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ABSTRACT

Towards the Development of Multi-View Reconstruction System for

Paleontological Fossils

by

Yichen Xie

Advisor: Prof. Claudio T. Silva, Ph.D.

Submitted in Partial Fulfillment of the Requirements for

the Degree of Master of Science (Computer Science)

January 2024

Digitization is an innovative and invaluable technique for preserving and dis-

tributing ancient fossils. It alleviates the financial burden on museums while

providing a flexible means for fossil analysis and exhibition. Generally, digitiza-

tion involves extracting physical information from fossils, organizing multi-modal

data, and constructing interactive visualization systems. Among these steps, the

reconstruction of fossils plays a pivotal role as it provides paleontology researchers

with realistic visual information. Although significant progress has been made in
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achieving accurate fossil reconstruction over the past decades, areas remain for

improvement, such as accuracy, robustness, and cost-effectiveness.

This thesis focuses on the task of multi-view reconstruction of fossil objects and

presents the development of PaleoScan, a robust reconstruction algorithm working

on a single camera-based scanner. The proposed pipeline performs corner detection,

camera calibration, point cloud generation, and surface recovery on the acquired

image dataset, exhibiting robustness and efficiency in various scenarios. We present

all the details in our system settings and conduct multiple visualized experiments

to demonstrate its effectiveness: fast and robust detection and calibration process is

performed, remarkable accuracy in the multi-view matching and depth estimation

is achieved (within 1 mm), and models with rich details (meshes with more than

three million triangles) that resemble real objects are generated. PaleoScan is a

comprehensive end-to-end framework that could be broadly applicable to paleontol-

ogy studies, potentially enhancing the quality and reliability of on-site digitization

for all kinds of fossils.
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Chapter 1

Introduction

1.1 Motivation

Three-dimensional reconstruction is one of the most critical techniques in fossil

digitization. A well-designed reconstruction pipeline can generate digital records

with sensors, extract valuable visual information, create detailed three-dimensional

models, and provide visualization interfaces for paleontologists and museum visitors.

This revolutionary approach has transformed paleontology studies by enabling

researchers to gain insightful information from fossils without causing physical

damage and allowing for modifications and annotations in a virtual space.

Various technologies have been introduced and developed to reconstruct fossils,

including Serial Grinding, Computed Tomography (CT), Magnetic Resonance

Imaging (MRI), Laser Scanning, etc. These methods can produce high-resolution

maps of fossil objects but have notable limitations. Grinding-based methods result

in irreversible physical damage to the fossils, while radiation-based methods require

expensive and non-portable equipment that is difficult to deploy near excavation
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sites. Therefore, paleontology digitization faces the problem of high transportation

and preservation costs.

Fortunately, with the advancements in Computer Vision, image-based recon-

struction methods have gained popularity in fossil digitization. These methods

offer significant advantages. Firstly, images can be easily captured using commonly

available cameras, making the data acquisition process more flexible. Secondly,

they can leverage existing efficient image processing algorithms. However, images

obtained through cameras often suffer from lower quality than those obtained

using complex radiation scanners due to uncontrollable ambient lighting and lens

distortions. Consequently, computer scientists face the challenge of developing

robust and efficient algorithms to overcome these shortcomings and recover as many

physical details of the fossils as possible.

This challenge motivated us to construct a low-cost scanner utilizing a single-

lens camera. We captured multiple images of a simulated fossil object from

various viewpoints and developed an algorithm to generate point clouds and meshes

for the object. We aim to design an automated reconstruction pipeline that

exhibits robustness and accuracy that researchers can quickly learn and utilize in

paleontology studies.

1.2 Related Works

In recent years, various methods have been proposed for digitizing fossils. One

early method by Sollas et al. [1], introduced in 1904, is physical tomography, which

involves obtaining images of thin serial slices of a fossil. However, physical tomogra-

phy is time-consuming and destructive, as it alters the original state of the fossils.
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To address these shortcomings, non-destructive methods such as radiography

scanning and camera image integration have gained attention. X-ray computed

tomography (CT) (e.g., Donoghue et al. [43], Wind et al. [11]) works by capturing

multiple projection images at different angles to detect the inner structure of the

specimen using a penetrating beam. These images, arranged in a predetermined

pattern perpendicular to the rotation axis, map X-ray attenuation through the

specimen [9]. Neutron radiography by Winkler et al. [45] has also been used as an

alternative to classical X-ray imaging. Schiffbauer et al. [37] introduce focused ion

beam electron microscopy (FIB-EM). Magnetic resonance imaging (MRI) by Ziegler

et al. [47] offers another approach to acquiring tomography maps, providing the

ability to depict soft tissue in zoological specimens. Additionally, Bates et al. [3] uses

light detection and range (LiDAR) images to generate 3D models of dinosaur fossil

trackways. These radiography imaging methods provide non-destructive means for

fossil reconstruction and analysis, particularly valuable for unique and rare fossil

materials. However, they all require expensive and non-portable scanning facilities.

Reconstruction using ordinary camera images has become an attractive option

to address the need for cost reduction and adaptability to complex environments.

Advanced image processing algorithms can extract details such as size and texture

from various materials, enabling the generation of simulated models using graphical

techniques. For instance, Falkingham et al. [15] acquired images with a megapixel

camera, determined camera positions with Bundler [40], generated sparse and

dense point clouds using multi-view stereo (MVS) software, and produced three-

dimensional meshes using MeshLab [14]. COLMAP by Schonberger et al. [38, 39]

provides a general-purpose end-to-end pipeline for scene and object reconstruction

from unstructured imagery. Jaiswal et al. [23] utilized an RGB-D (Kinect-style)
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camera for 3D object modeling. Compared with the methods above, our pipeline

focuses explicitly on small-scale fossil object reconstruction and does not use any

sensors to acquire depth information directly.

1.3 Outline

The following chapters are organized based on the structure of the processing

pipeline in our system. In Chapter 2, we provide an overview of the design and

settings of our camera-based scanner and the management of the acquired image

dataset. Chapter 3 focuses on the ChArUco board and the detection algorithm, a

fundamental component for the subsequent calibration stage.

Moving forward, Chapter 4 delves into the calibration methods, covering intrinsic

and extrinsic parameters calibration processes. Chapter 5 presents the multi-view

matching approach and the generation of dense point clouds for our fossil objects.

Chapter 6 introduces the surface-recovering algorithm and showcases relevant

experiments demonstrating its effectiveness in producing realistic and refined

surfaces. We also provide the results of experiments on real fossil objects in Appendix

Chapter A and discuss the problem of adaptation from artificial to real fossil models.

Finally, in Chapter 7, we conclude the thesis by summarizing the key findings

and contributions of our research. Additionally, we provide an outlook on poten-

tial challenges and areas for future work, highlighting opportunities for further

improvement and development in the field of fossil digitization.
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Chapter 2

Camera Scanner

This chapter introduces the design and settings of our camera-based scanner1,

and the pre-processing and arrangement of the obtained image dataset.

2.1 Camera-based Scanner

In most reconstruction tasks, capturing images using a camera is the initial step.

However, there are variations in the categories and settings of cameras and scanners.

For example, [15] use an Olympus E-500 megapixel camera to acquire images at

15-degree intervals, with approximately 50% overlap between consecutive images.

In our system, we have designed a scanner consisting of a cubic iron frame with

a track that can be shifted along an axis perpendicular to itself. The camera is

attached to this track and can move along the track (See Fig 2.1). Consequently,

we can precisely control the camera’s position by controlling the track and the

camera’s pedestal. It is worth noting that since the track only moves within a

1The scanner in our project is designed and built by Dr. Yurii Piadyk at New York University
and Mr. Otávio José De Freitas Gomes at the Federal University of Ceará.
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Figure 2.1: The framework of our camera scanner. The two perpendicular tracks
provide two degrees of freedom for the camera movement. The object is placed
within the steel frame.

horizontal plane, we can ensure that the camera position remains restricted to a

fixed height.

Our setup employed a SONY megapixel camera, whose shutter is connected to a

microcontroller (See Fig 2.2). The microcontroller runs a controlling software with

a user-friendly interface, allowing users to interact with the camera and specify

the desired image capture pattern. The camera can capture images in either RAW

(uncompressed) or JPG (compressed) format. Our experiments utilized RAW

format images to prioritize accuracy and convenience.
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Figure 2.2: The single-lens reflex camera in our scanner. The camera is connected
to a micro-controller with signal wires and takes photos automatically in designed
patterns. It moves along predetermined paths in our experiments.
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2.2 Dataset Arrangement

To obtain a structured image dataset that can be quickly processed in subsequent

stages, we devised a specific movement pattern for the camera, maintaining fixed

vertical and horizontal distances between images. The camera initiates its movement

from the origin of the scanner coordinate system, which is situated at the bottom

right corner, then follows a serpentine path until it reaches the top left or right

corner. The final stop position is determined by the vertical movement being even

or odd. Additionally, we incorporate an offset from the scanning range’s edge to

concentrate the captured images on the scanned object (See Fig 2.3).

After capturing images along the predefined path, we obtain a series of images

organized based on the camera’s movement sequence. However, this unstructured

dataset is not ideal for the following calibration and multi-view matching tasks,

as it does not directly provide information about the adjacency between images.

It is quite inefficient to locate an image above or below another image. Therefore,

we reorganized the images into a new hashing data structure called Image Grid to

solve this problem: Each image is assigned a pair of indices in this structure, and a

dictionary employs the two-dimensional indices as keys to access the corresponding

images. The Image Grid greatly simplifies code implementation for other tasks and

reduces the time required to search adjacent images in a large dataset.

Furthermore, we translated from RAW images (Bayer Pattern) to JPG format

images and applied white balancing to ensure color calibration for all the images.

This process can be time-consuming, particularly for large datasets, due to the I/O

bottleneck of the disk. To mitigate this problem, we implemented the translation

algorithm once at the initial stage of our experiment and then stored the results as

a compressed cache file in our system. Thus we can avoid repetitive translations.
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Figure 2.3: Visualization of camera movement. The camera always starts its
movement from the bottom left corner. We limit the movement range of the
camera by setting offsets (X and Y), allowing it to capture object information more
effectively. We restrict the camera to moving only a short distance each step along
either the horizontal or vertical direction.

In our experimental setup, we generated five distinct image datasets, namely

Flat-1, Flat-2, Irregular-1, Irregular-2, and Box. Each dataset represents a different

object configuration.

Flat-1 and Flat-2 correspond to the image sets capturing an object with a

perfectly flat surface. These datasets focus on objects devoid of any irregularities or

folds. Irregular-1 and Irregular-2 are image sets that feature objects with folds and

deformations. These datasets highlight the challenges posed by objects with non-

uniform surfaces. Lastly, the Box dataset comprises a series of images capturing a

brown rectangular box. This dataset is designed to provide a natural, standardized,

and consistent object configuration for experimentation.
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Chapter 3

Feature Detection

This chapter covers the concepts and algorithms of image feature detection in

our project. First, we briefly discuss the categories of image features and introduce

ChArUco Board, a useful tool for generating rich image features. Then we present

our corner detection algorithm and evaluate our experiment results.

3.1 Image Features

Image features encompass specific properties of an image, such as patterns,

textures, positions, etc., which can be used to distinguish differences and find

matching parts between images. These features include points, lines, regions,

and even encoded codes derived from the original features. In the context of

reconstruction tasks, our primary focus lies on extracting point features from

images. Point features are essential as they provide location information about the

camera and are the basic units for point cloud generation.

A wide range of methods have been proposed to extract point features from im-

ages. Harris Corner Detector [18] is one of the most well-known algorithms in Com-
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puter Vision. It is simple and efficient but susceptible to noise. To improve robust-

ness, various alternative methods have been introduced, including SIFT [30], SURF

[4], BRIEF [22], FAST [42], ORB [35]. These methods aim to maintain invariance

to rotation and translation transformations but often come with increased time con-

sumption. Consequently, researchers often face trade-offs between accuracy and effi-

ciency when selecting the most suitable method based on their project requirements.

Another approach to introducing image features is adding fiducial markers into

the image. A fiducial marker is an object deliberately placed within the field of

view of an imaging system to serve as a reference or a measurement tool. Fiducial

markers like ARToolKit, ARTag, AprilTag, and ArUco (See Fig 3.1) can be easily

detected using simple detectors and template matching algorithms. Compared to

extracting features directly from objects or scenes, this approach requires less time

and can even achieve higher accuracy, particularly in texture-less conditions.

Our project aims to extract point features efficiently and accurately for camera

calibration. To reach this goal, we utilize the ChArUco Board, which enriches

the background with image features, allowing us to achieve comparable accuracy

with simple detectors. The details of the ChArUco Board will be presented in the

subsequent section.
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Figure 3.1: Example of fiducial markers. Each kind of markers has its unique

coding to achieve differentiation within the group.

3.2 ChArUco Board

The ChArUco Board combines the characteristics of a chessboard (or checker-

board) and fiducial markers (ArUco markers) (See Fig 3.2). Chessboard corners are

highly suitable as point features for detection due to the distinct contrast between

the black and white grid squares. They have been widely employed in camera

calibration tasks. However, chessboard corners become indistinguishable when the

board rotates by 90 degrees or upside-down.

To address this limitation, the ChArUco Board incorporates ArUco markers into

the chessboard. Each white grid in the chessboard is assigned a unique ArUco code,

introducing differences between them. The presence of ArUco markers provides

valuable information regarding the rotation of the chessboard, thus ensuring the

accuracy and correctness of corner matching between images and enhancing the

robustness of the overall feature detection process.
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Figure 3.2: An example ChArUco Board. Every white square in the chessboard is
assigned with an ArUco marker, thus encoded with a different index.

3.3 Algorithm

Our detection method is developed based on the ChArUco detection package

in OpenCV, taking algorithm implementations from [27] and [17] as references.

The detection algorithm generates a matching template for the assigned board and

marker sizes, subsequently identifying and matching markers within the image.

Initially, the algorithm employs an edge detection algorithm to extract the

contours of the markers. The inner region of these contours is then analyzed to

extract the internal code of each marker. After that, marker identification and
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error correction are performed to ensure accurate detection.

As an improvement to the original detection algorithm, we introduce a re-scale

coefficient that allows for the adjustment of input image resolution. This adjustment

helps reduce noise and time consumption. Additionally, we have imported the

joblib [24] package to enhance the detection algorithm’s speed, enabling parallel

execution of multiple detection functions.

3.4 Evaluation

We evaluated our algorithm’s performance by generating images with color

markers placed on the detected corners. We then calculated the average time cost

for each image set.

In Figure 3.3, we provide an example of corner detection visualization. The

green lines represent the detected contours of the ArUco markers, while the blue

markers indicate the corresponding codes of these markers. Additionally, the corners

of the white grids, which serve as the feature points used in the calibration process,

are also detected and marked. This visualization allows us to assess the correctness

and accuracy of the detected corners in the images.

However, relying solely on visual evaluation may be partially convincing. There-

fore, we also conducted quantitative validation after the calibration process. The

validation results will be presented in Section 4.6, providing a more comprehensive

assessment of the algorithm’s performance.
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Figure 3.3: Visualization of detected markers. Blue Words: ID of ArUco marker.

Green Lines: Edges of Aruco markers. Green Point and Words: Chessboard corners

and IDs.
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Table 3.1: Time cost of corner detection for different image sets. The detection

algorithm operates at a speed of approximately 1.5s per image.

Image Set Image Quantity (Object + Calibration) Time (second)

Flat-1 30 + 35 46.3 + 50.1

Flat-2 30 + 35 47.6 + 51.2

Irregular-1 30 + 35 46.1 + 52.1

Irregular-2 30 + 35 45.7 + 48.2

Box 200 + 35 272.1 + 48.0

Table 3.1 presents the time cost of the detection process for each image set.

On average, our detection algorithm operates at a speed of 1.5 seconds per image

in small image sets (consisting of less than 35 images). Notably, the time cost is

not significantly influenced by the number of detected corners. Moreover, in larger

image sets, the algorithm runs even faster, with a speed of 1.3 seconds per image.

This difference in performance can be attributed to the communication cost between

threads, as parallelization proves to be more effective in handling larger datasets.
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Chapter 4

Calibration

In this chapter, we first introduce the principles of camera calibration, including

intrinsic and extrinsic parameters calibration. Then we present our self-adaptive

calibration algorithm and have a discussion on distortion coefficients. Lastly, we

provide both visual and quantitative evaluations of our methods.

4.1 Principles

Camera calibration is a necessary process that involves determining the intrinsic

and extrinsic parameters of the camera. The intrinsic parameters include the

intrinsic matrix and distortion coefficients, which remain constant regardless of the

camera’s pose and position. On the other hand, the extrinsic parameters consist of

rotation and translation vectors, which describe the camera’s pose and position in

world coordinates.

In the commonly used pinhole camera model, the image-to-world transformation



18

can be represented as:

x ≃ PX = K[R T ]X = K[R −RTC]X (4.1)

Here, P is called the projection matrix. K is the intrinsic calibration matrix,

R is the rotation matrix, and T is the translation vector. However, it is worth

noting that sometimes the rotation matrix R is represented as a vector instead of a

matrix. The transformation between the matrix and vector forms of R is known as

the Rodriguez Transformation.

The intrinsic calibration matrix K is typically represented as:

K =


fx 0 cx

0 fy cy

0 0 1

 (4.2)

Here, fx and fy denote the camera’s focal lengths along the x-axis and y-axis,

respectively. cx and cy represent the offsets of the principal point. The intrinsic

calibration matrix K is an upper triangular matrix.

To estimate the camera parameters, given 2D image points as observations x

and the corresponding 3D world points in the world coordinate X, their relationship

can be expressed as:

x ≃ PX (4.3)

The projection matrix P can then be decomposed into intrinsic and extrinsic

components using RQ-decomposition, with the normalization of the Q matrix. The

R matrix (an upper triangular matrix) represents the calibration matrix K, while

the Q matrix (an orthogonal matrix) represents the rotation matrix R [20].
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4.2 Dataset Preparation

The goal of calibration is to obtain accurate estimations of both intrinsic and

extrinsic parameters. To achieve this, we divide the calibration process into two

parts: one for intrinsic parameters and the other for extrinsic parameters. For each

part, we utilize different image sets.

The first image set is named as calibration dataset, which consists of images

of the ChArUco board in various poses. The variation in board pose provides

distinct visual cues, making it easier to estimate accurate intrinsic parameters.

The second image set is named as object dataset, which includes images of

fossil objects and the ChArUco board. This set serves a dual purpose, as it is

used in the calibration process and employed in the multi-view matching stage. By

generating the object image set immediately after the calibration image set, we

ensure a similar environment for both sets. Therefore, it guarantees the validity of

using the same intrinsic parameters in the subsequent extrinsic calibration.

As Section 2.2 mentioned, we have prepared five object datasets for later

experiments. We have also created three calibration datasets (Flat, Irregular,

and Box) to facilitate the calibration process. Each object dataset (Flat-1, Flat-2,

Irregular-1, Irregular-2, and Box) corresponds to a specific calibration image dataset:

Flat for Flat-1 and Flat-2, Irregular for Irregular-1 and Irregular-2, and Box for

the object dataset Box. This arrangement allows us to associate the appropriate

calibration images with their corresponding object datasets, ensuring accurate

calibration and subsequent analysis.
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4.3 Self-Adaptive Calibration

We have implemented a self-adaptive calibration algorithm based on ChArUco

Board corners, drawing inspiration from the OpenCV Charuco package and the ap-

proach described in [2]. Our motivation for developing this algorithm stems from the

observation that performing calibration only once does not meet our requirements

due to the influence of image noise on the accuracy of detected corners. Therefore,

we needed a method to remove outliers repetitively during the calibration process.

The core idea of our algorithm is to iteratively analyze the input data statistics,

determine an appropriate threshold for outlier removal, and then perform calibration

again on the refined dataset. We adopted the 3-σ principle, which is widely used

for outlier detection, to identify outliers. In a normal distribution, approximately

99.7% of the data lies within three standard deviations from the mean. Assuming

the error of corner observation E follows a normal distribution with a standard

deviation of σ:

E ∼ N(0, σ) (4.4)

The observed corner X ′ should also follow a normal distribution:

X ′ = X + E ∼ N(µ, σ) (4.5)

Here X represents the distribution of the ground truth corners, and µ is the

mean of X. Therefore, we can employ the 3-σ principle to filter out outliers in X ′.

During our experiments, we discovered that almost all the corners fell within the

3-σ range, while the accuracy could not meet our expectations. Consequently, we

modified our algorithm to utilize the 2-σ principle, encompassing 95% of the data on
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average. In each iteration, we filter out corners outside the 2-σ range, calibrate, and

calculate the changes in projection errors between two consecutive iterations. We

utilize the change in projection errors as the stopping criterion for the iteration loop.

The loop terminates when no corners are removed, indicating that the remaining

corners are concentrated enough to generate an accurate calibration result.

Below is the pseudo-code for our self-adaptive calibration algorithm which we

apply in the intrinsic calibration process of our system:

Algorithm 1 Self-Adaptive Calibration

intrinsicParams← Calibrate(corners)

prevError ← ProjectionError(intrinsicParams)

while ∆error < ErrorThreshold do

intrinsicParams← Calibrate(corners)

error ← ProjectionError(intrinsicParams)

µ, σ ← error

corners← corners ∈ (µ− 2σ, µ+ 2σ)

∆error ← error − prevError

prevError ← error

end while

Return intrinsicParams

4.4 Distortion Coefficients

The pinhole camera model serves as an ideal representation in camera geometry

theory. However, in practical applications, cameras have lenses that introduce
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unwanted distortion to captured images. This distortion comprises radial and tan-

gential distortion, which can be parameterized using various distortion coefficients.

There are a total of 14 distortion coefficients available:

dist = (k1, k2, p1, p2, [, k3[, k4, k5, k6[, s1, s2, s3, s4[, τx, τy]]]]) (4.6)

However, in many tasks, not all of these coefficients are necessary. The first

four coefficients are already enough to meet the requirement. Including additional

coefficients can improve the accuracy of calibration (See Table 4.1), but it can also

introduce undesirable artifacts, such as image corner cracks, during the undistortion

process (See Fig 4.1).

Through experiments conducted in our system, we observed that cracks are only

introduced when coefficients beyond k4 are used. Therefore, we choose to include

distortion coefficients k1 to k4 in our calibration process. This selection balances

improving calibration accuracy and avoiding introducing noticeable artifacts in the

undistorted images.

Table 4.1: Average projection error when distortion coefficient number changes. The
smallest error appears when there are six coefficients, but it introduces unwanted
artifacts. Thus we choose four coefficients with the second smallest error.

Distortion Coefficients Average Projection Error

k1 ∼ k3 0.91618156
k1 ∼ k4 0.914913
k1 ∼ k5 0.91551137
k1 ∼ k6 0.9145506
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Figure 4.1: Visualization for unwanted artifacts in images. Top: Artifacts appear

at four corners of the image. Bottom: Artifacts in detail. The artifacts look like

cracks along the diagonal.
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4.5 Perspective-n-Points

To estimate the extrinsic parameters of the camera in our object image set,

which provide information about camera pose and position for each object image,

we employ the Perspective-n-Points (PnP) technique. This method utilizes the

coordinates of detected points in both 3D world space and 2D image space. Our

implementation solves the PnP problem using a non-linear Levenberg-Marquardt

minimization scheme [12, 31] and leverages the APIs provided by OpenCV.

Before solving the PnP problem, we perform image undistortion on the images

and adjust the intrinsic matrix using the undistortion coefficients. This step helps

to improve the accuracy of the calibration. We then visualize the cameras’ positions

in both 2D and 3D space. The results of this process can be found in Section 4.6,

where we present a comprehensive evaluation of the calibration results.

4.6 Evaluation

4.6.1 Visual Evaluation

Intrinsic Calibration

To visually evaluate the accuracy of our algorithm, we generate images with

red circle markers placed on the detected points and green circle markers on the

projected points. The projected points are obtained by projecting the ChArUco

corners from the template onto the image using the estimated calibration parameters.

By comparing the overlap between the two sets of circles, we can assess the accuracy

of both the detection and calibration processes (See Fig 4.2).
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Figure 4.2: Visualization of reprojection. Red circle: Corners from the detection

algorithm. Green circle: Corners from reprojection. Circles of the same corner

overlap in this image, indicating that the parameters obtained by the calibration

algorithm are accurate.

To further assess the effectiveness of our undistortion process, we draw a

rectangle on the ChArUco Board and examine the result. (See Fig 4.3) In the

original image, the edges of the rectangle do not align accurately with the edge of
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the grids on the ChArUco Board. However, after applying undistortion, the edges of

the rectangle align perfectly, indicating the successful removal of distortion effects.

Extrinsic Calibration

We also provide visualizations of camera position estimation in both 2D and

3D space. In Figure 4.4, the camera positions are projected onto a parallel plane

to the ChArUco Board. The scale used in the visualization is the same as the

real-world length, allowing us to compare the mean distance of camera movement

with scanner settings in vertical and horizontal directions. The indices near the

points indicate the capturing order of the images, and the points are connected by

blue lines to depict the path of camera movement.

In Figure 4.5, the camera positions are represented as cones, with different

colors indicating the capturing order of images. The apex of a cone shows the pose

of a camera. This 3D visualization provides a comprehensive view of the camera

positions and poses.
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Figure 4.3: Comparison between the original image (top) and the undistorted image

(bottom). In the original image, the red lines do not align with the edges of the

checkerboard cells, while in the undistorted image, the red lines align much better.
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Figure 4.4: Visualization for camera position in 2D space. Red dots represent the

camera positions at the time of capturing each image. The indices nearby indicate

the order of images. Blue lines show the track of camera movement. The camera

positions calculated using the calibration parameters match the designed pattern

of the scanner.
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Figure 4.5: Visualization for camera position in 3D space. The small colored

cones represent the camera’s position in three-dimensional space, with the

apex of the cones representing the camera’s orientation. The color of the cone

represents the order of the corresponding camera position, starting from purple

and ending with red. The camera positions are distributed on a horizontal plane

in three-dimensional space.
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4.6.2 Quantitative Evaluation

Self-Adaptive Calibration

We evaluate the performance of our adaptive calibration method by calculating

the mean projection error in each iteration and presenting the results as curve plots

(See Fig 4.6). Our algorithm consistently converged within six iterations across all

three calibration image sets. In the Flat and Irregular datasets, we observed that

the initial projection error was around 30 pixels, rapidly decreasing to less than 1

pixel after three iterations. In the Box dataset, the projection error was reduced

from 1.2 to 1.0. This outcome serves as solid evidence supporting the effectiveness

of our adaptive calibration method.

Intrinsic Calibration

To assess the accuracy of intrinsic calibration, we projected all points within

each calibration image set with estimated intrinsic parameters and computed the

projection error. Subsequently, we created histograms to visualize the distribution

of projection errors (See Fig 4.6). Across all three calibration image sets, we

observed that most points exhibited an error within the range of 1 pixel. This

result indicates that our intrinsic calibration approach yields precise results, with

most points accurately projected onto their corresponding image positions.
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(a) Flat

(b) Irregular

(c) Box

Figure 4.6: Results of Self-Adaptive Calibration. Average reprojection error in

each iteration (left) and distribution of projection error of the final output (right).

Calibration datasets from top to bottom are Flat, Irregular, and Box.
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Extrinsic Calibration

We computed the mean distance between camera positions to evaluate the

extrinsic calibration and compared it to the camera movement specified in the

scanner settings (See Table 4.2). We found that most differences between the

movement distance and scanner settings were within 1 mm. It indicates that our

extrinsic calibration provides accurate estimates of the camera positions, aligning

closely with the intended movements set by the scanner.

Table 4.2: Contrast between calculated camera movement distance and scanner
settings (in mm). The distances are calculated with calibration parameters and are
similar to the designed movements of the camera scanner. The differences in most
cases are within 1.0 mm.

Image Set Vert Dist Vert Settings Horizon Dist Horizon Settings

Flat-1 149.73 150 70.78 70
Flat-2 99.32 100 150.86 150

Irregular-1 149.49 150 70.69 70
Irregular-2 98.96 100 150.85 150

Box 43.56 44.40 23.31 23.70
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Chapter 5

Multi-View Matching

This chapter serves as a comprehensive guide to multi-view matching and depth

estimation. It begins by discussing the main principles and geometry involved in

multi-view matching, providing a solid foundation for the subsequent sections. Next,

the chapter delves into the Sweeping Plane Algorithm, which is a crucial reference

for our algorithm. Then we present a detailed explanation of our Re-projection

Matching Algorithm, showing its specific methodology and techniques. Finally, we

thoroughly evaluate and discuss our methods, allowing for a comprehensive analysis

of their performance.

5.1 Principles

Multi-view matching is a fundamental and vital technique in 3D reconstruction.

It plays an important role in estimating the depth of all the pixels within 2D images,

which enables the generation of either sparse or dense point clouds in 3D space.

While numerous approaches exist to accomplish this objective, this section reviews

two prevalent methods: the disparity map and the re-projection method. Both
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techniques offer distinct strategies for matching corresponding points across multiple

views and inferring depth information, contributing to the reconstruction process.

Disparity Map

The disparity map identifies corresponding pixels between images captured

from different viewpoints (See Fig.5.1). We measure the disparity d between

corresponding pixels in left and right (or top and bottom) images. The depth z of

a pixel can be calculated by:

z = BF
1

d
(5.1)

Here, B and F represent the baseline and focal length, respectively. Given a

fixed focal length, this equation demonstrates that the baseline B is a magnification

factor for obtaining depth z. It has been observed that increasing the distance

between camera positions can lead to more precise depth estimations [32].

However, as the baseline between two images increases, finding accurate matches

between pixels becomes more challenging. It can result in more false matches and

reduce the overall accuracy of disparity estimation. Therefore, there is always a

trade-off between precision and accuracy when determining the appropriate baseline.

Furthermore, the information contained in a disparity map is closely tied to the

specific pair of source images used and cannot be directly fused when dealing with

multiple views simultaneously.

Re-projection

Apart from the disparity map, depth estimation can be achieved using the

re-projection method. This approach involves finding corresponding pixels between
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Figure 5.1: Geometry of multi-view disparity. Pixel depth z can be estimated by
baseline B, focal length f , and pixel disparity x′ − x. 2

two images and utilizing intrinsic and extrinsic parameters to estimate depth. Given

matched image pixels x1 and x2, the relationship can be expressed as follows:

x2 = K2(R12 − T T
12n/depth)K

−1
1 x1 (5.2)

Here, K1 and K2 represent the intrinsic matrices, while R12 and T12 are transfor-

mation vectors that can be calculated using the extrinsic parameters. The accuracy

of the re-projection method heavily relies on the precision of the calibration process

and the matching criteria employed, and the computational cost of re-projection

is influenced by the searching strategy used during the matching process.

We choose the re-projection method to estimate pixel depth in our system. This

decision was made due to the high accuracy of our calibration process. We can have

a good estimation of depth with such precise intrinsic and extrinsic parameters.

2Reference from https://docs.opencv.org/3.4/dd/d53/tutorial py depthmap.html
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Additionally, we aim to improve depth estimation accuracy by fusing information

from multiple-view images. The details of our re-projection method are presented

in Section 5.3.

5.2 Space-Sweeping Plane Algorithm

In 1996, Collins et al. proposed a space-sweep approach to address the challenge

of multi-image matching [7]. This method was further enhanced by Gallup et al.

in their work [16]. The core idea of this approach is to generate multiple planes at

varying depths and select the one that minimizes target loss (See Fig. 5.2).

Figure 5.2: Visualization of the sweeping plane algorithm. Pixels from cameras are

projected onto multiple planes with different depths. The plane with the minimum

loss will be selected as the optimal depth.

The sweeping plane algorithm belongs to the re-projection category as it esti-

mates the depth of objects through the projection process. It fulfills the requirements

of true multi-image matching as outlined in [7], which include:
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1. Generalization to any number of images greater than 2.

2. Complexity of O(n) where n is the number of images.

3. All images are treated equally.

However, in our system, we have modified the sweeping plane algorithm. First,

since multiple images are captured from different viewpoints, we leverage the

sweeping plane technique to satisfy the first two properties. However, we choose

the image in the middle as the reference image and only re-project pixels from

the reference image to other images. Second, instead of performing the sweeping

plane search to find the best match for each pixel, we directly search for the best

match of reference image pixels in the target images. These modifications allow

us to adapt the sweeping plane algorithm to our specific system requirements and

improve its efficiency and accuracy.

5.3 Re-projection Matching

In this section, we provide a detailed explanation of our re-projection algorithm.

The first step is to select the image in the middle of the image set as the reference

image (see Figure 5.3). We focus on estimating the depth of all pixels in the

reference image while treating the other images as target images, which provide

matching targets for the pixels in the reference image.

There are two reasons for choosing a reference image in our system. First, we

aim to generate a dense point cloud of the fossil object. Therefore, we select the

image that contains the most pixels of the object, which is always the image in the

middle. Second, by choosing a reference image, we reduce our system’s time and
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Figure 5.3: Example of the reference image in the image grid. The reference image
is closest to the center in horizontal and vertical directions. When two images
are in the center, we choose the one closer to the camera origin.

memory usage. Instead of performing matching between every pair of images, we

only match the reference image with the other images. This approach improves

the efficiency of the matching process, especially when some image pairs have few

pixels in common.

Then we select a region of interest (ROI) in the reference image and project

all the pixels within this region into 3D world coordinates (see Figure 5.4). This

region selection process helps our algorithm focus on the fossil object and remove

unnecessary background, saving much time and reducing the final output size.
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Figure 5.4: Visualization of region selection. The red rectangle is the edge of the
region of interest (ROI). We try to include the fossils within the ROI and exclude
unrelated textures such as ChArUco board and color corrector.

To perform the projection from image pixels to 3D world points, we set a depth

range and determine the number of depth values to be searched, which we refer

to as the depth resolution. The depth resolution determines the precision of our

depth estimation. Assuming the depth range is d and the depth resolution is r, the

minimal depth difference we can distinguish is given by:

∆d =
d

r
(5.3)

For each imaginary plane with a specific depth value, we project the pixels

within the ROI onto that plane. We implement this process by generating a ray

from the camera’s position and tracking the ray to find the intersection of the
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ray with the plane. To make our algorithm more efficient, we only perform the

projection process onto two planes corresponding to the depth interval’s lower and

upper bounds. Then we search for optimal depth in later steps. We use ray-tracing

techniques to avoid projecting pixels directly with calibration parameters, thus

preventing harm from inaccuracy results in the calibration process.

Next, we reverse the projection process to unproject 3D world points from the

two planes onto each target image, obtaining two corresponding pixels. These

pixels are then connected with a line segment, and we search along the line with a

resolution equal to the depth resolution r (See Fig. 5.5). If the resolution is set too

high, the length of every step would be less than 1 pixel, causing a lot of redundant

computation. Thus we use cache variables to optimize computation and update

them only when encountering a new pixel, avoiding redundant calculations.

Figure 5.5: Visualization of re-projection process and searching interval. Pixels from
the left camera are projected onto planes with different depths. The projected pixels
with the most and least depth are unprojected as endpoints of the search interval.
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We use the absolute projection matching error as the criterion to find the

optimal match for a given pixel. The error is calculated as the sum of absolute

differences between the reference pixel value and the corresponding target pixel

values within a matching window in the reference image:

error =
∑

[i,j]∈W

|ref [i, j]− target[i′, j′]| (5.4)

Here W is the pixel set within a matching window in the reference image, i, j

and i′, j′ are corresponding pixel coordinates in the two images. We calculate the

matching error along the search interval and select the depth with minimal error

as the optimal estimation.

After performing depth estimation for each image pair in the image set, we obtain

N − 1 depth maps, where N is the number of images. We integrate the information

from these depth maps by averaging the depth estimations for every pixel. Before

averaging, we apply a 2σ criterion to filter out unreliable results. Additionally,

there may be invalid estimations for pixels that do not appear in the target image.

We set these estimations to NaN and ignore them during the averaging process.

Finally, we project the image pixels in the reference image to 3D world coordinates

using the estimated depth map to generate a dense point cloud of the fossil object.

5.4 Evaluation

We visualize the generated dense point cloud using 3D visualization software

such as pptk or Open3D (See Fig. 5.6). The dense point cloud consists of approx-

imately two million points, and each point is colored according to its corresponding

pixel color in the reference image.
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Figure 5.6: Dense Point Cloud Visualization with PPTK package. The one on the

top is the Flat object, while the one below is the Irregular object. Each point is

colored with its corresponding pixel color in the original image.
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To assess the accuracy of our multi-view matching method, we employ Principle

Component Analysis (PCA) to project all the points in the dense point cloud onto

the dimension with the smallest eigenvalue. This projection helps extract the depth

information from the dense point cloud, as most surface points are distributed

around a plane. We generate a histogram for the PCA output of the Flat image

set (See Fig. 5.7). The mean of our depth estimation is 1.79 mm, with a standard

deviation of 0.237 mm.

Figure 5.7: Histogram of PCA projection for the Flat object. The depth of the
reconstructed point cloud approximately follows a normal distribution, with a
mean value of 1.79 mm.

We also designed and performed PCA analysis on different sizes of ROIs to

demonstrate the robustness of our algorithm. Table 5.1 shows that various local

areas have similar mean values and standard deviations. Considering the 3σ

criterion, almost all the depth estimation is within ±1 mm around the mean value.
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Table 5.1: PCA projection results with multiple ROI sizes on the same Flat object.

The regions are selected in the middle of the reference image. The mean values

and standard deviations are similar. And almost all the estimations lie within ±1

around the mean value.

Region of Interest Mean Value Standard Deviations

500× 500 1.971 0.314

1500× 350 1.918 0.361

2000× 1000 1.790 0.237
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Chapter 6

Surface Recovery

This chapter focuses on the final step of our reconstruction pipeline: surface

recovery. This step involves analyzing the geometric structure of a dense point cloud

and generating a mesh grid along with normal vectors, which are essential inputs for

a rendering engine. In this chapter, we present two popular surface reconstruction

methods: the Ball Pivoting algorithm and the Poisson Surface Reconstruction

method. Furthermore, in the last section, we evaluate these two methods to assess

their performance and effectiveness.

6.1 Ball Pivoting

The Ball Pivoting Algorithm (BPA) is a polygonal mesh construction technique

from a point cloud in 3D space [6]. BPA operates by generating 3D balls with a given

radius. If a ball hits any three points and does not fall through, it creates a triangle.

Then, the algorithm starts pivoting from the edges of the existing triangles, and every

time it hits 3 points where the ball does not fall through, we create another triangle.

One key aspect of achieving successful results with BPA in our reconstruction
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system is finding an appropriate radius for the balls. We employ a method that

proves effective in most scenarios: we compute the average distance from a point

to its nearest neighbor, denoted as δ, and utilize 1.5δ and 3δ as the radii for the

balls. This approach helps ensure that the generated mesh accurately captures the

geometric details of the point cloud.

6.2 Poisson Reconstruction

Poisson Reconstruction is another widely used technique in 3D surface recon-

struction [25, 26]. This algorithm solves a Poisson equation to generate a surface rep-

resenting all points in the point cloud with the same scalar value in a designed scalar

field. While we won’t delve into the intricacies of how the algorithm works, we will

focus on adapting it to meet the requirements of our surface reconstruction system.

Poisson reconstruction employs an adaptive octree data structure in imple-

mentation to compute the indicator function and solve the Poisson system [25].

Therefore, the choice of octree depth plays a crucial role in the algorithm. A deeper

octree can store more information, resulting in a more detailed mesh, but it also

increases the computational cost required for the algorithm. We conducted several

experiments with different octree depths to find the optimal setting for our system.

The results of these experiments are presented in Table 6.3 and 6.4.

Considering the resolution of the region of interest in our experiments is 2000×

1000 = 2, 000, 000 pixels, we determined that an 11-level depth octree (with more

than 2,000,000 pixels) is sufficient to recover an adequate amount of detail from

the fossil object. This depth setting balances capturing fine details and reasonably

processing time for our reconstruction pipeline.
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Table 6.1: Poisson reconstruction on Flat object with different octree depth. As the

depth increases, the number of generated points and meshes will grow exponentially.

Octree Depth Point # TriangleMesh # Time Cost (s)

8 34,709 69,238 1.68

9 134,189 268,196 3.78

10 560,154 1,120,118 11.68

11 2,359,395 4,718,572 47.30

Table 6.2: Poisson reconstruction on the Irregular object with different octree depth.

Like Flat objects, the number of generated points and meshes increases significantly

with octree depth. At the same depth, irregular objects generate more details than

flat objects.

Octree Depth Point # TriangleMesh # Time Cost (s)

8 45,788 91,407 2.21

9 191,900 383,628 5.54

10 837,276 1,674,225 15.07

11 3,607,915 7,214,490 57.11
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6.3 Evaluation

6.3.1 Visual evaluation

We evaluate the two surface-recovering methods both visually and quantitatively.

We generate normal vectors for every vertex and visualize meshes with the help of

Open3D Toolkits (See Fig. 6.1 and 6.2). As mentioned in the previous section, we

set the radius of BPA to 1.5δ and 3δ, and the depth of Poisson Reconstruction to

11 during the evaluation process.

Figure 6.1: Reconstruction visualization of Flat object. Images from top to bottom
are the original image, BPA output, and Poisson Reconstruction output. The
generated surface is similar to the original image. BPA introduces more noise, while
the surface generated by Poisson is smoother.
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Figure 6.2: Reconstruction visualization of Irregular object. Images from top to
bottom are the original image, BPA output and Poisson Reconstruction output. The
generated surface matches the texture of the irregular object. The surface generated
by Poisson exhibits more continuity compared to the one generated by BPA.

From the visual inspection of the meshes in Figure 6.1 and 6.2, we observe

that the generated meshes closely resemble the original images. This indicates the

correctness and effectiveness of our reconstruction system. Upon comparing the

outputs of the two methods, we notice that BPA is more noise-sensitive, leading to

more irregular textures in the resulting mesh. On the other hand, Poisson Recon-

struction introduces some unexpected extensions around the surface. Fortunately,

these can be easily removed during the post-processing stage by cropping.
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6.3.2 Quantitative evaluation

To provide a quantitative assessment, we present the results of our comparison

experiment in Table 6.3 and 6.4. We applied both methods to two different image

sets and generated meshes with approximately the same number of points. It is

worth noting that BPA produces meshes with fewer triangles compared to Poisson

Reconstruction.

Table 6.3: Comparison between BPA and Poisson reconstruction on Flat dataset.
When the level of detail is approximately the same, Poisson will generate more
points and triangles in mesh and cost more time.

Method Number of Points Number of Triangles Time Cost (s)

BPA 2,000,000 3,567,180 56.70
Poisson 2,359,397 4,718,576 81.15

Table 6.4: Comparison between BPA and Poisson reconstruction on Irregular
dataset. For complex object surfaces, Poisson will generate more points and
triangles to capture the details while still being computationally efficient.

Method Number of Points Number of Triangles Time Cost (s)

BPA 2,000,000 3,280,136 65.00
Poisson 3,607,915 7,214,490 57.11

Overall, the evaluation confirms that both methods can generate plausible

surface reconstructions. However, BPA tends to be more noise-sensitive, while

Poisson Reconstruction may introduce unwanted extensions. The choice between the

two methods ultimately depends on the specific requirements of the reconstruction

task and the desired trade-off between noise sensitivity and mesh complexity.
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Chapter 7

Conclusions

7.1 Thesis Summary

In this thesis, we have taken a comprehensive approach to the entire pipeline of

an image-based reconstruction system tailored for fossils in paleontology. Drawing

upon advanced three-dimensional multi-view reconstruction techniques developed

in recent decades, we have applied them specifically to this unique case. The

primary objective of this thesis is to showcase the design and effectiveness of the

reconstruction system we have developed.

Throughout this work, we have presented a detailed account of the various stages

involved in the pipeline and thorough testing and evaluation of these processes. In

Chapter 1, we introduced the background and principles of fossil reconstruction,

providing the necessary context for understanding the significance of our project.

In Chapter 2, we focus on the hardware settings utilized in our experiments and

the arrangement of the acquired image dataset, a prerequisite to understanding the

subsequent steps in the reconstruction pipeline. Next, in Chapters 3, 4, 5, and 6,
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we looked into the core steps of the reconstruction pipeline. At each step, we have

identified and analyzed the challenges encountered and have provided practical

solutions to overcome them.

We have demonstrated that our reconstruction pipeline operates effectively

within the scope of paleontological reconstruction. The thorough examination of

each component and the rigorous evaluation of the system indicate its performance.

By presenting this comprehensive exploration of the reconstruction pipeline, we

contribute to the body of knowledge in paleontology, showcasing the potential of

image-based reconstruction techniques in fossil analysis. The insights gained from

this thesis will benefit the study of fossils and serve as a foundation for future

research and development in the broader domain of image-based reconstruction

systems.

7.2 Future Work

Many open challenges and problems remain in fossil reconstruction, intending

to recover all the information about the specimens. In this section, we discuss some

of the problems and the potential approaches to overcome them.

Efficiency and Robustness

Pursuing algorithms’ robustness and high efficiency is an endless task in com-

puter science research. Though our pipeline works quite well on our dataset, many

complex fossil datasets exist in various forms worldwide. More efficient algorithms

are still necessary to process these massive amounts of data. Meanwhile, robustness

is also essential to meet the requirement of various scenarios and inputs. Continu-
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ously updating and optimizing our algorithms to cope with new challenges is the

key factor to this problem.

Data Acquisition

Data acquisition is another important aspect that can pose significant expenses

and time constraints in real-world applications. While building our camera-based

scanner helped reduce costs, there is still room for improvement in this area.

Developing algorithms that can handle inputs with fewer images or low-resolution

images, including those captured by common smartphones, would significantly

enhance the accessibility and affordability of fossil reconstruction.

Visualization

While obtaining a realistic model is essential, the ultimate goal of reconstruction

is to provide visual information about fossils to those who may not have physical

access to them. Therefore, developing user-friendly visualization systems that effec-

tively present the reconstructed models is essential. A sound visualization system

should not only deliver realistic representations but also can integrate multiple

types of information. Emphasizing the development of such visualization systems

will significantly enhance the impact and usability of the reconstruction pipeline.
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Appendix A

Application on Real Fossil Object

We shall introduce the reconstruction results on a real fossil object in this chapter.

The real object images are acquired via our camera scanner at the excavation site

in Brazil. A.1 shows an example image of this real fossil object.

Figure A.1: An example image of the real fossil object. A ChArUco Board is
placed underneath the fossil as background.
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A.1 Corner Detection and Calibration

We used our corner detection algorithm in these images of a real fossil object.

The corners and markers detected are shown in A.2. The detected corners lie

accurately on the corners of chessboard grids.

Figure A.2: The corner detection in real fossil reconstruction. Green text:
Chessboard corners and IDs. Blue text: IDs of ChArUco markers. Green lines:
Edges of ChArUco markers.
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We used our calibration system to estimate the intrinsic and extrinsic parameters

of the reconstruction system. We generate a histogram for the re-projection error

of detected corners to evaluate our calibration result of intrinsic parameters (See

Fig.A.3). Most of the errors lie around one pixel.

Figure A.3: Histogram for corner re-projection errors. Most errors lie within two
pixels. The mean error is 0.618766, with a standard deviation of 0.192278.
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We also generate a visualization of the camera positions calculated by estimated

extrinsic parameters (See Fig.A.4).

Figure A.4: The camera positions calculated by estimated extrinsic parameters
in 2D space. The red points show the camera positions. The text next to the red
dots refers to the names of the images taken at the corresponding positions.
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A.2 Point Cloud and Surface Recovery

We performed a multi-view re-projection matching algorithm on the image

dataset and obtained the point cloud of the real fossil object surface. We selected

a region of interest (ROI) in the reference image that includes key textures on the

surface of the fossil (See Fig.A.5).

Figure A.5: The red rectangle shows the region of interest in the reference image.
The unimportant background is excluded.

Then we re-project all the pixels within this ROI to other images to estimate

the depth of these pixels and find their corresponding positions in 3D space. We

visualize the generated point cloud via MeshLab at Fig.A.6.

Once we obtain the point cloud, we apply both the Ball Pivoting Algorithm

and Poisson Reconstruction Algorithms to the point cloud to recover the surface of
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Figure A.6: The dense point cloud for real fossil object. It has textures similar
to those found on real fossils.

the fossil object (See Fig.A.7). We measure the number of points and triangles of

the surface generated, as well as the time cost of both algorithms. We set octree

depth as ten for Poisson Reconstruction. The results are shown in Table A.1.

Table A.1: Comparison between BPA and Poisson reconstruction on real fossil
object. At the same order of magnitude of vertices, the Poisson method generates
more triangle surfaces and takes less time.

Method Number of Points Number of Triangles Time Cost (s)

BPA 750,000 536,937 168.1
Poisson 524,944 1,049,707 9.7
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Figure A.7: The results of surface recovery for the real fossil object. Top: The result

of the Ball Pivoting Algorithm. Bottom: The result of Poisson Reconstruction

Algorithm.
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A.3 Discussion

Based on the results of the experiments above, we find that our algorithm

does not perform well on real fossil objects. Here, we shall discuss the problem of

adaptation from artificial to real objects. Upon observation of the texture in detail,

we find that the raised portion of the fishbone is not well reconstructed. Thus, we

look into each step of our pipeline and raise several possible deficiencies below.

First, the metric we choose in the matching process heavily affects the depth

estimation accuracy. In our pipeline, we choose pure L2 loss to find the best matching

with the least square error. L2 loss is sensitive to outliers and extremely harmful to

dense point cloud generation. It would be a good idea to use regularization terms

in this part to enhance the robustness of our matching algorithm.

Second, the depth fusion method we used also affected the final results. In our

experiments, we adopted the average fusion method after filtering outliers. It works

well in flat and irregular objects but cannot perform equally well on real fossils

since they contain more small-scale textures. Applying a more complex strategy

to fuse the depth we estimate from image pairs would be a valuable enhancement

to our system.

Third, the size of the sliding window is too small during the matching process. A

small sliding window can easily produce incorrect matches when very similar texture

patterns are present, leading to incorrect depth estimation. To improve this, multiple

sliding window scales should be used for pixel matching in future experiments.

In conclusion, we have realized a complete fossil reconstruction system from end

to end and provided an effective and extensible framework. Improving the accuracy

and robustness of each step in our pipeline will be important tasks in our future work.
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