all the observed situations
where the step/dataset/pixel size convergence was affected, many of these are deliberate
design decisions, minor mistakes during the verification procedure or minor problems with
the implementation itself which can be easily fixed. Note that those issues were not all inside
the ray integration routine itself, but in a variety of locations, spanning from preprocessing
steps to OpenGL texture sampling of data. Our verification procedure was sensitive enough

to detect all these situations.

5.6.2 Other Volume Rendering Techniques

While we focus on ray casting, our approach can be extended to other techniques.
Because the core of our method is a discretization of the VRI, the only requirement is
to formulate the volume rendering algorithm as a numerical approximation to the true
integral. Splatting [186], for instance, uses a reconstruction kernel before accumulating the
contributions of voxels into the final image. This approach is substantially different from
ray casting in the way it approximates the VRI, and so the asymptotic errors involved will
have to account for errors in both accumulation and filter reconstruction [114].

Algorithmic improvements for volume rendering may require a more careful approach.
For example, pre-integration computes the results of the integral with high precision over
sample intervals and stores them in a look-up table. This increases efficiency and quality,
since fewer steps are typically needed [42]. How the table approximates the integral will
affect the convergence rate: if there is an analytical solution, then no error is associated
with d intervals; otherwise, a numerical approximation scheme might be used which means
the error will depend on d’ = d/m, where m is the number of sample points used in that
interval and the integration method used. For example, if a linear approximation is used
for the VRI during ray integration (instead of a standard sum of rectangles, as done above),

the final approximation should have second order accuracy.

5.6.3 Manufactured Solutions
In the interest of brevity, verification via pixel size and the results presented in Table
[5.2] were generated from an analytical solution for the volume rendering integral. Notice,

still, that the use of an analytical solution for verification is known as the Method of
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Manufactured Solutions [3] and can be a more rigorous procedure than convergence analysis
alone [I46]. In this way, we can verify that the results generated by an implementation is
converging at the expected rate to the correct solution. The disadvantage lies in the difficulty
of designing solutions which are simultaneously simple (so that we can write the theoretical
convergence analysis down) and yet expressive (so that the experiment analysis catches

bugs).

5.7 Limitations

Both the discretization and verification procedures have limitations. In the discretization
of the VRI equation, we assume that the solution I(z,y) is smooth. Moreover, we assume
that high order terms are negligible. This assumption implies that we can safely discard all
high order terms when deriving the errors. In addition, the verification is done in a controlled
fashion to avoid other error sources, as shown in Figure (a). Additional asymptotic
analysis is necessary for each new error source. Also, I must be defined everywhere in the
image plane. For instance, this condition is violated if we change the camera position and
orientation. One needs to account for these transformation in x(\), an extra complication
in the generation of analytical solutions.

The verification process has the same limitations previously described but it also has
practical limitations. For instance, one may be able to observe that the convergence rate
may not be the expected one for low sampling rates. However, this is not due to the random
scalar field generated (which is a trilinear function and thus can be represented exactly
with the trilinear interpolant) but high-frequency details in 7 or C'. This may lead to a
violation of the Nyquist rate. Because the process is iterative, the expected convergence
must be recovered once the resolution is fine enough, assuming that the implementation
under verification is correct. Another limitation is related to the number of rays used per
pixel. Many implementations can shoot several rays per pixel, although this work assumes
that only one ray is used. Also, because the verification procedure considers the code as a
blackbox, it does not provide clues on the reasons for the unexpected behavior.

The scope of the mistakes that can be found by the verification procedure is not clearly
defined. All we can say is that it can find bugs that actively affects the convergence of the
method [80]. A common example of bugs that cannot be found by this type of procedure are
bugs that affect the performance: the code is slower due to the mistake but the convergence

rate is still the same [143]. The results shown in Table|5.2| are a first attempt to understand
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the scope of problems that can be fixed by the verification procedure.

Currently, our verification procedure is focused on the solution for the VRI without
shading and other improvements on the final image quality. Hence, if one wants to use
our verification procedure in an implementation that supports, for instance, shading, the
feature will need to be deactivated. Lastly, for the case of dataset refinement, we assume

that the underlying scalar field is defined by a piecewise-trilinear function.

5.8 Conclusion

In this chapter, we presented verification techniques for volume rendering based on
the use of convergence analysis. Using these techniques, we successfully found discrepan-
cies in the behavior of the volume rendering algorithms of two widely-used visualization
packages. We note that we do not see our techniques as a replacement for the currently
used direct visual inspection or expert evaluations, but instead as a way to complement
those approaches, and lead to a more comprehensive way to evaluate visualization software.
By providing attractive quantitative alternatives, we hope to help make evaluation of
visualization software both easier and more effective, and also contribute to a higher level
of user trust in visual data analysis. We believe the use of verification techniques will be of
increasing importance as the field of visualization matures and visualization methods are
used in a wide range of commercial and societal areas of highest importance.

There is ample opportunity for future work. Extending our approach to deal with
volume shading and level-of-detail techniques would be interesting and relevant research
as these are widely used in practice. Another important problem would be to explore
the verification of unstructured volume rendering techniques. Lastly, there is room for
improving the approximation error for the three presented refinements. In addition, a new
way for comparing the convergence curves that allows one to gain insight on the correctness

of the implementation under verification is another welcomed step.



CHAPTER 6

FLOW VISUALIZATION

Flow visualization has been around in some form for as long as people have studied
flows. In some cases, visualization was done explicitly — that is, with the expressed purpose
of the viewer to highlight some feature of the flow. In other cases, it was done tacitly,
as when a child looks out the window of an airplane to see the slip-stream over the wing
generated upon take-off. Visualization has many roles, spanning from art to science. In
this chapter, we focused on visualization techniques used for the scientific exploration and
explanation of flow phenomena. In particular, we are interested in how two communities
— the ATAA community and the Visualization community — consider flow visualization.
To accomplish this task, we have used the AIAA Journal and the IEEE Transactions on
Visualization and Computer Graphics (TVCG) as “representative” publication venues of
the two communities, and have explored the papers published therein to try to glean how
each community approaches visualization of flow, how they might differ from each other,
and how the two communities might complement each other.

This chapter is organized as follows. In Section [6.1] we provide a review of the state-of-
the-art in flow visualization, both from the perspective of the Visualization and well as the
ATAA communities. Tools such as Tecplot [2] and Paraview [163] have implemented many
standard flow visualization techniques such as LIC (line integral convolution), streamlines,
stream ribbons, and more. As we will show, our review encompasses much of the current
practices in flow visualization and also provide pointers to new developments. In the next
two sections, we focus our attention on research advances made within the Visualization
community that we think will, in time, have impact on flow visualization and on other
application domains that use visualization as a means of both scientific exploration and
explanation. In Section [6.2], we show how perception and user studies may impact flow
visualization, and in particular, we focus on issues related to color maps. In Section [6.3
we then provide discussions on the current Visualization community research trends in

Visualization Verification and Uncertainty Quantification. We have chosen these topics
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because they are all related to flow visualization. In Section we speculate on some
of the opportunities for collaboration and more effective communication between the two

communities, and we conclude in Section

6.1 Review of Flow Visualization Techniques

Vector field visualization is an important and vibrant subfield of both the Visualization
and AIAA communities. The techniques developed for vector field visualization extend
beyond these communities to fields such as medical imaging, meteorology, the automotive
industry, and others. In the past two decades, visualization experts and practitioners
have seen the development and improvement of many vector field visualization techniques.
The contributions are numerous: the ability of handling different grid types (structured,
unstructured, curvilinear, etc), high dimension data (2D, 2.5D, and 3D), time-dependent
flow, seeding and placement of geometric primitives, improved performance, perception,
rendering, among others. In this section, we review some of the developments inside the

Visualization community and compare with current practices inside the ATAA community.

6.1.1 Preliminaries

Although the concept of flow visualization is well defined in both communities, we
start by clarifying what is meant by flow visualization in this section. The difference
between computational flow visualization and flow visualization is that the latter focus
on visualization of flow behavior using experimental data (e.g., flow in a wind tunnel),
whereas the former visualizes flow from simulated or computed data. Some computational
visualization techniques are inspired by techniques used in flow visualization, such as dye
advection. Since the subject of this section only addresses computational flow visualization,
we will refer to that topic simply as flow visualization.

For thoroughness, we also define some commonly used mathematical/physical terms
used within the flow visualization literature. A streamline is the path traced by a massless
particle in a steady flow. Streamlines are sometimes referred to as “instantaneous particle
trace”. A streakline is the path traced by massless particles seeded at the same position
but at different times in a unsteady flow. Stream surfaces and streak surfaces are the
2-manifold analog of streamlines and streakline, where the seeding primitive is a curve

instead of a point.
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6.1.2 Classes of Techniques

Flow visualization techniques can be classified as direct, geometric, texture-, and feature-
based (see Figure . Table provides an overview of the classification and a subset
of the available techniques within each class. The table provides a hierarchy of the flow
visualization tools available. The Subclass column provides the main component of a given
visualization techniques that can be found within the Technique column. One can find
reference to extra material within the Reference column. For more details about the articles
shown in Table and others, we refer the interested reader to the excellent surveys by
Hauser et al. [60] and Peng and Laramee [134] for an overview of the flow visualization
field, Edmunds et al. [38] and McLoughlin et al. [I08] for geometric flow visualization,
Laramee et al. [88, 87| for texture-based flow visualization, and Pobitzer et al. [136] for

feature-based flow visualization. Next, we briefly go over each of the classes.

6.1.2.1 Direct visualization

Direct visualization techniques provide an intuitive and straightforward way of visual-
izing vector fields. In this approach, primitives of interest — such as arrows, glyphs, or
lines — are placed at (often regularly-spaced) seed points. The primitives are then oriented
according to the vector field. Optionally, the vector magnitude can be mapped to the
primitives via scaling. Other flow properties, such as pressure and vorticity, can also be
mapped using color maps. In the 3D case, volume rendering [40] is the natural choice
for mapping flow properties into color and transparency. Although direct visualization
provides an easy first approximation of the vector field, the visual complexity and occlusion

may impair the interpretation of the results, especially in 3D datasets.

Figure 6.1. Examples of flow visualization using direct, geometry, texture-, and fea-
ture-based techniques, respectively.
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Table 6.1. Advances in flow visualization. This table is not meant to be comprehensive.

Class Subclass Technique Reference
Standard Klasshen and Harrington [7§]
Arrows Hybrid Color-coding and arrows [77]
Direct 3D Arrows in 3D space, 2-manifolds embedded
in 3D [133]
Enhancements Large data [133], resampling [89]
Color coding Standard Color maps, volume rendering [40]
Streamline Turk and Banks [176]
Seeding User-assisted [68], automatic [109) 96], and
Curve hierarchical [69]
Geometry 3D 2-manifolds embedded in 3D [162]
Rendering Iluminated [104], streamtubes and stream-
ribbon [177]
Unsteady Wiebel and Scheuermann [187]
Stream surface Hultquist [66]
Surface Enhancements Seeding and placement [132], accuracy [51]
Unsteady Schathitzel et al. [I50]
Standard Cabral and Leedom [14]
Performance Improved algorithm, parallelism, real-time,
LIC GPU [05]
3D 3D and 2-manifolds embedded in 3D [129]
Texture . . . : :
Rendering Flow orientation cues, local velocity magni-
tude
Unsteady Li et al. [95]
Standard van Wijk [I81]
Spot Noise Enhanced It deals with highly curved/high velocity
vector fields. [31]
Performance Parallel implementation. [97]
Standard First-/High-order critical point tracking
[61, 30, 152]
Foature VET Compression Theisel et al. [169]
Simplification ~Weinkauf et al. [185]
Streakline Weinkauf and Theisel et al. [184]
STD** Pathline Theisel et al. [I71]
LM FLTE Haller [58], Garth et al. [50]

* Vector Field Topology ** Space-Time Domain *** Lagrangian Method
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6.1.2.2 Geometric visualization

In geometric visualization, curves and surfaces are used for summarizing flow behavior at
particular seed points. Geometry-based approaches requires a more intensive processing of
the data before the visualization than direct approaches. The main idea behind integration-
based geometric flow visualization is to trace particles or curves through the vector field.
By tracing particles (or respectively curves) one builds a 1-manifold (or respectively a
2-manifold) that can later be visualized. Geometric visualization techniques have a two
steps: first, geometry computation; and secondly, rendering. Often, the rendering step
is straightforward — e.g., rendering a polyline — in which case the algorithm collapses
into one step. Streamlines are one of the most well-known representative visualization
tools within this class. Although flow visualization using both curves and surface dates
back over two decades, in recent years, there has been constant research on the topic
[38]. For curves, the main contributions of the past decade are related to rendering,
seeding, and placement of curves. Edmunds et al. [38] classify the surface-based flow
visualization into surface construction and rendering. Methods for surface construction
are based on integral surface, implicit, and topological construction. This is an area of
intense research in the past few years. The authors present a variety of algorithm for
both steady and time-dependent surfaces. Surface rendering methods involve the use of
several techniques for improving the quality of the visualization of the flow over a surface of
interest. Surface-based techniques can take advantages of direct or texture-based methods
by including static/animated arrows over stream surfaces, shading for the evaluation of the
shape of surfaces, placing streamlines over 3D surfaces, employing line-integral convolution

(LIC) techniques, and/or nonphotorealistic rendering techniques.

6.1.2.3 Feature-based visualization

In feature-based flow visualization, the input vector field is segmented according to
features of interest. As an example, consider a segmentation using classical vector field
topology in 2D [61] (see also the right image in Figure[6.1)). Let us assume that the features
of interest are first order critical points, namely, focus source, focus sink, node source,
node sink, and saddles. A segmentation is performed by building a topological skeleton
through the computation of the vector field’s separatrices. The final result provides a
cleaner representation of the flow behavior in terms of the aforementioned features. The

intensive processing of extracting features before visualization brings many advantages to
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the practitioner. First, feature-based techniques are valuable for visualization purposes:
feature extraction provides an excellent level of abstraction of the data by removing unde-
sired features and focusing the viewer on the important regions of the dataset. In addition,
it can be used for vector field compressing, topological simplification, and even for building
custom vector fields [I70]. Topology-based approaches for feature-based visualization is not
the only methodology available. In Lagrangian methods, the trajectories of particles are
used to describe and segment the fluid flow. In particular, FLTE [58] methods have gained
prominence as a research area within the last decade. One advantage of Lagrangian methods
over traditional vector field topology is that they can naturally deal with unsteady flow [136].
Space-time domain techniques are another example of feature-based visualization. In this
approach, in order to deal with the problems involved in unsteady flows, the problem of 2D
and 3D flow visualization is moved to higher dimensions. As an example, time-dependent
domains are merged into a single dataset where traditional techniques used for steady
vector fields can be employed. A comprehensive survey on the topic can be found in the

state-of-the-art report by Pobitzer et al. [136].

6.1.2.4 Texture-based visualization

In texture-based flow visualization, the user replaces geometrical information with 2D
texture mapped over surfaces. Line integral convolution (LIC) is a well-known (within
the visualization community, at least) representative of the class. Texture-based techniques
generate what is considered a dense visualization, i.e., it covers the entire domain of interest,
and it does not have to deal with the problem of finding appropriate seeding spots for
streamlines. Texture-based techniques can be applied along with geometric or feature-based
visualization; for instance, it can be used to render flow on 2-manifolds embedded in 3D
spaces, or providing an overview of the flow behavior along with topological skeletons. The
main issue with texture-based visualizations is the high computational cost associated with
it. Nevertheless, the advances in both computer hardware and algorithms have granted to

users the ability to handle large data sets and unstructured grid at interactive rates [38} [87].

6.1.3 Means to an End
In his position paper “On the death of visualization” [99], Lorensen argues for the need
to bring visualization researchers closer to experts and practitioners. We have run a simple

experiment in order to attempt to ascertain “the distance” between the Visualization and
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ATAA communities. We evaluated 78 articles published within the AIAA Journal over
the period of Jan/2010-Oct/2012 containing at least one flow visualization image. Then,
we simply counted the number of papers that contained at least one occurrences of the
techniques shown in Table We did not include the 2D color mapping and 2D isocontour
visualizations as they appear quite often. Since multiple visualization techniques can be
used in a single article, the percentages shown below are just the fraction of publications
containing at least one particular type of visualization. Particle tracing using integration-
based geometric visualization techniques for 2D vector fields is the most commonly used
technique (42%), followed by 3D isocontouring (35%), 2D and 3D arrows and glyphs (33%),
and 3D particle tracing (19%). Excluding isocontouring (which is mainly used for depicting
scalar, instead of vector, data), 61% of the articles used at least one geometric approach
to flow visualization, whereas 33% used a direct approach. Finally, 73% of the papers
contained at least one visualization for 2D domains, whereas this number is 56% for 3D
domains. The latter number drops to 22% if one considers only techniques for visualization
of vector field data (i.e., excluding 3D isocontouring).

Although the data are limited to a short window of time, they raised a few interesting
points. With the exception of a handful of papers, most of the flow visualization appears
to be using the standard form of the traditional visualization technique. As an example,
consider some the papers that use streamlines for visualizing 3D flow. It may be the case that
a subset of these paper can benefit from using stream ribbons [I77], which simultaneously
encode the streamlines path and local flow vorticity, or from stream tubes [I77], which
simultaneously encode the streamlines path and local cross flow divergence. Both stream
ribbons and stream tubes are well-known, and commonly used visualization packages such as
Paraview or Tecplot have them available within their tool options. Secondly, the preference
for the two visualization techniques (direct and curve-based geometric visualization) shown
in past three years is perhaps due to their simplicity and availability. The underrepre-
sented methods in the same period of time are texture-, feature-, and surface-based flow
visualization. Third, one could argue that the visualized datasets were “simple”, and thus
standard techniques worked well. Even though this may be the case for some datasets,
some vector fields, especially in 3D, suffered from traditional problem of curves and arrows:
cluttering, irregularly spaced streamlines, poor seeding, lack of depth cues, etc. These
problems can make the detection of some flow features such as vortex more difficult. Direct

visualization for 2D vector fields using glyphs can be improved by using, for instance,
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a resampling technique, such as shown in Laramee [89], where the author introduce a
user-driven approach for reducing visual clutter via resampling. Another way is to segment
the flow using features of interest, e.g., critical points. Possible reasons for not using
alternative techniques include that the technique might not be easily available, the technique
might not improve the quality of the visualization, users are not aware of their existence or
find them difficult to use, or the AIAA community requires a different class of techniques,
among other. Both communities would benefit from knowing the reasons for using one
technique over another. The visualization community has, throughout the years, defined a
set of priorities based on an interaction with researchers from different fields and their own
experience. Some recurrent themes that are the focus of research are: a more comprehensive
theory and techniques for dealing with unsteady 3D flows; improved rendering (for instance,
by using techniques inspired in handcrafted illustrations [13]); handling of large data sets;
and others. Together, the ATAA and Visualization communities should be able to define a

set of priorities for their research agendas in order to address the concerns and issues raised.

6.2 Perception and Evaluation

An important aspect of the visualization research consists of the building of new vi-
sualization techniques and tools. Ideally, new techniques should be able improve the user
cognitive process [174], for instance, by allowing the visualization of data that have never
been visualized before, or increasing ones ability to interact with, understand, and explore
data. As visualization techniques are developed and improved, a question is raised: how can
we compare and understand the differences between visualization techniques? The answer to
this question leads us to a second important research topic: the need for rigorous evaluation
of the strengths and weaknesses of visualization techniques. By “strength” and “weakness”
we mean not only the evaluation of techniques according to traditional (computer science)
metrics such as performance, memory footprint, ability to handle large datasets, etc., but
also in terms of the errors introduced through visualization, property of these errors, user
perception, among others. In particular, questions involving perception and cognition are
related to the user. In this section, we review two topics of interest for flow visualization
from the point of view of perception and evaluation: the use of color maps for visualization

of scalar properties and the representation of steady 2D vector fields, respectively.
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6.2.1 Perception and Color Maps

The mapping between data and colors is ubiquitous and essential across the sciences. In
the scientific pipeline, color maps are often used to study, explain, explore, and ultimately
help experts to gain insight about a phenomenon of interest. Alas, color maps are not all
equal, and depending on the choices made, one can accelerate or impair scientific inquiry.
Since they are just means-to-an-end, their impact on the underlying data should be as
minimal as possible. In a myriad of choices, one color map has been shown to be a bad
choice for virtually any type of visualization: the well-known and widely-used rainbow color
map [10] 10T}, [160].

The rainbow color map is built by varying hue in order to cover the whole spectrum
of visible light, from red to purple or vice versa. In practice, many visualization tools use
colors varying from red to blue because red and purple are very similar. It is the default map
in several visualization / simulation software packages, such as Matlab®. Here we review
three issues known to hinder visualizations, namely, lack of ordering, iso-luminance, and
introduction of artifacts. Figure shows examples for each of these issues. The first issue
is due to the lack of a natural sorting order. Even though the rainbow color map is ordered
from shorter to longer wavelength of light, users do not easily perceive it as such, which
makes quantitative analysis more difficult [I0]. In addition, the rainbow color map can
obscure data. The problem arises for data containing high spatial frequency. Isoluminant
maps can obfuscate these frequencies because our visual system perceives them through
changes in luminance. This is illustrated in the left images in Figure [6.2] Note how details
on the top half and left portions of the rainbow color mapped image were “removed” by
the choice of the color map. Lastly, the rainbow color map can also add artifacts to the
visualization [I75]. The problem is that the gradient in color map creates the illusion of
patterns where none exist. This is illustrated in the right image in Figure In association
with the lack of a natural sorting order, it becomes difficult to identify that patterns are
not due to the underlying data but due to the color map. Although Figure shows
simple synthetic examples, there have also been user studies and analysis showing that
these problems are also present in the visualization of real-world scenarios [I75]. Despite its
disadvantages, the rainbow color map is widely used in the sciences. In the study by Borkin
et al. [9], participants reported that they liked it because they are “used to seeing”, that
the saturated colors are “easier to see”, and it is the “most aesthetically pleasing”. Another

possible reason for its widespread use is that it is default in many popular simulation and



119

el OO0

Figure 6.2. Problems with the rainbow colormap. Left: the images show the color mapping
of the spatial contrast sensitivity function. Frequency increases from left to right whereas
contrast increases from the top to the bottom. The isoluminance of the rainbow color map
obfuscate low contrast regions and small details, which can be seen using gray scale. Right:
changes in color in the rainbow color map may be perceived as features in the data. The
“boring” scalar field f(x,y) = 22 + y? appears to have more features when rainbow color
map is used than in the gray scale image.

visualization tools. Paraview is one of the tools that no longer uses the rainbow color
map as the default option since the publication of “Rainbow Color Map (Still) Considered
Harmful” [I18] by Borland et al. The author even suggest that a better name for it would
be “misleading color map”. In light of the many pitfalls of the rainbow color map, the
visualization community has, in the past few years, been moving away from it. In 2005,
52% of the scientific publication using a color map at the IEEE Visualization Conference had
at least one occurrence of the rainbow color map [10]. This number has dropped to a single
paper published at the IEEE Transactions on Visualization and Computer Graphicsin 2011.
Motivated by this experiment, we reviewed all publications from the AIAA Journal for the
years of 2010, 2011, and 2012 that contained a color map and counted the number of papers
that used the rainbow color map. Table[6.2] shows the obtained results. Note that we do not
evaluate the potential problems caused by the rainbow color map. Nevertheless, we tried
the methodology explained above for a flow simulation dataset. The left image in Figure[6.3
shows the results of a flow simulation. Note how some regions are over-emphasized (shown

in red) while details are blurred (shown in green). The problems with the rainbow color

Table 6.2. Color maps in the AIAA journal
Rainbow color map Gray scale map  Other
2010 68.63% 13.73% 17.64%
2011 64.7% 15.69% 19.61%
2012 79.03% 8.65% 12.32%
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map can be avoided by simply switching to another color map, such as the gray scale color
map shown in the middle image in Figure[6.3] The image to the right shows the decolorized
rainbow color map: although some details are easier to see, the result is still very different
from the gray scale color map.

The visualization community has also investigated what should constitute a “good” color
map. Research on the topic of color selection can be found in the work by Treinish et al.
[175], Moreland [118], Kindlmann et al. [75], and others [101, [173]. The ATAA community
can benefit from a set of standard color maps suitable for visualization of typical simulation

data such as pressure fields, angle fields, etc.

6.2.2 Evaluation and User Studies

In recent years, the Visualization community has seen a substantial increase in the
number of papers dealing with evaluation of visualization techniques published within IEFE
TVCG. Figure shows the number of such papers published per year within the IEEE
TVCG journal. The data were obtained by searching the TVCG website for the keywords
“evaluation”, “user study”, “design study”, and “case study” in articles published in the
period between 2002 and 2012. We then read the abstracts to make sure the papers were
indeed relevant. From this corpora, 96% of the aforementioned articles were user studies.

As a representative example, we focus on a user study by Laidlaw et al. [86] comparing
techniques for the visualization of steady 2D vector fields. The authors recruited five experts
and 12 nonexperts users to evaluate the efficacy of each of the six techniques displayed in
Figure [6.5] The evaluation was measured by the user performance during the execution
of several tasks of three types: critical point detection; critical points classification; and

simulation of particle advection. The first two tasks are standard whereas the third task is
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Figure 6.3. Velocity magnitude. Rainbow (left) and gray scale (middle) color maps were
applied to a 2D flow simulation using a spectral element code for solving the incompressible
Navier-Stokes Equations. Note how red regions on the rainbow color map are over-empha-
sized while green regions “blur” details that are shown in the gray color map. The image
on the right is the decolorized rainbow color map.
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Figure 6.5. Comparing visualization methods for steady 2D vector fields [86]. Top:
standard arrow visualization, jittered arrow, icons using concepts borrowed from oil paint-
ing, respectively. Bottom: line-integral convolution, image-guided streamlines, streamlines
seeded in a regular grid, respectively. Image used with permission.
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motivated by the fact that often experts were interested in the global flow direction. The
three tasks were chosen based on the authors interaction with fluid mechanics researchers.
The authors built a collection of 500 vector fields for evaluation of the tasks. Among
the results, they cite no significant difference between experts and nonexperts regarding
accuracy in the tasks or the response times. More interestingly, performance when using
the standard method of arrows on a regular grid (GRID in Figure falls below average
for multiples tasks involving critical points location, classification, and advection (which
means that users required more time to complete the task and committed more errors).
On the other end of the spectrum, user performance when using GSTR consistently scored
above average. Another similar study compare the user performance when using line and
tube integral curves (with monoscopic and stereoscopic viewing) for 3D vector field data
[48]. User study can be a powerful tool for helping users choose the best tool for their needs
and the visualization community has been working on evaluating and testing techniques as

they become more widespread.

6.3 Uncertainty and Verification

Uncertainty visualization and visualization verification are two important topics in the
pursuit for reliable visualizations. The AIAA community is familiar with both topics. In
this chapter, however, we present some of the recent advancements in this area from the
point of view of the Visualization community. The goal is to increase the user confidence in
the results of the visualization by answering questions such as: how can one visualize the
inherent error sources in the visualization? or, how can one increase her/his confidence that
an implementation of a visualization algorithm does what was intended? In the following
sections we present some of the recent developments in uncertainty visualization and the

verification of isosurface extraction techniques.

6.3.1 Uncertainty Visualization
In the course of scientific inquiry, uncertainty is the norm. The visualization community
has recently turned its attention to uncertain data, and is trying to solve problems on
how to best compute and convey uncertainty information. Since 2010, around 30 papers
were published at TVCG on the topic, with application on information visualization and
scientific visualization. So far, the community has seen several different representation for

uncertainty, varying from traditional method such as bars, glyphs, and colors, to texture,
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multilayering, animations, and volume rendering. At the ATAA community, we analyzed
ten papers since 2010 dealing with material uncertainty, uncertainty in flows, and fluid
simulation. The visualization step, on the other hand, is restricted almost exclusively to
error bars and charts.

In the user study conducted by Sanyal et al. [148], the authors evaluate the effectiveness
of four commonly used uncertainty visualization techniques: namely, glyphs size, glyphs
color mapping, surface color mapping, and error bars (see Figure for examples). The
users performed two search tasks by identifying regions that are least and most uncertain,
and two counting tasks where users counted the number of data and uncertainty features.
The authors reported that, in general, users required more time and committed more
mistakes when using error bars. The authors conjecture that a possible reasons for the
poor performance displayed by error bars is due to the high density of the dataset used in
their study. Nevertheless, a similar pattern can be found in the ATAA community (e.g., see
Figures 4 and 6 in Chassaing and Lucor [19]).

Several techniques for uncertainty visualization of vector fields are available. Botchen
et al. [11] introduce a texture-mapping approach for uncertainty visualization of 2D vector
fields. Hlawatsch et al. [63] introduce a new static visualization of unsteady vector fields
with uncertainty based on a new type of glyph. Osorio and Brodlie [I] introduce a LIC-
based method for uncertainty visualization. The work by Petz et al. [I35] uses Gaussian
random fields and takes into account spatial correlation of the data, which affects vector
field features. Fout and Ma [123] presents a framework based on possibility theory for
uncertainty visualization and as a case study, the authors use streamlines in 3D steady
vector fields. Because many researchers have recently turned their attention to uncertainty

visualization, this area of research is rapidly evolving.

M\
AVAY

Figure 6.6. The four uncertainty visualization methods used by Sanyal et al. [148] in their
user study. From left to right: glyphs size, glyphs color mapping, surface color mapping,
and error bars.
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6.3.2 Verifiable Visualization
As Chapter [2| and [3| have shown, there has been work on the verification of the imple-

mentation of isosurface extraction algorithms.

6.4 Opportunities

Much of the early motivation for flow visualization in the visualization community
came from the ATAA community, but over the last two decades, it appears that a major
gap has developed, and developments in the visualization community have been done
much more independently of applications and new developments in the aeronautics area.
This is in part due to the different needs of the many users of visualization techniques,
including the automotive industry, meteorology, medical imaging, geosciences, to cite a few.
Summarizing decades of developments in the field of flow visualization and related areas is
a nontrivial process. As an alternative, every year, a summary of recent relevant advances
of visualization techniques could be published at the ATAA community; and conversely, the
ATAA community could help the visualization community not only by providing expertise,
but also research directions [I21I]. Yearly panels are held at the IEEE Vis conference,
many of them with an applications focus. Consistent participation by the AIAA in these
communities would help raise the level of awareness of current pressing issues. This gap
between communities seems to be particular true in the need for validation and verification
of visualizations techniques and codes, which over time seem to have lost track with the new
rigor expected of computational codes. A related topic is the need for increasing the level
of reproducibility of computational results, which cannot be simply accomplish by making
codes available to other researchers [15§].

There is a natural progression from research idea within the visualization community
to prototype tool, and from prototype tool to “hardened” user-available software. The
challenge put forward to the visualization community to continue to seek out how to be
relevant to collaborators such as our colleagues in the AIAA community, and the challenge
of disseminating the advances made by the visualization community to application domains.
Over the last 20 years, visualization techniques have merged as a key enabling technology for
computation science by helping people explore and explain data through the creation of both
static and interactive visual representations. Visualizations libraries such as Kitware’s VTK
contain a very large number of highly-complex visualization algorithms with thousand of

lines of code implementing them. The most powerful of these algorithms are often based on
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complex mathematical concepts, e.g., Morse-Smale complex, spectral analysis, and partial
differential equations (PDEs). Robust implementations of these techniques require the use
of nontrivial techniques. The overall complexity and size of these datasets leave no room
for inefficient code, thus making their implementation even more complex. The complexity
of the codes coupled with the new visualization techniques make it highly nontrivial for
nonexperts to use them, although, in principle, it should be “easier”.

We believe better connections between the two communities have the chance to improve
the adoption of new techniques. Furthermore, by working together, AIAA researchers can
also help the Visualization community not only by providing new problems and datasets
and being a major driver of problems to the community (such as they were when the
visualization field was coming of age), but also by making sure the needs of the ATAA

community are reflected in new research topics in Visualization.

6.5 Conclusion

In this chapter, we have briefly visited two decades worth of flow visualization. In
particular, we first focused on vector field visualization. In this regard, we presented a
classification of flow visualization seen from the perspective of the Visualization community
and contrasted it with ATAA publications containing flow visualization over the last 3 years.
By exposing the current advances in visualization, we have a starting point for building a
common research agenda that can benefit both communities. In addition, we have also
visited some topics related to flow visualization that have been attracting attention in
the Visualization community, namely, evaluation of visualization techniques, perception,
uncertainty visualization, and verifiable visualization. The common thread in all these
topics is the need for improving visualization techniques in general via error mitigation,
and understanding how visualization can improve the user cognitive process. We showed
some of the recent work on each of these topics in the context of flow visualization. As
we mentioned at the start, (computational) flow visualization is a research area that was
birthed simultaneously in two communities, and early in its development benefited from
strong interaction between the communities. It is our hope that a more tight coupling
between the research needs/interests of the ATAA community and the research agendas of
the Visualization community can be developed. This can only happen through cooperation,
collaboration, and communication. In part, we hope that this work is the start of a dialog

between the two communities.



CHAPTER 7

CONCLUSION

In this dissertation, we have introduced a framework for the verification of two of the
most popular visualization techniques available in scientific visualization, namely, isosurface
extraction and volume rendering. The framework is based on the Method of Manufactured
Solutions (MMS), a well-established idea inside the Computation Science & Engineering

community.

7.1 The Method of Manufactured Solutions

As previously mentioned, the two main steps involved in the practice of the MMS are

the theoretical analysis of important mathematical properties and the black-box testing.
The analysis was the most time-consuming part because required intense research. The
convergence of geometrical properties of isosurfaces, such as function value and normals,
were mostly available in the literature. Hence, the research was fairly straightforward in this
case. On the other hand, the verification of topological properties were available only by
using relatively complex algorithms, such as contour trees. The complexity was one of our
motivations to devise new algorithms for computing the Euler characteristics of isosurfaces
directly from scalar fields. In addition to that, our work on topological verification played
a crucial role in correcting an almost 20-year-old bug with Marching Cubes 33. The case
of verification of volume rendering algorithms also required a convergence analysis not
available in the literature. Thus, the analysis of the theoretical behavior of visualization
algorithms presented in this work constitute an important contribution of this dissertation.
Another important consideration is that often simplifications must be made so that an
algorithm can be verified, such as illustrated by the volume rendering case. Many of the
commonly used improvements to the standard volume rendering, such as opacity correction
or advanced shading, must be “turned off” because the theoretical analysis does not include
the influence of these improvements.

Because of its simplicity, we believe MMS could become a standard tool for the verifi-
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cation of scientific visualization software in the same way that it has been adopted by the
CS&E community as a trustworthy tool for assess code correctness.

We observed that the MMS contrasts with a common practice within the visualization
community, namely, the evaluation of new techniques through the use of real-world data.
By using real-world data during development, one can evaluate a new technique using the
data it is supposed to represent. When the data do not “look right” in the eyes of an expert,
or the error quantification exceeds some predetermined threshold, it is assumed that there
is a problem that must be fixed. This approach is certainly valuable and we do not advocate
the MMS as a replacement for using real-world data, or any other method that users are
accustomed with for that matter. Instead, we advocate its use in addition to the methods

already adopted by developers.

7.2 Order of Accuracy

As our work have shown, it is not always possible to use order of accuracy as a standard
method for the verification of visualization algorithms. While geometrical properties can be
continuously evaluated, topological properties have a binary nature. We then conclude that
the implementation of the MMS is problem-dependent and the necessary mathematical tools
must be tailored accordingly. Nevertheless, the idea of verification through manufactured
solutions can be used across many visualizations techniques. We expect MMS to enjoy
a similar effectiveness in many areas of scientific visualization. This is the most direct
direction of future work: the application of the MMS to other visualization techniques such

as vector field visualization and mesh simplification.

7.3 Evaluation

The economic impact due to the lack of appropriate infrastructure for software testing
is well studied. A NIST report estimates that the total loss due to lack of software testing
is about $22.2 to $59.5 billion [I66]. To the best of our knowledge, the economic impact
and consequences of the lack of software testing for the subfield of scientific visualization
has not yet been evaluated. Nevertheless, there is anecdotal evidence of the need for this
evaluation. As an example, we cite a medical report extracted from the Manufacturer and
User Facility Device Experience (MAUDE), a data repository of adverse events involving

medical devices under the umbrella of the FDA:

The patient was undergoing a kidney operation and the kidney image as dis-
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played on the system’s image monitor allegedly flipped in orientation without
any operator intervention and as a result it is alleged that the patient had the
wrong kidney operated upon.

The bug described previously is not “severe” in the sense that the final image is a
perfectly valid one. Nevertheless, the outcome is quite alarming. There are several similar
reports involving images flips and artifacts in medical devices dating from early 90s — when
the information started to be collected — until now. Many of these reports highlight that the
problem did not cause any injury; however, they also emphasize the risk of misdiagnosis. It
may be interesting to perform a user study using visualization results that contains known
bugs and bug-free images to evaluate the class of problems that developer/expert can detect.

This is out of scope of this work and is left as future work.

7.4 Broad Impact

Verification has gained some traction inside the field of visualization in recent years. We

have seen several initiatives that support this: two workshops on reproducibility, verifica-
tion, and validation in visualization (EuroRV?3 2012-2013) at Eurovis; a discussion panel
“Verification in Visualization: Building a Common Culture” at IEEE VisWeek 2011; and
verification as part of the “call for participation” for IEEE VisWeek 2010-2013. We hope the
examples presented here will further encourage the adoption of MMS by the visualization
community at large, increasing the impact of its contributions to a wider audience. We
believe that researchers and developers should consider adopting verification as an integral
part of the investigation and development of scientific visualization techniques. We hope
that the results of this work further motivate the visualization community to develop a

culture of verification.



APPENDIX A

THE COUNTEREXAMPLE IN NUMBERS

We provide the data necessary for reproducing the counterexample shown in Figure 4.5
The isosurface of interest is homeomorphic to configuration 13.5.2 of the extended Marching
Cubes table.This example can be used to show that both the original and modified versions
of the MC33 algorithm will fail to retrieve the correct case. Following the interior test

proposed by Chernyaev, let

Ao = +0.2864 A = —0.2384
By = —0.0639 By = +0.9486
Cp = +0.6568 C1 = —0.5049
Dy = —0.1692 D1 = +0.1075.

The coefficient a, b, and ¢ in F(t) are given by

a = -+ (A1 — Ag)(01 — Co)
— (By — Bo)(D1 — Dy) = 0.3296
b = 4+ Co(A1 — Ao)

+ Ag(Cl — Co)
— Dy(B1 — By
— By(D1 — Do) = —0.4886

c = AoCo - BoDO =0.1701

Condition (i) does not hold because a > 0, which means that a tunnel is absent. Therefore,
under Chernyaev’s conditions, case 13.5.2 is incorrectly interpreted as 13.5.1.

Now, following the Lewiner’s implementation, for the same scalar field, let
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Ao = +0.1075 A; = —0.5049
By = —0.1692 B; = +0.6568
Co = +0.2864 C1 = —0.0639
Dy = —0.2384 D1 = +0.9486.

The proposed alternative ¢ is given by

t = 0.1756,

alt — AO _Al

and:

F(ta) = —0.0007 < 0.

Thus condition (iii) fails, which means that case 13.5.2 is again incorrectly interpreted as

13.5.1.



APPENDIX B

AUXILIARY EXPANSIONS

In this chapter, we provide auxiliary expansions and proofs. More details on the
expansions shown below can be found in the textbook by Sedgewick and Flajolet [156].
Recall that d = D/n.

B.1 Proof of convergence of (1 + O(d))"
Let us first expand the term (1 + C’lx)CQ/x, where C;C5 € Rt and 2 — 0.

(1+ Clac)% = exp (C; log(1 + Cw)) (B.1)
= exp (CZ(C’M + O(x%)) (B.2)
= exp(C1Cy + O(x)) (B.3)
= 1+0102+O($) = 0(1) (B.4)
Hence:
(14 0(d)" = (1+0(d))?/* = 0(1) (B.5)

B.2 Proof of convergence of (1 + O(d?))"
Let us first expand the term (1 + Cle)CQ/m, where C1,Cy € RT and 2 — 0.

(1+ Clx2)% = exp (C; log(1 + Clx2)> (B.6)
= exp (C;(C’le + 0(964))) (B.7)
= exp(C'lC’gx + 0(1'3)) (B.S)
= 1+ C1Chx + O(2?) (B.9)
= 14+0(x) (B.10)

Hence:

(14 0(d®)" = (1 +0(d?*)P/? =1+ 0(d) (B.11)
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