
Real-Time Multimodal Sensing and Understanding of
Complex Physical Environments

DISSERTATION

Submitted in Partial Fulfillment of

the Requirements for

the Degree of

DOCTOR OF PHILOSOPHY (Computer Science)

at the

NEW YORK UNIVERSITY
TANDON SCHOOL OF ENGINEERING

by

Yurii S. Piadyk

January 2023

Real-Time Multimodal Sensing and Understanding of
Complex Physical Environments

DISSERTATION

Submitted in Partial Fulfillment of

the Requirements for

the Degree of

DOCTOR OF PHILOSOPHY (Computer Science)

at the

NEW YORK UNIVERSITY
TANDON SCHOOL OF ENGINEERING

by

Yurii S. Piadyk

January 2023

Approved:

Department Chair Signature

Date
University ID: N14520737
Net ID: ysp248

ii
Approved by the Guidance Committee:

Major: Computer Science

Cláudio T. Silva
Institute Professor

NYU Tandon School of Engineering

Date

Guido Gerig
Institute Professor

NYU Tandon School of Engineering

Date

Daniele Panozzo
Associate Professor

NYU Courant Institute of Mathematical Sciences

Date

Juan P. Bello
Professor

NYU Tandon School of Engineering

Date

iii
Microfilm or other copies of this dissertation are obtainable from:

UMI Dissertation Publishing

ProQuest CSA

789 E. Eisenhower Parkway

P.O. Box 1346

Ann Arbor, MI 48106-1346

iv
Vita

Yurii Piadyk was born in Lviv, Ukraine, on June 3rd, 1993. He has B.S. in

Physics (2014) and an M.S. in High Energy Physics (2016) from Taras Shevchenko

National University of Kyiv, Ukraine. While completing his undergraduate and

master studies, he attended summer school in 2013 at DESY, Hamburg, Germany,

and did three internships at the University of Pierre and Marie Curie in Paris.

During his internships, he performed an evaluation of the Associative Memory

chip (AMchip) and semiconductor sensors at the test-beam facility of the SPS

acceleration ring at LHC in CERN, Switzerland. He started his Ph.D. in September

2016, working in various areas, including computer graphics and optics. His

interests have eventually converged on the development of sensor networks and

custom tracking solutions. During his Ph.D., he was a visiting researcher at NYU

Paris and received NYU Dean’s Fellowship in 2016 and NYU Provost’s Global

Research Initiatives Fellowship in 2019.

v
Acknowledgements

I am grateful to my mother and family members, who have always believed in

me and were always rooting for my success.

I would like to thank my advisor, Cláudio T. Silva, for the support, guidance,

and exchange of ideas throughout my Ph.D. studies. Thank you for allowing me to

work independently on challenging projects and constantly pushing my abilities to a

higher level. I would also like to thank the members of my Ph.D. committee, Daniele

Panozzo, Juan P. Bello, and Guido Gerig, for their expertise, ideas, and feedback.

My research would not be possible without some amazing collaborations I have

had throughout the years. I would like to thank Yitzchak Lockerman, Carlos

Dietrich, Bea Steers, Charlie Mydlarz, Mahin Salman, Magdalena Fuentes, Junaid

Khan, Hong Jiang, Kaan Ozbay, Semiha Ergan, Peter Xenopoulos, Jianzhe Lin,

Sebastian Koch, Markus Worchel, Marc Alexa, Denis Zorin, and Wenzel Jacob. I

would also like to thank the Master students Danna Alamer, Kaiyue Feng, Yipeng

Qiu, and Haosheng Jiang as well as interns Chang Ge and Ansh Desai who helped

collect the data in rain and fight conditions. And special thanks to Shuya Zhao

for project contributions, and Otavio Freitas Gomes for helping me to pull off an

impossible timeline for one of the applications.

I’m also grateful to the administrative staff of NYU. Kari Schwartz, Eve Hen-

derson, Lisa Hellerstein, and Susana Garcia have always been eager to support

me immediately. And, of course, all this work would be impossible without Ann

Messinger’s (Borray) i-Buy judo and supply chain mastery.

This work was supported by the following funding agencies: National Science

Foundation (NSF awards CNS-1828576, CNS-1544753, CNS-1229185, CCF-1533564,

vi
CNS-1730396, CNS-1626098), C2SMART, a Tier-1 USDOT University Transporta-

tion Center at NYU, NYU Global Research Initiatives, and DARPA PTG program.

Any opinions, findings, conclusions, or recommendations expressed in this material

are those of the author and do not necessarily reflect the views of the funding

agencies.

Finally, I thank all my friends who assisted me on this journey. Neel Dey

and Jorge One for staying fit, Gromit Chan and Francis Williams for insightful

conversations, Joao Rulff for immediate availability, and many others from my

newborn family in NYC. And special thanks to Liming Luo for helping me to get

through the toughest part.

Yurii Piadyk

January 2023

vii

ABSTRACT

Real-Time Multimodal Sensing and Understanding of Complex Physical

Environments

by

Yurii S. Piadyk

Advisor: Prof. Cláudio T. Silva, Ph.D.

Submitted in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy (Computer Science)

January 2023

Sensor networks have dynamically expanded our ability to monitor and study the

world. Their presence and need keep increasing, and new hardware configurations

expand the range of physical stimuli that can be accurately recorded. Sensors

are also no longer simply recording the data, they process it and transform into

something useful before uploading to the cloud. However, building sensor networks

is costly and very time-consuming. It is difficult to build upon other people’s work

and there are only a few open-source solutions for integrating different devices and

viii
sensing modalities. In this work, we introduce REIP - a Reconfigurable Environ-

mental Intelligence Platform for fast sensor network prototyping. REIP’s most

central tool is an open-source software framework, an SDK, with a flexible modular

API for data collection and analysis using multiple sensing modalities. REIP is

developed with the aim of being user-friendly, device-agnostic, and easily extensible,

allowing for fast prototyping of heterogeneous sensor networks. Furthermore, our

software framework is implemented in Python to reduce the entrance barrier for

future contributions. We demonstrate the potential and versatility of REIP in

real-world applications, along with performance studies and benchmark REIP SDK

against similar systems.

We present the following three application examples: (1) An investigation

of the correlation between the performance of the heating, ventilation, and air

conditioning (HVAC) system in indoor spaces and actual occupancy of these spaces

to provide insights into building use patterns for adaptive control strategies of

the HVAC system with a goal of reducing building’s energy consumption; (2) An

urban dataset acquisition using REIP sensors that were built with the support of

accurate synchronization. We then demonstrate its utility for pedestrian-vehicle

interaction analysis or algorithm development in the context of smart cities where

sensor networks empowered by AI techniques provide real-time understanding of

the environment for different vehicles, including self-driving cars; (3) The real-time

tracking of players in team sports, such as baseball, that provides full skeleton

representation for the player over a large game field, which was previously limited

to a single point. The system includes independent tracking units with field-of-view

adjustable high-speed cameras powered by NVIDIA Jetson and REIP SDK.

ix

Contents

Vita . iv

Acknowledgements . v

Abstract . vii

List of Figures . xiii

List of Tables . xiv

1 Introduction 1

1.1 Contributions . 5

2 Related Work 7

2.1 Sensor Network Platforms . 9

2.2 Software Pipeline Frameworks . 11

3 REIP SDK 16

3.1 Approach . 16

3.2 Programming Interface . 20

3.3 Performance Evaluation . 28

3.4 Case Study: Smart Traffic Event Detection 39

3.5 Second Case Study: Object Localization and Tracking 45

3.6 Discussion and Real-World Applications 56

x
4 Applications: HVAC Systems 60

4.1 Motivation . 60

4.2 Methodology . 63

4.3 Independent Analysis . 67

4.4 Building HVAC Comparison . 73

4.5 Discussion . 76

5 Applications: Urban Dataset 81

5.1 Motivation . 81

5.2 Data Acquisition . 84

5.3 Data Processing . 88

5.4 Data Analysis . 93

5.5 Discussion . 96

6 Applications: Sports Tracking 98

6.1 Motivation . 98

6.2 System Design . 102

6.3 First LegoTracker Prototype . 116

6.4 Second LegoTracker Prototype . 120

6.5 Third LegoTracker Prototype . 125

6.6 Discussion . 136

7 Conclusions 142

7.1 Limitations and Future Work . 145

xi

List of Figures

1.1 Multimodal Sensing . 2

1.2 REIP General Overview . 3

3.1 Typical steps in the sensor network prototyping process 17

3.2 REIP SDK usage code samples . 21

3.3 REIP SDK extensibility code example 26

3.4 Data processing pipelines and serialization benchmarking 29

3.5 Multimodal smart traffic event detection pipeline 41

3.6 Multimodal happy sensor . 43

3.7 Car and bicycle pass-by frame . 44

3.8 Multimodal object localization and tracking pipeline 48

3.9 Audio Synchronization . 51

3.10 Rooftop Experiment . 52

3.11 Impact Localization . 53

3.12 Sound Directivity . 54

3.13 Multimodal Localization . 55

4.1 Four steps approach . 63

4.2 Sensor’s capabilities extension . 64

xii
4.3 Upgraded REIP sensor with firmware 65

4.4 Updated REIP pipeline . 66

4.5 Sensors deployment floor plan . 67

4.6 Sample frames for the first sensor 68

4.7 REIP sensors data . 69

4.8 Sensors downtime . 70

4.9 Lunch time behavioral pattern . 71

4.10 Dining area occupancy . 72

4.11 Sensor 1 vs. building HVAC data comparison 74

4.12 Sensor 2 vs. building HVAC data comparison 75

4.13 Occupancy error types . 78

5.1 Sensor Positions at Commodore Barry Park 85

5.2 Sensor Positions at MetroTech Center 85

5.3 Sensor Positions at Brooklyn Dumbo 86

5.4 Sensor’s internal timing diagram . 89

5.5 Timestamps Jitter . 90

5.6 Jitter Progression . 90

5.7 Timestamp Artifacts . 91

5.8 Reconstructed Timeline . 91

5.9 Mosaic Rendering . 92

5.10 Object and Pose Detection . 94

5.11 Occupancy Plots . 95

6.1 Sports Environment . 99

6.2 LegoTracker Concept . 100

xiii
6.3 LegoTracker System Overview . 103

6.4 Unit Design . 106

6.5 Software Architecture . 109

6.6 Wireless Synchronization . 114

6.7 Motor Step Timing . 115

6.8 First LegoTracker Prototype . 117

6.9 Pitcher’s Pose Reconstruction . 119

6.10 Second LegoTracker Prototype . 121

6.11 Orchestrator Radio . 121

6.12 Mirror Response . 123

6.13 Video Samples . 124

6.14 Audio Samples . 124

6.15 Third Prototype Rendering . 126

6.16 Mirror Assembly . 127

6.17 Improved Mirror Response . 128

6.18 Third LegoTracker Prototype . 130

6.19 Pitch Example 1 . 131

6.20 Pitch Example 2 . 132

6.21 LIDAR Tracking . 134

6.22 Pitch Example 3 . 139

6.23 Lab Infrastructure . 141

xiv

List of Tables

2.1 Related works feature comparison 8

3.1 Performance of different framework configurations 32

3.2 REIP SDK performance overhead 37

1

Chapter 1

Introduction

Sensor networks have expanded our ability to monitor and study the world.

They have been used for a wide range of applications, such as monitoring of

air pollution [1], urban noise [2] or energy management of smart buildings [3]

(Figure 1.1). As their use cases expand, sensor networks become more complex

and powerful, enabling a new range of physical stimuli to be accurately recorded,

processed, ingested, and analyzed. However, implementing sensor networks is

an enormous endeavor with high costs in time and resources. Many decisions

have to be made, from which devices to use to which protocols to employ for

connecting them. In addition, the deployment and upkeep of sensor networks are

critical and time-consuming, which require sophisticated monitoring and alerting

tools. Nowadays, it is difficult to build on top of other people’s work as there are

few accessible open-source solutions suitable for integration into different devices,

leading to countless hours of engineering and software design invested every time.

Of note is the case of high throughput sensor applications that incorporate audio

or video data capture. Multithreading is typically needed to enable concurrent data

2

Figure 1.1: Multiple sensing modalities are being actively used to monitor and study
the world. From urban noise monitoring with intelligent microphones (left, [2]) to
speed limit enforcement with optical or radar sensors (right), sensor networks are
actively making our environments more comfortable and safer for living.

capture, processing, and writing to disk. If not handled correctly multiple threads

accessing hardware devices or disk locations can lead to race conditions that can

result in data corruption or even hardware freezes. Race conditions and hardware

lockups can be incredibly difficult to identify and diagnose and are usually only

addressed by more experienced developers rather than domain-specific researchers

implementing the sensors networks. Sensor networks deployed externally in hard-

to-reach locations have a critical need for stability over long periods of time and are

particularly sensitive to these kinds of thread-borne failures, which can manifest

at arbitrary times, often after many hours, weeks, or even months of operation.

The cost of addressing these failures in the field is high, thus, ensuring stable code

operation is key.

REIP is a Reconfigurable Environmental Intelligence Platform for fast sensor

network prototyping, including an efficient and scalable sensor runtime (Figure 1.2).

Given a sensing application and a set of requirements, REIP aims to alleviate

the work of designing a remote sensor network by providing tools for sensor node

3

Figure 1.2: REIP platform overview showing stages of operation for users. 1) The
researchers determine the sensing needs for their experiment. 2) The platform
provides a library of software blocks/components for the implementation of the
desired data acquisition and processing pipeline, which are compatible with standard
sensing devices/modules (e.g. a USB Audio Class device). 3) At NYU, we have
access to prefabricated custom modules, built as part of the design of this instrument.
4) The modules connect to each other with minimum effort, allowing the fast design
of full sensors. 5) The software configuration provided by our system can be executed
on a variety of computing platforms. 6) The sensors are ready to be placed in the field
and activated for data acquisition in a fraction of the typically required design time.

design, software and hardware integration, bandwidth management, and other

time-costly aspects. We abstract low-level problems to allow users to focus on their

problem-specific challenges.

In this work, we focus on the central tool of REIP referred to as the REIP SDK

(or software framework) – a modular API containing a set of re-usable, plug-and-

play software blocks that integrate solutions for different hardware and software

components by following the best practices. Moreover, we implement this API as

a flexible, open-source software framework in Python, with the goal of it being

user-friendly and, most importantly, encouraging contributions and extensions in

the future. Its block libraries (Section 3.2.1) can also serve as a reference on how

to implement different aspects of the sensor software even when users choose/need

4
to build a custom solution (more details in Chapter 3).

It should be noted that our work is aimed toward building sensors with edge

computing capabilities of Linux-based high-performance SBCs (Single Board Com-

puters), such as the NVIDIA Jetson [4, 5] or Raspberry Pi [6]. The amount of

data generated by modern sensing platforms (especially those containing video

cameras) is such that it is often infeasible to upload all of it to the cloud for later

processing. On-the-edge real-time processing of sensor data is required to filter out

the background noise or generate more compact representations of the data, and in

such scenarios an efficient utilization of the hardware capabilities offered by the

computing platform is key. REIP SDK was designed to have minimal performance

overhead on such platforms and offers the user full control over the execution of

data acquisition and processing pipelines.

The structure of the thesis is as follows: in Chapter 2, we discuss the design of the

REIP platform and the corresponding REIP SDK in relation to existing solutions.

In Chapter 3, we describe the design approach and API of the REIP SDK, with

Section 3.3 focusing on performance studies regarding concurrency and overhead,

and report the performance of the REIP SDK on different hardware platforms as

well as contrast the performance of our SDK to similar solutions. Furthermore, we

present two case studies of smart traffic event detection (Sections 3.4) and object

localization and tracking (Section 3.5), and discuss the potential for the platform’s

use in multi-modal sensing applications (Section 3.6).

To evaluate the practical utility of our contribution we apply REIP in (i) An

investigation of the correlation between the performance of the heating, ventilation,

and air conditioning (HVAC) system in indoor spaces and actual occupancy of

these spaces to provide insights into building use patterns for adaptive control

5
strategies of the HVAC system with a goal of reducing building’s energy consumption

(Chapter 4); (ii) An urban dataset acquisition using REIP sensors that were built

with the support of accurate synchronization. We then demonstrate its utility for

pedestrian-vehicle interaction analysis or algorithm development in the context of

smart cities where sensor networks empowered by AI techniques provide real-time

understanding of the environment for different vehicles, including self-driving cars

(Chapter 5); (iii) The real-time tracking of players in team sports, such as baseball,

that provides full skeleton representation for the player over a large game field,

which was previously limited to a single point. The system includes independent

tracking units with field-of-view adjustable high-speed cameras powered by NVIDIA

Jetson and REIP SDK (Chapter 6).

Finally, we discuss limitations and open problems, and a vision of future

components of REIP (SDK) in Chapter 7.

1.1 Contributions

The contributions of this work are listed in the following:

1. A design of the REIP platform for fast prototyping of heterogeneous sensor

networks;

2. An open-source implementation of the REIP SDK for rapid development of

multimodal sensors with edge computing capabilities;

3. Performance evaluation of the REIP SDK under different configurations,

including comparison with other existing software frameworks;

6
4. Extensive benchmarking results from different hardware platforms demon-

strating minimal overhead and scalability of the REIP SDK;

5. Two case studies highlighting the utility of the REIP SDK in designing

multimodal sensors;

6. A novel solution for synchronization across multiple modalities and sensors;

7. Applications 1: an independent evaluation of NYU’s HVAC system perfor-

mance resulting in the discovery of the presence of energy waste and faulty

sensors;

8. Applications 2: a novel dataset with example analysis of urban traffic;

9. Applications 3: a novel modular sports tracking system providing full skeleton

representation for each player over the large game field;

10. A motor control technique for faster camera field of view adjustment.

The work resulted in publications of a research article titled “REIP: A Re-

configurable Environmental Intelligence Platform and Software Framework for

Fast Sensor Network Prototyping” in the Sensors journal [7], and a utility patent

application number US20210287336A1 for sports tracking system (under review).

Additionally, a new hardware lab infrastructure was developed in the department

of Computer Science and Engineering at NYU Tandon School of Engineering to

make these applications possible.

7

Chapter 2

Related Work

Sensor networks are being used in a large range of applications, each with varying

computing requirements and ranging from sensing a single modality with low data

loads (e.g., intermittent air quality sensing [8]) to more complex and heterogeneous

sensor networks with larger data flows and computing requirements (e.g., audio-

visual traffic monitoring [9] or sports analytics [10]). Existing frameworks for

sensor network development are typically designed to work on a narrow range of

requirements, e.g., low data volumes [11] or large computing resources [12]. As

sensor networks become more common and expand their sensing modalities, along

with the applications they serve, these frameworks fall short in terms of flexibility

and re-usability across different hardware platforms. Table 2.1 provides a feature

comparison of various existing sensor network development platforms (top half) as

well as software frameworks for building data acquisition and processing pipelines

(bottom half). We emphasize that all these projects have their own, sometimes

opposite, design goals and can often be complementary to what is proposed in our

work. Nonetheless, we try to assess every project on all seven criteria to provide

8

Table 2.1: Related works feature comparison. The features include (from left to
right): open source availability (open); user-friendly API / low barrier for entry;
support of multiple sensing modalities; ability to easily add new features or sensing
modalities (extensible); ability to handle large amounts of data (scalable); sensor
level integration (HW/SW); and whether the framework can be used with various
computing platforms and sensor devices (agnostic). The ✓and × symbols denote
whether the feature is present or not in each framework. The parenthesis indicates
that the feature is present in the given framework but it does not excel at it, or
that the framework could possibly be used but it was not designed to have such a
feature. A question mark means no assessment.

Project Name Open Easy API Multimodal Extensible Scalable HW/SW Agnostic

FIT-IoT Lab [13] ✓ ✓ ✓ × ✓ ✓ ×
FIESTA IoT [14] × × ✓ × ✓ ✓ ✓

Signpost [15] ✓ (✓) ✓ ✓ × ✓ ×
SensorCentral [16] × ? ✓ ✓ ✓ × ✓

AoT [17, 18] ✓ (✓) ✓ ✓ × ✓ ×
WaspMote [19] ✓ ✓ ✓ (✓) × ✓ ×
The USC [20] × × ? ? ✓ ✓ ?
FIWARE [21] ✓ (✓) ✓ (✓) × × ✓
DDFlow [22] ✓ (✓) (✓) (✓) (✓) × ✓

EdgeProg [23] × ? × × (✓) (✓) (✓)
Caesar [24] × ? × × ? × (✓)

Waggle [25, 26] ✓ ✓ ✓ ✓ × ✓ (✓)
Apache Ray [27] ✓ ✓ (✓) (✓) (✓) × (✓)

Celery [28] ✓ ✓ (✓) ✓ × × ✓
Spotify Luigi [29] ✓ ✓ × × × × (✓)
GStreamer [30] ✓ × (✓) (✓) ✓ × (✓)

DeepStream [31] ✓ × ✓ (✓) ✓ (✓) ×
FFmpeg [32] ✓ × (✓) × (✓) × (✓)
REIP (SDK) ✓ ✓ ✓ ✓ ✓ ✓ ✓

as complete an overview as possible. When the framework can not be evaluated

directly, because it depends on custom hardware or is not open source, we rely

on the results reported in the materials of the corresponding publication. In the

following section, we describe the most relevant sensor network platforms, what

they excel at, and how they are different from REIP (top half of Table 2.1).

9
2.1 Sensor Network Platforms

Solutions for the sustainable and reusable development of sensor networks have

been explored before in the context of industry as well as in academia. Different

alternatives have been proposed, which tackle common challenges such as hard-

ware/software (HW/SW) integration and/or the use of heterogeneous devices, being

open-source with user-friendly API, etc.

Among notable platforms with scalable HW/SW integration is FIT-IoT Lab

[13], which is a testbed available for researchers addressing wireless communica-

tions in sensor networks and low power routing protocols, with embedded and

distributed applications. However, it is not device-agnostic, as only a limited set

of sensors are supported with no extensibility. Similarly, FIESTA IoT [14] is a

meta-testbed IoT/cloud infrastructure designed for the submission of experiments

over interconnected hardware testbeds using a single set of credentials. Although

it is scalable, it still lacks an extensible and open-source API and thus relies on

proprietary testbed deployments associated with the institutions in the FIESTA

IoT Consortium.

Other solutions such as Signpost [15], which is an extensible solar energy-

harvesting modular platform designed to enable city-scale deployments, are not

device-agnostic and only work with the customized sensors they provide. It also

requires a considerable amount of engineering to reproduce such a highly customized

sensor network. In contrast, SensorCentral [16] is a device-agnostic, multimodal

sensor platform but it does not consider HW/SW integration at the sensor level

and is not open-source for the research community to use.

The most similar to the REIP platform is the Array of Things (AoT) [17, 18],

10
an urban sensing system designed to collect real-time data from the environment

leveraging a sensor platform called Waggle [25]. The AoT comprises an open-source

API with multiple sensing modalities; however, it does not meet the device-agnostic

criteria, as it depends heavily on the Waggle platform which itself cannot be easily

produced at scale by other institutions/researchers.

Similarly, WaspMote [19] offers a modular hardware and software architecture

integration, with an open-source API to create its application pipelines. Some

popular use cases for the system include smart cities, water, and agriculture

applications, most of which utilize low-bandwidth wireless technologies such as

LoRa or ZigBee. WaspMote was designed for low-volume IoT applications on

constrained and generally battery-powered edge devices such as Micro Controller

Units (MCUs), which are not typically suited for processing high volumes of audio

or video data [33]. REIP, in contrast, is targeting higher performance Linux-based

SBCs to tackle such data-intensive sensing applications.

The USC testbed [20] currently under construction is to be a scalable HW/SW

integrated sensor network with sensors, actuators, and wireless radios to support

experimental research on sensing, processing, algorithms, and software for IoT.

However, an open-source codebase and user-friendly API has not so far been

announced as part of their design goals.

Ultimately, the aim of REIP is to provide a sensor network development plat-

form that meets all of the before-mentioned criteria in a balanced way. As the

first step, we implement and present in this work the REIP SDK—an open-source

device-agnostic SDK/API, that supports multiple sensing modalities and hard-

ware/software integration, and which is not only user-friendly but also scalable

and extensible. The following section details existing software frameworks that are

11
relevant to the creation of data acquisition/processing pipelines such as the ones

created using the REIP SDK for sensing platforms with edge computing capabilities

(bottom half of Table 2.1).

2.2 Software Pipeline Frameworks

It is natural to develop sensor software as a data acquisition/processing pipeline

since they typically contain a data source (e.g., a camera), some form of data

processing, and, often, a network layer (although some sensors are standalone

devices that store data locally). There exists a variety of software frameworks for

building pipelines in different application domains but none are out-of-the-box a

good fit for building a software stack with real-time performance on sensors with

edge computing capabilities, in particular, modern SBCs. Internet of Things (IoT)

pipeline frameworks (e.g., FIWARE [21]) are mainly designed to work with multiple

streams of small data packets, where the computational cost of data serialization

is not a major concern. Other big data frameworks, such as Apache Airflow [34]

or Ray [27], are developed for handling large volumes of data across computing

clusters, and are not suitable for running in real-time on IoT devices because of

large performance overhead and non-trivial compilation steps on embedded systems.

Multimedia pipeline frameworks such as GStreamer [30] are designed for highly-

efficient multimedia applications, but their implementation and documentation are

difficult to understand for anyone who is not an expert, and thus are time-consuming

or in some cases not practical to extend to more specialized sensing applications.

We elaborate on different existing software pipeline frameworks below.

12
2.2.1 IoT Frameworks

IoT software frameworks for building sensor runtimes are mainly designed in

a light-weight manner, assuming small packets of data, e.g., sporadic IoT events

or low-volume data streams such as temperature measurements [35]. They do not

scale well to larger data streams, such as video processing with machine learning

on the edge [36].

FIWARE [21] is an open-source solution with a focus on smart city applications.

It uses multiple programming languages, and the community provides docker

images of various implementations with different run-time requirements. Because

of this versatility, extending FIWARE for custom implementation requires full-

stack development knowledge of these languages (e.g., Java, Node.js, C++, and

Python), which implies a steep learning curve [37]. The limitations of FIWARE

have been highlighted by performance evaluations of the platform [38]. Users state

a high barrier to entry and the platform shows high performance with low-volume

event data but introduces latency when operating over larger-scale wireless sensor

networks. DDFlow [22], a visual and declarative programming abstraction, is a

significant contribution to heterogeneous IoT networks. Its goal is to provide a

flexible programming framework without burdening users with low-level hardware

and network details, such as load balancing. The runtime interface utilizes available

resources to dynamically scale and map an IoT application similar to EdgeProg

[23]. While DDFlow can be used for multi-modal sensing, the library is very high

level and does not currently have the capabilities to facilitate high throughput

application pipelines [39].

Other solutions, such as Caesar [24], are either not open-source and lack HW/SW

integration, or are simply designed to handle small data loads as is the case with

13
Waggle [26]. In addition, Caesar is limited to activity recognition using cameras

as an application only and, while supporting multiple modalities, Waggle relies on

the built-in parallelization and data serialization libraries in Python, which makes

it impractical to use for high data throughput applications. The REIP SDK, in

contrast, offers multiple parallelization and data serialization strategies to best

match the application needs (Section 3.3).

2.2.2 Big Data Frameworks

Distributed big data frameworks have gained traction and have been under heavy

development in academia and industry for their ability to concurrently process

large amounts of data. These frameworks, including Apache Ray [27], Spark [40],

Celery [28] and Spotify’s Luigi [29], provide many of the concepts we are looking for

with regard to the modular design of complex pipelines. However, the intended use

case of these frameworks is different in that it focuses on task scheduling, tracking,

dependency resolution, and coordination across a cluster of machines. These lead

to additional serialization and increased latency that are unnecessary on a single

local device, causing difficulty in scaling pipelines to fit constrained devices [41].

Ultimately, they were designed for use on the server side and are much better suited

for aggregating the data extracted from sensing platforms, rather than running on

them.

The most comparable framework for our target use case is Apache Ray. Ray

is a universal API for building distributed applications that enable end users to

parallelize machine code across multiple CPUs and multiple machines [42]. The

foundational library that Ray is built on is Apache Arrow [43], a data management

library focused on the fast movement and processing of large amounts of data, which

14
includes their own highly efficient array serialization formats [44]. Part of Arrow’s

offering is a shared memory server called Plasma Store [45], which supports memory

mapping on Unix-based devices to minimize the overhead of data serialization

in multiprocessing applications. While these tools are very useful for facilitating

multi-tasking applications, Ray and other big data libraries were designed to run

on larger computing clusters and are too heavy to scale to edge devices. REIP’s

software framework capitalizes on parts of these existing solutions (e.g., Plasma

Store) suitable for efficient sensor development while remaining lightweight and

accessible for lower power embedding platforms.

2.2.3 Multimedia Frameworks

Highly popular multimedia libraries designed to handle large streams of video

and audio data on a variety of devices are GStreamer [30], NVIDIA DeepStream [31]

and FFmpeg [32]. GStreamer is an open-source pipeline/graph-based multimedia

framework for complex data workflows, used in a variety of multimedia applications

such as video editing, transcoding, or streaming media. GStreamer is multi-platform

and has been used reliably in pipelines for decades, but it is written in C and

requires low-level programming expertise to extend it by implementing custom

components outside of the scope of processing video/audio data types. These

characteristics make it fall short to be a viable candidate for an easily-extensible

and generalizable framework for the development of full application pipelines for

sensor networks [46]. Similarly, FFmpeg which was designed for the processing of

video and audio files in a CLI (Command Line Interface) does not offer an API for

extending it to other modalities.

15
Some of the GStreamer limitations have been partially addressed by NVIDIA

DeepStream, a scalable framework for building and deploying AI-powered video

analytics on the edge. DeepStream provides ready-to-use AI components, such

as object detection on video frames, but it follows GStreamer’s API; thus, new

components cannot be efficiently implemented in a high-level programming language,

such as Python, but rather are only used through Python bindings. The framework

still presents a steep barrier to entry for beginners and has limited flexibility

to extend for applications other than audio-visual. Unlike GStreamer, NVIDIA

DeepStream is not cross-platform and is dependent on NVIDIA platforms such as

the Jetson family [5].

2.2.4 REIP SDK

Finally, the REIP SDK contributes a unique integration of data-flow pro-

gramming abstractions and system implementation components that meet the

productivity and performance needs of real-time IoT data collection and analysis

applications. Many design choices in the REIP SDK were made in response to the

challenges faced during the design of sensors and it is intended to accelerate the

development of the software and integration of different components in a sensor

network. We describe our design in the following chapter.

16

Chapter 3

REIP SDK

3.1 Approach

REIP seeks to provide a flexible and versatile environment for users to build,

extend, reconfigure, and share their application code as they move through the rapid

development process of designing sensor networks and other IoT data processing

pipelines. In order to facilitate this, the REIP SDK provides a small number of

abstractions so that users can take their existing code and integrate it seamlessly

into a multi-tasking application (the repository is hosted at https://github.com

/reip-project/reip-pipelines).

3.1.1 REIP SDK as part of sensor network development

A common workflow for sensor network prototyping using REIP is depicted in

Figure 3.1. It contains the following typical steps:

1. Define the project requirements, i.e., sensing modalities, resolution, sampling

frequency, etc.

https://github.com/reip-project/reip-pipelines
https://github.com/reip-project/reip-pipelines

17
REIP Workf low

Defini tion of
Requir ements

Creation of
a Pipeline

Evaluation of
the Pipeline

Hardware / Software
Integration

Software Instal lation
and Configuration

Sensor Network
Deployment

Figure 3.1: Typical steps in the sensor network prototyping process using REIP.

2. Use REIP SDK to build the data collection and processing pipeline. Custom

blocks can be defined specific to the project needs, e.g., data processing with

machine learning.

3. Evaluate the data collection and processing pipeline and select the optimal

edge computing platform.

4. Implement any custom blocks and carry out the sensor build.

5. Install the REIP SDK runtime on all of the edge sensors and the server.

6. Deploy sensor network for data collection and processing.

This chapter focuses on the REIP SDK, its API, performance, and design

principles. We discuss other components of the REIP platform that we foresee

building (i.e., a simulator to speed up step 3 in the workflow) in Chapter 7.

3.1.2 Benefits of the REIP SDK

When building application code that handles data streaming and processing, it

is often beneficial to decouple the program into smaller pieces that can run indepen-

dently at their own rates using either multithreading and/or multiprocessing, which

will prevent computationally demanding parts of the program from inhibiting the

rest of the program (e.g., prevent machine learning from blocking video sampling).

18
However, doing so often requires repeatedly solving and scaffolding the same prob-

lems: How should the data be moved around? What serialization method to use?

What about error handling? and so on. There is a lot to consider when writing

parallelized code, and when one has several applications, re-implementing solutions

to the same problem while mixing the parallelization logic with the application

logic, it creates software that is very difficult to maintain and reuse in new projects.

The REIP SDK formalizes design patterns that repeatedly emerge in many

sensing applications. Typically, one has a collection of workers, each with some

initialization, data processing logic, and cleanup, where each of these workers

communicates with others via thread-/process-safe queues for data sharing and

management. Seemingly simple, such an approach can quickly result in a difficult-

to-maintain code base for complex applications, resulting in deadlocks or other

issues common to multitasking implementations. It takes a lot of effort and domain

knowledge to structure such code properly. The REIP SDK offers a unique approach

to making the implementation of data acquisition and processing software fast,

easy and reliable in multi-worker contexts.

3.1.3 Design Principles

The REIP SDK seeks to cater to a wide range of domains, programmer expertise,

and compute constraints. To that end, we sought to follow these four principles:

Accessibility

One of the important goals of the REIP platform is to provide researchers with a

broad range of expertise and backgrounds the capabilities to perform environmental

sensing projects. We thus chose the Python programming language for the REIP

19
SDK because of its wide adoption, shallow learning curve, and a wide ecosystem of

libraries spanning countless domains, including: data science and machine learning.

REIP’s API choices also take design inspiration from popular machine learning

frameworks that excel at defining connections between different components, which

are already familiar to many engineers working with data.

Extensibility

In order to address the requirements of a diverse set of applications, we designed

the REIP SDK in a modular fashion. The atomic component of the framework is

a Block, which represents one computational unit (e.g., acquiring an image from

a camera or applying an object detection model, etc.) with a variable number of

inputs and outputs.

Multimodality

The REIP SDK was designed to make minimal assumptions about the data

that is being processed, allowing it to be used in a multitude of contexts. The

primary constraint is that the data be serializable for cases where inter-process

communication is required. Any domain-specific implementation details are del-

egated to custom block implementations, which promotes a clean and principled

separation of concerns between data engineering and the research problem domain.

Scalability

Python, like many programming languages, provides options for scaling code

to run multiple operations at the same time through concurrent programming,

commonly known as multi-threading and multi-processing. REIP takes advantage of

this by executing each block in its own thread, allowing them to run independently

20
to minimize the latency and maximize the data throughput. The bottleneck in

multi-process Python applications is often data serialization, and we leverage

Plasma Store [45] for an efficient shared memory implementation where child blocks

can access the read-only version of the data with fixed memory mapping overhead.

3.2 Programming Interface

The REIP SDK takes much of its API inspiration from graph definition in

Keras [47] and Scanner [48], and its usage consists of two stages. The first is a

computational graph/pipeline definition stage. Here, the user declares all of the

blocks that are going to be used in the pipeline, how they are being distributed in

a multiprocessing context, and their interconnections, so that they are able to pass

data from one to another. An example of this is shown in Figure 3.2b. Note that

none of the data processing code is being executed at this stage.

Once the graph is defined, finally, we can execute it. This is done by simply

calling graph.run(), which will spawn all of the graph’s children and begin data

processing. The behavior of this stage is all controlled within the block class

definition. We elaborate on each of the SDK components in the following sections.

3.2.1 Blocks

A Block is a fundamental component of the REIP SDK, and is implemented as

a Python class that represents one unit of computation (e.g., get audio from the

microphone, compute machine learning outputs, upload data to server, etc.). Each

Block runs in its own independent thread and uses Queues to pass data to others.

Blocks are designed to be easily extendable to suit diverse use cases. A Block

21

import reip, random
from tensorflow.keras.models import load_model

class ObjectDetection(reip.Block):
def init(self):

self.model = load_model(’path/to/model.h5’) # Initialize the model

def process(self, *frames, meta):
i = random.randrange(0, len(frames)) # If a cameras to process
frame = frames[i] / 255.0 * 2 - 1 # Preprocess image for the model
predictions = self.model.predict(frame) # Evaluate the keras model
return predictions, {’frame_index’: i} # Return model’s predictions

def finish(self):
self.model = None # Free the model to be garbage collected

(a)

import reip.blocks as B

Graph / data pipeline definition
with reip.Graph() as graph:

Read video from two cameras
with reip.Task(’cam0’):

cam0 = B.video.Camera(device=0)
with reip.Task(’cam1’):

cam1 = B.video.Camera(device=1)

Perform object detection and write to file
objects = ObjectDetection()(cam0, cam1, throughput=’large’)
B.JSONWriter(’objects/{time}.json’)(objects)

Upload files to a server endpoint
B.upload.UploadFiles(’https://myserver.com/api/upload’, ’objects/*’)

graph.run() # Graph execution

(b)

Figure 3.2: Code examples illustrating the usage and extensibility of REIP SDK in
video capture and processing application. (a) Block implementation for a machine
learning model. It consists of an init, process(...) and finish methods. The process
method takes frames from multiple cameras and chooses one to perform object
detection on it. (b) Graph definition showing object detection on a video stream
with the detections saved in JSON files and uploaded to an API endpoint.

22
consists of: an initialization function init() that is called at the start and which can

be used to acquire resources and set initial values; a process function process(...)

that is called repeatedly with data from parent blocks as an input and returns

0 or more outputs to the next block(s); and a cleanup function finish() that is

called at the end to release any resources acquired. This general program structure

encapsulates a wide family of programs and is fundamental in Object Oriented

Programming and Python context managers. An example block implementation is

shown in Figure 3.2a. Note that for a custom block, any of these functions can be

omitted if not used.

Blocks can operate in four approximate roles describing how they relate to the

data that they are handling (definitions are not binding):

• Data source (0 inputs, ≥1 outputs, e.g., sensing device such as a microphone);

• Data processing (≥1 inputs, ≥1 outputs, e.g., object detection in an image);

• Data sink (≥1 inputs, 0 outputs, e.g., data storage to disk);

• Operational (0 inputs, 0 outputs, e.g., disk usage monitoring).

Pipelines can be constructed by connecting a data source block to any number

of data processing and/or sink blocks. Operational blocks are typically considered

standalone blocks that perform operations without needing to communicate with

any other blocks, e.g., a block that monitors and maintains the network connectivity

or available disk space.

Users are also able to customize the rules around when a block will execute. For

example, a user can customize the strategy used to determine when the framework

should call the process function based on the input queue status. So one can change

23
whether a block needs to wait for all inputs to have a value or if it should be

executed when at least one of them has a value. A user can also configure the max

rate at which a block will run, or the strategy used to get items from the queue,

e.g., should a block process the latest value in the queue only or process every

buffer.

In its current state, the REIP SDK offers dozens of blocks covering audio tasks

(recording, SPL computation, etc.), video tasks (recording, pose, object or motion

detection), data output, data encryption, data upload, and general utilities. They

are organized into corresponding block libraries that serve two main purposes. The

first is to speed up the development of sensing applications by means of reusing

pre-existing blocks for common tasks. The second, the more subtle, benefit of

having libraries of blocks that follow a standardized design pattern is documentation

of how to perform various tasks in the sensor network building context. We believe

that community contributions will greatly extend the range of supported sensing

modalities and operations that can be executed on acquired data.

3.2.2 Graphs

Any interesting application will consist of multiple blocks connected together. In

order to control multiple blocks at once, they can be assigned to a Graph, allowing

them to be spawned, joined, and managed together. This joint management of

blocks also allows the framework to coordinate when one block experiences errors,

the others can either continue running, pause or shut down.

Adding blocks to a graph is very easy (see Figure 3.2b) and involves simply

defining the block inside of the graph’s context (i.e., define them indented under

the with statement).

24
3.2.3 Tasks

By using Blocks and Graphs, we are able to define a data processing pipeline

that utilizes multi-threading in a single process. However, a single Python process

is constrained by Python’s Global Interpreter Lock (GIL), which allows for the

parallelization of the IO-bound code, but not CPU-bound code. In order to utilize

all of the available CPUs efficiently, we need to use multi-processing to spawn

multiple Python processes (with independent GILs) that can distribute the blocks

to run on all of the CPUs. For this, the REIP SDK provides a special type of a

Graph, called Task, that works much like a Graph except that all blocks added to

it will be executed in a subprocess controlled by that Task object. They have an

identical usage as can be observed in Figure 3.2b.

Blocks are able to detect when their connections are spanning different tasks,

meaning that the end user does not need to worry about the logistics of passing

data between processes. Users have the ability to specify the type of serialization

to use that best suits their data type and volume, which provides flexibility and the

opportunity for optimization. Communication with Apache Arrow Plasma Store [45]

is built into REIP’s cross-task data passing and can be enabled by passing throughput

= “large” when defining a connection between blocks. It provides efficient, high-

volume data throughput where required (Figure 3.2b). Other serialization options

include the standard Python Pickle method (low throughput) and Apache Arrow’s

default serializer (medium throughput).

Error handling is another problem for multiprocessing and multithreading and,

by default, it is difficult to report errors back to the main process/thread. The REIP

SDK handles this within Blocks and Tasks for the user and will raise unhandled

Block and Task exceptions in the main thread/process.

25
3.2.4 Data Formats

If a user has a specific sensing problem, they can easily extend the REIP SDK

by following the I/O specifications between blocks. Input and output buffers consist

of an arbitrary data payload and a dictionary with metadata:

buffer = (data, metadata)

Data is the primary data payload, and is commonly (though not necessarily) a

Numpy array. By convention, if an output array contains a temporal dimension,

then it should appear first and channel information should appear last. For example,

video clips would have the dimensions [Time,Height,Width,Channel], and audio

data would have the dimensions [Time,Channel].

3.2.5 User-Defined Blocks

Figure 3.3 illustrates the process of implementing a data source block in a

seismic sensing application (new modality). The user can focus on the interaction

with the sensing device (sample readout) when implementing this block and, after

the conversion of the data format to comply with the REIP API, can immediately

get access to and benefit from the vast REIP SDK infrastructure (Figure 3.3b). A

generic Rebuffer block is used to aggregate the samples into batches that can be

processed using a re-purposed STFT (Short-Time Fourier Transform) block from

the audio library. The rest of the functionality needed to produce a fully functional

sensor, such as data storage to disk and data upload, is also available in the REIP

SDK. Additionally, with a single line of code, the SeismicSensor block can be put

into the context of a Task to ensure that the computationally intensive STFT block

does not interfere with any data readout operations that need to be performed at a

26

import reip, serial, numpy

class SeismicSensor(reip.Block):
port = "default" # Serial port connection
rate = 100 # 100 Hz sensor sampling rate

def __init__(self, **kw):
super().__init__(n_inputs=0, **kw) # A data source block has no inputs

def init(self):
self.dev = serial.Serial(port=self.port) # Initialize the connection

def process(self, *xs, meta):
raw = self.dev.read(3*2) # Acquire sensor reading (xyz @ 16 bit)
And format the data as per REIP API (axis=0 is for time)
data = numpy.frombuffer(raw, dtype=np.int16).reshape(1, -1)
return data, {’sr’: self.rate} # Pass the data to the next block

def finish(self):
self.dev.close() # Close the connection with sensing device

(a)

import reip.blocks as B
from seismic import SeismicSensor

with reip.Graph() as graph:
Capture data in an independent process using Task to prevent data loss
with reip.Task(’Sensor’):

sensor = SeismicSensor(port=’/dev/ttyS0’)

Compute signal magnitude for 1 sec chunks and store results in CSV format
magnitutes = sensor.to(B.Rebuffer(duration=1)).to(B.audio.Stft())
B.CSVWriter(’magnitudes/{time}.csv’, max_rows=100)(magnitutes)

Upload data to a server endpoint
B.upload.UploadFiles(’https://myserver.com/api/upload’, ’magnitudes/*’)

graph.run() # Execution the pipeline

(b)

Figure 3.3: Code example illustrating how to extend REIP SDK to work with new
sensing modality. (a) Block code for capturing seismic sensor readings, formatting
them according to REIP API, and passing the data processing pipeline downwards.
(b) Graph definition code demonstrating how to capture a new modality while
reusing existing REIP blocks (e.g., Short-Time Fourier Transform (STFT)).

27
high rate. This is achieved by means of execution of the SeismicSensor block in a

separate process managed by the task, with data passing between these processes

handled transparently by the REIP SDK. All this functionality is achieved with

less than 30 lines of code (comments excluded).

3.2.6 Data Security

There can be many concerns around data security when it comes to IoT devices,

whether it be about remote access to the devices, interception of data upload, or

direct access to data storage cards. Most of these concerns are outside the scope of

REIP SDK, as addressing them requires OS-level handling. Many can be circum-

vented though by thoughtful system design, such as protecting outside connections

to the devices using firewalls, SSH keys, VPNs for secure remote access etc.

A harder-to-remedy issue around IoT (or any unaccompanied computer system

for that matter) is that a hard drive is non-trivial to secure. For example, IoT

devices often need the ability to reboot themselves in the case of system failure or

power interruptions. This poses problems when trying to fully encrypt the hard

drives because a password login would be required whenever there was a reboot.

The other option is physical security, i.e., making the SD card more difficult to

access; however, it also makes it more difficult, and potentially costly, to repair the

sensors. Therefore, encryption of sensitive data using a two-sided encryption key is

important to ensure that the data cannot be directly accessed from the hard drive

itself and can only be decrypted by the main server where the decryption key is

stored securely. REIP SDK provides blocks for this type of encryption, including a

two-stage encryption technique that reduces network bandwidth for decryption on

the server by only needing to transmit a small payload instead of the full data.

28
3.3 Performance Evaluation

In this section, we implement a number of benchmarks to evaluate the perfor-

mance of the REIP SDK in different application scenarios. First, we implement

a video processing pipeline to understand the performance of the concurrency tools

offered by the REIP SDK (Blocks, Tasks, etc.) under different configurations

(Section 3.3.1). We also take a closer look at the serialization strategies available

(Section 3.3.1.2), and in which configurations they are the most beneficial, as well as

compare the performance of the REIP SDK to existing frameworks (Section 3.3.1.5).

An audio processing pipeline is then evaluated on different hardware platforms

(Section 3.3.2) to estimate the performance overhead of the REIP SDK and to

identify the optimal hardware platform (Section 3.3.2.2) for building a physical

sensor prototype powered by the REIP SDK that will be used in our case studies

(Sections 3.4 and 3.5).

3.3.1 Concurrency

One of the typical problems that users face when building sensors is processing

data in real time. When using Python to create a data processing pipeline, this will

inevitably involve multi-processing and inter-process communication (Section 3.2.3),

where serialization to pass objects from one process to another can be incredibly

resource intensive, particularly for large data arrays. With the REIP SDK’s

concurrency tools, such as Tasks, the user can easily implement a pipeline that

meets their project’s requirements. The focus of the following subsection is on the

evaluation of these concurrency tools under different pipeline configurations.

29

Camera Task 1

Camera 1

Object Detection Task

Object
Detection Image Wr i ter

Camera Task 0

Camera 0

Motion Detection Task

Motion
Detection Image Wr i ter

(a)
Audio Capture Task

Microphone(s)

Audio Processing Task

Rebuffer

Sound
Classi f ication

SPL
Computation

Audio Wr i ter

CSV Wr i ter

CSV Wr i ter

Data upload

Encr yption

(b) (c)

Figure 3.4: Data processing pipelines used to benchmark REIP SDK (left) and
comparison of different serialization strategies. (a) Video processing pipeline
for investigation of REIP SDK performance overhead in different configurations
(Table 3.1). (b) Audio processing pipeline for comparison of the overall performance
of REIP SDK on different platforms (Table 3.2). (c) Data throughput between
two blocks as a function of buffer size and serialization strategy for inter-process
communication on Jetson Xavier NX. Pickle serialization has the lowest overhead
for small buffers whilst the Plasma method provides the highest data throughput
for larger buffers.

3.3.1.1 Test pipeline

We evaluate the concurrency tools of the REIP SDK using a video processing

pipeline (Figure 3.4a) consisting of data acquisition with two camera blocks (5 MP,

14.4 fps) followed by the real-time object and motion detection blocks, and the

corresponding image writer block.

Different variations of the video pipeline were executed on the NVIDIA Jetson

Xavier NX platform (up to 6 CPUs with 8 GB of RAM and 384 CUDA cores) for

30 s, and the number of frames processed by each block was measured (Table 3.1).

30
Object and motion detection blocks use the ‘latest’ connection strategy, while image

writer blocks process every frame provided to them by object or motion detection

blocks. The motion detection block is outputting one difference image for every

two consecutive input frames. The object detection block is next overlaying the

bounding boxes of the detected objects on every processed frame and outputs it to

the image writer block. We also report the number of lost frames that have not been

pulled by the camera block in time for scenarios where the system gets overloaded,

as well as any frames still left in the input queues of the image writer blocks. For

stereo configurations, object and motion detection blocks are alternating their input

on every call of the process function.

3.3.1.2 Serialisation

The REIP SDK includes a few serialization methods for the user to choose from

to meet their bandwidth requirements. The first method is the most common and

uses Pickle, a package in Python’s standard library that is capable of serializing

arbitrary Python objects. Looking at Figure 3.4c, we can see that Pickle offers the

fastest speeds for small buffers (< 0.3 MB, throughput = “small” when connecting

blocks), but Apache’s Plasma Store [49] (“Plasma” in the plot) is fastest for larger

buffers (throughput = “large”). The Plasma Store is a shared memory server that

uses Apache Arrow to serialize and provide fast, copy-free memory views of the

data that are much more efficient for large data arrays (approaching the memory

speed limit).

The final serialization method, Pyarrow, uses the same serialization method as

Plasma Store, but it does not provide shared memory (throughput = “medium”). It

has a slight performance increase over Pickle for buffers greater than 0.5 MB in size.

31
See Table 3.1 for a comparison of the impact of different serialization strategies on

the overall performance of the video processing pipeline (REIP Hybrid).

3.3.1.3 Configurations

The following pipeline configurations are being evaluated:

• REIP Hybrid: image writer blocks are executed in the same task as the

corresponding object and motion detection blocks. This is our primary

configuration as depicted in Figure 3.4a.

• REIP Multiprocessing: each block is executed in an independent task (a full

multiprocessing configuration).

• REIP Threading: all blocks are being executed in the same (main) process

but, by design, in their own independent threads.

We further customize the configurations by using different serialization strategies

(Pickle/Pyarrow/Plasma) for inter-process block connections. The system is also

intentionally throttled by enabling only four CPU cores to measure smaller variations

in performance overhead under these different configurations. For the fairest

comparison with other representative frameworks (Ray and Waggle), we implement

a thin wrapper emulating the REIP API for each framework (more details in

Section 3.3.1.5). We use the same wrapper for the REIP SDK too (REIP Backend

in Table 3.1), which does not include different connection strategies or other

advanced features of the REIP SDK (hence a slightly better performance compared

to the full REIP SDK).

32

Ta
bl

e
3.

1:
Pe

rfo
rm

an
ce

of
di

ffe
re

nt
fra

m
ew

or
k

co
nfi

gu
ra

tio
ns

w
he

n
ru

nn
in

g
a

vi
de

o
pr

oc
es

sin
g

pi
pe

lin
e

(F
ig

ur
e

3.
4a

)
on

Je
ts

on
X

av
ie

r
N

X
.V

al
ue

s
de

no
te

th
e

nu
m

be
r

of
fra

m
es

pr
oc

es
se

d
by

di
ffe

re
nt

bl
oc

ks
in

th
e

pi
pe

lin
e

du
rin

g
th

e
30

s
sa

m
pl

in
g

pe
rio

d.
T

he
to

p
ha

lf
of

th
e

ta
bl

e
co

rr
es

po
nd

s
to

th
e

m
on

o
an

d
th

e
bo

tt
om

ha
lf

to
th

e
st

er
eo

ca
m

er
a

co
nfi

gu
ra

tio
n.

T
he

sy
st

em
wa

s
th

ro
tt

le
d

to
us

e
4

C
PU

co
re

s
on

ly
to

be
ab

le
to

m
ea

su
re

m
or

e
su

bt
le

pe
rfo

rm
an

ce
di

ffe
re

nc
es

be
tw

ee
n

di
ffe

re
nt

co
nfi

gu
ra

tio
ns

.
N

eg
at

iv
e

qu
eu

ed
va

lu
es

in
di

ca
te

ex
tr

a
fra

m
es

pr
oc

es
se

d
th

at
ha

ve
al

re
ad

y
be

en
in

th
e

qu
eu

e
pr

io
r

to
th

e
sa

m
pl

in
g

in
te

rv
al

.
Sy

m
bo

lˆ
in

di
ca

te
s

qu
eu

e
ov

er
flo

w
(m

ax
qu

eu
e

siz
e

wa
s

se
t

to
10

0
bu

ffe
rs

).

C
on

fig
ur

at
io

n
C

am
er

a
0

C
am

er
a

1
O

bj
ec

t
D

et
ec

ti
on

M
ot

io
n

D
et

ec
ti

on

N
am

e
Se

ri
al

is
at

io
n

P
ul

le
d

L
os

t
P

ul
le

d
L

os
t

D
et

ec
te

d
Sa

ve
d

Q
ue

ue
d

D
et

ec
te

d
Sa

ve
d

Q
ue

ue
d

R
EI

P
H

yb
rid

Pi
ck

le
43

3
0

-
-

20
6

20
6

0
19

1
95

0
R

EI
P

H
yb

rid
Py

ar
ro

w
43

1
0

-
-

22
9

22
9

0
19

6
98

0
R

EI
P

H
yb

rid
Pl

as
m

a
43

1
0

-
-

35
1

20
4

54
ˆ

16
0

80
0

R
EI

P
M

ul
tip

ro
ce

ss
in

g
Pi

ck
le

31
4

11
8

-
-

10
1

73
28

10
4

52
0

R
EI

P
M

ul
tip

ro
ce

ss
in

g
Pl

as
m

a
40

2
30

-
-

38
5

18
4

45
ˆ

14
2

71
0

R
EI

P
M

ul
tit

hr
ea

di
ng

-
43

2
0

-
-

38
8

29
3

56
ˆ

19
3

96
1

R
EI

P
Ba

ck
en

d
(M

on
o)

Pl
as

m
a

43
1

0
-

-
42

0
31

8
34

ˆ
42

2
21

2
0

W
ag

gl
e

Ba
ck

en
d

(M
on

o)
Pi

ck
le

41
0

22
-

-
22

4
13

2
52

ˆ
20

2
11

3
−

12
R

ay
Ba

ck
en

d
(M

on
o)

Pl
as

m
a

43
2

0
-

-
-

-
-

14
6

73
0

R
EI

P
H

yb
rid

Pi
ck

le
34

3
89

34
6

86
12

6
13

3
−

7
11

5
57

0
R

EI
P

H
yb

rid
Py

ar
ro

w
40

9
23

32
1

11
1

12
3

12
2

1
13

4
66

0
R

EI
P

H
yb

rid
Pl

as
m

a
32

7
10

5
37

5
57

29
4

13
5

39
ˆ

18
1

90
1

R
EI

P
M

ul
tip

ro
ce

ss
in

g
Pi

ck
le

26
8

16
4

32
5

10
7

79
66

13
82

41
1

R
EI

P
M

ul
tip

ro
ce

ss
in

g
Pl

as
m

a
30

6
12

6
29

9
13

3
25

5
12

1
60

ˆ
20

8
10

4
0

R
EI

P
M

ul
tit

hr
ea

di
ng

-
43

2
0

43
2

0
40

1
26

3
50

ˆ
34

6
17

3
0

R
EI

P
Ba

ck
en

d
(S

te
re

o)
Pl

as
m

a
43

3
0

43
3

0
37

6
23

0
64

ˆ
31

8
15

9
0

W
ag

gl
e

Ba
ck

en
d

(S
te

re
o)

Pi
ck

le
37

4
58

35
6

76
10

2
86

16
64

32
0

R
ay

Ba
ck

en
d

(S
te

re
o)

Pl
as

m
a

43
2

0
43

2
0

-
-

-
14

9
75

−
2

33
3.3.1.4 Performance

The performance metrics in this experiment are the number of frames/buffers

processed by each block in the pipeline, so the higher the number in Pulled (number

of frames successfully acquired by a Camera block), Detected (number of frames

processed by an Object or Motion detection block), and Saved (number of images

written by the respective ImageWriter blocks) columns in Table 3.1, the better the

performance of the pipeline. Conversely, the target values for the Lost (number of

frames missed by Camera blocks due to system overload) and Queued (number of

frames processed by Object/Motion detection blocks but still pending to be saved by

the ImageWriter) columns are 0 for optimal performance. It should also be noted

that the values in different columns are not directly comparable in isolation. The

pipeline configuration that processed less of the captured frames but saves more

of the processed results can be argued to perform better than the one processing

everything but saving little of the results. We provide a complex analysis of the

measured metrics in the remaining sections.

It is apparent from Table 3.1 that all stereo multiprocessing configurations are

not capable of processing all camera frames in the throttled scenario, with a clear

trend of higher performance for higher throughput serialization. Nevertheless, the

hybrid approach does succeed in this task for single-camera video. The threading-

only configuration shows the highest performance as it does not need to incur any

additional performance overhead due to serialization, with the maximum CPU

resources spent processing and saving the images (this does not mean that such

a configuration is optimal in a general case). Image writing is largely limited by

the maximum disk write speed and the remaining CPU resources available after

object/motion detection. Some configurations (e.g., REIP Multiprocessing) are less

34
efficient in data management and result in less of the results being saved (compared

to REIP Hybrid) despite high processing rates.

It should be noted that it is only in this specific data acquisition and processing

pipeline (Figure 3.4a), where both cameras are operating at the same frame rate

(14.4 fps) and object/motion detection blocks are highly optimized (object detection

is performed on GPU), that we do not observe data loss for camera blocks due to

the Python GIL in the threading only configuration. Data loss would be inevitable

when using data sources with significantly different sampling rates. For instance,

the microphone block requires being serviced more often than the camera block

and will experience overrun errors with data loss due to the Python GIL if there is

another block (in the same task/process) performing a heavy computation that does

not release the GIL in a timely manner. This makes the Task feature of the REIP

SDK essential for the easy decoupling of data source blocks from data processing

blocks by placing them into a dedicated task/process with an independent Python

interpreter.

3.3.1.5 Comparison with Other Frameworks

To compare the REIP SDK with other existing frameworks, such as Ray or

Waggle, we implemented a thin wrapper layer to interface the blocks’ implementation

with different execution backends (Table 3.1). For REIP, we are using a high

throughput hybrid configuration of the video processing pipeline (Figure 3.4a). For

Waggle, we map each task in the pipeline to a Waggle plugin and since the Waggle

framework does not provide concurrency tools, we use a standard multiprocessing

queue to transfer frames between different plugins. In the Ray backend, we use

ray.remote futures for parallel processing.

35
Table 3.1 shows that the performance of the REIP backend is higher than the

large throughput hybrid configuration executed with the REIP runtime, closer to

REIP Multiprocessing. This is expected because the wrapper layer does not provide

all of the features of the REIP SDK (e.g., detailed statistics and error handling),

which introduces extra overhead.

In turn, the performance of the Waggle backend is similar to the REIP Hybrid

configuration with small throughput because the same serialization method (Pickle)

is being used. It is a bit lower though (stereo configuration in particular) because

of a lack of multithreading in the object and motion detection plugins/tasks.

Finally, Ray provides great concurrency tools but they were developed with

different design constraints in mind, which is reflected in its performance. Because

Ray uses futures and lazy/deferred evaluation, we observe an execution pattern,

where a number of jobs are being accumulated and then executed as a batch that

effectively halves its performance. We were also not able to get a GPU-accelerated

object detection block working with the Ray backend because the Ray framework

does not recognize the Jetson’s GPU.

3.3.2 Overhead

Another important aspect of any software framework is its performance overhead.

Scalability is one of the design principles of the REIP SDK and for that, its internal

routines have been optimized to minimize the amount of service time and maximize

the computational resources available for the execution of user code. The percentage

of time spent by the framework performing data management and other service

routines also depends on the particular computing platform in use, which can vary

in the amount of RAM available, a number of CPU cores, and their speed. The

36
focus of this subsection will be on the performance overhead of the REIP SDK on

different hardware platforms.

3.3.2.1 Test Pipeline

We have implemented an audio processing pipeline (Figure 3.4b) that resembles a

real-world noise pollution monitoring sensor network (The Sounds Of New York City

project or SONYC [50]), excluding the data encryption and upload functionality

(bottom-left blocks with dashed lines in Figure 3.4b). In this setup, a mono

microphone is recording one-second long audio snippets that are supplied to the

sound classification and sound pressure level (SPL) computation blocks for real-time

audio analysis. The results are saved to CSV files alongside the raw audio data

in 10 s intervals after rebuffering. The most computationally demanding is the

sound classification block, where we use a CPU-only implementation of a neural

network-based classification model to make the test pipeline compatible with a

wider range of computing platforms that may not have GPU support. We have

also placed the microphone block in its dedicated audio capture Task to avoid any

overrun errors, as explained in Section 3.3.1.4.

3.3.2.2 Hardware platforms

The REIP SDK is Unix-platform compatible so it can be installed and executed

on a large variety of single-board computers (SBCs) at various price and power

points. This flexibility allows the software to be matched with suitable hardware

based on the computational demands of the blocks used in the pipeline and the

project budget. We explore the performance of a real-time, high-resolution audio

processing pipeline (Figure 3.4b) on different multi-core CPU SBCs (Table 3.2).

37

Table 3.2: Time spent by different blocks in the audio processing pipeline (Fig-
ure 3.4b) performing data processing, idle waiting, and servicing the data between
blocks. Comparison is given for different embedded platforms ranging from a low-
budget Raspberry Pi 4B to the high-performance NVIDIA Jetson AGX Xavier. The
service times remain well under 10 % for each platform, which indicates negligible
performance overhead of the REIP SDK. No dropped buffers were detected.

Block
Raspberry Pi 4B Jetson Nano

Process Wait Service Process Wait Service

Microphone 0.39% 92.9% 6.68% 0.19% 92.4% 7.28%
Machine Learning 42.1% 50.4% 5.12% 30.0% 61.7% 7.73%
SPL Computation 4.74% 88.5% 6.75% 2.58% 90.0% 7.36%

Audio Writer 1.82% 91.6% 6.58% 0.41% 92.4% 7.20%

Block
Jetson TX2 Jetson AGX Xavier

Process Wait Service Process Wait Service

Microphone 0.10% 93.1% 6.72% 0.19% 92.2% 7.33%
Machine Learning 37.7% 56.4% 5.31% 12.2% 78.3% 8.75%
SPL Computation 2.01% 91.1% 6.84% 2.40% 90.0% 7.53%

Audio Writer 0.09% 93.3% 6.63% 0.14% 92.6% 7.25%

3.3.2.3 Performance

The key performance metrics are the percentage of time spent by each block

performing data processing, awaiting the next buffer and the service time of the

framework managing the data delivery between different blocks. We also record

the number of dropped buffers in the sink queues of each block output to identify

performance bottlenecks in the pipeline (if any). The criteria for selecting the

computing platform is its ability to execute the pipeline at greater than real-time.

Results in Table 3.2 show that even a low-end embedded platform, such as the

Raspberry Pi 4B, is capable of processing all the data in real-time using the REIP

SDK without dropping a single buffer. The service time overhead of REIP SDK

remains well under 10 % on all platforms, which is negligible.

38
3.3.3 Summary

Real-time data capture and edge processing present many challenges in terms

of managing the compute performance and overall data transfer on the device.

Existing software frameworks in this domain are often designed with assumptions

that data transfer overhead, as a result of serialization, is negligible compared to

the anticipated computational load or are designed to be used on large compute

clusters without the computational or concurrency constraints inherent in lower

power edge sensors. In this section, we have demonstrated that the REIP SDK can

handle complex data processing pipelines that outperform other approaches, such

as Python’s multiprocessing or other frameworks (e.g., Apache Ray).

An important and often overlooked aspect of data processing pipelines is the

moving of data between processing blocks. Serialization of data so that it can

be exchanged between these blocks can introduce significant overhead in complex

pipelines, especially when these data are large in size. REIP’s hybrid approach

to serialization shows comparable or better performance than other frameworks

in the complex video processing pipelines presented. The ability to define the

“small”, “medium”, and “large” throughput flags (defined in Section 3.3.1.2) when

establishing block connections provides a way to select the optimal serialization

technique applied for the scale of the data being passed between these blocks.

When implementing an audio-based processing pipeline on various embedded

computing platforms typically used in sensor networks, service times stayed below

10% when using the REIP SDK. The consistency of these service times is worth

noting, as they stay relatively steady between hardware platforms, which suggests

that the serialization approach of the REIP SDK is agnostic of the platform it is

running on. These service times are likely driven mainly by the memory architecture

39
of the device which impacts serialization, rather than its computational power.

We consider the service overhead of the REIP SDK in these examples to have a

minimal impact on overall performance and generalize well to different hardware

platforms; however, further work is needed to compare the service times of other

frameworks.

In REIP, we are targeting the design, and more specifically in this work, the code

implementation and computational challenges that often arise during the design,

development, and deployment of individual sensors as well as sensor networks.

The REIP SDK aims to provide the user with the tools necessary for the efficient

utilization of limited computing resources while remaining easy to use and flexible

in development. Let’s look closer at how REIP SDK fulfills these tasks in a couple

of case studies, with a more in-depth evaluation in real-world application examples

(Chapters 4, 5, and 6).

3.4 Case Study: Smart Traffic Event Detection

To showcase the initial implementation of the REIP SDK, we present a case study

using a custom multimodal sensor design for real-time traffic analytics with a focus

on bicycle accidents. This sensor network is designed for long-term deployment

on light poles at busy urban intersections, where power is available but high-

speed Ethernet or Wi-Fi-based internet connectivity is not. Researchers want to

understand more about the frequency of bicycles that pass through the intersection

but also want to analyze video and multi-channel audio of any close interactions

between bicycles and other vehicles on the road to study the circumstances around

bicycle accidents and the use of multimodal sensor systems to detect these events.

40
This section focuses on the development workflow steps when using REIP as

described in Section 3.1.1. In this case study, steps 3 and 5 have already been

addressed through the evaluation of the processing pipelines with hardware selection

and the installation of all the necessary runtime software. Due to budget constraints,

we have chosen the cheapest of NVIDIA’s SBC range with GPU support which,

due to the computational requirements of the presented case study, limits us to

using only one of the two cameras available in the sensor prototype. Since it is

also sufficient for this case study to use one sensor prototype instance, step 5 in

the REIP workflow (Figure 3.1) can be skipped, but that by no means limits the

number of sensors that can be used in a sensor network powered by the REIP SDK.

The more thorough evaluation of sensor hardware and the experience of researchers

is a subject of future studies.

3.4.1 Definition of Requirements

For this use case, the following functional requirements must be satisfied by the

application pipeline:

1. Video capture with quality higher than 720p at 15 fps;

2. Multichannel audio capture;

3. Object tracking of vehicles;

4. Transmission of traffic analytics and raw multichannel audio and video of the

accident near misses via limited cellular plan.

A major constraining factor in this application is the reliance on data-limited

cellular connectivity. This excludes the possibility of retrieving continuous video

41

Figure 3.5: Multimodal smart traffic event detection pipeline. This pipeline handles
both audio and video. It captures video, passes it to an object detection block, and
then writes the detection outputs to JSON files. It also captures audio at short
intervals and computes SPL at the one-second resolution, as well as accumulates
the audio into longer clips (10 s) and writes them to disk as audio files. Finally,
the salient event detection block monitors these files, preserving only those that
had an event of interest detected in them.

and multichannel audio data for the post hoc detection of accident events, which

would exhaust cellular plan data limits of ≈50 GB/month very quickly. To alleviate

the impacts of this constraint, we can leverage recent advancements in a compact

but high-power compute devices to push the event detection processes to the sensor

itself, so only salient events are transmitted over the constrained network. This is a

common need in longitudinal sensing research, where in practice the large majority

of collected raw data contains few or no events of interest.

3.4.2 Implementation of Application Pipeline

To highlight the flexibility of the REIP SDK, we have created an application

pipeline that constitutes a multimodal smart traffic event detector for urban bicycle

accident data collection. Figure 3.5 shows the block diagram of this pipeline, where

raw video and multichannel audio uploads are preserved only when a salient event

42
is detected, which in this case is the near miss of a cyclist with a motorized vehicle.

To ensure that the maximum amount of useful data is retrieved, both video and

audio cues are used to signify a salient event. For video, object detection block using

the MobileNet V2 [51] model is fed with video frames at 4 fps from the GStreamer

[30]-based camera block, which is also recording the full speed (≈15 fps) video feed

into files. An event detector block independently monitors the output of the object

detections and deletes the corresponding video fragments if a bicycle and motorized

vehicle were not captured in the same frame for any frame in the video fragment.

In cases where the camera with an object detector block struggles to capture an

event, such as: under low-light conditions, when an event is off-camera, or when it

is occluded, the SPL (Sound Pressure Level) computation block will report a spike

in decibel level, caused, for example by a horn blast, impact, or tire screech from

emergency braking. This information is also used by the event detection block to

decide which data fragments contain events of interest and should be preserved.

3.4.3 Hardware and Software Integration

Using the block design, each data source block has a corresponding physical sens-

ing device (e.g., a camera or a microphone) that connects to the computing platform.

Here, we define our customized sensing devices (that are compatible with REIP’s

default data source blocks) and implement any custom blocks required. The proto-

typical sensor system shown in Figure 3.6 uses two 5 MP USB cameras providing a

160° horizontal field of view (85° max per camera) and 15 fps recording, satisfying

our video capture use case requirement. The computing platform is the NVIDIA

Jetson Nano Developer Kit [5], which offers edge intelligence capabilities from its

128-core GPU, quad-core 1.43 GHz CPU, and 4 GB of LPDDR4 RAM. The majority

43

Figure 3.6: Multimodal sensor built for the real-world case study. It includes two
5 MP cameras, a 12-channel microphone array (4 × 3), and a cellular modem. The
sensor is waterproof for outdoor operation and powered by the NVIDIA Jetson
Nano, which is thermally coupled to the aluminum enclosure for passive cooling.

of the sensor’s hardware is enclosed within an aluminum weatherproof housing.

The custom acoustic front-end has been designed to capture synchronized 12-

channel audio from its 4 × 3 array of digital pulse density modulated (PDM) Micro

Electro Mechanical Systems (MEMS) microphones. It uses the USB MCHStreamer

[52] as an audio interface, so the same Microphone block from the REIP audio

library can be reused to read data from this USB audio class compliant device.

More on the synchronization capabilities of the sensors in Section 3.5.3. In the

given application pipeline, a single microphone channel is used as input to the

audio processing blocks. For data transmission, a USB LTE modem is integrated

containing a SIM card providing a bandwidth-limited cellular plan.

44

Figure 3.7: Car and bicycle pass-by frame from sensor’s camera overlaid with
bounding boxes and labels from object detection block for illustration. The green
region on the inset audio amplitude plot shows the time period where the car
is detectable within video frames, with the red region showing longer periods of
audio-based detection of a car horn. The blue portions signify periods when no
audio event was detected.

3.4.4 Experimental Deployment

A single sensor was mounted on a tripod at 1.8 meters above the ground facing a

roadway in a quiet urban parking lot. This location was chosen to allow for sustained

data capture in more controlled conditions than a busy urban intersection. The

application pipeline was executed prior to multiple runs of vehicle passes, including

(1) motorized vehicle (car, truck, or motorcycle) passes with and without horn use,

(2) bicycle and pedestrian passes, and (3) various combinations of simultaneous

passes. A total of ≈1 hour of continuous data collection was performed, which

would equate to ≈53 GB/h of dual 5 MP video with MJPEG compression and

12-channel audio if all data were to be captured and uploaded. These amounts

45
of data would overwhelm the majority of cellular data plans, requiring at least

15 MB/s of bandwidth to transmit these data from edge sensor to server, regardless

of the inevitable saturation of monthly data plan limits.

Figure 3.7 shows one frame captured from the left video camera for illustration

purposes. In this instance, a cyclist was passing by the sensor with two cars driving

in the opposite direction while honking their horns. The object detection block

has returned confident detections including their bounding boxes around the car,

person, and bicycle. The event detection block raised an event flag, as there was

the combination of a cyclist and motorized vehicle within the frame, which resulted

in the successful upload of 10 seconds of video and multichannel audio of the event

via the cellular modem. In the figure bottom, time vs. SPL is plotted with the

green region showing the portion of time that the object detector block is able to

confidently identify the motorized vehicle passing by, mainly due to the limited

field of view of the camera setup. Of note is the much wider red region showing the

extent to which the SPL computation block is able to detect the elevated sound

level of the car horn, highlighting the advantages of this multimodal approach.

3.5 Second Case Study: Object Localization and

Tracking

Urban environments are very dynamic places, but due to deployment logistics,

urban research studies often have to grapple with trying to draw inferences from

data with low spatial sampling. When dealing with a single sensor covering a

large region, it becomes very useful for the sensor to be able to provide spatially

dense data of the surrounding area, instead of a single scalar value representing

46
that whole area. This is the case with a SONYC [50] sensor as it only has one

microphone and can only capture a single sound level measurement at a time for

the deployment area, which restricts to more macro analyses only.

For vehicular traffic, video-based object detection works well during the day

but has a lot more trouble in low-visibility nighttime situations. Sound-based

localization provides an alternative way of determining the locations of objects in

space without relying on visibility. Using REIP, we built a new multimodal dense

Wireless Sensor Network (WSN) with the ability to accurately localize sources

across multiple sensors using both sounds captured by a microphone array and

video captured by two cameras (Figure 3.6).

For this case study, we build the application pipeline, implement the hardware

and software integration, and finally, we deploy the WSN at an outdoor testbed for

data collection. To evaluate REIP’s ability for gathering audio/video data that can

be used for localization, we perform two experiments (Figure 3.10): (1) localization

of a sound source using multiple sensors in the proximity of the source, and (2)

enhanced accuracy localization of an object using the multimodal capabilities of a

single sensor.

3.5.1 Definition of Requirements

In this case study, the following functional requirements must be satisfied by

the application pipeline:

1. Video recording with quality higher than 720p at 15 fps;

2. Video recording with wide (> 120◦) field of view;

3. Multi-channel audio capture - up to 12 channels for this application but can

47
be reduced or increased as needed;

4. Synchronization across data modalities as well as across different sensors;

5. Sound source localization in urban environments;

6. Object tracking of vehicles and pedestrians using multiple data modalities;

7. Disk storage of audio, video, and synchronization data.

With the minimum functional requirements defined, the application pipeline

can be implemented using the REIP SDK. This process is detailed in the following

section.

3.5.2 Implementation of Application Pipeline

To build the full multimodal pipeline, we create an audio and video processing

pipeline depicted in Figure 3.8.

For audio handling, a Microphone block reads audio buffers and outputs arrays

in chunks of a fixed size (1 s). To simplify the data flow between peripheral sensing

devices, the USB interface is used. The Microphone block uses the ALSA framework

which provides audio I/O to the OS from any USB audio class compliant device.

We use a USB MEMS microphone as the input device in this example.

A Sound Pressure Level (SPL) computation block takes those short audio chunks,

calculates the SPL, and outputs those values to a CSV Writer block which writes

to a new CSV file after a fixed number of lines. For on-board machine learning, the

audio chunks are fed to a Sound Classification block based on a Tensorflow Lite

[53] model which outputs 512-dimension audio embeddings and class prediction

probabilities that are piped to a CSV Writer as with the SPL block. The audio

48

Frame
Alignment

Video Capture Task

Stereo
Camera

Main Graph

Status
Monitor ing

Data
Source

Data
Processing

Data
Sink

Operational

Legend

Timestamp
Decoding

Audio Capture Task

Microphone
(Ar ray)

Video Processing Task

Audio Processing Task

Panoramic
Sti tching

*Object
Detection

Motion
Detection

Rebuffer

Sound
Classi f ication

SPL
Computation

Common
Time

Inter -Thread
Connection

Timestamp
Fusion

JSON Wr i ter

JSON Wr i ter

Audio Wr i ter

CSV Wr i ter

CSV Wr i ter

Both Sensors
Multimodal
Sensor Only

* Block Executed on GPU

Video Wr i ter

Disk Usage
Monitor ing

Data Upload

Data
Encr yption

Inter -Process
Connection

Figure 3.8: Multimodal object localization and tracking pipeline implemented
using REIP SDK. Green blocks correspond to the part of the pipeline necessary
to (re)implement the functionality of the original SONYC sensor [50]. Blue blocks
handle the second video modality added in REIP sensors. Each block is running in
its own thread to minimize data processing latency and some blocks (e.g. Object
Detection) use hardware acceleration.

chunks are also accumulated into longer segments (10 s) in a Rebuffer block and

outputted to a FLAC file. This file is then picked up by the Data Encryption block

to ensure audio privacy.

Additionally, the Timestamp Decoding block is analyzing the extra audio

channels that contain an embedded synchronization signal (see Figure 3.9) used to

align the actual audio data channels with a global common clock as well as timestamp

the buffers before processing. This step is essential to do during audio recording to

correct for drift caused by small differences in audio sampling frequencies at the audio

hardware level. For instance, a typical difference of reference clock frequencies of

10 ppm would result in a drift of approximately one audio sample every two seconds.

To read the video frames from the two cameras, we add a Stereo Camera block

that is using GStreamer multimedia framework [54] to simultaneously pull frames

from both cameras and have them timestamped using a shared GStreamer clock.

49
At the same time, the Common Time block is continuously reading a common

time timestamp (common for all sensors) from the sensor’s micro-controller, which

receives this common timestamp distributed by a master radio device shown in

Figure 3.10. The two timestamps (common time and GStreamer clock) are then

combined by the Timestamp Fusion block and used in the Frame Alignment block

to synchronize the video frames with a common, globally synchronized timestamp

before processing. Simultaneously, the video streams from the cameras are recorded

to file at regular intervals.

There is an optional Panoramic Stitching block that merges (synchronized)

images from the two cameras before they are processed by the Object Detection

and Motion Detection blocks which, in turn, feed their output to a JSON Writer.

The video and JSON files are then uploaded to the server by the Data Upload

block similar to the audio upload in the first case study.

We have an Operational-type block that watches the local data directories and

uploads files to one of the ingestion servers which are responsible for handling

long-term storage. In addition to data upload, we have a Status Monitoring block

that will periodically compute statistics about the sensor (CPU load, memory usage,

network strength, etc.) and a Disk Usage Monitoring block that will strategically

delete files when the disk becomes too full (as would occur during a long period

without connectivity).

As described in Section 3.3, our computing platform of choice for this case

study is the NVIDIA Jetson Nano, so we can continue with the hardware/software

integration where, in addition to defining hardware, we also need to implement a

number of custom blocks responsible for the synchronization.

50
3.5.3 Hardware and Software Integration

Using the block design, each data source block has a corresponding physical

sensing device (e.g. a camera or a microphone) that connects to the computing

platform. Here, we define our customized sensing devices (that are compatible with

REIP’s default data source blocks) and implement any custom blocks introduced

in the previous section.

3.5.3.1 Sensing Devices

Similar to the previous case study, we use two 5 MP USB cameras fitted to each

sensor (see Figure 3.6) allowing up to 160° horizontal field of view and recording

at 15 fps, thus, satisfying our use case requirements. A custom acoustic front-end

with a 12-channel 4 x 3 microphone array (93 mm horizontal and 72 mm vertical

spacing between the microphones) is also satisfying our requirements.

3.5.3.2 Global Synchronization

Adding a common time to the framework requires the implementation of a

custom block that will continuously read a timestamp from a USB-connected

microcontroller. The accuracy of synchronization is then limited by the resolution

of the timestamp provided by the microcontroller and the frequency at which the

block is able to update this value (1.2 kHz in our implementation).

The ≈ 0.83 ms accuracy of the common time timestamp provided by the micro-

controller via USB is not sufficient to accurately synchronize audio data from

different sensors in the same way as video, because audio data is being sampled at a

much higher frequency than video (48 kHz vs 15 fps). We propose a novel method

of high-precision audio synchronization by means of embedding the synchronization

51

Figure 3.9: Example of synchronization signal embedded into the last channel of
audio data at a 120 Hz rate. It contains a serialized 32-bit timestamp that is shared
across multiple sensors with 1 µs accuracy using a 2.4 GHz radio module. High
synchronization accuracy is required due to high audio sampling rates of 48 kHz.

signal into one of the spare audio channels on the MCHStreamer device, which

supports up to 16 channels of Pulse Density Modulated (PDM) audio. An example

of how this synchronization appears as PCM audio samples is shown in Figure 3.9.

It uses a simple UART-like serial protocol with 1 start bit, a 32-bit payload, and

more than 200 audio samples long stop bit. The start bit and payload bits are 5

audio samples wide for more reliable encoding. One audio sample synchronization

accuracy is possible because the start bit of the sequence is aligned with the time

of arrival of the timestamp from the master radio and the micro-controller has a

deterministic delay when processing this information.

52

Rooftop

3 1

24

6

5

6 ft

Test Route 1

Master Radio

- Multimodal Sensors -

Test Route 2

Wi-Fi Router

Test Route 3

- Hammer Spots -

Figure 3.10: The layout (to scale) of a rooftop experiment conducted to evaluate the
performance of WSN in the second case study. There were three test routes used
for localization using global synchronization as well as multiple sensing modalities.

3.5.4 Experimental Deployment

We constructed six multimodal sensors and installed the REIP SDK on each as

shown in Figure 3.6. The experimental setup consists of a 3 x 2 arrangement of

these sensors across a 20 by 10 meters test area (Figure 3.10). As test signals, a

loud impulsive sound source was used (hammer strike on the metal box), as well as

a sine wave generator, resembling a vehicle reverse alarm.

3.5.4.1 Localization Using Global Synchronization

The first experiment aims to evaluate the ability of the sensor network to

localize loud impulsive sound sources (a real-world example of such a sound source

is a vehicle impact) using the wireless synchronization technique introduced in

Section 3.5.3. To do this, we define Test Route 1 (see Figure 3.10) horizontally

53

Figure 3.11: Localization of loud impulsive sound sources using global synchroniza-
tion across multiple sensors. The reconstructed positions are in good agreement
with test routes 1 and 2 of the rooftop experiment.

across the field with 3 ft intervals, and Test Route 2 along which the loud impulsive

sound is generated with 3 ft intervals from sensor 5 to sensor 6 and with 1.5 ft

intervals on the reverse path. Each sensor collects audio and video data continuously

and simultaneously with associated timestamps. We also used this hammer source

to synchronize the video to audio in a standard way for reference (see Hammer

spots on Figure 3.10).

In order to reconstruct the position of this sound source, we first detect the

high amplitude peaks ti in audio data, synchronized using the common time scale

as reconstructed by the Timestamp Decoding block (see Figure 3.8). With the

known 3D positions pi of the sensors, one can find the sound source position p at

time t by minimizing the errors:

54

Figure 3.12: Sound source localization results across 4 sensors for the sine wave
generator. Sensors 2 and 3 (near-right and far-left corners) are omitted for brevity.
For sensors 5 and 6, the back-and-forth path that the sound source was traveling
along is very clear as shown by the oscillating path on the corresponding Direction
of Arrival (DoA) subplots.

p, t = argmin
p,t

6∑
i=1

(||p−pi||− c · |t− ti|)2, (3.1)

where c = 343 m/s is the speed of sound in air. The results are shown in

Figure 3.11 and are in good agreement with the predefined test routes in Figure 3.10.

3.5.4.2 Localization Using Multiple Modalities

During the second experiment, a team member carried a sine wave generator

and walked back and forth along Test Route 3 across the span of the test area

(see Figure 3.10), stopping periodically to activate a sine wave signal. This sound

was chosen because of its simplicity as a sound source and because the acoustic

signature strongly resembles that of a large truck’s reversing alarm.

Existing sound source localization approaches implemented in the pyrooma-

coustics [55] Python package is used to extract horizontal angle coordinates for

these sound sources. For each sensor, the 1D direction of arrival was calculated

55

Figure 3.13: Multimodal localization: video object detection and audio source direc-
tivity from the perspective of the near-middle sensor (5). Left and right images corre-
sponding to two cameras of the sensor are shown for two different moments in time.

using the center row of each microphone array (4 microphones each spaced 93 mm

apart). Only the center row was used to simplify the problem into 2D space and

1D localization as the sound source was held at the same height as the microphones.

Figure 3.12 shows the horizontal direction of arrival over time relative to each

sensor, arranged according to their physical locations around the testbed.

One can see in Figure 3.12, as indicated by the increase/decrease in the path’s

amplitude, that the source starts close to sensor 6 and far from sensor 5, and by

the end of the experiment it has moved close to sensor 5 and far from sensor 6.

This is because, as one moves further away from a measurement point, the angular

distance traveled in order to cover the same physical distance is smaller. Similarly,

sensors 1 and 4 have a sharper peak and a broader trough because their perspective

results in a skewed path, due to the same effect.

Figure 3.13 shows an example of multimodal localization using both video and

audio data. Video-based object detection, shown by the orange silhouette, was

performed using Mask-RCNN as deployed in Facebook’s Detection2 library [56].

56
The purple area plot at the bottom of the figure shows the predicted location of

sound sources aligned with both the left and the right camera views, as calculated

by the MUltiple SIgnal Classification (MUSIC) direction-of-arrival (DoA) algorithm

[57] from pyroomacoustics, and which was chosen because of its balance between

computational speed and accuracy. These results show promise in the ability

of wireless sensor networks to perform localization independently using multiple

modalities and that REIP offers an efficient and effective way of implementing them.

3.6 Discussion and Real-World Applications

REIP facilitates and streamlines the process of environmental sensing deploy-

ments, providing researchers of varying experience levels with tools and best

practices for designing and building sensor networks. We have built a software

framework (an SDK) to make it quicker and easier to prototype and deploy sensor

networks and we have shown its use in two different case studies, demonstrating its

utility and versatility.

3.6.1 Smart Traffic Event Detection

Practically, the presented smart traffic event detection sensor dramatically

reduces data throughput requirements for research projects looking to analyze urban

phenomena. The rapid implementation of this case study following REIP’s workflow

and using the REIP SDK shows promise for its use across diverse applications of

sensor networks. With a given set of application requirements, a pipeline can be

designed that abstracts away a large amount of technical detail typically required

to develop software that could perform this set of complex, interacting operations.

57
A particularly challenging aspect of real-time sensing is moving data between

processes that operate on different schedules. This is commonly addressed with

ad-hoc solutions and application-specific code that are not generalizable or re-

configurable. When projects are under tight deadlines, it often does not make sense

to do more than that – the project just needs code that will perform the required

tasks, and re-usability and portability are not the primary motivators. The REIP

SDK addresses these common computational problems in a general sense so that

when a research problem comes along, an experiment can be up and running as

quickly as possible using pre-existing functional blocks. Indeed, we were able to

reuse many of the blocks used during evaluation in Section 3.3 to build the data

acquisition and processing pipeline of the given case study (Figure 3.5).

Another significant challenge in remote sensing is hardware and software inte-

gration, which is subject to a number of constraints including computing resources

available, hardware I/O offered, sensing options, inter-process data rates, and

available remote connectivity options. With an application pipeline defined using

the REIP SDK, this integration process becomes less of a challenge, as the blocks

chosen dictate the minimal hardware platform that can support it. The presented

process of manually benchmarking possible hardware platforms (Section 3.3.2.2) is

not ideal but is a precursor to our planned simulation and optimization tool for a

pipeline evaluation stage (Section 7.1), where optimal hardware platforms will be

matched to an application pipeline in an automatic way subject to user constraints,

such as maximum memory usage, data output rate, etc.

58
3.6.2 Object Localization and Tracking

The case study in Section 3.5 highlights the use of the REIP SDK to design the

application pipeline for multimodal tracking in urban environments. A finding from

this case study was that the REIP workflow allows the sensor network architect

to design the data pipeline from an abstract, top-down view and have it translate

directly into software components without having it get over complicated with

software and hardware-specific details. More importantly, it allows the hardware

decisions to be pushed to a later stage in the process which, if made too early, can

constrain the application unnecessarily. An example of this was an on-demand

integration of the more accurate synchronization solution that was required for

audio-based localization.

The modular blocks that were combined to make up this case study functionality

abstracted a lot of the complexity away from the traditional software development

process. On top of that, the implementation stayed clean and easy to maintain

through both cases. The use of generalizable serialization methods in REIP SDK for

inter-process data exchange has also provided the efficiency necessary for handling

multiple sensing modalities at the same time.

3.6.3 Real-World Applications

We are convinced that the modular design of REIP SDK enables a greater

reusability of research efforts and leads to faster development of sensor networks.

We further explore the benefits of REIP in real-world applications described in the

following chapters, which are focusing on: Heat, Ventilation, and Air Conditioning

(HVAC) systems, urban traffic analysis, and sports tracking correspondingly. These

59
application examples are also providing us an opportunity to learn from the ex-

perience of REIP users (of different levels of expertise) that implement them, find

any shortcomings in our design or implementation, and figure out ways to further

improve the system.

60

Chapter 4

Applications: HVAC Systems

4.1 Motivation

It is well-known that buildings consume around 40% of total US energy use,

while heating, ventilation, and air conditioning (HVAC) systems account for 74%

of building energy consumption [58], hence improvement in how HVAC systems

run in buildings will eliminate the major contributors of energy waste [59]. Current

heating, ventilation, and air conditioning practice in buildings assumes a fixed

setback schedule as well as over-simplified representation of occupant presence,

such as predicted mean vote (PMV), or least enthalpy estimator (LEE) to run the

equipment [60, 61, 62]. This assumption typically results in unnecessarily running

HVAC equipment at the full capacity to condition spaces without knowing the

actual state of spaces or flow of users [63, 64]. Overventilation then results in

significant energy use and discomfort for occupants [65]. Given the fact that 84%

of the life cycle energy use is associated with the operation phase, inefficiencies

brought by such simplifications in energy use are significant [66].

61
Large opportunities for reducing energy waste exist in buildings if HVAC equip-

ment is run by dynamic reasoning with accurate real-time occupancy and space

state information [67, 68]. Current practice fails to consider accurate representa-

tions of the current and future state of spaces (in terms of real-time occupancy,

user preferences, and comfort levels), and unrealistically assumes that the sensor

measurements obtained locally represent the entire building spaces, resulting in

waste in the energy, carbon and environmental footprint of buildings. Approaches

to reduce energy use in buildings through occupant inputs, such as programmable

thermostats, resulted in more energy use than traditional manual thermostats

or an uncomfortable indoor environment for the occupants [69, 70]. Similarly,

various thermal comfort indices used in the practice of HVAC control have failed

to represent a realistic representation of building use patterns. REIP could provide

the foundational input for having adaptive control strategies in HVAC systems.

The main objective of this application example is to conduct a comprehensive

analysis of four weeks of data collected from sensors placed on the 12th floor of 370

Jay street to show the presence of wasted energy consumed by the HVAC system

for spaces that are often underutilized, and to provide practical ways of reducing it.

We also demonstrate the feasibility of live detection of indoor spaces occupancy

using the REIP platform, which could be used in dynamically controllable HVAC

systems for even better performance and energy efficiency.

The structure of the chapter is as follows: Section 4.2 describes the methodology

used during the study followed by independent analysis (Section 4.3) based on solely

the data acquired with upgraded REIP sensors. We then compare our data to the

internal building’s HVAC system sensor readings and provide additional analysis in

Section 4.4 with improvements suggestions in the discussion (Section 4.5).

62
4.1.1 Evaluation of REIP’s Utility

Another objective of this application example is to evaluate how well REIP

provides features such as easily extensible support for multimodal sensing. We

are also interested in validating whether the design principles of the REIP SDK

(Section 3.1.3) did indeed result in an easy-to-learn API. For this purpose, the

application example was introduced as a Capstone project for a group of four

Master’s students at the Center of Urban Science and Planning (CUSP) at NYU.

The students had little to no prior experience in sensor design but have taken basic

classes in programming (Python) and data analysis.

The Capstone project at CUSP is a two-semester-long program where a group

of students with complementary skills is collaborating with the researchers on a

data-focused problem. The unique feature of the proposed project is that the

students were acquiring their own data by themselves for subsequent analysis, and

this is exactly what REIP is trying to achieve – enable non-expert users to perform

their research faster without drowning in technicalities.

Based on the nature of the project, the following features of REIP could be

assessed: multimodality, extensibility, and easy API. The idea is to provide students

with sensors that lack some of the sensing modalities required by the applications

so that they have to use REIP’s API to extend the sensors’ capabilities.

Because of very limited prior experience in hardware design, the students were

meeting with authors (who served as their mentors) twice as often during the first

semester of the program. That is weekly in-person meetings for two and a half

hours when extending the sensors’ capabilities and bi-weekly during the second

semester covering the deployment of the sensors for data acquisition and subsequent

analysis. Additionally, the students were included in the research group’s Slack

63

Figure 4.1: A four steps approach towards application objectives.

channel where they were provided with additional learning resources and asked

questions in between meetings. Therefore, “we” in the context of this application

example should be understood as the team of students and their mentors.

On the software side, the REIP SDK was sought to follow four design principles:

accessibility, extensibility, multimodality, and scalability. We use this application

example to evaluate the adherence of our REIP SDK implementation to the

first three of these principles. For that, we focus on students with limited prior

experience, and our findings are discussed in Section 4.5.3 at the end of this chapter.

The scalability and HW/SW integration are explored as part of the remaining

application examples in Chapters 5 and 6.

4.2 Methodology

One of the analysis objectives is to explore the correlation between the per-

formance of the building’s HVAC system and the actual occupancy of the indoor

spaces. For that, we are going to leverage the REIP platform and a set of prebuilt

sensors available at NYU. However, these sensors do not support environmental

sensing modality (temperature and humidity in our case) out of the box, so we use

64

Figure 4.2: REIP sensors’ capabilities extension for temperature and humidity
measurements using SHTC3 digital sensor and Tiva C microcontroller.

a four-step approach to achieve our objectives (Figure 4.1). First, we extend the

sensors’ hardware capabilities to support temperature and humidity measurements,

which also involves the development of the corresponding new REIP software

blocks. Then, we deploy a set of said sensors on the 12th floor of the 370 Jay street

building where we can also acquire the internal building’s HVAC system data as a

reference. Finally, we analyze the data to gain insights into the building’s HVAC

system performance as well as users’ behavioral patterns. More on each step in the

following sections.

4.2.1 Sensor Capabilities Extension

To add support for an environmental modality to REIP sensors, we choose

the SHTC3 digital temperature and humidity sensor as our sensing device (Fig-

ure 4.2). This device has excellent features: high-accuracy (±0.2 °C) temperature

measurements and ±2% relative humidity measurements. Also, it has an I2C

(Inter-Integrated Circuit) interface for easy reading. We connected the sensor with

the Tiva C Launchpad that was already available in REIP sensors as part of its

high-accuracy synchronization solution.

65

(a) Upgraded REIP Sensor (b) Microcontroller Firmware (C++)

Figure 4.3: Upgraded REIP sensor (a) with corresponding firmware (b) developed
in Energia IDE [71] for instantaneous temperature and humidity measurements.

The sensor firmware (Figure 4.3b) has been developed in Energia IDE [71], and

it provides instantaneous temperature and humidity measurements via serial port

connection in response to a short “m” command (stands for measurement).

4.2.2 Sensor Software Development

The default REIP blocks library contains a variety of blocks needed for this

application: a video capture block for the cameras, an object detection block

with GPU acceleration, a JSON writer, a CSV writer, etc. Figure 4.4 is showing

the data acquisition and processing pipeline implementing real-time occupancy

estimation by means of a bounding box based object detector for class type “person”,

and an independent task that is querying SHTC3 for temperature and humidity

measurements every second (using max rate feature of REIP blocks) and storing

them in a CSV file for later analysis. It is of note that there is only one new REIP

block handling SHTC3 sensor readout that needs to be implemented from scratch to

build such a data processing pipeline thanks to the extensive REIP blocks library.

66

Figure 4.4: Updated REIP pipeline used for data acquisition with upgraded sensors.

For privacy reasons, we do not use audio modality and we also discard any raw

video frames after they have been processed by the Object Detection block except

a few static images for camera calibration during the installation of the sensors.

4.2.3 Data Acquisition

With REIP sensors upgraded (Figure 4.3a), we proceed to install a couple of

them on the 12th floor of 370 Jay Street (CUSP’s building). As shown in Figure 4.5,

one sensor is located in the Master’s lounge and the second one is positioned in the

dining area next to the staircase leading to the 13th floor of the building. Sample

frames from the first sensor’s point of view are shown in Figure 4.6.

The data collection lasted for the duration of one month (June 2022) resulting

in a total of 110 GB of raw data recorded by the upgraded REIP sensors. For

reference, we have also acquired the building’s HVAC system data for the same

period. Limited availability of the building’s HVAC data (with sensors providing

both temperature and humidity measurements) is what has constrained us to such

a setup on the 12th floor only of the building.

67

CONFERENCE

S1 F2.2F2.1F2.3 F1.2 F1

F1.1

FAN ON

HEATING

S1

F2

SEMINAR
ROOM

AV

MASTER’S
DESKS

THE COMMONS

DYNAMICAL
SYSTEMS

LAB

RECEPTION

ST
O

R
A

G
E

1203

12
03

 A

1201CC
E

N
T

E
R

Y STAIR
L

STORAGE

Figure 4.5: Sensors deployment floor plan. Two upgraded REIP sensors S1 and
S2 have been deployed on the 12th floor at 370 Jay street: one in the dining areas
and one in the master’s lounge. Building’s HVAC system sensors F2 and F1.1 are
being used for data validation (Section 4.4).

4.2.4 Data Analysis

We perform two kinds of data analysis in this application example. First, we

investigate the correlation between the building’s HVAC system performance and

the actual occupancy of the observed indoor spaces (Section 4.3). We then validate

our measurements of temperature and humidity against the reference data from the

building’s HVAC system. (Section 4.4). More details are in the following sections.

4.3 Independent Analysis

Upgraded REIP sensors form a fully self-reliant system and both measure

temperature and humidity as well as estimate the occupancy in real-time at their

corresponding deployment locations. We achieved an average uptime of ≈80%

68

Figure 4.6: Sample frames for the first sensor located next to the staircase in a
dining area (with a bounding box of the detected object).

during a month-long data acquisition session (Figure 4.8). Of note is the fact that

even if one of the sensing devices has failed, i.e. the left camera due to overheating

after prolonged operation, the rest of the data acquisition and processing pipeline

could still function correctly in most of the failure cases thanks to the modular API

of REIP SDK. We were able to achieve nearly 100% uptime by the end of the data

acquisition after ensuring proper camera cooling and reliable electrical connections

for the SHTC3 sensors.

4.3.1 Temperature and Humidity

Figure 4.7 is showing the temperature and humidity data acquired by REIP

sensors in both the dining area (blue/red color) and the Master’s lounge (cyan/ma-

genta color). The data is organized in calendar-like visualization with a constant

vertical axis scale for easier comparative analysis. Weekend days are emphasized in

red and magenta colors respectively. The dashed red boxes on boxes on Figure 4.7a

69

(a) Temperature

(b) Humidity

Figure 4.7: REIP sensors data for Sensor 1 located in the dining area and Sensor 2
in the Master’s lounge during the month of June 2022.

70

(a) June 4 (b) June 19 (c) June 22

Figure 4.8: Sensors downtime. An average uptime of 80% was achieved for the
entire duration of data collection (June 3rd to June 29th, 2022).

are highlighting the failure cases which are shown in more detail in Figure 4.8.

It is apparent from the temperature data that there are two major operation

modes of the building’s HVAC system, which we will refer to as comfort and

economy. The system switched from comfort to economy at 11 PM and back

to comfort at 6 PM of the next day. This is an obvious attempt to save energy

during the night when the building is largely empty but it assumes a fixed user

presence pattern, even throughout the weekend. One can also observe a systematic

difference between the temperature measurements from different sensors because

of different deployment locations, with Sensor 1 typically reporting slightly cooler

temperatures as it was located closer to the air outlet of the HVAC system providing

cool conditioned air during the summer month of June. The humidity values largely

remain constant both temporally and across different deployment locations.

Let us have a closer look (Figure 4.9) on the day of June 6th for the first sensor

located in the dining area next to the staircase between the 12th and 13th floors of

the building. It is illustrating a typical pattern observed during many of the other

days of the month where the indoor temperature, after initial cool down due to the

mode switch at 6 AM, starts to rise slowly as people come to work (or study). It

peaks around 11 AM, has a trough around 2-3 PM, peaks again at 5 PM and, finally,

71

Figure 4.9: Lunch time behavioral pattern. Working at constant power, the
building’s HVAC systems tend to cool down the spaces a little extra when people
are going out for lunch break, which can be seen from REIP’s sensors data but not
from the building’s HVAC data.

gradually declines until the mode change again back to economy late in the evening

(at 11 PM). Our hypothesis is that this temperature pattern on a sub-degree scale

is due to the students/user activity inside the building during the workday.

4.3.2 Occupancy

Indeed, as shown in Figure 4.10, the period around 2-4 PM is when there is

most activity at the staircase as many people are going out for lunch. As they

leave, the HVAC system working at constant power managed to cool down the

spaces a little extra since every person is an approximately 100 W heater from the

point of view of thermodynamics. And when people come back, the temperature

returns to its previous equilibrium. Finally, as students and workers gradually

depart home after a workday, the temperature is also declining until the HVAC

system switched back to economy mode and the temperature spikes up, remaining

72

Figure 4.10: Dining area occupancy for an optimal confidence level threshold.

relatively constant for the following night.

On a technical side, the distributions in Figure 4.10 are computed by averaging

the bounding box detections for the class “person” as computed by the Object

Detection block in data acquisition and processing pipeline (Figure 4.4) and which is

using MobileNet V2 [51] Single Shot Detector (SSD) model for real-time performance.

The optimal confidence level threshold was found to be close to 0.5 which results

in the highest signal-to-noise ratio (maximum amount of correct detections for

the least amount of false positives). The vertical axis is constant across different

days for the comparative analysis and an abnormally high activity during June

18-19 is due to the social event happening that weekend. Because the sensor was

located next to the staircase, the occupancy data is more representative of the

user’s activity in the dining area rather than their static presence, which was of

benefit for our analysis.

73
4.4 Building HVAC Comparison

The building’s HVAC system consists of a network of mostly temperature-only

sensors installed throughout the building floors and Fan Processing Units (FPUs)

that use this data to fine-adjust the temperature and humidity of the incoming air,

which is being preconditioned by a rooftop portion of the system located on top

of the building. Settings of the FPUs indicate that we have correctly identified

two main working modes of the system that are switching at 6 AM and 11 PM,

and which are defined by different bands of target air temperatures. We further

validate the data acquired with REIP sensors by comparing it to the measurements

from the nearest temperature and humidity sensors of the building’s HVAC system

(Figure 4.5) as shown on Figures 4.11 and 4.12.

Temperature and humidity sensors are subject to instrumental and statistical

errors. To combat this, measurements are taken every second which can then

be averaged to reduce the statistical error and match the one-minute temporal

resolution of the building’s HVAC data. However, it can easily be seen from

Figure 4.11 and the closeup view in Figure 4.9 that there is an extra post-processing

step in the HVAC system which produces highly filtered values of lower temporal

resolution closer to one hour despite the one minute sampling period. This is likely

an attempt to combat any spurious measurements coming from the potentially

faulty sensors over long periods of operation but has a negative impact on the

accuracy of any analysis done using this data since phenomena such as the users’

lunch behavior patterns become simply undetectable. Other than that, our data is

matching the building’s HVAC data within the instrumental errors of the sensors.

Figure 4.12 is showing what is likely a faulty building’s HVAC system sensor

74

(a) Temperature

(b) Humidity

Figure 4.11: Sensor 1 vs. building HVAC data comparison shows good agreement
within instruments errors of both temperature (a) and humidity (b) measurements.

75

(a) Temperature

(b) Humidity

Figure 4.12: Sensor 2 vs. building HVAC data comparison suggest faulty building
sensor based on both temperature (a) and humidity (b) measurements.

76
F1.1 (Figure 4.5) since the measurements no longer agree with our upgraded REIP

sensors which were tested in the lab conditions to work properly prior and after the

deployment. There is a systematic bias between the measurements and humidity

data coming from the F1.1 sensor which are largely constant. We later validated

that the building sensor has indeed failed by creating artificial changes in the air

condition next to the sensor. The sensor did not report any increase in the humidity

despite the person breathing heavily directly into the sensor, and also application

of a heater resulted only in a limited reported temperature increase compared to

other sensors. The sensor F1 worked perfectly though and is located closer to

the second REIP sensor but we were unable to obtain any data for it from the

building’s HVAC system export tool because of a mismatch between the digital

system configuration and actual physical deployment of the sensors.

4.5 Discussion

In this application example, we acquired using REIP (SDK) accurate temper-

ature and humidity measurements as well as estimated the occupancy of indoor

spaces on the 12th floor of the 370 Jay Street building. We provided an independent

analysis of the acquired data as well as validated its accuracy against the building’s

HVAC system readings. Several conclusions can be made about the building’s

HVAC system performance based on our analysis.

4.5.1 Implications

HVAC System Improvement

Our analysis indicated that the building’s HVAC system is switching to comfort

77
mode as early as 6 AM of every day and remains in this mode until 11 PM (17 out

of 24 hour total in a day). At the same time, the occupancy data suggests that the

main user activity in the building is largely limited to the time interval between

9 AM and 8 PM, i.e. 6 hours less per day. This indicates the presence of significant

energy waste which, based on our findings, could be reduced by approximately a

third of what the HVAC system is consuming extra in comfort mode relative to

the economy. One would only need to update the system schedule to better reflect

the actual user usage of the building spaces.

Furthermore, even temporary changes in the building occupancy have been

shown to impact the resulting temperature levels due to the fact every person

represents a low-power heater by virtue of higher body temperature relative to the

surroundings. The ability of REIP sensors to provide real-time estimates of the

occupancy of the indoor spaces without infringing on users’ privacy (video data

is being analyzed in real-time and discarded immediately) could be leveraged to

form an active control feedback loop for the HVAC system to further optimize its

performance. For instance, the power consumed by FPUs could be dynamically

adjusted to lower levels when people go out for lunch to not air condition the spaces

too much unnecessarily.

NYU and Climate Change

The world is dealing with rapid urbanization, higher demand for energy con-

sumption, and a tremendous increase in greenhouse gases. The primary source

of New York University’s emissions are the buildings which account for 0.3 % of

New York City’s greenhouse gases, and 60 % of NYU’s buildings are older than

60 years with inefficient HVAC systems [72]. Therefore, New York University has

taken climate change action to reduce its greenhouse gas emissions and to reach

78

(a) Overestimation (b) Underestimation

Figure 4.13: Occupancy error types: (a) overestimation when multiple bounding
boxes are reported for the same person; and (b) underestimation when there are
missing bounding boxes for undetected people.

carbon neutrality by 2040 [73].

This application example has demonstrated the feasibility of using the REIP

platform for addressing such challenges and we were able to provide insights into

users’ behavior with actionable suggestions on how to improve the existing HVAC

system schedule to minimize energy waste. 370 Jay Street building, where the

Center of Urban Science and Planning (CUSP) is located, is already one of NYU’s

Leadership in Energy and Environmental Design certified buildings. We believe that

REIP has the potential of contributing to this initiative by making the building’s

HVAC system smarter and more adaptive. Moreover, the user-friendly design of

REIP SDK has made it accessible to non-domain experts. The application was

proposed as part of the CUSP Capstone project and was accomplished by four

Master students with no prior experience in sensor network design and deployment

(under the supervision of the authors during the Spring and Summer 2022 semesters).

4.5.2 Limitations and Future Work

Initially, we were aiming to deploy half a dozen sensors on both the 12th and

13th floors of 370 Jay Street occupied by CUSP. However, the building’s HVAC

system data from the 13th floor is not available for research purposes, so we were

79
limited to the 12th floor only. Now, the REIP sensors and research methodology

have been validated, and we can deploy a larger number of sensors on the 13th floor

as well and do independent analysis for a larger number of indoor spaces. Also,

although sensor deployment next to the staircase has proven to be useful for the

analysis of relative user activity, it is not well suited for static occupancy estimation.

It is clear how to deal with measurement errors for temperature and humidity.

Statistical errors can be reduced by repeating the measurement and computing

an average value, and the instrumental errors are provided by the manufacturer.

However, it is much more difficult to estimate the error of occupancy measurements

because these are based on a machine learning model (Figure 4.13). An intersection

over union based and temporal filtering can be used to improve the accuracy

of occupancy measurements. Calibration of sensors in the environment with

controllable occupancy would also be required for absolute measurements and the

impact of low lighting conditions should be investigated.

4.5.3 Lessons Learned

Several lessons have been learned about REIP from the interaction with the

students and their use of the infrastructure. First is that documentation in a form

of complete examples is very effective but also REIP blocks themselves follow a

well-thought-through structure, which turns each block into effective documentation

on how to perform individual tasks as well as how to use various third-party libraries

common for sensor design. The students were able to extend the sensor’s capabil-

ities by adapting the existing block for communication with the microcontroller

via UART protocol. The most challenge was to develop the firmware for said

microcontroller as it required a different programming language (C) and domain

80
knowledge. That shows that a greater variety of data source blocks has the most

potential for reduction of the development time in the future.

A similar observation could be made about the existing data sink blocks which

mainly focus on storing the data locally. A major factor in achieving high uptime

for the sensors is the ability to monitor the health status of the sensors. We relied

on existing remote control protocols such as SSH and VNC for this purpose which

resulted in delayed identification of the sensor failures and increased data loss.

Additional monitoring blocks of the data sink type that can report sensor status

directly into a centralized database connected to the dashboard would help improve

the reliability of sensor networks powered by REIP.

On the flip side, the REIP SDK has shown a great degree of modularity so only

one custom data source block had to be implemented for the new environmental

modality to get the minimal data acquisition pipeline working (Figure 4.4). Fur-

thermore, the concurrency tools offered by REIP SDK, such as Tasks, allowed the

sampling of one modality (i.e. the temperature and humidity) to continue operating

normally even when the other part of the pipeline failed (i.e. cameras overheated).

This is a direct result of the design principles we followed.

81

Chapter 5

Applications: Urban Dataset

5.1 Motivation

Empowered by the 5G technology and cloud computing, future smart cities

can utilize the network of sensors to generate a tremendous amount of data to

potentially enhance the life of their citizens. We can envisage scenarios where

sensor technologies can in “real-time” sense the environment and use AI techniques

to broadcast them as out-of-horizon events to different moving entities, such as

autonomous and human-operated automobiles.

In this application example, we would like to perform the first study and

generate the first dataset using earlier-developed specialized REIP sensors capable of

recording both audio and video data (Figure 3.6). The data will also be synchronized

across all sensors with high accuracy for video frames using an adapted version of

the custom synchronization solution (Section 3.5.3.2). We will then use computer

vision techniques for segmenting and modeling the various moving entities in the

urban environment, which could be used for high-level analysis, such as:

82
1. Counting pedestrians crossing the intersections throughout the study;

2. Object and pose detection of traffic at the intersections;

3. Surveillance-style mosaic rendering for video synchronization debugging.

We are planning to include both crowded and uncrowded intersections to intro-

duce the challenge of occlusion into our detection modeling. To create a balanced

experimental setting, where pedestrians of different ages and mobility/vulnerability

groups are present, we would like to have a diverse set of intersection locations,

such as places next to public schools or hospitals. This is particularly important

since many of these groups, such as wheelchair users and people with varying levels

and types of disabilities, are absent from large-scale datasets in computer vision

and robotics, creating a strong barrier and bias for developing accessibility-aware

autonomous systems [74].

The data can then be used in pedestrian-vehicle interaction modeling, pedestrian

attributes’ recognition models, accessibility-aware autonomous systems, Vision-Zero

initiatives, and beyond [75]. Further analysis of this data can also shed light on the

type of infrastructure needed to record and analyze such events. One can examine

different computational variations, such as whether all four sensors are needed or

maybe less can be used to capture the same information, and whether the data

needs to be uploaded to the server to further processing or it could be analyzed in

real-time by the sensors with edge computing capabilities.

5.1.1 Sensor Options

We are aiming to acquire a novel multimodal (including at least audio and

video) and multi-view dataset. There exist several commercially available devices

83
that seem to be a good fit for such a task so we would like to explore whether that

is indeed the case.

A multi-view requirement of our data collection could easily be satisfied with

off-the-shelf video surveillance systems that often include a set of wireless IP

cameras. These cameras are transmitting their video feeds to a central data storage

in form of a local hard drive which sometimes can be synchronized with a cloud

but that is not required for the system’s operation. The cameras do also include a

night mode which can prove beneficial during low-light conditions. However, these

cameras rarely provide audio because of privacy concerns and rely on manually

configured timing information or NTP (Network Time Protocol) for timestamping

of the video. The latter is a significant barrier to a multi-view analysis of such

fast-moving objects as car traffic. A car traveling at 40 mph covers more than

a meter of ground per frame when recorded at 15 fps. So frame-accurate video

synchronization is also a requirement for our dataset and, unfortunately, cannot be

met with off-the-shelf security cameras which are also often operating at reduced

frame rates out of limited storage considerations.

Another commercial device that provides quality video with audio at a reasonable

price is a GoPro camera. However, it was designed for independent operation so does

not feature quality synchronization across multiple cameras. Moreover, the synchro-

nization across video and audio modalities is also known to be a problem because of

audio lag offset and differences in sampling frequencies. Recently, GPS-based time

coding has been introduced in the latest versions of GoPro cameras. That could

help with synchronizing the start of the recordings but does not solve the ultimate

problem of long-term synchronization. The time drift caused by manufacturing

variations of the internal crystal oscillator’s frequency that drives digital logic (in-

84
cluding the sampling frequency) is also susceptible to temperature-based variations.

Also, there is no way to know when the GoPro is experiencing lost frames during

the recording which ruins the single timestamp-based synchronization altogether.

The solution would be a continuous (re)synchronization of the cameras from a single

clock source during the entire recording process. Other potential issues include

remote control and monitoring of the camera’s status as well as weatherproofing

that might require external devices and housing depending on the camera version.

REIP sensors provide high-resolution video and audio recording with an in-built

synchronization solution. We have demonstrated during the object localization

and tracking case study in Section 3.5 the ability to synchronize audio with a

single sample accuracy at 48 kHz sampling rate. This made possible sound source

localization based on time delays of audio wave propagation in the air. REIP sensors

have also been built for outdoor deployments so they include the weatherproofing

necessary and external power support. We will be building on top of the existing

audio synchronization solution of REIP sensors to achieve frame-accurate video

synchronization across sensors as well as across both audio and video modalities.

5.2 Data Acquisition

We’ve selected three intersections with different demographics of pedestrians

and road configurations for the purpose of this dataset acquisition:

1. Commodore Barry Park. This intersection is adjacent to a public school. It

has a low-to-medium frequency of traffic making it an uncrowded intersection.

2. MetroTech Center. This intersection is adjacent to the Chase Bank office

building. It is also an active pedestrian intersection.

85

4

3

3

4

3

4

2

4

2

3

1

2

1

2

1

1

Figure 5.1: Sensor positions during data acquisition at Commodore Barry Park.

1

3

4

2

Figure 5.2: Sensor positions during data acquisition at MetroTech Center.

3. Brooklyn Dumbo. Being a tourist destination, this intersection is the busiest

of the three. Because of smaller crosswalks and busy traffic, it provides

challenges such as occlusion and a diverse range of pedestrian types.

86

1
1

1

1

2

2

2

2

3

3

4

3

4

4

3

4

Figure 5.3: Sensor positions during data acquisition at Brooklyn Dumbo.

We equipped these intersections with four REIP sensors, each placed at one

side of the intersection, and record the movement of the pedestrian and vehicle

interactions. We recorded four 30-45 minutes long sessions at every intersection.

This results in about 200 GB of audio-visual data recorded by each sensor per

location (limited by the sensor’s max storage capacity of 250 GB). Overall, we

collected just over 2 TB of quality data for further analysis.

The detailed map locations and the sensors’ positions for each recording session

are shown in Figures 5.1, 5.2, and 5.3. Colors denote different recording sessions

and the number indicates the sensor number with black arrows pointing in the

direction of the field of view of its cameras. Each sensor is equipped with two 5 MP

USB cameras providing a 160° horizontal field of view (85° max per camera) at

15 fps recording rate. The 4 by 3 microphone arrays of each sensor are recording

at 48 kHz sampling rate. Every sensor was powered by a portable power station

with 300 Wh capacity and we also included an Ouster OS-1 LIDAR sensor as an

87
experimental data source.

This and other application examples have a dual purpose of also evaluating

the usability of REIP by users of various backgrounds and technical skill sets. In

this particular appplication, the team consisted of two Computer Science Master’s

students working under supervision of researchers in the VIDA lab. The students

did undergo an initial week-long training on how to use the system and were

supervised during the first deployment of the sensors at the intersection. Because

there was no need in extending the sensors’ hardware capabilities, the focus of this

application example as a user study was on the students’ ability to adapt/use the

existing REIP tools during the data acquisition stage as well as use the additional

metadata provided by REIP SDK (e.g. the synchronization timestamps) for the

subsequent data analysis.

The data acquisition pipeline for the sensors fully consists of the blocks already

available in the REIP SDK. We only modified the default Camera block to enable

more accurate video synchronization also in presence of significant amounts of

lost frames. The reason is that the data acquisition was conducted during the

hottest summer month of August, which resulted in the throttling of the sensor’s

computing platform NVIDIA Jetson Nano after prolonged recording during extreme

temperature conditions.

Figure 5.4 is showing the internal timing diagram of the data acquisition pipeline.

There are three sources of time in the system: (1) the camera’s driver as part

of GStreamer (tgstreamer), (2) system time available via time.time() function in

Python (tpython), (3) and global timestamp received by radio module at 1200 Hz

rate as part of custom synchronization solution (tglobal). Every image frame that

was not lost is timestamped using all three time sources. We describe in the next

88
section how we process this data to achieve frame-accurate video synchronization

across multiple sensors with minimal jitter.

Overall, REIP sensors have demonstrated great versatility in data acquisition

pipelines and operating conditions. They have even survived without damage a

sudden rain incident during the data recording session at Commodore Barry Park.

5.3 Data Processing

For each recording session, the sensors produce two kinds of data: (i) a sequence

of 5 seconds chunks of 16-channel audio data, and (ii) a sequence of ≈1 minute

chunks of stereo video data with the accompanying timestamp’s metadata. We have

already discussed in Chapter 3 how the serialized timestamp signal embedded into

audio data as a separate channel can be used to synchronize the audio streams from

different sensors with a single sample accuracy (Section 3.5.3.2). In this section, we

will focus on how one can achieve a frame-accurate synchronization of the video

data as well across multiple sensors for free-running cameras, that is cameras take

pictures independently at their own pace.

In the data acquisition phase, we timestamped each frame with GStreamer,

Python, and Global timestamp (Figure 5.4). All of these clocks have different tem-

poral resolutions and jitter. Figure 5.5 illustrates how equally spaced video frames

captured by the camera (tcamera) accumulate time delay and jitter throughout

the data acquisition pipeline. Figure 5.6 is showing a quantitative example of this

progression for the left camera of sensor 1. Of note is the fact that Global timestamp

has the largest jitter due to the communication delays in Bulk USB block.

Unfortunately, there is no metadata provided by the camera driver that could

89

Jet son

Pyt hon

GSt r eamer

Si nk Component

Bul k_USB Bl ock Camer a Bl ock

t gl obal
mai n t i mer

FPS Sour ce
(t camer a)

t gl obal
sour ce

(1200Hz)

same moment
gl obal t i mest amp

+
USB1. 1 communi cat i on
del ay j i t t er (<3ms)

Dr i ver Dr oppi ng
Queue Tee Non- Dr oppi ng

Queue
Vi deo

Wr i t er

Non- Dr oppi ng
Queue

API
I nt er f ace

Camer a USB2/ 3

GSt r eamer
Ti mest amp(t gst r eamer)

usbl i b
shar ed
memor y

var i abl e
Mi cr o

cont r ol l er
USB1. 1

Radi o

gl obal
t i mest amp

I mage
dat a

pyt hon
t i mest amp

gst r eamer
t i mest amp

Pyt hon
t i mest amp

(t i me. t i me())

Ot her Appl i cat i ons Syst em I nt er r upt s

j i t t er

j i t t er

Figure 5.4: Sensor’s internal timing diagram for video synchronization. Each video
frame is timestamped three times: (1) by the camera driver inside the GStreamer
pipeline, (2) by the operating system inside the REIP Python pipeline, and (3) by
the radio module inside Microcontroller.

contain clean timing information for each frame, so the GStreamer timestamp is the

best we have. Moreover, it is different for every sensor and even each camera with one

sensor (in terms of time origin) because left and right cameras are being served by

separate REIP blocks, each with its own GStreamer instance that starts with a slight

delay one after another. And one should also account for the fact that independent

clocks would drift with respect to each other even if they started at the same time

because of manufacturing errors of the underlying hardware crystal oscillator.

However, the jitter of GStreamer timestamps is low enough to reliably detect

whenever there is an instance of lost frames (and how many) to recover the

90

Camer a

t gl obal

camer a f r ames ar e
at per f ect

i nt er val s(15f ps)

t pyt hon

t camer a

t gst r eamerGSt r eamer
(dr i ver)

Pyt hon
(REI P)

C/ C++
(Mi cr o cont r ol l er)

0 1 2 153 4 9 1310 1211 165 146 7

1/ FPS
(Fr ame I Ds)

0 x x 111 2 5 96 87 123 104 x

Lost
f r ames

0 x x 111 2 5 96 87 123 104 x

0 x x 111 2 5 96 87 123 104 x

t i mest amp
j i t t er

(gst r eamer)

mor e j i t t er
(pyt hon)

Figure 5.5: Jitter is introduced into the timestamps at different levels of the data
acquisition pipeline, by either system interrupts or communication delays.

Figure 5.6: Example of jitter progression throughout the data acquisition pipeline.

original video timeline. Therefore, we start with this refined video timeline in

terms of GStreamer timestamps and perform two conversions. First, we transform

GStreamer timestamps into Python timestamps using a regression line between

the two which was computed using all the available timestamps data (Figure 5.7,

top-left). Then, we repeat the same step but now between Python timestamps and

Global timestamps (Figure 5.7, top-right). This way we are not only bringing all

the cameras into a single Global time domain but also eliminating the issue of clock

drift because Global timestamps are based on the 1200 Hz clock transmitted by a

master radio to each sensor and the sensors are constantly phase-adjusting their

91

Figure 5.7: Various timestamp artifacts can be corrected during post-processing,
including gaps due to the lost frames (left) and queue overflows (right).

Figure 5.8: After correction of the timestamps, a complete timeline of the recording
session can be reconstructed using a single (global) time axis for all sensors.

local Global clocks inside of the microcontroller. We also eliminate the jitter with

this synchronization procedure.

92

Figure 5.9: Mosaic rendering of the synchronized frames from the Chase Bank
crossing recording session. Four sensors with two cameras each provide eight
different views for comprehensive analysis of the intersection.

As a bonus, we are not only correcting for the lost frames as part of the

synchronization process (Figure 5.7, bottom-left) but also fixing any queue overflow

issues that often result in jamming of multiple frames after a big time delay

(Figure 5.7, bottom-right) once the source of delay (i.e an operating system interrupt)

is resolved. The same applies to “frozen” Global timestamps when Bulk USB block

is interrupted.

Figure 5.8 is showing the results after applying the above-described synchro-

nization procedure. One can clearly see how all sensors started recording with a

delay one after another because they were started manually in sequential order.

One can also see on a zoomed plot the internal delay between the startup of two

cameras and a couple of frames that are always lost due to the extra initialization

have also been accounted for properly.

93
To further validate the video synchronization, we render a surveillance-style

mosaic video for debugging before we head toward the analysis of the data. The 4K

mosaic video is rendered using processed frames from eight cameras and a global

timeline produced by the synchronization of timestamps. Figure 5.9 is showing a

sample frame from such a video generated for an intersection next to the Chase

bank. At any given moment, the recording of all traffic traveling at substantial

speed remains in sync from multiple viewpoints which are essential for many data

analysis applications.

5.4 Data Analysis

As a sample data analysis, we apply computer vision techniques to perform

object and pose detection on our data. We utilize HRNet – a state-of-the-art

bottom-up human pose estimation method for learning scale-aware representations

using high-resolution feature pyramids [76]. The network is trained on COCO

dataset and the results can be seen in Figure 5.10.

To perform object detection and counting we utilize the HRNet model which

is adapted from the Faster RCNN network. We provide detections for six classes:

person, car, bicycle, truck, motorcycle, and bus. Figure 5.10a is showing the

bounding box visualization of the detected objects. The model has proven to

perform well on our data in challenging situations such as a significant change in

scale and occlusions.

For pose estimation, the model is executed for each detection of the person

independently with a focus on that particular bounding box detection. Such an

approach results in temporally consistent pose estimation as the person is walking

94

(a) Object Detection

(b) Pose Detection

Figure 5.10: Examples of possible AI inference for sample frames from the dataset.

95

Figure 5.11: Chase Bank crossing occupancy per object/vehicle type during the
third recording session in the afternoon. There is a significant (about 3x) increase
in the pedestrian count (blue) around 5 pm when people are going home from work.

towards or away from the camera, also despite the significant lens vignetting and

brightness variation across the image (Figure 5.10b).

Figure 5.11 is showing the total count of different kinds of traffic participants

throughout the entire recording session at the intersection next to the Chase bank

office. We intentionally choose this particular recording session because it was

conducted around 5 p.m. in the afternoon when people are finishing their workday

and leaving home. That results in a spike in pedestrian and car traffic and we

aim to detect this event in our data by means of occupancy analysis. And indeed,

there is a nearly three times increase in the pedestrian count crossing the street

around this time which inversely correlates with car count because cars need to

yield their rights to pedestrians. We do not observe as big of an increase in cars or

other motorized vehicles count though because this intersection is typically busy

96
during the normal hours of the day too and there is limited space on the driveways

to fit more cars compared to the pedestrians on the sidewalks. Also, parked cars

introduce a certain static background count.

5.5 Discussion

We managed to collect unique data about traffic and pedestrians from three

intersections using customized REIP sensors. The data includes multiple modalities

(audio, video, and LIDAR) with highly accurate temporal information. We used

state-of-the-art machine learning models for sample analysis of the video data and

the results matched expectations, proving the dataset useful for this kind of task.

At closer inspection, one can notice in Figure 5.11 a regular pattern in the

bus occupancy as there is indeed a bus route passing through the intersection.

This further highlights the importance of our synchronization technique with

diligent processing of timing information to correct for any lost frames that might

accumulate into a significant time gap in the video footage. Otherwise, any attempts

at temporal analysis, such as, for example, reconstruction of the bus schedule, would

suffer from a systematic error.

The majority of the sensor’s hardware is enclosed within an aluminum weath-

erproof housing. There are heat sinks deployed to offer resistance to extreme

temperatures and provide better performance. However, we experienced occasional

bursts of lost frames even during operation in shadows due to the random operating

system interrupts, etc. Therefore, any long-term deployments would inevitably

need to account for these issues in a comprehensive way, which is a challenging

task and REIP SDK offers a solution for this.

97
5.5.1 Future Work

We are currently working on a more comprehensive analysis of the dataset using

all of the available data. Our objective is to provide examples of analysis that

would not otherwise be possible without the unique qualities of our dataset, such

as multimodality, multiview and high resolution with precise synchronization.

One example of such analysis is the evaluation of pedestrians’ movement per

traffic light cycle. We leverage the multiview and synchronization features of the

dataset to reconstruct the timing of traffic lights as seen from different sensor loca-

tions/cameras. This will enable us to identify jaywalkers and compute their walking

speed for further analysis. The audio modality will then be used to detect any

near-accident situations caused by jaywalkers by means of detecting car horn sounds

in addition to measuring the physical distance between the cars and pedestrians.

The data will also be anonymized to address privacy concerns and ensure

“intelligence without surveillance”.

98

Chapter 6

Applications: Sports Tracking

In this chapter, a modular tracking system is presented comprising a network

of independent tracking units accompanied by a LIDAR sensor. Tracking units are

combining panoramic and zoomed cameras to imitate the working principle of the

human eye, and markerless computer vision algorithms are executed directly on the

units. Inference from different sensors and modalities can then be fused together to

reconstruct higher-level game events or full skeleton representation for each player.

The structure of the chapter is as follows: Section 6.1 provides the motivation

for this application example and Section 6.2 details the proposed system design. We

then go through three iterations of the tracking unit prototypes in Sections 6.3, 6.4,

and 6.5 respectively. Each section provides examples of data samples or analyses.

Finally, Section 6.6 contains a discussion and concluding remarks.

6.1 Motivation

Team sports are an example of complex and dynamic physical environments,

real-time tracking and understanding of which has been of great interest to coaches

99

Figure 6.1: The playing field of a baseball game presents an example of a physical
environment that is of great interest for real-time tracking. Yet, it poses a great
challenge because of the field scale and complexity of game events.

and spectators alike [77]. Statistical analysis of tracking information helps coaches

to plan strategies and to evaluate players, whilst real-time detection of players and

the ball provides deeper insight into the game during real-life sporting events and

enhances the viewing experience through the display of various statistics such as

the speed of the ball or overlay of graphical trails during broadcasting [78].

A variety of tracking systems are currently available [79, 80]. The ball is

typically being tracked using radar technologies and player tracking systems can

be categorized as active or passive. Active tracking systems employ various kinds

of markers/ transceivers embedded into sports apparel (e.g. RFID) and might

interfere with athlete’s performance [81]. In contrast, passive tracking systems

are typically using cameras to passively observe players but lack the speed and/or

resolution to be able to track the ball or provide a representation of the player at

high level of detail.

Another unmet need is to provide a description of high-level game events which

is currently done primarily by hand [10]. This makes such systems very labor-

intensive and leads to inaccuracies due to human error. However, recent advances

in deep learning and computer vision algorithms enabled markerless detection of

100

Figure 6.2: LegoTracker Concept. A network of independent sensors that work
together to reconstruct a sports game. Running state-of-the-art algorithms for
player detection and tracking, they provide a full skeleton representation for each
player over a large game field and high-level game events with precise timing.

human pose and action recognition [82, 83, 84, 85].

A typical sports game like soccer or baseball takes place on a field of ≈ 100

meters in length (Figure 6.1). Simply putting a camera overviewing the entire

field limits the spatial resolution to the order of several centimeters. Furthermore,

most of the pixels and bandwidth are being wasted because players occupy a small

portion of the field. A network of cameras focusing on individual players would not

have this problem but requires a real-time inference of game events to follow the

players. We employ the REIP framework and its workflow to jointly design the

hardware and software components of a novel sports tracking system (Figure 6.2)

and avoid software challenges by making adjustments to hardware design.

101
We designed our sensors to be closely focused on a single player. This maximizes

the signal-to-noise ratio which we define as the fraction of pixels corresponding

to a player over the total image resolution. There is also bandwidth available to

use higher frame rates for tracking fast game events, such as a baseball pitch or a

bat swing. We are placing tracking units on the ground plane of the game field,

and zoomed cameras are motorized in a horizontal direction to follow the players.

We are using the NVIDIA Jetson as a computing platform for real-time player

detection directly on each unit. This minimizes the latency in the feedback loop of

the camera and simplifies the infrastructure needed to operate the system, making

it accessible at a lower cost. The units are also precisely synchronized (with 1 µs

accuracy) using REIP’s novel wireless synchronization solution (Section 6.2.3).

A more in-depth description of the system is presented in the following section,

with the results of field tests of different versions of the tracking unit prototypes

presented in subsequent sections.

6.1.1 Relevance of REIP SDK

This last application example is the most demanding of the three in terms

of real-time performance required for the desired operation of the tracking units.

Therefore, we see it as the perfect opportunity to evaluate the scalability of REIP

(SDK). It was shown during benchmarking evaluation (Section 3.3) that the REIP

SDK introduces limited overhead stemming from data serialization. It is inevitable

as part of data management that REIP SDK provides between connected blocks of

the pipeline so that users can focus on the desired computations that they perform

inside of said blocks. However, these synthetic scenarios had the limitation of

using identical cameras that operate at the same frame rate (Section 3.3.1.4). This

102
application provides the opportunity to test REIP SDK with different cameras,

including high-speed ones with higher bandwidth requirements.

The application is implemented by expert users (the authors) who design and

build their own hardware units, and leverage REIP SDK with its special features,

such as Tasks (Section 3.2.3), to achieve the data acquisition and processing

necessary in real-time. Therefore, it is suitable for the evaluation of REIP’s

HW/SW integration in a hardware-agnostic scenario. Additionally, this application

demonstrates the usability of REIP SDK on standard laptop computers with Linux

operating systems when operating LIDAR sensor via network interface with a high

rate of incoming data packets.

6.2 System Design

Figure 6.3 shows a flat ground field 100 and players 101A-D that are playing

within the game field 110. Components of the system are placed around the game

field 110. Devices comprising a pair of panoramic and zoomed cameras are referred

to as tracking units 200A-D. Dashed lines 211 are denoting the field of view of

panoramic cameras and solid lines 221 are showing a momentary field of view of

zoomed cameras as it might change over time. The field of view of the panoramic

cameras can be greater than 180 degrees to ease the calibration of tracking units.

One way of building such a panoramic camera is to combine (and synchronize)

several standard cameras into a horizontal array, thus, increasing the horizontal

field of view while the vertical field of view remains unchanged. Panoramic cameras

of the tracking units 200A-D are sufficiently covering the game field 110 to avoid

any blind spots. The system is also complemented with one or more cameras 120

103

Figure 6.3: LegoTracker sports tracking system overview. Units 200A-D surrounding
the game field 110 are working together to reconstruct the position of players 101A-
D and ball 150 during the game. LIDAR 130 and elevated camera 120 are used to
understand the general context of the game and select active players to track their
skeletons.

that are elevated above the field 100 at height H so that their field of view 121

includes the entire game field 110 and players don’t occlude each other in the frame

as often compared to the tracking units 200A-D located at game field level. The

height H for which the principal ray/optical axis of camera 120 will have elevation

above the ground field 100 of 20 degrees or more is sufficient. The tracking units

200A-D, in contrast, are located at the level of the game field (roughly half of the

player’s height above the ground) in order to simplify the design of motorized mirror

209 (only one axis is needed in such configuration). The system is complemented

with a LIDAR sensor 130 that is using laser technology for distance measurements

104
(rays 131) and is placed at the same height as tracking units 200A-D (about half of

the player’s height) to provide instant estimates of the position of players 101A-D

on the game field 110.

As the game progresses, the position of players 101A-D and the ball 150 changes.

Each tracking unit 200 can detect in real-time when the object of interest that

it is currently tracking is about to go out of the field of view 221 of the zoomed

camera 220 (Figure 6.4). This information is used as feedback to motorized mirror

209 placed in front of the zoomed camera 220. Its position is constantly adjusted

to keep the object of interest within the field of view 221 of zoomed camera 220.

To detect the object of interest in the first place, each tracking unit is equipped

with panoramic camera 210 which has a field of view 211 such that it contains any

possible field of view 221 of the zoomed camera 220.

By design, each tracking unit 200 is a self-sufficient unit and can decide inde-

pendently on which object of interest to follow. However, the tracking units are

connected using wired (e.g. Ethernet) or wireless (e.g. Wi-Fi) network connection

allowing them to share the information about objects that are within their reach

and make a more optimal joint decision on which objects should be tracked by which

unit. This helps to avoid situations like the one shown in Figure 6.3, where there

are four players 101A-D and four tracking units 200A-D but player 101C (with the

ball 150 next to it) is not an object of interest for any unit. It is still being tracked

by panoramic cameras but is not in the field of view of any zoomed camera that

could provide a much higher level of detail for that object. It is possible though,

that the decision is made to intentionally ignore this player because he/she is not

an interesting (that is, “active”) player of the game at a given moment and focus

resources on tracking in detail other players (e.g. 101A). Different perspectives of

105
units 200A and 200C are then used to reconstruct 3D information about the player,

such as a 3D skeleton representation of that player.

6.2.1 Unit Design

Figure 6.4 is showing an exemplary embodiment of the tracking unit 200 (all

units 200A-D in Figure 6.3 are identical). Its main component is a computing

platform 201. We are using NVIDIA Jetson as a computing platform that has a

powerful Graphical Processing Unit (GPU) and shared memory between CPU and

GPU. Two critical peripheral devices are local storage 202 and network interface

203. Video data 212 and 222 coming from panoramic 210 and zoomed 220 cameras

require high bandwidth due to the high-speed nature of sports and, therefore, the

high frame rate of the cameras. Video data is compressed by computing platform

201 and stored in relatively slow local storage 202 such as a Hard Disk Drive

(HDD). Alternatively, faster local storage, such as a Solid State Drive (SSD) with

PCI-Express interface, is used to store video data without compression and with

additional metadata (e. g., a precise timestamp or position of the mirror 209

for each frame). This way, computing platform 201 can compress and transfer

video data from fast to slow storage on demand. Audio data 233 does not require

compression due to its low data rate compared to video data.

Sound is the second most actively involved modality when watching a sports

game. Important game events, such as when the ball 150 is hit or caught, are

often accompanied by a distinct (loud) sound 231. In the air, sound covers 1 m in

about 3 ms, so it is possible to localize the sound source by using a microphone

array with a standard sampling frequency (e.g. 48 KHz) and measuring the time

delays in sound registration by different microphones. This is a known method

106

Figure 6.4: Tracking unit 200 combines a panoramic camera 210 for initial identi-
fication of players and a zoomed camera 220 with motorized mirror 209 for their
tracking in more detail. Microphone(s) 230 are used for the detection and trian-
gulation of loud events. Everything is powered by the NVIDIA Jetson computing
platform.

that requires precise synchronization of the microphones and the system includes a

wireless synchronization technique for tracking units with an error of less than one

period of the sound sampling frequency (see Section 6.2.3).

Each tracking unit 200 is equipped with a microphone 230 and radio module

206. Radio module 206 is passively receiving a timestamp from orchestrator radio

module 305 (Figure 6.3) placed somewhere around the game field 110. Because

the speed of the radio waves is almost a million times greater than the one of the

sound, it is assumed, with negligible errors, that each radio module 206 receives the

timestamp simultaneously. This timestamp is then used by microprocessing module

250 to synchronize all the signals sent out to different components of tracking unit

200. In particular, the timestamp received from the radio module 206 is embedded

into the original audio data stream 232 and modified audio data 233 is then sent

107
to computing platform 201. The microphone 230 can be a mono microphone and

a timestamp is used to form a second channel of stereo audio data stream 233

that is sent to computing platform 201 via a corresponding interface, such as

(but not limited to) a digital I2S interface. Alternatively, the timestamp can be

embedded into a stereo audio stream 232 in place of unused least significant bits

of each sample, improving in this way the synchronization accuracy by a factor of

two without degrading the sound quality. The embedded timestamp is then used

to adjust for a slight sampling rate mismatch (due to the manufacturing errors,

more details in Section 6.2.3) in audio data captured by different units 200A-D

by adding/removing a few audio samples once in a while to match the sampling

frequencies as close as possible.

A synchronization signal, such as hardware trigger 405 or camera exposure

signal 406, can also be interleaved with the audio data bit stream to further increase

the synchronization accuracy between audio and video data streams. It provides

superior synchronization accuracy but requires extra processing of the data stream

after it was received by computing platform 201. Cameras 210 and 220 have native

support of hardware trigger 405 which is synchronized among different tracking

units using timestamps received from radio module 206 (Section 6.2.3). When

using a wired network interface 203, the wireless synchronization technique of the

proposed system can be substituted with Precision Time Protocol (PTP).

Microprocessing module 250 comprises two major components. The first is a

microcontroller unit 205 executing a program that is responsible for communication

between computing platform 201, the radio module 206, shutter driver 241, and

motor driver 207. It is also performing synchronization tasks. The second is a Field

Programmable Gate Array (FPGA) 204 responsible for connectivity between the

108
modules and implements the logic necessary to embed the synchronization signals

into the audio data stream 232. FPGA 204 can also be replaced with a Printable

Circuit Board (PCB) and standard logic components or a single System on a Chip

(SoC), such as Xilinx Zynq, can be used instead too. Connection 251 between

microprocessing module 250 and computing platform 201 is established using a

standard USB protocol.

Motor driver 207 is a hardware module generating signals that drive motor 208

in response to the motor trigger 407 issued by microcontroller unit 205. The motor

trigger 407 is synchronized with camera exposure 406 in such a way that motor 208

rotates the mirror 209 during the time between the consecutive frame exposures

(Figure 6.7). Mirror 208 needs to remain still while zoomed camera 220 is exposing

the frame to avoid motion blur. In our prototypes (Sections 6.3 and 6.4) motor

208 is a stepper motor and torque transmission is implemented using gears. This

reduces the number of oscillations and mirror settling time after the step was made

compared to, for example, belt transmission.

6.2.2 Software Architecture

Figure 6.5 illustrates the software architecture of the proposed system. It can

be subdivided into parts that are tied to and executed by a particular component

of the system (e. g. computing platform 201) and platform-independent blocks,

such as inference services 340 and orchestrator 350. The latter can also be executed

on computing platform 201 of selected tracking units 200 as well as on a dedicated

server. Communication between all blocks is established via network 330 and

standard TCP/UDP protocols. Computing platform 201 has significant computing

power and network-based architecture enables dynamic load balancing between

109

Figure 6.5: LegoTracker software architecture diagram. The software is organized
into blocks that implement REIP API so the data acquisition and management can
be done by the REIP software framework. Major components, such as inference
services 340 or orchestrator 350, are using network interface for easy integration on
computing platform 201 of multiple tracking units 200.

the tracking units and eliminates the need for (but does not prevent the use of) a

dedicated server. The following is a detailed description of each software component.

The most tied to a particular component is a program executed by microcon-

troller unit 205. It is driven by internal clock 311 and receives timestamps from

radio module 206 distributed by orchestrator radio 305 (Figure 6.6). Internal

clock 311 and timestamp decoded by signal extractor 310 are provided to clock

synchronization module 312 and the synchronized clock is then subdivided by

triggering module 313 to desired frame rate for panoramic 210 and zoomed 220

110
cameras. The software of embedded microprocessing module 250 is the only part

that is not powered by the REIP framework.

When computing platform 201 receives a frame from panoramic 210 and zoomed

220 cameras, they need to be registered with respect to each other. Frame regis-

tration 320 is a process of determining the exact position of the frame taken with

zoomed camera 220 within the frame from panoramic camera 210. The important

property of the proposed design that combines two (zoomed and panoramic) cam-

eras is that the registration error for each frame remains constant over time. The

panoramic frame contains some fixed distortions that are calibrated out once and

the position of the zoomed frame is refined starting from an estimate based on the

position of the mirror 209. The position of mirror 209 is not precisely reproducible

but the registration error of zoomed frame is limited by the same value for each

frame. Without the panoramic camera, the zoomed frame must be registered with

respect to the previous zoomed frame to calculate the absolute position and the

error accumulates over time. This is similar to the way the human eye works, which

also has a relatively low resolution of peripheral vision (panoramic camera) and

sharp central (fovea) vision (zoomed camera).

Once registered, the frames are processed by fast object detection algorithm

322 to determine whether the object of interest is out of frame for the zoomed

camera 220. If the answer is positive (Yes) then a message is sent via connection

251 to motor feedback logic 314 residing in microcontroller unit 205 to adjust the

position of the mirror 209 so that the object of interest is within a field of view of

the zoomed camera 220. If the answer is negative (No) then the frames are sent

(362) to inference services 340 for further processing. Frames provided by camera

120 are sent to inference services 340 directly.

111
A second pipeline executed on computing platform 201 is the one processing

sound data. Audio data stream 233 received by computing platform 201 from micro-

phone 230 is processed by synchronization block 321 extracting the synchronization

signal and aligning audio samples to a video stream. Synchronized audio is then

analyzed by decibel meter 323 to detect any loud events and send results directly

to orchestrator 350 for sound source triangulation 353. Audio data is also sent

(361) to inference services 340 for sound classification 341. Tracking unit 200 may

also contain an array of multiple microphones 230, thus, enabling the localization

of sound sources using beamforming techniques.

Inference services 340 is a collection of primarily deep convolutional neural

network algorithms for the detection and localization of various objects and sound

patterns in data streams. Sound classification 341 executed for the sliding window

over the audio stream results in a vector of probabilities for each sound class. The

output of object detection 342 is a set of bounding boxes for objects detected in a

frame (e.g. a player or a ball) and classified with a confidence level greater than

a given threshold. Keypoint detection 343 outputs a list of keypoints and their

locations for each detected object including and not limited to a tip of a baseball

bat or joints of the player’s body such as a knee, elbow, etc. LIDAR processing 344

is performing segmentation of point cloud 363 received from LIDAR sensor 130.

Points corresponding to objects of interest provide an independent estimate of their

position. The output of each detector/classifier computed for individual frames

is then sent to temporal tracking 345 for filtering and formation of temporary

consistent trajectories for detected objects.

Orchestrator 350 is a software block responsible for the aggregation of results

351 and high-level reconstruction of environment 370 as well as interaction with the

112
system operator. Environment reconstruction 355 includes and is not limited to 3D

skeletons reconstruction 352, sound sources triangulation 353, and complex events

detection 354. 3D skeleton reconstruction 352 can be performed even if the player

is tracked by a single tracking unit 200 when standard triangulation techniques

are unavailable (see Section 6.3.1). In this scenario, a dedicated neural network is

trained on demand for a given viewing direction as the position of the player and

tracking unit are known.

Tracking results are then sent to display 356. Display 356 is a display of a

dedicated computer executing the orchestrator software block 350. it can also

be embedded into tracking unit 200 and the orchestrator software block is then

executed on computing platform 201 of that tracking unit. Alternatively, display

356 is a web page that can be displayed on any device (including mobile devices)

that is connected to network 330 directly or via the Internet.

There are two ways to affect the operation of the tracking system. A first is

direct control of data flow in the system through means of system operator such

as enabling/disabling different components of the system, defining which platform

is executing inference services 340 for each tracking unit 200, etc. The second is

analyst input. The analyst is a person (e.g. team coach or sports commentator)

who defines targets, triggers, and other rules of how the system should perform in

different game contexts. In baseball, for example, tracking units might be focused

on the pitcher before he throws the ball and on outfielders after it was hit by a

batter, completely ignoring the pitcher now. Computation planning 358 is a stage

when analyst input is taken into account and a set of rules is defined for each

tracking unit 200 which are then distributed (359) to the units via network 330.

A possible rule for tracking unit 200A is to capture the frame with phase offset

113
with respect to the other tracking unit 200C. With two tracking units following

the same object of interest (e.g., player 101A on Figure 6.3) and phase offset 50 %

the effective frame rate at which the object is being recorded doubles. The timing

characteristics of the system are described in more detail in the following section.

6.2.3 Wireless Synchronization

As shown in Figure 6.6, radio modules 206A and 206B of two different track-

ing units 200A and 200B are receiving a timestamp from orchestrator radio 305

practically simultaneously due to the large speed of radio wave propagation in the

air (300,000 km/sec). Signal extractor 310 communicates with radio module 206,

retrieves the timestamp, and issues a synchronization signal 402. Signal extractor

310 is designed in such a way that the time delay 401 between the moment 401A

when radio module 206 received the timestamp and the moment 401B when syn-

chronization signal 402 was issued is fixed and deterministic. Note that the fixed

and deterministic time delay 401 helps to reduce the jitter of synchronized clocks

404A-B and, hence, improves accuracy but, in a long run, it is not mandatory for

synchronizing the clocks 311A-B that drift with respect to each other due to the

slight frequency mismatch (see below).

Each microcontroller unit 205 in tracking unit 200 has an internal clock 311

that is driving the execution of its program. Due to manufacturing errors, there is

a difference in frequencies of internal clocks 311A and 311B causing a phase shift

403 between their waveforms 403A and 403B. Phase shift 403 is either increasing

or decreasing over time with constant speed depending on how much the frequency

of internal clock 311A is greater or smaller than the frequency of internal clock

311B. Clock synchronization 312 is done by aligning the phase of internal clock

114

Figure 6.6: Timing diagram of software block executed by microcontroller unit 205
that is responsible for synchronization of tracking units 200.

311 with synchronization signal 402 and implementation of clock synchronization

312 is based on an internal hardware timer of microcontroller unit 205 with the

highest CPU interrupt priority. Clocks 404A and 404B are synchronized upon

arrival of synchronization signal 402 but keep drifting with respect to each other in

between. A high-precision hardware timer can be used with its period adjusted

based on the measured time interval between consecutive synchronization signals

402 to reduce the speed of phase drift between clocks 404A and 404B. Finally,

the synchronized clock 404 is subdivided by triggering module 313 to frame rate

frequency and trigger 405 is sent to the camera.

6.2.4 Double Step Motor Technique

Mirror 209 is placed in front of the zoomed camera 220 and coupled to motor

208 (Figure 6.4). Because of the finite exposure used by the zoomed camera 220 (i.e.

less than 5 ms at 200 fps), any movement of mirror 209 during the frame exposure

will cause it to be blurred horizontally (Figure 6.7). Therefore, any change of field

of view 221 of zoomed camera 220 needs to be done in between the frame exposures

115

Figure 6.7: A transition curve for single (411) and double (412) steps performed
by a motor 208 with a waveform of motor trigger 407 and camera exposure 406
signals below. The double-step technique enables faster adjustment of the camera
view while minimizing the motion blur. The span of the time axis is about 10 ms.

and mirror 209 must be still during the actual exposure. We present a technique

for increasing the frame rate of zoomed camera 220 while increasing the speed at

which its field of view 221 is being adjusted at the same time.

Frame 410 is the last frame taken by zoomed camera 220 before the object

of interest 408 moving in direction 409 is about to get out of its field of view

221 (Figure 6.7). Shortly after, microcontroller unit 205 receives feedback from

computing platform 201 and issues a motor trigger 407A. Motor driver 207 reacts

to the motor trigger 407A and configures a new position 411. Because forces pulling

mirror 209 to the new position 411 are symmetric with respect to that position,

mirror 209 is oscillating a few times around the new position 411 before its kinetic

energy is dissipated due to friction and it stops. This causes the following frame

116
411A to be blurred significantly, reducing the effective frame rate by a factor of two.

Alternatively, the second motor trigger 407B can be issued when mirror 209 is

at an amplitude position close to position 412 of the second step. Motor driver

207 then quickly configures position 412 and mirror oscillations attenuate faster

because of the smaller initial amplitude. The consecutive frame 412A is not blurred

and the field of view 221 of zoomed camera 220 is adjusted by double the amount

of a single step. Such a technique can be extended for triple and multiple steps as

well as multiple axes, enabling optical tracking of very fast (100 mph+) moving

objects such as a baseball ball during a pitch.

6.3 First LegoTracker Prototype

Figure 6.8 is showing our first limited prototype of the tracking unit 200. For

this iteration, we decided to limit ourselves to a static variant of a high-speed

camera (without a motorized mirror) and focus on the synchronization feature.

The prototype includes a high-speed camera comprising of a Basler Ace acA1300-

200um color sensor with USB 3.0 interface and Computar 12.5-75mm varifocal

C-Mount lens. It also features a momo MEMS microphone with an I2S interface.

We synchronize the two using a version of techniques described in Section 6.2.1 for

mono audio with custom PCB for the embedding of the camera trigger/exposure

signals into the second channel of the I2S microphone pair. We are using the I2S0

audio interface available on the expansion header of NVIDIA Jetson TX2 which

serves as our Linux-based computing platform. The data is saved onto a 1 TB HDD

drive with a SATA interface and a regular USB microphone is used as a baseline

for audio synchronization.

117

Figure 6.8: First LegoTracker prototype featuring a high-speed camera and a
synchronized mono audio stream. A pair of such units was tested during the
training session of the Texas Rangers baseball team.

We have built two instances of this prototype and tested them during the May

training session of the Texas Rangers baseball team in Frisco, 2018. The objective

was to measure optimal camera parameters for recording such fast sporting events

as a baseball pitches (the speed of the ball reaches over 100 mph for professional

players). The units were spaced 50 feet apart at typical recording locations and

synchronized using dedicated wires and the camera’s external trigger functionality.

Basys 3 FPGA board was used to generate the common trigger for recording at

240 frames per second and 1024x768 pixels image resolution.

It was discovered that with our choice of optically strong lenses and due to the

favorable weather conditions during a typical baseball game, frame exposures of

less than 1 ms can be used for a high-speed camera, which minimizes the motion

blur and is favorable for view adjustment with motorized mirrors as proposed in

Section 6.2. We also learned that the sound volume level of the ball caught by a

catcher with a glove is also sufficient for the detection of a pitching event even if

the batter missed. More analysis of the pitcher’s movement during the pitch is

presented in the following section.

118
6.3.1 Pitcher’s Pose Reconstruction

Pitcher’s pose reconstruction can be broken down into several steps:

• Initial object detection of human class to localize the pitcher;

• Cropping a padded region around the detected pitcher’s bounding box;

• 2D keypoint detection, such as feet or knees;

• Elevation of a 2D pose into a 3D skeleton using a pre-trained spring model.

There are multiple object detection models ranging anywhere on the accuracy vs

inference time trade-off scale. Since we are aiming to build a network of independent

tracing units that are doing real-time object detection and tracking, our choice

of object detection model naturally fell onto Single Shot Multi-Box Detector [86].

MobileNet SSD v2 [87] is providing a great balance between the performance

and accuracy for embedded systems. We are using an open-source repository

jetson-inference1 by NVIDIA that includes an implementation of MobileNet SSD

v2 optimized for Jetson platform with TensorRT.

Prior to keypoint detection, one needs to crop the image around the detected

bounding box of the pitcher. Our experience shows that small perturbations of the

input image (either from frame to frame or due to the cropping factor) can have a

dramatic influence on the accuracy of keypoint detection. We are using OpenPose

[85] as our pose/keypoint detector. It is also worthwhile to skip the final thresholding

step until after tracking of local maximum for keypoint detection on the predicted

heat maps. Such an approach produces more temporally consistent results.
1https://github.com/dusty-nv/jetson-inference

https://github.com/dusty-nv/jetson-inference

119

Figure 6.9: 3D pitcher’s pose is being reconstructed from 2D joints of a single camera
view. Existing mocap data is used as a prior for spring model optimization. The
blue skeleton is the model’s prediction and the red one is shown after optimization.

Finally, the detected 2D pose of the pitcher (Figure 6.9) can be elevated into

3D even if only a single camera view is available. To do so, we train for a given

camera view a small neural network that is predicting the depth value for each

joint with respect to the root (middle of the heaps) from that viewing direction.

The network is trained based on existing mocap [88] data of the baseball pitch.

Because the pitch is an anisotropic motion with a specific pitching direction, the

network needs to be retrained for every camera view/position which is static but

unknown prior to unit placement on the game field.

We augmented the dataset using a spring model of the human skeleton. In this

model, bones are modeled as rods with springs connecting the joints along those

rods/bones. In the rest pose, the length of each spring is equal to the average

length of corresponding bones in the human skeleton. The sum of the potential

energy of bone springs in the augmented pose is used as an optimization loss

to generate more valid human poses similar to those observed during the pitch.

We also apply this optimization as a filtering step after the depth of joints was

predicted by the trained model. Additionally, we modify the pose optimization

120
during post-processing by including a pose from the previous frame to simulate the

effect of inertia and achieve temporally smoother results. Sample results are shown

on the bottom-right of frames 261 and 301 in Figure 6.9.

6.4 Second LegoTracker Prototype

Our second LegoTracker prototype (Figure 6.10) is reusing the same high-speed

camera and computing platform as the first prototype. To achieve fast adjustment

of the field of view for a high-speed zoomed camera, one needs to minimize the

inertia of any moving parts involved. Because the camera sensor with lens assembly

is one of the heaviest parts of the tracking unit and weighing about 1 kg, we place

a motorized 2x3” mirror in front of the zoomed high-speed camera for dynamic

adjustment of its viewing direction. We have chosen a Nema 23 stepper motor with

1.2 N ·m of torque and a gear ratio of 1:2 to power the mirror. The motor driver

used is TB6600 with an LM2596-based 4-Channel switching power supply module

that is also used to power the microprocessing module as well as cooling fans.

This time, we have stereo audio with a pair of Adafruit I2S MEMS microphones.

However, audio muxing is now performed by a Cmod-A7 FPGA breakout board

from Digilent. We opt for an FPGA solution because we are using the second

version of the synchronization technique (Section 6.2.3) where camera trigger and

exposure signals are embedded as the least significant bits into the audio data

stream. Because the I2S0 interface of NVIDIA Jetson TX2 supports 32-bit audio,

we are not losing on audio quality as the microphones are only utilizing 24 bits per

audio sample.

The prototype includes a full stack implementation of the multiprocessing

121

Figure 6.10: Second LegoTracker prototype that is reusing the same hardware
component with the addition of a motorized mirror in front of the high-speed
camera. It also includes a full stack implementation of a microprocessing module
including a microcontroller, an FPGA, and custom PCBs.

Figure 6.11: Portable orchestrator radio based on nRF24L01P+ 2.4 GHz radio
module with touch screen booster pack of Tiva C microcontroller as the input
device.

122
module with nRF24L01P 100mW 2.4GHz radio module for wireless synchronization.

All the components (including FPGA) are connected together with help of custom

PCBs to ARM Cortex M4 based microcontroller Tiva C. SPI protocol is used

for communication with the radio module and UART bridge via an FPGA for

debugging access to the Serial Console of the Jetson computing platform. Another

custom PCB is used to route the trigger/exposure signals to/from the high-speed

camera as well as control signals for the motor driver. The built-in 5 MP @ 30 FPS

camera of Jetson TX2 is being used as a wide-angle camera in this configuration.

Figure 6.11 is showing as orchestrator radio 305. It is based on the same Tiva

C microcontroller and nRF24L01P+ radio module. It also features a BOOSTXL-

K350QVG-S1 320x240 touchscreen booster pack by Texas Instruments as an input

device. The controls include Synchronization and Recording flags as well as

the selection of one out of two prototype instances for manual control of their

corresponding mirrors during system setup.

Just like every custom mechanical hardware component, the motorized mirror

requires calibration for optimal adjustment of viewing directed of the high-speed

camera with minimal motion blur. Figure 6.12 is showing a response function

of the motorized mirror for a single and double-stepping technique described in

Section 6.2.4. The optimal delay for the second step pulse is 2.5ms in this case and

there is obviously not enough friction to quickly attenuate the residual oscillations

of the mirror. Further analysis reveals that the acrylic enclosure of the prototype

does not provide sufficient stiffness which contributes to the residual oscillations.

123

Figure 6.12: Mirror response function. Viewing direction can be adjusted at double
speed (orange curve) with the double-stepping technique but requires accurately
calibrated timing of the second step pulse.

6.4.1 Data Samples

Figures 6.13 and 6.14 are showing the video and audio data samples acquired

using the second prototype in the city park setting. A number of issues have

been identified during the testing of this prototype as it was our first attempt at

implementing all of the features proposed in Section 6.2.

With regards to the cameras, the most prominent issue is the lack of dynamic

range when recording with a high-speed camera, partly due to the reduced bit

resolution of the sensor when recording at very high frame rates and also because

of the shadows (Figure 6.13, right). These issues were not discovered while testing

the first iteration of the prototypes because of very favorable weather conditions

during the Texas Rangers training session. Secondly, in the complete field-of-view-

124

Figure 6.13: Video samples with object detection overlay acquired using the second
prototype. Of notice is the camera’s self-identification as a person and poor dynamic
range in presence of sun shadows, which negatively impact the real-time tracking.

Figure 6.14: Audio samples from stereo microphone used in the second prototype
with zoomed view on the right. Extra information contained in the least significant
bits of the data has been extracted into separate channels (top to down): stereo
audio, data valid flag, serialized timestamp, camera trigger, and exposure signals.

adjustable design zoomed camera has a chance of recording its reflection during

the homing procedure of the mirror (recovery of the mirror’s position at the start

of the recording using limit switches) and locking in that position since, apparently,

the tracking unit self-identifies itself as a person (Figure 6.13, left), although with

low confidence. Finally, the non-optimal performance of both zoomed and built-in

wide-view cameras also results in low confidence of the object of interest detection

125
and poor tracking. The neural network inference performance on a rather dated

Jetson TX2 computing platform introduces substantial latency into the mirror

feedback loop which, coupled with low confidence / intermittent detections, often

leads to loss of the object of interest from the zoomed camera’s field of view.

The audio recording implementation performed well with not only the syn-

chronization signal being embedded into the audio stream as least significant bits

but also auxiliary camera signals, such as trigger and exposure. However, the

mechanical coupling between the microphones and mirror assembly has introduced

a significant amount of background noise when the zoomed camera’s field of view is

being actively adjusted (Figure 6.14). This makes it extremely difficult to decipher

the real audio signal containing the ball hit or catch sound from the raw audio

stream. An elastic suspension would need to be introduced in the subsequent

prototypes to mechanically decouple the microphones from the main frame of the

tracking unit.

6.5 Third LegoTracker Prototype

Equipped with all the knowledge and experience from findings during the testing

of the first two tracking unit prototypes, we have designed our third and final

version that addresses all of the previously discovered issues (Figure 6.15).

It features Teledyne FLIR ORX-10GS-32S4C 12 bit sensor with Computar

E5Z2518C lens as high-speed zoom camera and FSCAM CU135 from e-con Systems

is serving as a 4K wide-angle camera. The choice of the 12 bit sensor is driven by

the need for a higher dynamic range in images and the camera has a powerful ISP

(Image Signal Processor) to do live gamma and exposure correction. Pre-processed

126

Figure 6.15: Ray traced rendering of the third LegoTracker prototype CAD model.
See photo of a built unit during field testing in Figure 6.18.

images are then transmitted via 10 Gbps Ethernet connection in 8-bit Bayer format

at a rate of 150 fps and 1920 x 1200 resolution. Computar lenses with up to 135 mm

variable focal length and 3.45 µm pixel size of the sensor provide maximum angular

resolution such that a player 100 meters away can be recorded at 700 pixels vertical

resolution at max zoom setting, double that of the second prototype and tenfold

that of the wide-angle camera. The wide-angle camera also has an onboard image

processor providing high dynamic range images and was optimized for relatively

high angular resolution (4K across 60 degrees horizontal field of view) as well. This

way, far players can be reliably detected as objects of interest for tracking.

We are using NVIDIA Jetson Orin as the computing platform for the third

LegoTracker prototype. It offers more computing power which is important for

minimization of latencies during live tracking. We have also opted for MCHStreamer

as our audio interface for support of more channels and ease of implementation.

127

Figure 6.16: Upgraded mirror assembly (left) and synchronization module (right).

There is no more need in using FPGA for muxing of the audio and synchronization

signals (i.e as least significant bits), they can be sampled directly as independent

channels (MCHStreamer supports up to 16 audio channels). More on the customized

hardware components of this prototype is found in the following section.

6.5.1 Construction

Figure 6.16 is showing an upgraded mirror assembly (left) as well as a syn-

chronization module (right) used in the third LegoTracker prototype. We are

using the same radio module and Tiva C microcontroller for synchronization back

compatibility with the previously developed master radio. The PCB design has

been greatly optimized though, so we only need one custom PCB and it is resilient

to electromagnetic interference (EMI) generated by the motor driver. We included

debouncing capacitors and digital transistors were necessary to combat the EMI.

The mirror assembly (Figure 6.16, left) is the most optimized component in the

latest prototype. It includes two major improvements. The first is the rotational

128

Figure 6.17: Improved mirror response. The revised design of the mirror assembly
provides sufficient friction torque and rotating axis stability for oscillation-free view
adjustment using the double-step technique (in less than 20 ms).

axis which is no longer a part / defined by the assembly itself but is rather an

integral part of the ruggedized main aluminum frame of the unit. Combined with

quality bearing it eliminated any residual oscillations in the vertical direction after

the camera’s field of view has been adjusted.

The second major improvement is the adjustable constant friction torque thanks

to the spring-loaded axial force generator with washer bearings. We have also

switched to using larger gears of module 1 (metric). Combined with a heavy-duty

spring, it provides us with a wide range of friction torques for calibration of the

mirror transition time. As shown in Figure 6.17, we have achieved an oscillation-free

field of view adjustment in less than 20 ms when using a double-step technique –

almost double the speed of the second prototype.

These improvements make it possible to record at a rate of up to 50 frames per

second without any motion blur while adjusting the zoomed camera’s field of view

at the same time! After accounting for the gear ratio and mirror effect, the field of

view adjustment speed in this mode is 45 degrees per 0.4 seconds (pitch fly time).

129
Finally, the motor driver has been upgraded to a model supporting half-current

idle mode (Stepperoline DM542T) to reduce the power consumption of the tracking

units. The mirror driving motor has the same specification as in the second

prototype (Nema 23 with 1.2 N ·m torque) and the microphones are now attached

to the front cover using rubber suspension to minimize the parasitic vibrations

coming from the motor and recorded as sound.

We have also ensured that internally the unit is black to prevent any sun glares

or parasitic light and the outside is white to prevent overheating during operation

under direct sunlight. Three 80 mm fans and auxiliary heat sinks help keep cameras

and other components under normal operating temperatures.

6.5.2 Field Testing

We have manufactured a total of three instances of the latest prototype version

which have been field tested in the Commodore Barry Park together with the

LIDAR sensor (Figure 6.18). Two tracking units were placed next to the second

and fourth bases and the third unit as well as the LIDAR sensor were located next

to the home plate. Two people were performing sports actions such as throwing a

baseball pitch around the third base area.

The objectives of the testing were to evaluate the reliability of the tracking

system (motor feedback loop) so that the units (and zoomed cameras in particular)

are always recording data that contains a signal of interest (i.e. the person that

possesses the ball). We did also perform quantitative measurements of the players’

performance using both zoomed and wide-angle cameras for comparison to see the

benefit of the proposed system design. Lastly, we were seeking to prove the feasibility

of player tracking using very sparse 3D point clouds generated by the LIDAR sensor.

130

Figure 6.18: Third LegoTracker prototype with improved performance (Full HD
recording at 150 fps). The photos were taken during in-field testing.

6.5.3 Projected Speed Measurements

As a quantitative measure, we have chosen to use the projected speed, which is

the speed the players were developing during the pitch in a plane perpendicular

to the viewing direction of the camera. Such a choice is motivated by the ease of

calibration and the ability to evaluate the tracking units independently. Figures 6.19

and 6.20 are showing two examples of such pitches by each student player.

We are using the right wrist trajectory (both players were right-handed) as a

proxy for ball speed measurements which we assume to be proportional to the wrist

speed. Pose estimation necessary for wrist trajectory reconstruction was performed

in post-processing using HRNet [76] as it is much more computationally expensive

compared to the object detection required for real-time tracking.

Trajectories that are shown in Figures 6.19b and 6.20b have been frame-by-frame

validated to contain correct pose estimation. Combined with a high frame rate of

the zoomed camera and low noise in wrist detection due to the high resolution, we

treat the trajectory estimated from the footage of zoomed camera as a ground truth.

We further refine the estimated right wrist trajectories using the moving least

131

(a) Video Frames

(b) Wrist Trajectories

(c) Projected Speed

Figure 6.19: Pitch example 1 as recorded by zoomed (left) and wide (right) cameras.

132

(a) Video Frames

(b) Wrist Trajectories

(c) Projected Speed

Figure 6.20: Pitch example 2 as recorded by zoomed (left) and wide (right) cameras.

133
squares method [89]. For each frame, we are using 0.1 seconds of footage before

and after the frame to fit a polynomial model. Parameters of the best fit are then

converted into a reduced-noise trajectory and a projected speed measurement shown

in Figures 6.19c and 6.20c (by plugging in t=0 into the fitted polynomial expansion

of the local trajectory and its first derivative correspondingly). Because of the

limited frame rate of the wide-angle camera (≈ 11 fps on average) we are using a

second-degree polynomial model in this case which is equivalent to the constant

acceleration physical model. For the zoomed camera, we are using a higher-order

polynomial to fully capitalize on its rich temporal resolution.

Although projected speed measurements based on both zoomed and wide-view

camera footage generally agree there is a significant, and consistent, underestimation

of the peak speed developed during the pitch when measured using a wide-angle

camera. This is due to the lack of temporal resolution necessary for quantitative

analysis of such high-speed phenomena as a baseball pitch.

Another example of a phenomenon that is not just impossible to quantify

correctly but to detect in the first place is dribbling of the ball. An example can be

seen in Figure 6.19c around the first second mark performed by the first student.

Both temporal and spatial resolution limitations are contributing to this scenario

as the angular resolution of the wide-angle camera was three times lower than

that of a zoomed camera during the field testing (up to 10x possible depending

on the configuration). This highlights the benefits of the proposed system design

but which depends on the real-time analysis of the captured data and that was

achieved using REIP SDK.

134

Figure 6.21: Walking trajectory during calibration as recorded by LIDAR sensor.

6.5.4 LIDAR Based Tracking

LIDAR sensor provides the unique benefit of directly providing 3D point clouds

of the environment at a reasonable frame rate and which, unlike video data, are

much easier to process in real-time with low latency. We are using an Ouster

OS1-16 LIDAR sensor capable of generating a 16 by 1024 full circle point cloud

at a 20 Hz refresh rate. Our sensor has a tight beam configuration with a vertical

angular resolution of 1 degree and a horizontal resolution of 0.35 degrees.

LIDAR data acquisition and processing is powered by REIP SDK and executed

on Linux based orchestrator machine/laptop. The acquisition pipeline is linear

and contains the following blocks: (1) Sensor block receiving the data packets

transmitted by the sensor via UDP protocol, (2) Parser block that is organizing

chunk data from individual network packets into complete scans, (3) Formatter block

135
that is applying sensor calibration and converting raw data into a ready-to-use 3D

point cloud, (4) Background Subtraction block eliminating any points that belong

to background, (5) Clustering block grouping individual distance measurements

into tracked objects and, finally, (6) Plotter block visualizing the tracked object

with sufficient amount of measurements. An example of the first 90 seconds of

the person’s walking trajectory during calibration of the tracking units (using an

800x600 mm Charuco calibration board) is shown in Figure 6.21.

Background Subtraction block works as follows. A short scan is acquired without

background subtraction and stored using the default NumpyWriter block from

the REIP SDK utility blocks library. The NumpyReader block is then used to

replay the scan, select an interval where no one is present in the scene and pass

the data to the Background Computation block. The outputs of the Background

Computation block are statistical mean, standard deviation, etc. measurements for

static background in each laser direction (if detected). This data is then used as a

configuration for the Background Subtraction block during the real data acquisition.

For object detection, we are using a modified union-find algorithm that accounts

for additional depth parameters as measured by the LIDAR sensor. When a cluster

is detected in the point cloud with a total number of adjacent points greater than

a predetermined threshold (typically greater than 2), an object is defined that is

located in the middle of said cluster. Several additional objects are visualized in Fig-

ure 6.21 to the right of the LIDAR origin. These were the remaining member of the

team hiding behind the protective net which results in an unwanted segmentation.

Overall, we conclude that the LIDAR sensor is a useful, and functional, addition

to the tracking system where ambiguity needs to be resolved as to which objects of

interest need to be tracked by individual tracking units.

136
6.6 Discussion

The differences between the movements of professional players are subtle and

richer player tracking can reveal details of player behavior and game patterns that

might change the way coaches manage players or plan strategy. We presented a

tracking system that can track a large physical area at high resolution (that is,

being able to resolve detailed movement of people and objects, such as that required

to compute skeletons), in contrast to existing tracking systems that are typically

limited by a single point representation for each player when applied at a large

game field.

Simply putting a camera overviewing the entire field, for example, limits the

achieved spatial resolution to the size of the field divided by the resolution of the

camera. A camera focused (that is, “zoomed”) on the object of interest would

not have this problem but in this case, the tracked object might leave the field

of view of the zoomed camera. The observation was that players are sparsely

distributed across the game field, which is also flat. We exploited this observation

to maximize the signal-to-noise ratio in our system, which we define as the fraction

of pixels corresponding to a player over the total resolution of the recorded image.

The s/n ratio was 5.8% for zoomed camera in pitch Example 1 (Figure 6.19) and

7.8% in pitch Example 2 (Figure 6.20). In contrast, the same s/n ratio was 0.23%

and 0.33% correspondingly for the wide-angle camera. That is 24 times more

efficient utilization of the data bandwidth which translates into times higher spatial

resolution for the zoomed camera as well as an order of magnitude higher frame

rate, both of which are essential for correct estimation of the projected speed.

Another observation is that modern embedded systems have accumulated a

substantial amount of computational power. We, therefore, designed our system

137
in a modular fashion so that the data processing, including centralized analysis of

aggregated data, can be distributed across the actual tracking units acquiring that

data. This eliminates the need for a dedicated server or huge amounts of cloud

resources. Moreover, powered by the REIP SDK data acquisition pipeline can

also include a real-time analysis, which we also capitalize on. Without a real-time

feedback loop for the motorized mirror, it would be impossible to keep the object of

interest within the field of view of the zoomed camera and achieve the aforementioned

efficiency in data bandwidth utilization, which directly translates into the amount

of tracking details and useful inferences that can be therefore computed.

6.6.1 Limitations

Besides not using any markers for player tracking, the presented system also

demonstrates that inferences, such as 3D skeletons, which would typically require

multiple camera views can also be achieved from a single camera view (Section 6.3.1).

However, it should be understood that such inferences are not 100 % reliable due

to the ambiguity in problem formulation (it is an ill-posed optimization problem)

and should only be used when appropriate.

One of the major challenges is to understand when and how/why the algorithms

such as object detection or pose estimation fail. The output of these algorithms is

used to guide data acquisition and processing, so they have to be fast and reliable.

Figure 6.22 is showing an example of a pitch during which the pose detection

algorithm failed. The mode of failure in this example is a temporary flip between

the left and right joints which renders projected speed calculations incorrect and,

thus, unusable. It is apparent that the reason for such a failure (invariant to the

camera resolution) is the occlusion of the right arm during the most crucial portion

138
of the pitch movement. A possible way to tackle such occlusion cases is to develop

pose estimation algorithms that are not only providing the best estimate of the

person’s pose but also include confidence level for each joint so that only unoccluded

confident detections are being used for downstream analysis.

In contrast to the first and second LegoTracker prototypes, the design of our

third prototype did include an entire linear array of four I2S microphones for audio

recording with a goal of beamforming-based sound source localization. However, we

were unable to recover the synchronization signal when using the I2S protocol with

MCHStreamer. The microphones would need to be replaced by a PDM version or

an entirely different audio interface should be used to fix this issue, so we excluded

audio modality during the field testing of the third prototype.

139

(a) Video Frames

(b) Wrist Trajectories

(c) Projected Speed

Figure 6.22: Pitch example 3 as recorded by zoomed (left) and wide (right) cameras.

140
6.6.2 Infrastructure

The LegoTracker sensor described in this chapter is a fairly complex device.

In the course of working on this project, we found the need to build a new lab

infrastructure in the Visualization Imaging and Data Analytics (VIDA) center at

the NYU Tandon School of Engineering (Figure 6.23). It includes the following

equipment and machinery:

• Ultimaker S5 3D Printer with Air Manager

• Epilog Mini 12 x 24” 40 Watt Laser Engraver

• Bantam Tools PCB Milling Machine

• Bantam Tools Desktop CNC Milling Machine

• WEN 33075 11-Amp Variable Speed 16-Inch Benchtop Milling Machine

• WEN 3970T 4-inch x 6-inch Band Saw and TackLife 10” Miter Saw

• Spray Painting Setup and Standard Tools (Drills, Files, Screwdrivers, etc.)

• SIGLENT SDS1204X-E 4-Channel 200 MHz Oscilloscope (1 GS/s)

• Soldering Station, Infrared Owen, and Air Tools (Compressor, Dispenser,

etc.)

• Ouster OS1 LIDAR Sensor

• Structured Light Scanner and Lighting System

The lab has been funded by the National Science Foundation, NASA and NYU.

All these tools were used and necessary for the manufacturing of the LegoTracker

prototypes.

141

Figure 6.23: Lab infrastructure that was developed to make the application possible.

142

Chapter 7

Conclusions

Sensor networks have dynamically expanded our ability to monitor and study the

world. Their presence and need keep increasing, and new hardware configurations

expand the range of physical stimuli that can be accurately recorded. However,

implementing sensor networks can end up being an enormous engineering feat and

often takes away valuable time from the actual research that the researchers are

seeking to perform. The increasing availability of maker spaces that are providing

3D printing and other technologies makes the building of new sensors within reach

of a broader community, even if still very complex. We have introduced REIP, a

Reconfigurable Environmental Intelligence Platform that facilitates and streamlines

the process of environmental sensing deployments, providing researchers of varying

experience levels with tools and best practices for designing and building sensor

networks. We have also built a software framework (an SDK) to make it quicker and

easier to prototype and deploy sensor networks and we have shown its use in two

different case studies as well as three real-world application examples, demonstrating

its utility and versatility.

143
The first case study in Section 3.4 highlights the use of the REIP SDK in

the design of an application pipeline for a multimodal smart filter for urban

accident data collection, including near-accident situations involving pedestrians

and bicyclists. A finding from this case study was that the REIP workflow (see

Section 3.1) allows the sensor architect to design the data pipeline from an abstract,

top-down view and have it translate directly into software components without the

extraneous complications caused by software and hardware-specific details. In the

second case study (Section 3.5), we continued to expand the capabilities of the

sensor network for localization and tracking tasks by leveraging dozens of blocks

readily available in the REIP SDK, and by incorporating a custom synchronization

solution (Section 3.5.3.2).

Lessons learned from the real-world application examples are as follows:

HVAC Systems

An investigation of the correlation between the performance of the heating,

ventilation, and air conditioning (HVAC) system in the indoor spaces and actual

occupancy of these spaces was conducted to provide insights into building use

patterns for adaptive control strategies of the HVAC system with a goal of reducing

building’s energy consumption. It demonstrated the feasibility of live estimation of

indoor spaces occupancy using the REIP platform, which could be used in dynami-

cally controllable HVAC systems for even better performance and energy efficiency.

The ability of live data processing using REIP SDK has also enabled anonymity

necessary for such a study to be conducted in public spaces (Section 4.5.1).

Urban Dataset

An urban dataset was acquired using multimodal REIP sensors that were

built with the support of accurate synchronization. We have shown its utility for

144
pedestrian-vehicle interaction analysis or algorithm development in the context of

smart cities where sensor networks empowered by AI techniques provide a real-

time understanding of the environment for different vehicles, including self-driving

cars. This application highlights the challenges of urban sensing, such as extreme

operating conditions, data loss, or the need for cross-sensor synchronization, and

which REIP (SDK) was able to provide solutions for (Section 5.3). It is also

important to note that the REIP SDK can handle data of varying structure and

sizes, and does not add any significant overhead (Section 3.3.2.2), so we were able

to easily include new modalities (i.e. LIDAR) and maximize the utilization of

available computational resources.

Sports Tracking

Sports tracking systems revolutionized sports analytics and the way coaches

manage players and approach the game. However, for past decades sports tracking

was limited to a rough representation of each player by a single point and often relies

on special markers integrated into sports apparel. Recent advances in deep learning

and computer vision algorithms enabled markerless detection of human pose. In this

application, we have presented a novel modular sports tracking system (Section 6.2)

providing a significantly higher level of detail in game tracking. Comprising of

independent units, each running state-of-the-art algorithms for player detection and

tracking, it provides a full skeleton representation for each player over a large game

field as well as high-level game events with precise timing. We have gone through

three iterations of the hardware prototypes of the tracking units (Sections 6.3, 6.4,

and 6.5) and performed an in-field testing.

Advanced data serialization and block connection strategies (Sections 3.3.1.2 and

3.2.3) offered by the REIP SDK have been essential for this application. They en-

145
abled us to find the right balance between multi-threading and multi-processing for

optimal performance, which is crucial for real-time data processing during high frame

rate video recording. Without the live feedback from the pipeline, it would be impos-

sible to keep the players within the field of view of our high-speed zoomed cameras

and achieve an order of magnitude improvement in signal-to-noise ratio (Section 6.6).

7.1 Limitations and Future Work

We have learned the following lessons with regard to REIP’s shortcomings as

a result of three real-world application examples performed by users of various

backgrounds and levels of expertise.

First is that documentation in a form of complete examples is far more effective.

Master’s students implementing the HVAC application were able to extend the

sensor’s capabilities to environmental sensing starting off the existing examples

(Section 3.2.5). But it turned out to be harder for the more experienced students

acquiring the urban dataset to fully leverage the timing metadata provided by REIP

blocks for synchronization purposes. Therefore, increasing the number of fully doc-

umented application examples is important for improving the REIP’s accessibility.

One of the primary focuses during the design and development of the REIP SDK

was the minimization of its overhead (Section 3.3.2) so that users can maximize the

performance of their data acquisition and processing pipelines. We believe to have

achieved this objective as demonstrated by the sports tracking application involving

high-performance units with real-time feedback loops. However, despite the high

optimization on the individual sensor design level, we have found the system to

be lacking when operating a fleet of multiple sensors. More tools are necessary for

146
managing deployments of a larger number of sensors, including a live dashboard of

sensors’ status to maximize the uptime during prolonged data acquisition sessions

or permanent deployments.

This work represents the first step towards building a large ecosystem of tools

that make it faster and easier to build and deploy (wireless) sensor networks.

To further increase the usability and accessibility of the REIP platform, we are

planning to develop a Graphical User Interface (GUI) for application pipeline

creation using the Node-RED [90] platform. This browser-based interface would

provide visual representations of the functional blocks, which could then be used

to wire-up application pipelines by less technical users. The GUI could take

into account the constraints of the proposed system, as well as allow users to

define custom application-specific hardware/software constraints. The resulting

application pipeline would then be exported in the form of a deployable script that

is ready to be executed on sensor nodes with our run-time installed.

Hardware and software integration poses a significant challenge in remote sensing,

which is subject to a number of constraints including computing resources available,

hardware I/O offered, sensing options, inter-process data rates, and available remote

connectivity options. With the application pipeline defined using the REIP SDK,

this integration process becomes less of a challenge, as the blocks chosen dictate the

minimal hardware platform that can support it. The presented process of manually

benchmarking possible hardware platforms (Section 3.3.2.2) is not ideal but is a

precursor to our planned simulation and optimization tool for pipeline evaluation,

where optimal hardware platforms would be matched to an application pipeline in

an automatic way subject to user constraints, such as maximum memory usage,

data output rate, etc.

147
As mentioned in Chapter 5, we are also currently working on a more compre-

hensive analysis of the urban dataset using all of the available data modalities. Our

objective is to provide examples of analysis that would not otherwise be possible with-

out the unique qualities of our dataset, such as multimodality, multiview and high

resolution with precise synchronization. One example of such analysis is the evalu-

ation of pedestrians’ movement per traffic light cycle. The data will be anonymized

to address privacy concerns and ensure “intelligence without surveillance”.

The LegoTracker sports tracking system is in need of further testing and devel-

opment. In particular, we intend to develop better calibration procedures for joint

analysis of the data captured by different tracking units. Additionally, we are ex-

ploring ways of making the control software needed for managing the larger number

of tracking units compatible with our vision of a more generic REIP GUI tool.

148

Bibliography

[1] Iyad Kheirbek, Kazuhiko Ito, Richard Neitzel, Jung Kim, Sarah Johnson, Zev

Ross, Holger Eisl, and Thomas Matte. Spatial variation in environmental noise

and air pollution in new york city. Journal of Urban Health, 91(3):415–431,

2014.

[2] Juan P Bello, Claudio Silva, Oded Nov, R Luke Dubois, Anish Arora, Justin

Salamon, Charles Mydlarz, and Harish Doraiswamy. Sonyc: A system for

monitoring, analyzing, and mitigating urban noise pollution. Communications

of the ACM, 62(2):68–77, 2019.

[3] Paolo Bellagente, Paolo Ferrari, Alessandra Flammini, and Stefano Rinaldi.

Adopting iot framework for energy management of smart building: A real

test-case. In 2015 IEEE 1st International Forum on Research and Technologies

for Society and Industry Leveraging a better tomorrow (RTSI), pages 138–143.

IEEE, 2015.

[4] NVIDIA AGX. NVIDIA AGX - jetson agx xavier developer kit. developer.nv

idia.com/embedded/jetson-agx-xavier-developer-kit/, 2021. [Online;

accessed 02-Jun-2021].

https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit/
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit/

149
[5] NVIDIA. Jetson - Platform for ai at the edge. developer.nvidia.com/emb

edded-computing, 2021.

[6] RaspberryPi. RaspberryPi - raspberry pi 400 computer kit. raspberrypi.or

g//, 2021. [Online; accessed 02-Jun-2021].

[7] Yurii Piadyk, Bea Steers, Charlie Mydlarz, Mahin Salman, Magdalena Fuentes,

Junaid Khan, Hong Jiang, Kaan Ozbay, Juan Pablo Bello, and Claudio

Silva. Reip: A reconfigurable environmental intelligence platform and software

framework for fast sensor network prototyping. Sensors, 22(10), 2022.

[8] Somansh Kumar and Ashish Jasuja. Air quality monitoring system based

on iot using raspberry pi. In 2017 International Conference on Computing,

Communication and Automation (ICCCA), pages 1341–1346. IEEE, 2017.

[9] Manish Kushwaha, Songhwai Oh, Isaac Amundson, Xenofon Koutsoukos, and

Akos Ledeczi. Target tracking in heterogeneous sensor networks using audio

and video sensor fusion. In 2008 IEEE International Conference on Multisensor

Fusion and Integration for Intelligent Systems, pages 14–19. IEEE, 2008.

[10] Marcos Lage, Jorge Piazentin Ono, Daniel Cervone, Justin Chiang, Carlos

Dietrich, and Claudio T. Silva. Statcast dashboard: Exploration of spatiotem-

poral baseball data. IEEE Computer Graphics and Applications, 36(5):28–37,

2016.

[11] Anand Nayyar and Rajeshwar Singh. A comprehensive review of simulation

tools for wireless sensor networks (wsns). Journal of Wireless Networking and

Communications, 5(1):19–47, 2015.

https://developer.nvidia.com/embedded-computing
https://developer.nvidia.com/embedded-computing
https://www.raspberrypi.org//
https://www.raspberrypi.org//

150
[12] Alexander Gluhak, Srdjan Krco, Michele Nati, Dennis Pfisterer, Nathalie

Mitton, and Tahiry Razafindralambo. A survey on facilities for experimental

internet of things research. IEEE Communications Magazine, 49(11):58–67,

2011.

[13] Cedric Adjih, Emmanuel Baccelli, Eric Fleury, Gaetan Harter, Nathalie Mit-

ton, Thomas Noel, Roger Pissard-Gibollet, Frederic Saint-Marcel, Guillaume

Schreiner, Julien Vandaele, et al. Fit iot-lab: A large scale open experimental

iot testbed. In 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT),

pages 459–464. IEEE, 2015.

[14] Rachit Agarwal, David Gomez Fernandez, Tarek Elsaleh, Amelie Gyrard, Jorge

Lanza, Luis Sanchez, Nikolaos Georgantas, and Valerie Issarny. Unified iot

ontology to enable interoperability and federation of testbeds. In 2016 IEEE

3rd World Forum on Internet of Things (WF-IoT), pages 70–75. IEEE, 2016.

[15] Joshua Adkins, Branden Ghena, Neal Jackson, Pat Pannuto, Samuel Rohrer,

Bradford Campbell, and Prabal Dutta. The signpost platform for city-scale

sensing. In Proceedings of the 17th ACM/IEEE International Conference on

Information Processing in Sensor Networks, IPSN ’18, page 188–199. IEEE

Press, 2018.

[16] Joseph Rafferty, Jonathan Synnott, Andrew Ennis, Chris Nugent, Ian McCh-

esney, and Ian Cleland. Sensorcentral: A research oriented, device agnostic,

sensor data platform. In International conference on ubiquitous computing and

ambient intelligence, pages 97–108. Springer, 2017.

[17] Charles E Catlett, Peter H Beckman, Rajesh Sankaran, and Kate Kusiak

151
Galvin. Array of things: a scientific research instrument in the public way:

platform design and early lessons learned. In Proceedings of the 2nd interna-

tional workshop on science of smart city operations and platforms engineering,

pages 26–33, 2017.

[18] Sage project. sagecontinuum.org, 2020. [Online; accessed October 26, 2020].

[19] Libelium. Libelium - waspmote frame library. development.libelium.com

/data-frame-programming-guide/introduction/, 2021. [Online; accessed

02-Jun-2021].

[20] Usc testbed. cci.usc.edu/index.php/cci-iot-testbed, 2020. [Online;

accessed October 24, 2020].

[21] FIWARE. FIWARE - Open source software platform components. fiware.o

rg/developers/catalogue//, 2021. [Online; accessed 01-Jun-2021].

[22] Joseph Noor, Sandeep Singh Sandha, Luis Garcia, and Mani Srivastava. Ddflow

visualized declarative programming for heterogeneous iot networks on heliot

testbed platform: Demo abstract. In Proceedings of the International Con-

ference on Internet of Things Design and Implementation, IoTDI ’19, page

287–288, New York, NY, USA, 2019. Association for Computing Machinery.

[23] Borui Li and Wei Dong. Edgeprog: Edge-centric programming for iot applica-

tions. In 2020 IEEE 40th International Conference on Distributed Computing

Systems (ICDCS), pages 212–222. IEEE, 2020.

[24] Xiaochen Liu, Pradipta Ghosh, Oytun Ulutan, B. S. Manjunath, Kevin Chan,

and Ramesh Govindan. Caesar: Cross-camera complex activity recognition.

https://sagecontinuum.org/
https://development.libelium.com/data-frame-programming-guide/introduction/
https://development.libelium.com/data-frame-programming-guide/introduction/
http://cci.usc.edu/index.php/cci-iot-testbed/
https://www.fiware.org/developers/catalogue//
https://www.fiware.org/developers/catalogue//

152
In Proceedings of the 17th Conference on Embedded Networked Sensor Sys-

tems, SenSys ’19, page 232–244, New York, NY, USA, 2019. Association for

Computing Machinery.

[25] Pete Beckman, Rajesh Sankaran, Charlie Catlett, Nicola Ferrier, Robert Jacob,

and Michael Papka. Waggle: An open sensor platform for edge computing. In

2016 IEEE SENSORS, pages 1–3. IEEE, 2016.

[26] Waggle. Waggle - Open platform for ai@edge computing and intelligent sensors.

wa8.gl/code-docs/, 2021. [Online; accessed 01-Jun-2021].

[27] Apache Ray. Apache Ray - Fast and simple distributed computing. ray.io/,

2021. [Online; accessed 01-Jun-2021].

[28] Celery. Celery - distributed task queue. docs.celeryproject.org/en/stab

le/index.html/, 2021. [Online; accessed 02-Jun-2021].

[29] Luigi. Luigi - workflow management pipeline. luigi.readthedocs.io/en/st

able/, 2021. [Online; accessed 01-Jun-2021].

[30] GStreamer. GStreamer - Open source multimedia framework. gstreamer.fr

eedesktop.org, 2021. [Online; accessed 01-Jun-2021].

[31] NVIDIA DeepStream. NVIDIA DeepStream - deepstream sdk ai powered

intelligent video analytics. developer.nvidia.com/deepstream-sdk/, 2021.

[Online; accessed 02-Jun-2021].

[32] FFmpeg. FFmpeg - Cross platform solution for audio and video. ffmpeg.org/,

2021. [Online; accessed 01-Jun-2021].

https://wa8.gl/code-docs/
https://ray.io//
https://docs.celeryproject.org/en/stable/index.html/
https://docs.celeryproject.org/en/stable/index.html/
https://luigi.readthedocs.io/en/stable/
https://luigi.readthedocs.io/en/stable/
https://gstreamer.freedesktop.org/
https://gstreamer.freedesktop.org/
https://developer.nvidia.com/deepstream-sdk/
https://www.ffmpeg.org/

153
[33] Congduc Pham. Communication performances of ieee 802.15. 4 wireless sensor

motes for data-intensive applications: A comparison of waspmote, arduino

mega, telosb, micaz and imote2 for image surveillance. Journal of Network

and Computer Applications, 46:48–59, 2014.

[34] Apache Airflow. Apache Airflow - opensource platform. airflow.apache.o

rg/docs/, 2021. [Online; accessed 02-Jun-2021].

[35] Aigerim Zhalgasbekova, Arkady Zaslavsky, Saguna Saguna, Karan Mitra,

and Prem Prakash Jayaraman. Opportunistic data collection for iot-based

indoor air quality monitoring. In Internet of Things, Smart Spaces, and Next

Generation Networks and Systems, pages 53–65. Springer, 2017.

[36] Alexey Medvedev, Alireza Hassani, Arkady Zaslavsky, Prem Prakash Jayara-

man, Maria Indrawan-Santiago, Pari Delir Haghighi, and Sea Ling. Data

ingestion and storage performance of iot platforms: study of openiot. In

International Workshop on Interoperability and Open-Source Solutions, pages

141–157. Springer, 2016.

[37] Peter Salhofer and FH Joanneum. Evaluating the fiware platform: A case-

study on implementing smart application with fiware. In Proceedings of the

51st Hawaii International Conference on System Sciences, volume 9, pages

5797–5805, 2018.

[38] Victor Araujo, Karan Mitra, Saguna Saguna, and Christer Åhlund. Perfor-

mance evaluation of fiware: A cloud-based iot platform for smart cities. Journal

of Parallel and Distributed Computing, 132:250–261, 2019.

[39] Joseph Noor. Ddflow. https://github.com/nesl/DDFlow, 2020.

https://airflow.apache.org/docs/
https://airflow.apache.org/docs/
https://github.com/nesl/DDFlow

154
[40] Apache Spark. Apache Spark - Unified analytics engine for large-scale data

processing. spark.apache.org/, 2021. [Online; accessed 01-Jun-2021].

[41] Md Mahbub Alam, Suprio Ray, and Virendra C. Bhavsar. A performance

study of big spatial data systems. In Proceedings of the 7th ACM SIGSPATIAL

International Workshop on Analytics for Big Geospatial Data, BigSpatial 2018,

page 1–9, New York, NY, USA, 2018. Association for Computing Machinery.

[42] Kasumi Kato, Atsuko Takefusa, Hidemoto Nakada, and Masato Oguchi. A

study of a scalable distributed stream processing infrastructure using ray and

apache kafka. In 2018 IEEE International Conference on Big Data (Big Data),

pages 5351–5353. IEEE, 2018.

[43] Johan Peltenburg, Jeroen van Straten, Matthijs Brobbel, H Peter Hofstee, and

Zaid Al-Ars. Supporting columnar in-memory formats on fpga: The hardware

design of fletcher for apache arrow. In International Symposium on Applied

Reconfigurable Computing, pages 32–47. Springer, 2019.

[44] Tanveer Ahmad, Nauman Ahmed, Zaid Al-Ars, and H Peter Hofstee. Opti-

mizing performance of gatk workflows using apache arrow in-memory data

framework. BMC genomics, 21(10):1–14, 2020.

[45] Geoffrey Lentner. Shared memory high throughput computing with apache

arrow™. In Proceedings of the Practice and Experience in Advanced Research

Computing on Rise of the Machines (Learning), PEARC ’19, New York, NY,

USA, 2019. Association for Computing Machinery.

[46] Xintian Wu, Pengfei Qu, Shaofei Wang, Lin Xie, and Jie Dong. Extend the

https://spark.apache.org/

155
ffmpeg framework to analyze media content. arXiv preprint arXiv:2103.03539,

2021.

[47] Francois Chollet et al. Keras. github.com/fchollet/keras, 2015. [Online;

accessed on 2 June 2021].

[48] Alex Poms, Will Crichton, Pat Hanrahan, and Kayvon Fatahalian. Scanner:

Efficient video analysis at scale. ACM Transactions on Graphics, 37(4):1–13,

Aug 2018.

[49] Apache Arrow Plasma. Apache Arrow Plasma - The Plasma In-Memory Object

Store. minidsp.com/products/usb-audio-interface/mchstreamer, 2021.

[Online; accessed 04-Jun-2021].

[50] C. Mydlarz, M. Sharma, Y. Lockerman, B. Steers, C. Silva, and J. P. Bello.

The life of a new york city noise sensor network. Sensors, 19(6):1415, 2019.

[51] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and

Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In

Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 4510–4520, 2018.

[52] miniDSP. miniDSP - MCHStreamer Kit. minidsp.com/products/usb-aud

io-interface/mchstreamer, 2021. [Online; accessed 03-Jun-2021].

[53] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,

Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael

Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh

https://github.com/fchollet/keras
https://www.minidsp.com/products/usb-audio-interface/mchstreamer
https://www.minidsp.com/products/usb-audio-interface/mchstreamer
https://www.minidsp.com/products/usb-audio-interface/mchstreamer

156
Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris

Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal

Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,

Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and

Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous

systems, 2015. Software available from tensorflow.org.

[54] GStreamer – Open source multimedia framework. gstreamer.freedesktop.

org, 2020. [Online; accessed on 1 June 2021].

[55] Robin Scheibler, Eric Bezzam, and Ivan Dokmanic. Pyroomacoustics: A

python package for audio room simulations and array processing algorithms.

CoRR, abs/1710.04196, 2017.

[56] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross

Girshick. Detectron2. https://github.com/facebookresearch/detectro

n2, 2019.

[57] M. Devendra and K. Manjunathachari. Doa estimation of a system using

music method. In 2015 International Conference on Signal Processing and

Communication Engineering Systems, pages 309–313, 2015.

[58] Energy Information Administration. Electric Power Annual. Technical report,

U.S., 2017.

[59] U.S. Department of Energy. Energy Efficiency Trends in Residential and

Commercial Buildings. Energy, pages 1–32, 2008.

[60] Mohamad Fadzli Haniff, Hazlina Selamat, Rubiyah Yusof, Salinda Buyamin,

and Fatimah Sham Ismail. Review of HVAC scheduling techniques for build-

https://gstreamer.freedesktop.org/
https://gstreamer.freedesktop.org/
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

157
ings towards energy-efficient and cost-effective operations. Renewable and

Sustainable Energy Reviews, 27:94–103, 2013.

[61] G. Escrivá-Escrivá, I. Segura-Heras, and M. Alcázar-Ortega. Application of

an energy management and control system to assess the potential of different

control strategies in HVAC systems. Energy and Buildings, 42(11):2258–2267,

2010.

[62] K. J. Chua, S. K. Chou, W. M. Yang, and J. Yan. Achieving better energy-

efficient air conditioning - A review of technologies and strategies, 2013.

[63] Jiakang Lu, Tamim Sookoor, Vijay Srinivasan, Ge Gao, Brian Holben, John

Stankovic, Eric Field, and Kamin Whitehouse. The Smart Thermostat: Using

Occupancy Sensors to Save Energy in Homes. Proceedings of ACM SenSys,

55:211–224, 2010.

[64] Varick L. Erickson, Miguel a. Carreira-Perpinan, and Alberto E. Cerpa. OB-

SERVE: Occupancy-based system for efficient reduction of HVAC energy.

Proceedings of the 10th ACM/IEEE International Conference on Information

Processing in Sensor Networks, pages 258–269, 2011.

[65] Ali Ghahramani, Guillermo Castro, Burcin Becerik-Gerber, and Xinran Yu.

Infrared thermography of human face for monitoring thermoregulation perfor-

mance and estimating personal thermal comfort. Building and Environment,

109:1–11, 2016.

[66] World Business Council EEB. Report. Technical report, U.S., 2016.

[67] Wei Wang, Jiayu Chen, Gongsheng Huang, and Yujie Lu. Energy efficient

158
HVAC control for an IPS-enabled large space in commercial buildings through

dynamic spatial occupancy distribution. Applied Energy, 207:305–323, 2017.

[68] Tianzhen Hong, Sarah C. Taylor-Lange, Simona D’Oca, Da Yan, and Stefano P.

Corgnati. Advances in research and applications of energy-related occupant

behavior in buildings. Energy and Buildings, 116:694–702, 2016.

[69] H Sachs. Programmable thermostats. American Council for an Energy Efficient

Economy(ACEEE), 2004.

[70] Robert J. Meyers, Eric D. Williams, and H. Scott Matthews. Scoping the

potential of monitoring and control technologies to reduce energy use in homes.

Energy and Buildings, 42(5):563–569, 2010.

[71] Texas Instruments. Energia IDE. https://energia.nu/, 2021. [Online;

accessed 01-Jun-2021].

[72] Department of the Environment and Energy. Hvac energy breakdown. Heating,

Ventilation and Air-Conditioning High Efficiency Systems Strategy, pages 1–2,

2013.

[73] NYU Office of Sustainability. Nyu climate action plan update 2021. -, 20.

[74] Yiying Wu, Xianghua(Sharon) Ding, Xuelan Dai, Peng Zhang, Tun Lu, and

Ning Gu. Alignment work for urban accessibility: A study of how wheelchair

users travel in urban spaces. Proc. ACM Hum.-Comput. Interact., 6(CSCW2),

nov 2022.

[75] Filip Biljecki and Koichi Ito. Street view imagery in urban analytics and gis:

A review. Landscape and Urban Planning, 215:104217, 2021.

https://energia.nu/

159
[76] Bowen Cheng, Bin Xiao, Jingdong Wang, Honghui Shi, Thomas S. Huang, and

Lei Zhang. Higherhrnet: Scale-aware representation learning for bottom-up

human pose estimation, 2019.

[77] G. Pingali, A. Opalach, Y. Jean, and I. Carlbom. Visualization of sports using

motion trajectories: providing insights into performance, style, and strategy.

In Proceedings Visualization, 2001. VIS ’01., pages 75–544, 2001.

[78] Rui Yuan, Zhendong Zhang, Pengwei Song, Jia Zhang, and Long Qin. Con-

struction of virtual video scene and its visualization during sports training.

IEEE Access, 8:124999–125012, 2020.

[79] Major League Baseball Advanced Media (MLBAM). Statcast. URL: http:

//m.mlb.com/glossary/statcast, March 2015.

[80] NBA and Stats LLC. NBA partners with Stats LLC for tracking technology.

URL: https://www.stats.com/sportvu-basketball/, September 2013.

[81] Mark Hedley, Colin Mackintosh, Richard Shuttleworth, David Humphrey,

Thuraiappah Sathyan, and Phil Ho. Wireless tracking system for sports

training indoors and outdoors. Procedia Engineering, 2(2):2999–3004, 2010.

The Engineering of Sport 8 - Engineering Emotion.

[82] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolu-

tional networks. Lecture Notes in Computer Science, page 818–833, 2014.

[83] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus,

and Yann LeCun. Overfeat: Integrated recognition, localization and detection

using convolutional networks, 2013.

http://m.mlb.com/glossary/statcast
http://m.mlb.com/glossary/statcast
https://www.stats.com/sportvu-basketball/

160
[84] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks

for action recognition in videos, 2014.

[85] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh. Openpose:

Realtime multi-person 2d pose estimation using part affinity fields. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2019.

[86] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, and Alexander C. Berg. Ssd: Single shot multibox detector.

Lecture Notes in Computer Science, page 21–37, 2016.

[87] Y. C. Chiu, C. Y. Tsai, M. D. Ruan, G. Y. Shen, and T. T. Lee. Mobilenet-

ssdv2: An improved object detection model for embedded systems. In 2020

International Conference on System Science and Engineering (ICSSE), pages

1–5, 2020.

[88] CMU. Moption capture. http://mocap.cs.cmu.edu, 2021. [Online; accessed

on 01-Jun-2021].

[89] Wah Yen Tey, Nor Azwadi Che Sidik, Nor Azwadi Che Sidik, Yutaka Asako,

Mohammed Muhieldeen, Omid Afshar, and W Tey. Moving least squares

method and its improvement: A concise review. Journal of Applied and

Computational Mechanics, 7:883–889, 04 2021.

[90] NodeRED. NodeRED - Low-code programming for event-driven applications.

nodered.org/, 2021. [Online; accessed 01-Jun-2021].

http://mocap.cs.cmu.edu
https://nodered.org/

	Vita
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Contributions

	Related Work
	Sensor Network Platforms
	Software Pipeline Frameworks

	REIP SDK
	Approach
	Programming Interface
	Performance Evaluation
	Case Study: Smart Traffic Event Detection
	Second Case Study: Object Localization and Tracking
	Discussion and Real-World Applications

	Applications: HVAC Systems
	Motivation
	Methodology
	Independent Analysis
	Building HVAC Comparison
	Discussion

	Applications: Urban Dataset
	Motivation
	Data Acquisition
	Data Processing
	Data Analysis
	Discussion

	Applications: Sports Tracking
	Motivation
	System Design
	First LegoTracker Prototype
	Second LegoTracker Prototype
	Third LegoTracker Prototype
	Discussion

	Conclusions
	Limitations and Future Work

